
LATVIJAS UNIVERSITĀTES
RAKSTI
751. SĒJUMS751. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

SCIENTIFIC PAPERS
UNIVERSITY OF LATVIA
VOLUME 751VOLUME 751

Computer Science and
Information Technologies

LURaksti751-datorzin.indd 1LURaksti751-datorzin.indd 1 2009.06.18. 11:07:012009.06.18. 11:07:01

SCIENTIFIC PAPERS
UNIVERSITY OF LATVIA
VOLUME 751VOLUME 751

Computer Science and
Information Technologies

University of Latvia

LURaksti751-datorzin.indd 2LURaksti751-datorzin.indd 2 2009.06.18. 11:07:062009.06.18. 11:07:06

Latvijas Universitāte

LATVIJAS UNIVERSITĀTES
RAKSTI
751. SĒJUMS751. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

LURaksti751-datorzin.indd 3LURaksti751-datorzin.indd 3 2009.06.18. 11:07:062009.06.18. 11:07:06

UDK 004(082)
 Da 814

Editor-in-Chief:
Prof. Jānis Bārzdiņš, University of Latvia, Latvia

Deputy Editors-in-Chief:
Prof. Rūsiņš-Mārtiņš Freivalds, University of Latvia, Latvia
Prof. Jānis Bičevskis, University of Latvia, Latvia

Members:
Asoc. Prof. Andris Ambainis, University of Latvia, Latvia
Prof. Mikhail Auguston, Naval Postgraduate School, USA
Prof. Guntis Bārzdiņš, University of Latvia, Latvia
Prof. Juris Borzovs, University of Latvia, Latvia
Prof. Janis Bubenko, Royal Institute of Technology, Sweden
Prof. Albertas Caplinskas, Institute of Mathematics and Informatics, Lithuania
Prof. Jānis Grundspeņķis, Riga Technical University, Latvia
Prof. Hele-Mai Haav, Tallinn University of Technology, Estonia
Prof. Kazuo Iwama, Kyoto University, Japan
Prof. Ahto Kalja, Tallinn University of Technology, Estonia
Prof. Audris Kalniņš, University of Latvia, Latvia
Prof. Jaan Penjam, Tallinn University of Technology, Estonia
Prof. Kārlis Podnieks, University of Latvia, Latvia
Prof. Māris Treimanis, University of Latvia, Latvia
Prof. Olegas Vasilecas, Vilnius Gediminas Technical University, Lithuania

Scientifi c secretary:
Lelde Lāce, University of Latvia, Latvia

Editor: Māra Antenišķe

Layout: Ieva Tiltiņa

Visi krājumā ievietotie raksti ir recenzēti.
Pārpublicēšanas gadījumā nepieciešama Latvijas Universitātes atļauja.
Citējot atsauce uz izdevumu obligāta.

All the papers published in the present volume have been rewieved.
No part on the volume may be reproduced in any form without the written permision
of the publisher.

ISSN 1407-2157 © Latvijas Universitāte, 2009
ISBN 978-9984-45-119-0

LURaksti751-datorzin.indd 4LURaksti751-datorzin.indd 4 2009.06.18. 11:07:062009.06.18. 11:07:06

Contents

SYSTEM MODELING

Agnis Stibe, Janis Bicevskis
Web Site Modeling and Prototyping Based on a Domain-Specifi c Language 7

Darius Jurkevicius, Olegas Vasilecas
Formal Concept Analysis for Concept Collecting and Their Analysis 22

Algirdas Laukaitis, Olegas Vasilecas
Automatic Verifi cation of the Conceptual Model and Its Documentation 40

Justas Trinkunas, Olegas Vasilecas
Ontology Transformation: from Requirements to Conceptual Model 52

SOFTWARE TESTING

Guntis Arnicans, Vineta Arnicane
Using the Sponsor-User-Programmer Model to Improve the Testing Process 65

Vineta Arnicane
Complexity of Equivalence Class and Boundary Value Testing Methods 80

LURaksti751-datorzin.indd 5LURaksti751-datorzin.indd 5 2009.06.18. 11:07:062009.06.18. 11:07:06

LURaksti751-datorzin.indd 6LURaksti751-datorzin.indd 6 2009.06.18. 11:07:062009.06.18. 11:07:06

Web Site Modeling and Prototyping Based on
a Domain-Specifi c Language

Agnis Stibe, Janis Bicevskis
University of Latvia, 19 Raiņa Blvd, LV-1459, Rīga, Latvia

Agnis.Stibe@gmail.com, Janis.Bicevskis@lu.lv

In the history of software development, there is a haven of different methodologies, approaches,
and tools that have been designed to capture the expectations of customers and transfer them into
requirements for information systems understandable by programmers. However, reality shows
that the percentage of failures in development of information systems in terms of time, money,
and functionality is not decreasing.
This paper describes creation of a principle for and development of a domain-specifi c web site
modeling language in order to make interactive dialogue during the very beginning of web site
development process to match the expectations of both the customer and supplier. We have
developed a tool to implement all the possibilities offered by language. The web site modeling
tool has a corresponding component to each general function of the language. The web site model
can be simulated within the tool and serve as a prototype for the desired web site in reality.
Prototyping approach eliminates barriers between business and information technology people,
leading to common understanding of web site goals and success in delivery and implementation.
For a more practical view on the issue, the example of the State Revenue Service of the Republic
of Latvia web site is examined in this paper.

Keywords: software engineering, modeling, specifi cation languages, domain-specifi c languages,
web requirements.

1 Introduction: the Variety of Requirements’ Specifi cations
One of the most marked problems in development of any kind of information

systems (IS), including web site development, is gathering and consolidation of adequate
requirements. Professionally collected, they determine not only the functionality
of the developed web site, but also serve as requirements for testing at the phase of
acceptance. The requirements’ analysis is considered to be a key step in the development
of successful IS by all software engineering approaches [1]. Empirical data demonstrate
that efforts invested in a detailed requirement analysis considerably reduce drawbacks
in later phases of the development [2].

One of the following approaches is most frequently applied in development of
requirements.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 7–21 P.

LURaksti751-datorzin.indd 7LURaksti751-datorzin.indd 7 2009.06.18. 11:07:062009.06.18. 11:07:06

Requirements are formulated by business-oriented people, who are less •
experienced in information technology (IT) issues. As a result, requirements
are more informal, incomplete, and sometimes even inconsistent, leaving them
to the imagination and interpretation of IT specialists and programmers. That
leads to many unexpected changes right after the customer starts to use the
newly developed web site.
Requirements are formulated by IT specialists, which commonly have •
poorer knowledge of the web site’s role and business processes. As a result,
there are very well defi ned requirements that are understandable to web site
developers, but may appear to be contradictory to the needs the web site is
being produced for.

In practice the solution is quite often based upon the attempts to unite both
business-oriented people and IT specialists into a team. Then again, the important
question is the choice of the requirement specifi cation language. If requirements
are written in a formalized language with explicit semantics, later execution of that
specifi cation certainly helps to escape misinterpretation of requirements provided
earlier. Unfortunately, Unifi ed Modeling Language (UML) [3] that is currently often
recommended is understandable to IT specialists but is less acceptable for business-
oriented people. Therefore, UML usage in practice is limited and specifi cations quite
often are written in a natural language, which, in turn, causes ambiguity, inaccuracy, and
disagreement about consistency between the specifi cation and the developed system.
Common understanding of the planned system – unifi ed communication language – is
especially important at the very beginning of system development, when requirements
and proposed solutions need to be understood equally by both sides. In many cases
the solution is using combined specialized Business Process Modeling Languages
(BPML) [4] and workfl ows. Nevertheless, for the development of web sites (portals,
home pages, etc), business modeling languages are less appropriate.

In this paper, a simple and practical reasoning-based web site specifi cation language
is proposed. It could, at least partially, solve communication problems between business
oriented people and IT specialists.

2 Statistics: an Example of Problem Segments in Web Site
Development

Below we present an example which will highlight the main ideas of web site
specifi cation. A project of national importance – the project of development and
maintenance of the portal of the State Revenue Service (SRS) of the Republic of
Latvia [5] – is chosen as an example. It is characterized by:

quality specifi cation, because the developer of the portal was selected by •
public procurement, where the procurement subject must be clearly defi ned.
Additionally, there was a previous version of the portal in operation, and that
helped to formulate requirements for the new portal more precisely;
a competent developer team with previous experience in development of several •
portals of national importance.

8 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 8LURaksti751-datorzin.indd 8 2009.06.18. 11:07:062009.06.18. 11:07:06

The statistics about the development and maintenance of the portal were collected
from the fi rst quarter of 2005 to the third quarter of year 2008. The acceptance testing
of the portal was performed by the customer during fi rst and second quarter of year
2005. The portal was launched and maintenance began in the second quarter of 2005.
All events during testing and maintenance of the portal, further “problem events”, were
recorded by the customer with the help of a computerized problem recording system.
Consequently, the statistics represent only the customer’s view on the project and do not
include the developer’s internal communication. It is remarkable that these statistics are
complete, meaning that the developer only processed problem notifi cations offi cially
recorded by the customer, and no other way of communication regarding drawbacks
of the portal was accepted. That established reliable ground for completeness and
credibility of the collected data.

234 problem notifi cations were recorded altogether. They can be divided into fi ve
general groups represented in Figure 1.

Errors (55). This group includes only those problem notifi cations which are •
obviously interpretable as inconsistency between the operation of the portal
and the specifi cation.
Misinterpreted requests (32). A programmer has developed an application that •
he or she thinks is consistent with the specifi cation. However, the customer
founds an inconsistency with the specifi cation during the phase of acceptance-
testing, and the programmer has to admit his or her fault.
Loose requests (25). Problem notifi cation is recorded, but it cannot be treated •
as a mistake of a programmer because the formulation in the specifi cation is
ambiguous.
Changed requests (83). The customer changes initial requirements during •
acceptance-testing and maintenance of the portal, which results into changes
within the application.
New requests (39). The customer formulates new requirements that were not •
stated in the beginning.

Fig. 1. Problem notifi cations (cumulative)

9Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 9LURaksti751-datorzin.indd 9 2009.06.18. 11:07:062009.06.18. 11:07:06

The statistics show that mistakes of programmers comprise only 23% of all
problem notifi cations, which lets us question the common belief about the inevitability
of programmers’ faults. Especially surprising is dispersion of problem notifi cations in
time, which shows that programming errors are solved relatively fast, but the amount
of changed requests and additions during the operation of the portal remains stationary
high. It is also supported by the fact that 52% of problem notifi cations correspond to
changed requests and new requests; in addition, their amount does not decrease during
the maintenance. As a result, the developed but at the same time informal specifi cation
was overwritten many times. Actually, there is no unifi ed specifi cation any more, except
the one proposed in this paper. The experience of the SRS project demonstrates that
similarly to workfl ow languages that offer specifi cation options to describe operation
of information systems, there is a necessity for a particular specifi cation language for
the development of web sites, portals, etc, which would let describe easily the main
elements of the web site, retaining close relation with the web site operated in reality
during its whole lifecycle.

The previously analyzed statistics on the basis of a particular example clearly
highlight the following statement: in projects that include development and maintenance
of the web site for several years, the main problem is not correction of programmers’
mistakes but changed requests in the existing specifi cations and new requirements.
Therefore, a solid ground is established for development of a domain-specifi c language
(DSL) for description of web site elements and their functions.

3 The Research: Domain-Specifi c Language for Web Site Modeling
In all branches of science and engineering, generic and specifi c approaches can be

distinguished. A generic approach provides a general solution for many problems in a
certain area. A specifi c approach provides a better solution for a smaller set of problems.
Both approaches are considered in computer science in relation to the topic “domain-
specifi c languages versus generic programming languages” [6]. A domain-specifi c
language indicates a specifi cation language dedicated to a particular problem domain –
web site development in this paper.

On the one hand, currently more efforts are aimed at evolving the existing Semantic
Web [7] concepts defi ned by the World Wide Web Consortium [8] (Resource Description
Framework – RDF [9] and Web Ontology Language – OWL [10]) and Universal
Networking Language – UNL [11] specifi cations. Compatible with these concepts
is Web Site Parse Template [12], which is a specifi cation for web site structure and
content description for web crawlers. It is an effective way to provide web crawlers with
proper web page templates to parse web site content more accurately, coordinating the
same object attributes used in different pages of the same web site. The Web Ontology
Language (OWL) is designed for use by applications that need to process the content of
information instead of just presenting information to humans.

For many years, researchers put their efforts in the Semantic Web Service area,
work toward further standardization in the area of Semantic Web Service languages
and a common architecture and platform for Semantic Web Services [13]. The Web
Service Modeling Ontology (WSMO) [14] provides a conceptual framework and
a formal language for semantic description of all relevant aspects of web services in

10 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 10LURaksti751-datorzin.indd 10 2009.06.18. 11:07:062009.06.18. 11:07:06

order to facilitate the automation of discovering, combining, and executing electronic
services over the Web. Web Service Modeling eXecution environment (WSMX) [15]
is the reference implementation of WSMO. It is an execution environment for business
application integration where enhanced web services are integrated for various business
applications. WSMX internal language is Web Service Modeling Language (WSML)
[16]. WSML is based on different logical formalisms, namely Description Logics, First-
Order Logic, and Logic Programming, which are useful for the modeling of Semantic
Web services. Semantic Web is more perceived as a vision for the future of the Web,
in which information is given explicit meaning, making it easier for machines to
automatically process and integrate information available on the Web.

Another approach is Web Modeling Language (WebML) [17], a notation for
specifying complex web sites at a conceptual level. WebML enables high-level
description of a web site by distinct orthogonal dimensions: its data content (structural
model), the pages that compose it (composition model), the topology of links between
pages (navigation model), the layout and graphic requirements for page rendering
(presentation model), and the customization features for one-to-one content delivery
(personalization model). All the concepts of WebML are associated with a graphic
notation and a textual XML syntax. WebML specifi cations are independent of both the
client-side language used for delivering the application to users, and of the server-side
platform used to bind data to pages, but they can be effectively used to produce a site
implementation in a specifi c technological setting. WebML guarantees a model-driven
approach to web site development.

Signifi cant characteristics that show why WebML is not suitable for the aim of
this paper is that WebML: is a high-level specifi cation language for designing data-
intensive web applications; stresses the defi nition of orthogonal navigation and
composition primitives, which the designer can arbitrarily compose to model complex
requirements; includes an explicit notion of site view, whereby the same information
can be structured in different ways to meet the interests of different user groups or
to obtain a granularity optimized for users approaching the site with different access
devices; covers advanced aspects of web site modeling, including presentation, user
modeling, and personalization.

The UML-based Web Engineering (UWE) [18] approach provides a set of web
domain-specifi c model elements for modeling different concerns describing a web
system, such as content, hypertext structure, presentation, and processes. These model
elements and the relationships between them are specifi ed by a metamodel. UWE’s
notation is defi ned as a lightweight extension of the UML providing the so-called
UML Profi le for the Web domain. The main focus of the UWE approach is to provide
a UML-based domain-specifi c modeling language, model-driven methodology, tool
support for systematic design, and tool support for (semi-)automatic generation of Web
applications.

On the other hand, approaches mentioned before are far too sophisticated when the
need is to gather, store, and validate customers’ requirements for a web site. The solution for
any particular problem is going to be discovered and explored in the phase of requirement
specifi cation during the process of deeper acquaintance between the customer and supplier.
A customer has to be able to defi ne the web site’s processes in a simple and precise
manner (Web Site Model), at the same time not going deep into programming details.

11Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 11LURaksti751-datorzin.indd 11 2009.06.18. 11:07:062009.06.18. 11:07:06

In turn, a supplier a designs web site prototype and demonstrates it to the customer, who
has a chance to evaluate and assess the supplier’s proposed solution and its compliance to
initial requirements at the very beginning of the web site development.

The approach presented in this paper aims to build an effective environment for
collecting, storing, and modeling requirements for web site development, and to make
a prototype web site based on these requirements afterwards, allowing everyone to
ascertain that the result will meet the expectations. The development of a domain-
specifi c language typically involves a sequence of steps starting with identifi cation of
the problem domain, gathering of all relevant knowledge in this domain, and ending
with design and implementation of a compiler that translates DSL programs.

In many cases DSL serves as a basis for the development of operable prototypes,
which in turn are very good means of mutually harmonized communication for
requirement gathering and specifi cation of functionality of developed systems. A deeper
insight into prototyping is considered to be a natural extension of the research work,
but this paper focuses on the defi nition of a domain-specifi c language designed for
modeling of web sites, and does not aim to describe the syntax and semantics of the
language at this stage.

4 Contribution: Web Site Modeling Language (WeSiMoLa)
Reviewing the history of recent tendencies in requirement specifi cation, two most

common ways can be singled out: one way is high-level specifi cation, where general
requirements are specifi ed with no intention to go into the smallest details and functions;
the aim is to prepare specifi cation as far as it is understandable for developers in terms
of the expected result. The other way is deep programming, where specifi cation includes
every detail of the planned system as far as describing each smallest action and reaction
to it. In this paper, the fi rst alternative is chosen, because web site environment is
developing and changing so fast that it is more reasonable to make high level specifi cation
in much shorter time.

The following solution is presented to the problem described in this paper:
fi rstly, a web site modeling language, called WeSiMoLa, is created. Additionally, •
all terms that are simple enough but at the same time satisfactory to formulate
web site requirement defi nition are defi ned;
secondly, realization (interpretation) of WeSiMoLa is offered in the form •
of a prototype, which can be demonstrated to the customer as the web site’s
prototype.

There are several advantages to the proposed approach. It allows to create an
effi cient dialog between the customer and supplier in the early stage of requirement
specifi cation, enabling to escape the risks of wasted resources (time, money, or others)
during elimination of misinterpreted expectations set in inaccurate specifi cations. The
approach assures that the customer always will have specifi cation of their web site that
is in compliance with the real up-and-running web site.

WeSiMoLa is a domain-specifi c language aimed to describe web site’s layouts,
content, modules, and information structure in an easy readable and constructible manner.
WeSiMoLa allows to record web site’s content and navigation net in an understandable
form that is convenient for other potential users.

12 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 12LURaksti751-datorzin.indd 12 2009.06.18. 11:07:062009.06.18. 11:07:06

The general concept of WeSiMoLa is built upon the idea of the FrameSet approach
[19]. The fundamental elements of the language are simple Objects common on the Web,
like text, picture, link, etc. As the next step, those objects are combined in different ways
to make Frames. Each Frame is build with a specifi c purpose, e.g., archive, registration
forms, questionnaires, and related topics. Finishing the concept of WeSiMoLa, Frames
are going to be allocated in FrameSets. The structure can be defi ned for each FrameSet
in terms of number of rows and columns which divide the screen or general view of the
web site into several parts. Each of these parts can be fi lled with one or more Frames.

4.1 FrameSet Defi nition

FrameSet is a structure that divides the total space into number of rows and columns,
meaning everything that can be viewed by a web browser (window), including space
that is outside the screen, which can be reached by scrolling. Rows and columns mark
the areas that will serve for a place where Frames will be allocated. It is a physical and
logical division that later is visible on the screen. Visibility is enhanced by graphical
design. If not, there are always invisible logical lines that separate groups of Frames
on the screen. Each area in the FrameSet, whether it is row or column, has a fi xed or
proportional height and width. In case of fi xed parameters, a row or column will remain
at a constant size when browser window is resized or resolution is changed. If height or
width of some row or column is defi ned as proportional, the size of the particular area
will change according to the updated resolution or proportionally to the resizing of the
browser window. Any area in the FrameSet can hold none, one, or many Frames.

4.2 Frame Defi nition

Frame can be allocated somewhere in a FrameSet according to its purpose or size.
Similarly to FrameSet areas, there can be two kinds of Frames – with fi xed height or
width or of fl exible size that adapts to the size values of an area where it is placed. Each
Frame has its purpose or shape. A Frame with a purpose means that it is built to execute
a particular process or to serve a particular need. Most common types of purpose Frames
are help, archive, registration forms, questionnaires, etc. All other Frames are defi ned
with an aim to represent particular information in a particular shape, e.g. a picture
and a textual description, which are Objects. Frames are built with the help of various
Objects, combining them to serve the particular purpose of the chosen Frame. Frame
has a parameter that allows to show it in a pop-up window or as an overlaying window
as well.

4.3 Object Defi nition

Objects are the basic elements of WeSiMoLa. They are different and each of them
performs a specifi c task or represents a unique meaning. There are passive Objects like
text and graphical elements without the possibility to interact with them; they are only
representative elements. All others are active Objects like links in a text or graphical
elements; it is possible to navigate away from it, input data and perform a related
process with the help of various input fi elds and action buttons, etc. The number and
type of Objects is predefi ned in the language. The only task is to develop Frames from
the Objects and put the Frames into FrameSets.

13Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 13LURaksti751-datorzin.indd 13 2009.06.18. 11:07:062009.06.18. 11:07:06

Fig. 2. WeSiMoLa Objects in SRS web site

List of predefi ned Objects:
Text Element;•
List;•
Table;•
Picture;•
Animation;•
Interaction;•
Link:•

Internal Frame / Internal Web Site / External, ○
To Page / to File; ○

Input Fields:•
Radio Buttons, ○
Check Boxes, ○
Drop Down, ○
Free Input; ○

Action on Input Data;•
Menu:•

Horizontal / vertical, ○
Levels overlapping horizontally / vertically, ○
Levels expanding vertically, ○
Language; ○

14 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 14LURaksti751-datorzin.indd 14 2009.06.18. 11:07:062009.06.18. 11:07:06

Photo / Audio / Video;•
Search;•
Navigation Root;•
Banner;•
Blog;•
Calendar;•
Abstract;•
Login;•
Print this page.•

An example of part of WeSiMoLa Objects is represented in Figure 2. For consistency
throughout the paper, SRS web site is taken as the example.

5 The Web Site Modeling Technique
The basis of the web site modeling technique is composing Frames using predefi ned

Objects, allocating Frames into designed FrameSet templates, and building up the
navigation. To support this modeling technique, a Web Site Modeling Tool (WeSiMoTo)
is developed. Four general components of web site modeling are:

information source structured in a tree form for menu purposes and core •
navigation:

in WeSiMoTo this component is embodied in Tree Builder; ○
repository for keeping composed Frames:•

in WeSiMoTo this component is embodied in Frame Composer; ○
repository for keeping designed FrameSet layouts:•

in WeSiMoTo this component is embodied in FrameSet Designer; ○
navigation modeling:•

in WeSiMoTo this component is embodied in Navigation Net. ○

Fig. 3. Full Information Tree of the SRS web site

15Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 15LURaksti751-datorzin.indd 15 2009.06.18. 11:07:062009.06.18. 11:07:06

5.1 Information Tree Modeling (Tree Builder)

The information tree represents graphically all the textual information that a web
site has and its location in a structured way. It also clearly shows the core navigation
through the web site and subordination of information pieces.

Full Information Tree of the English version of SRS web site is represented in
Figure 3. It has six general sections and goes deep to the fourth sublevel.

Tree Builder is the component in WeSiMoTo that allows to input and order
information in an easy understandable and user friendly environment. Its general
functions are:

create a new tree / save / remove;•
add / remove language of the tree;•
add / edit / remove sublevels of information in the tree;•
add / edit / remove information;•
save tree.•

Fig. 4. Tree Builder of the SRS web site

Figure 4 represents a view of the Tree Builder component of WeSiMoTo during the
development of Information Tree of the SRS web site.

5.2 Frame Modeling (Frame Composer)

Frame modeling gives the opportunity to combine Objects in different ways in order
to produce Frames with concrete purposes or with particular shapes. As an example,
Figure 5 represents the Advanced Search Frame of the SRS web site. It consists of Text,
Picture, Free Input, Drop Down and Action Objects.

Fig. 5. Advanced search Frame of the SRS web site

16 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 16LURaksti751-datorzin.indd 16 2009.06.18. 11:07:082009.06.18. 11:07:08

Frame Composer is the component in WeSiMoTo that supports Frame modeling. It
contains all predefi ned Objects and offers the following functions:

create new / edit / remove Frame;•
set size parameters for the Frame;•
pop-up / overlaying Frame;•
add / edit / remove Object;•
save Frame in repository.•

Figure 6 represents the Advanced Search Frame of the SRS web site previously
shown in Figure 5, only here it gives a view of the Frame through the Frame Composer
component of WeSiMoTo.

Fig. 6. Advanced search Frame of the SRS web site in Frame Composer

5.3 FrameSet Modeling (FrameSet Designer)

The function of FrameSet modeling is to prepare the general layout of a web site;
it defi nes the number of columns and rows in a view, their height and width. FrameSet
presents a logical and physical structure indicating where Frames then can be allocated
in the browser window.

Fig. 7. FrameSet Designer

17Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 17LURaksti751-datorzin.indd 17 2009.06.18. 11:07:092009.06.18. 11:07:09

FrameSet Designer represented in Figure 7 is the component in WeSiMoTo that
allows to make as many different FrameSet layouts as needed. Designer offers the
following functions:

create new / edit / remove FrameSet;•
set number of columns / rows;•
set size parameters for each area – fi xed or proportional;•
save FrameSet in repository.•

5.4 Navigation Modeling (Navigation Net)

Navigation modeling is the essence of web site modeling. It bounds together all
parts of web site modeling described before. It allows to construct the net of relations
among Information Tree, FrameSets, and Frames, permitting web site navigation.

Navigation Net is the component in WeSiMoTo that takes Information Tree as the
basis and allows to choose any prepared FrameSet layout and connect it to a chosen
branch or leaf of the tree. Then each FrameSet can be fi lled with Frames, meaning
predefi ned Frames can be placed into FrameSet areas and connections among them are
made. Consequently, navigation is built up.

General functions of Navigation Net are:
show and navigate Information Tree;•
show and make available all predefi ned Frames;•
for each tree branch or leaf – attach / show / remove FrameSet;•
for each FrameSet area – add / remove Frame;•
add / edit / remove links from / to Frames and Information Tree;•
save model.•

Figure 8 to Figure 11 demonstrate an example of navigation through the SRS
web site. Figure 8 is the fi rst in the row where Navigation Net describes the position
corresponding to the main page of the SRS web site.

Fig. 8. Navigation Net representing the main page of the SRS web site in English

A Navigation Net window consists of three major parts: Information Tree, Frames,
and FrameSet views. Since the space is limited, part of Information Tree can be viewed

18 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 18LURaksti751-datorzin.indd 18 2009.06.18. 11:07:102009.06.18. 11:07:10

and the actual page is marked black. Frames are organized in a tree form and are
accessible from Frames view. The right side is left for FrameSet construction, fi lling
them with Frames and building up navigation among them all.

Fig. 9. The main page of the SRS web site in English

Figure 9 represents the same English language main page of the SRS web site, but
now in shape of a real site, where all Objects and FrameSet are replaced with actual
textual and graphical information.

In order to see how the navigation works, a click on “Related Topics” – “Electronic
Declaring” is simulated. Figure 10 represents the actual state after the click. Again,
the root to the actual page is marked black, namely “SRS” -> “Useful” -> “Electronic
declaring” -> “What is EDS?” Consequently, there are changes in the FrameSet side,
where the previous is substituted with the corresponding to the new state in the Tree.
FrameSet now has a different set of Frames, their location, and one column less.

Fig. 10. Navigation Net representing EDS page of the SRS web site in English

Figure 11 represents the same English language EDS page of SRS web site, again
in a shape of the real web site, where all Objects and FrameSet are replaced with actual
textual and graphical information. This example shows the way the Navigation Net can
be used for building up the navigation of the web site and how a prototype is build from
the model and later simulated.

19Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 19LURaksti751-datorzin.indd 19 2009.06.18. 11:07:112009.06.18. 11:07:11

Fig. 11. EDS page of the SRS web site in English

5.5 Web Site Model

Web Site Model is a set of internally coherent four types of modeling processes
mentioned before. All types of processes, except Navigation Net, and their names are
presented in a tree-type structure that shows the content of the model.

The model’s content consists of three parts:
Information Tree’s diagram – presents all information in a structured way, and •
it is unique to the whole model;
Frames’ repository – every row describes one Frame with attached design that •
shows the content of the Frame – Objects in it and its parameters;
FrameSets’ repository – each row describes one FrameSet with attached layout •
of the FrameSet and its parameters.

6 Conclusions and Further Directions
This paper examined the domain-specifi c web site modeling language WeSiMoLa

and the web site modeling tool WeSiMoTo based on the WeSiMoLa language, which give
the possibility to collect, develop and store requirements in an easily understandable way
for both customers and suppliers. In contrast to the waterfall principle, the gathering of
requirements here is organized on the basis of gradual elaboration approach. Moreover,
a web site model can be built from the requirements. A prototype of the web site is the
consequent next step that can be executed, thus clearly demonstrating the planned web
site in action and assuring both parties of how common their expectations are and whether
they will be met. Prototyping is considered as a natural extension of this research paper.

The proposed method suits well the need for acquiring requirement specifi cations for
various kinds of simple type web sites such as HTML-based home pages, promotional
web sites, and others of the same sort. The approach described in the paper also solves
well the requirement management for web portals based on content management systems.
The scope of this research does not include web sites integrated with sophisticated data
sources, because those would involve an additional defi nition of DSL objects for the
data storage. That gives an opportunity for further and broader research within the fi eld
of web development.

The proposed web site modeling language is built upon practical experience and
requirements, therefore it can’t be perceived as fi xed and complete. Primarily it applies
to the types of Objects that are used in the Frame composition process. Evolution of the
web will bring ever more sophisticated object types that would need to be included into
the specifi cation language.

20 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 20LURaksti751-datorzin.indd 20 2009.06.18. 11:07:122009.06.18. 11:07:12

However, the example of the already existing SRS web site and its model in
WeSiMoTo represents how user friendly is the modeling language and how natural
is the modeling tool in operation. The advantage of the described language is that in
contrast to a general-purpose modeling language such as the UML, WeSiMoLa (with
supporting WeSiMoTo) allows a particular type of issues or their solutions on the Web
to be expressed more clearly.

In the future this modeling language and the related tool will be investigated more
by applying them in different new web site development projects at the requirement
analysis stage, thereby achieving greater approbation and higher precision in each of
their components. Secondly, this paper does not describe the collaboration between the
web site and Content Management System (CMS) and its formalization, which is for a
prospect of further research in the future.

References
1. Lowe D., Eklund J. (2002) Client Needs and the Design Process in Web Projects, Journal on Web

Engineering 1, Rinton Press, pp. 23–36.
2. Sommerville I., Ransom J. (2005) An empirical study of industrial requirements engineering process

assessment and improvement, ACM TOSEM 14, pp. 85–117.
3. Unified Modeling Language (UML), version 2.1.2., available online: http://www.omg.org/technology/

documents/formal/uml.htm.
4. Business Process Modeling Language (BPML), available online: http://www.service-architecture.com/

web-services/articles/business_process_modeling_language_bpml.html.
5. State Revenue Service of Republic of Latvia, available online: http://www.vid.gov.lv.
6. Van Deursen A., Klint P., Visser J. (2000) Domain-Specific Languages: An Annotated Bibliography.

Computer Based Learning Unit, University of Leeds, available online: http://homepages.cwi.nl/~arie/
papers/dslbib/, February 2000.

7. Herman I. (2008) W3C Semantic Web Activity. Available on the internet http://www.w3.org/2001/sw/.
April 2008.

8. Jacobs I. (2008) About the World Wide Web Consortium (W3C). Available online: http://www.w3.org/
Consortium/, February 2008.

9. Swartz A. Application/rdf+xml Media Type Registration”, available online: http://www.ietf.org/rfc/
rfc3870.txt, September 2004.

10. Schreiber G., Dean M., van Harmelen F., Hendler J., Horrocks I., McGuinness D. L., Patel-Schneider P. F.,
Stein L. A. OWL Web Ontology Language Reference/W3C Recommendation. Available online: http://
www.w3.org/TR/owl-ref/, February 2004.

11. Universal Networking Digital Language Foundation (UNL). Available online: http://www.undl.org/.
12. Manukyan Av., Manukyan Ar., Mailyan A., Sayadyan A. (2008) Website Parse Templates. Available

online: http://tools.ietf.org/html/draft-manukyan-website-parse-templates-00, April 2008.
13. The mission of the ESSI WSMO working group. Available online: http://www.wsmo.org.
14. De Bruijn J., Bussler C., Domingue J., Fensel D., Hepp M., Keller U., Kifer M., Kopecky J., Lausen H.,

Oren E., Polleres A., Roman D., Scicluna J., Stollberg M. (2005) Web Service Modeling Ontology.
Available online: http://www.w3.org/Submission/WSMO/, June 2005.

15. Web Service Modelling eXecution environment. Available online: http://www.wsmx.org/.
16. De Bruijn J., Fensel D., Keller U., Kifer M., Lausen H., Krummenacher R., Polleres A., Predoiu L. (2005)

Web Service Modeling Language. Aavailable online: http://www.w3.org/Submission/WSML/, June 2005.
17. Ceri S., Fraternali P., Bongio A. (2000) Web Modeling Language: A Modeling Language for Designing

Web Sites. In: Proc. of the 9th Intl World Wide Web Conference, May 2000, Amsterdam, pp. 137–157.
Available online: http://www9.org/w9cdrom/177/177.html.

18. Koch N., Kraus A. (2002) The Expressive Power of UML-Based Web Engineering. In: Proc. of the
Second Intl Workshop on Web-Oriented Software Technology (IWWOST02), Malaga, 2002, pp. 105–119.
Available online: http://www.pst.ifi.lmu.de/projekte/uwe/.

19. Arnicans G., Karnitis G. (2006) Intelligent Integration of Information from Semi-Structured WEB Data
Sources on the Basis of Ontology and Meta Models. In: Proc. of the 7th Intl Baltic Conference DB&IS,
Vilnius, 2006, pp. 177–186.

21Agnis Stibe, Janis Bicevskis. Web Site Modeling and Prototyping Based on a Domain ..

LURaksti751-datorzin.indd 21LURaksti751-datorzin.indd 21 2009.06.18. 11:07:122009.06.18. 11:07:12

Formal Concept Analysis for Concept Collecting and
Their Analysis*

Darius Jurkevicius1 and Olegas Vasilecas2, 3

1 Department of Information Systems, Faculty of Fundamental Sciences, Vilnius Gediminas Technical
University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania, d.jurkevicius@isl.vgtu.lt

2 Information Systems Research Laboratory, Faculty of Fundamental Sciences, Vilnius Gediminas
Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania, olegas@isl.vgtu.lt

3 Department of Computer Science, Faculty of Natural Sciences, Klaipeda University,
Herkaus Manto 84, LT-92294 Klaipeda, olegas.vasilecas@ik.ku.lt

The method how to collect concepts and analyse them using formal concepts analysis is presented
in this paper. This method allows representing of the hierarchical tree of concepts without
analyzing terms in a specifi c domain. The main idea of the proposed method is to select concepts
(objects) from collected data of specifi c domain using templates. Later the collected terms are
analyzed using the formal concept analysis method. This allows to simplify the steps of term
analysis and ontology representing in the ontology development process. We propose to use the
logical structure of context that allows to extend the traditional context. It allows to save more
data in the context and to simplify the usage of context in information systems. We call this
extended formal context distributional formal context. In this paper, the real estate domain was
selected for the experiment and its results are presented.

Keywords: formal concepts analysis, formal context, formal concept, multi-formal context,
distributional formal context, concept collecting.

Introduction
Usually, different types of ontology are used for designing of information systems

(Fig. 1). During ontology development process the general concepts (entity, event, date,
process, etc) are defi ned at top level. At the next step, concepts of domain (domain
ontology), concepts of process (ontology of process), and concepts of tasks (ontology of
problem) are defi ned. In that way principle of independence of the domain knowledge
and knowledge about process proposed by Guarino (5) are implemented. Processes
are described by the terms of the actor. The processes in relation with the problem are

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 22–39 P.

*
The work is supported by Lithuanian State Science and Studies Foundation according to High Technology
Development Program Project “Business Rules Solutions for Information Systems Development (VeTIS)”,
Reg. No. B-07042.

LURaksti751-datorzin.indd 22LURaksti751-datorzin.indd 22 2009.06.18. 11:07:122009.06.18. 11:07:12

linked to the entity of domain. It is useful to fi nd components that can be repeatedly used
for designing information systems. Ontology is one of such components. Ontology of
process can be repeatedly used, because its structures are the same in different domain
processes. Generally, the ontology development process includes 4 stages: collecting of
terms, analysis of terms, correction of terms, and representation of terms. The diagram
of this process is shown in Figure 2.

Fig. 1. Types of ontology

The identifi cation of all terms of a specifi c domain, their relationship and defi nitions
are included into the term collection stage. Terms are analysed at the stage of term
analysis. During this stage different terms that describe the same objects and processes
are searched for. After the searching of terms is fi nished, the usage of one general term
must be achieved. This is done during the third stage of ontology development. The fourth
stage is representation of ontology using a specifi c language (for example, OWL), and
during this stage a tool is used. The choice of ontology representation language belongs
to the ontology development tool. A user without a specifi c knowledge can develop
ontology just by using ontology development tool. For example, an information system
engineer can perform this work.

The ontology development process described above and presented at Fig. 2 is slow
and time-consuming.

Fig. 2. Process of ontology development

Automating of the stages of term analysis and ontology representation is one of the
ways to develop ontology more quickly. There are no systems that could automate these

23Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 23LURaksti751-datorzin.indd 23 2009.06.18. 11:07:122009.06.18. 11:07:12

stages at this moment. However, researchers’ community in the ontology development
fi eld believes that in achieving the technology of semantic Internet, specifi c systems
will be developed that should automate ontology development stages. This paper
proposes the method for automation of ontology developed process by mean of formal
concept analysis.

The authors apologize for the readers because some pictures of application are in
the Lithuanian language. The application and ontology for it was used for analysing
data in Lithuanian. The remaining part of this paper consists of the following
sections.

Formal concept analysis and its usage for ontology developed is described in •
the second section.
Collecting of terms in a specifi c domain and the context logical structure that •
allows to extend the traditional context is described in the third section.
The experiment and its results are described in the fourth section. The system •
architecture is presented.
The conclusions are drawn in the last section.•

What is Ontology?
According to [1, 14, 15], in the context of computer and information sciences,

ontology is defi ned as a set of representational primitives with which a domain of
knowledge or discourse is modeled. The representational primitives are typically
classes (or sets), attributes (or properties), and relationships (or relations among class
members). The defi nitions of the representational primitives include information about
their meaning and constraints on their logically consistent application.

By the feature of expressivity, two types of ontology can be distinguished:
heavyweight and lightweight ontology. The main difference between them is the role
played by axiomatization. Heavyweight ontologies are extensively axiomatized and
lightweight ontologies often are presented as simple taxonomic structures and are either
slightly or not axiomatized.

Contemporary ontologies share many structural similarities, regardless of the
language in which they are expressed. Most ontologies describe individuals (instances),
classes (concepts), attributes, and relations. In this section, each of these components is
discussed in turn.

Common components of ontologies can include:
individuals: instances or objects (the basic or “ground level” objects); •
classes: sets, collections, concepts, types of objects, or kinds of things;•
attributes: aspects, properties, features, characteristics, or parameters that •
objects (and classes) can have;
relations: ways in which classes and individuals can be related to each other;•
function terms: complex structures formed from certain relations that can be •
used in place of an individual term in a statement;
restrictions: formally stated descriptions of what must be true in order for some •
assertion to be accepted as an input;

24 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 24LURaksti751-datorzin.indd 24 2009.06.18. 11:07:132009.06.18. 11:07:13

rules: statements in the form of an “if-then” (antecedent-consequent) sentence •
that describe the logical inferences that can be drawn from an assertion in a
particular form;
axioms: assertions (including rules) in a logical form that together comprise •
the overall theory that the ontology describes in its domain of application.
This defi nition differs from that of axioms in generative grammar and
formal logic. In these disciplines, axioms include only statements asserted
as a priori knowledge. As used here, axioms also include the theory derived
from axiomatic statements.

Understanding of Formal Concept Analysis

One of the ways to transform available data in a hierarchic form is formal concept
analysis. Dau [2] noticed that scientists making plots could not lean on them as on
arguments. To separate formally the mathematical structure from its schematical
presentation, the work environment was created in which diagrams could be used to
make formal substantiations. Now we will defi ne some terms used in this paper.

Concept can be defi ned as:
an abstract or general idea inferred or derived from specifi c instances [9, 23];•
an abstract idea or a mental symbol typically associated with a corresponding •
representation in language or symbology that denotes all of the objects in a
given category or class of entities, interactions, phenomena, or relationships
between them [15, 23];
having an intention (deep defi nition), extension (set of objects or exemplars) •
[10];
the defi nition of a type of objects or events; a concept has an intentional •
defi nition (a generalization that states membership criteria), and an extension
(the set of its instances) [11].

Formal Concept Analysis (FCA) [17] method is:
a mathematization of the philosophical understanding of concept;•
a human-centred method to structure and analyze data;•
a method to visualize data and its inherent structures, implications, and •
dependencies.

FCA is based on the philosophical understanding that a concept can be described by
its extension – that is, all the objects that belong to the concept and its intension which
is all the attributes that the objects have in common [13], and this can be represented as
a table.

Formal context is the mathematical structure used to formally describe these tables
of crosses (or, briefl y, a context) [22].

FCA is a method used in data analysis, knowledge representation, and information
control. Rudalf Wille suggested FCA in 1981 [17], and this method is successfully
developed nowadays. For the fi rst 10 years, FCA was researched by small groups of
scientists and Rudalf Wille’s students in Germany. FCA was not known worldwide

25Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 25LURaksti751-datorzin.indd 25 2009.06.18. 11:07:132009.06.18. 11:07:13

because the bulk of publications were presented at mathematicians’ conferences. After
getting the sponsorship, some projects were implemented in this area. Most of them
were knowledge research projects used for systems delopment. This system was known
only in Germany. During the last 10 years, FCA became the research object of the
international scientifi c community. FCA was used in linguistics, psychology, as well
as in software engineering and in the areas of artifi cial intelligence and information
search.

Some of the structures of FCA appear to be fundamental to information
representation and were independently discovered by different researchers. For
example, Godin et al. [5] used concept lattices (which they call “Galois lattices”) for
information retrieval.

Now, we shall introduce the defi nition of formal concept analysis [4]. Let us present
an example: G is the set of objects that we are able to identify in some domain (e.g. if,
when, than). Let M be the set of attributes. We identify the index I as a binary relationship
between the two sets, G and M, i.e. I ⊆ G x M. The triple (G, M, I) is called a formal
context. For A ⊆ G, we defi ne

(1),

and dually, for B ⊆ M

(2).

A formal concept of a formal context (G, M, I) is defi ned as a pair (A, B) with A ⊆ G,
B ⊆ M, A ′⊆ B and B ′⊆ A. Sets A and B are called the extend and intend of the formal
concept. The set of all formal concepts of a context (G, M, I) is called the concept lattice
of the context (G, M, I).

The Proposed Method for Concept Collecting and Their Analysis
Our method for term collection and analysis of data is proposed in this section.

The sequence of term collection, analysis, and representation is shown in Figure 3.
Hereinafter we will describe the process of our proposed method. Firstly, analysts
(or users) select the specifi c domain. The second step is acquisition of information
for analyzing the domain. Then the user defi nes the attributes. Attributes are needed
for a specifi c tasks (for example, criteria attributes are needed for task search). Next,
the user inputs all attributes into formal context and the information is analysed
(Fig. 5). The user searches for the objects (concepts) in information and, when the
object (concept) is found, it is inputted into the formal context and the next step is
information processing.

When all objects are inputted into formal context and information processing is
executed, the analyst can create the concept net (Fig. 4). Using the created concept net,
the analyst can search the dependences, matching, repeated structures, exceptions, etc.
The analyst can also develop ontology using the concept net (Fig. 4).

Information system can use the created formal context to solve a specifi c task.

26 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 26LURaksti751-datorzin.indd 26 2009.06.18. 11:07:132009.06.18. 11:07:13

Fig. 3. The process of term collection, analysis, and representation

It is well known that knowledge is important part of modern information systems.
Knowledge used in information systems is stored in knowledge bases, data bases,
ontology, and other knowledge sources. Formal context is one of knowledge sources.

The traditional formal context is used in formal concept analysis. The traditional
context is a triple (G, M, I) consisting of a set of formal objects G, a set of formal
attributes M, and a binary relation I ⊆ G x M (expressing the attributes pertaining to each
object) [3, 18, 19, 20, 21]. The Formal Concept Analysis method is: a mathematization
of the philosophical understanding of concept; a human-centred method to structure
and analyze data; a method to visualize data and its inherent structures, implications,
and dependencies. However, this method is quite diffi cult in using it for information
systems because there is not enough data stored in the context.

In comparison with formal context structure, we review the ontology structure
because these structures are quite similar. They have objects (classes), attributes, and
relations between objects and attributes. Ontology in computer science and information
science is a formal representation of a set of concepts within a domain and the
relationships between those concepts. It is used to reason about the properties of that
domain, and may be used to defi ne the domain. Most ontologies [7, 12, 16] describe
individuals (instances), classes (concepts), attributes, and relations. In this section, each
of these components is discussed in turn.

27Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 27LURaksti751-datorzin.indd 27 2009.06.18. 11:07:132009.06.18. 11:07:13

Fig. 4. The net of concepts created with ToscanaJ-1.6 tool from formal context

Ontology structure is more complex than formal context structure.
In the next section, we propose the context logical structure that allows to extend the

traditional context. That solution permits saving more data in the context and simplifying
the usage of context in information systems.

Fig. 5. The form for information analysis

Distributional Formal Context
A traditional formal context in formal concept analysis is a triple (G, M, I) consisting

of a set of formal objects G, a set of formal attributes M, and a binary relation I ⊆ G × M
(expressing the attributes pertaining to each object) [3, 18, 19, 20, 21]. The traditional
logical data model and graphical representation of formal context [4, 22] in formal concept
analysis is shown in Figure 1.

For more information storage in formal context, we propose to extend the logical
scheme of formal context. That allows keeping general features of formal concept

28 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 28LURaksti751-datorzin.indd 28 2009.06.18. 11:07:132009.06.18. 11:07:13

analysis. By [4, 19], for the mathematical defi nition of formal concepts, we introduce
the derivation operators “ ' ”.

Using the derivation operators, we can derive formal concepts from our traditional
formal context with the following routine:

1) pick a set of objects A;
2) derive the attributes A';
3) derive (A')';
4) (A'',A') is a formal concept.

An example of generating formal concept from traditional formal context (Fig. 6):
1) pick any set of objects A, e.g. A = {Object 3};
2) derive the attributes A' = {Attribute 3, Attribute 4, Attribute n};
3) derive (A')' = {Attribute 3, Attribute 4, Attribute n }' = { Object 3, Object 4};
4) (A'',A') = ({Object 3, Object 4},{Attribute 3, Attribute 4, Attribute n}) is a

formal concept.

Fig. 6. Traditional formal context (FC) scheme and symbol

We propose to divide the traditional formal context into three parts:
objects are described in the fi rst table (Objects);•
attributes are described in the second table (Attributes);•
relations between objects and attributes are described in the third table •
(Relation). The proposed physical data model is shown in Figure 7.

To separate the distributional formal context (DFC) from traditional formal context
(FC), we propose graphical notation:

the traditional formal contexts are represented as rectangles (Fig. 6);•
the distributional formal contexts are represented as rectangles with bias (Fig. 7).•

Fig. 7. The proposed logical scheme and notation of distributional formal context (DFC)

However, formal concept analysis needs traditional context (Figure 6). To convert
distributional formal context to traditional context, additional transformation is needed.
We propose the transformation table where relations between objects and attributes are
saved. That transformation is used for formal concept analysis. In Figure 8 relation table
transformations into traditional context are shown. The traditional formal context is
created after transformation.

29Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 29LURaksti751-datorzin.indd 29 2009.06.18. 11:07:142009.06.18. 11:07:14

Fig. 8. Transformation of distributional formal context into traditional formal context

This solution allows to connect additional data to distributional formal context.
Additional data can be either traditional formal context or distributional formal context.
The type of context depends on one reason. Distributional formal context is always
parent. Relationships between contexts are generally represented in context rectangles
by a line. Context is parent when the line ends with dot.

Logical data model where the relations between two formal contexts are represented
is shown in Figure 9. One is distributional formal context and the other is traditional
formal context.

Logical data model where the relations between two distributional formal contexts
are represented is shown in Figure 10.

Our proposed method is deriving formal concepts from distributional formal context
with the following routine (fi rst method when Context 1 is the main and used for data
analysis; Context 2 will be used for saved additional data):

1) pick a set of objects A from Context 1;
2) derive the attributes A' from Context 1;
3) derive all formal concepts B' from Context 2;
4) derive (A')' from Context 1;
5) derive all formal concepts B'' from Context 2;
6) (B'', B') is a formal concept.

Let us present an example (Fig. 9) of generating formal concept from distributional
formal context (where A is a distributional formal Context 1 and B is an additional
formal Context 2):

1) pick any set of objects A from Context 1, e.g. A = {Object 3};
2) derive the attributes A' = {Attribute 3, Attribute 4, Attribute n};
3) derive all attributes B' (has relation with attributes from Context 1) from

Context 2, e.g. B' = {Attribute 3 ({Object 1},{Attribute 1, Attribute 2}),
Attribute 4 ({Object 2},{Attribute 1, Attribute 3}), Attribute n ({Object 3,
Object 4},{Attribute 3, Attribute 4})};

4) derive (A')' = {Attribute 3, Attribute 4, Attribute n }' = {Object 3, Object 4};
5) derive all objects B' (has relation with objects from Context 1) from

Context 2, e.g. B'' = {Object 3 ({Object 1},{Attribute 5, Attribute 6}), Object
4 ({Object 5},{Attribute 1, Attribute 2})};

6) (B'',B') = ({Object 3 ({Object 1},{Attribute 5, Attribute 6}), Object 4
({Object 5},{Attribute 1, Attribute 2})},{Attribute 3 ({Object 1},{Attribute 1,
Attribute 2}), Attribute 4 ({Object 2},{Attribute 1, Attribute 3}), Attribute n
({Object 3, Object 4},{Attribute 3, Attribute 4})}) is a formal concept from
Context 1.

30 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 30LURaksti751-datorzin.indd 30 2009.06.18. 11:07:142009.06.18. 11:07:14

Fig. 9. Relationship between traditional formal context and distributional formal context

Fig. 10. Relationship between two distributional formal contexts

The second method of using distributional formal context is when parameters to
select the specifi c context from Context 1 are described in Context 2. An example of the
method is given in the next section.

Fig. 11. Network of contexts

The proposed method theoretically and practically allows to compose the network
from contexts (Fig. 11). We can see from this network example that some contexts are

31Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 31LURaksti751-datorzin.indd 31 2009.06.18. 11:07:142009.06.18. 11:07:14

traditional (Contexts 2, 4, 5) and others are distributional (Contexts 1, 3, 6). One stage
of the future work is to research and analyse the network of contexts.

Distributional Formal Context for Collecting Many Contexts
The second method of using distributional formal context originates when parameters

for selecting the specifi c context from Context 1 are described in Context 2. The Context 1
is multiple context and it means that from Context 1 we can get many contexts.

Fig. 12. Contexts described in Context 2

Fig. 13. Context 1 includes Context 01 and Context 02 (dashes show concepts of Context 2;
squared dots show concepts of Context 1)

Let us present an example (Fig. 13) of generating formal concept from distributional
formal context (where A is a distributional formal Context 1 and B is an additional
formal Context 2):

1) pick any set of objects A from Context 2, e.g. A = {Object 01};
2) derive the attributes (from Context 2) A' = {Context 01 };
3) derive (A')' = {Object 01}' = {Context 01};
4) (A'',A') = ({ Object 01},{ Context 01}) is a formal concept of formal Context 2;
5) pick any set of objects B from Context 1 (has relation with formal concept

(A'',A') from Context 2 (Table 1)), e.g. B = {Object 2};

32 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 32LURaksti751-datorzin.indd 32 2009.06.18. 11:07:152009.06.18. 11:07:15

6) derive the attributes from Context 1 (has relation with formal concept (A'',A')
from Context 2 (Table 1)) B' = {Attribute 1, Attribute 2};

7) Derive (B')' = {Object 2 }' = {Attribute 1, Attribute 2};
8) (B'',B') = ({Object 2},{Attribute 1, Attribute 2}) is a formal concept of formal

Context 1.
Figure 14 presents the lattice when we have selected all formal concepts from

Context 1 (when Context 02 is selected (generated) from Context 1).

Fig. 14. Context 1 and lattice of Context 1

If we set the Object 2 from Context 2, we obtain lattice shown in Figure 15.

Fig. 15. Context 2 and lattice of Context 2

Fig. 16. Diagram of the process where usage of the context network is shown

33Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 33LURaksti751-datorzin.indd 33 2009.06.18. 11:07:162009.06.18. 11:07:16

Table

Relations between objects and attributes of Context 1 and objects of Context 2

Objects
(Context 1)

Objects
(Context 2)

Objects
(Context 1)

Objects
(Context 2)

Object 1 All context Attribute 1 All context
Object 2 Context 01 Attribute 2 All context
Object 3 All context Attribute 3 Context 02
Object 4 Context 02 Attribute 4 Context 02
Object 5 Context 02 Attribute 6 Context 01
Object 7 Context 01

The process of using distributional formal context for selecting the specifi c contexts
from multiple formal contexts is presented in Figure 16.

The Experiment
The program agent (Fig. 17) for information search tasks was used for the experiment.

Its task was to collect information (from a specifi c domain) from Internet resources.
While developing the ontology, a set of notices of real estate were explored and

analysed.
These notices were acquired from the following websites: http://www.aruodas.lt,

http://www.skelbiu.lt, http://www.domoplius.lt, http://www.alioreklama.lt, http://www.
skelbimai.lt, http://www.edomus.lt, http://www.enamai.lt, http://www.city24.lt, http://
www.namai.lt; http://www.muge.lt.

Web Scraper Plus+ tool was used for data acquisition from the websites. The data
was collected and saved in a database.

Fig. 17. Architecture of program agent for information search

34 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 34LURaksti751-datorzin.indd 34 2009.06.18. 11:07:172009.06.18. 11:07:17

During the information-processing step, objects (concepts) are acquired from
collected information (Fig. 18). To perform this task, formal context and ontology of
real estate are needed.

Fig. 18. Activity diagram of information processing

Next, we will describe how ontology and formal context was made. Two ontologies
were developed: one – using the common method, and the other – using our proposed
method (formal context).

Development of Ontology Using the Common Method

Common ontology method was used to develop the fi rst ontology (Fig. 1).
Protégé 3.2 and Gate 3.1 tools were used for the process of analysing and correcting

terms. The terms were collected, then the text was analysed and annotated using the
Gate tool (Fig. 19).

The developed ontology was presented with the Protégé tool (Fig. 20).

Fig. 19. The process of development of the ontology of real estate

Creating the Classes

After the analysis of collected concepts, the tree of concepts was created (Fig. 20):
real estate, location, action with real estate. Every concept has a lower-level concept.

35Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 35LURaksti751-datorzin.indd 35 2009.06.18. 11:07:172009.06.18. 11:07:17

The class “Real estate” has homes; fl ats; condition.
The class “Action with real estate” has sell; buy; rent; change.
The class “Location” has

Vilnius:•
Naujamiestis; ○
Fabijoniškės; ○
Šnipiškės; ○
Karoliniškės; ○

Klaipėda:•
Laukininkai; ○
Alksninė; ○
Pietinis; ○

Kaunas:•
Šilainai; ○
Dainava; ○
Žaliakalnis etc. ○

Fig. 20. A hierarchical diagram of the real estate ontology

Development of Ontology (Formal Context) Using the Proposed Method

The tool “Search of real estate system” was developed to carry out the experiment
(Fig. 5, 21). This tool allows to fi ll the formal context in a database using a web
browser. Searching and data analysis forms are created by using formal context. All
data for creating these forms is saved in the formal context. That solution allows to
change the content of forms dynamically. The tool was developed in PHP language and
MySQL database was selected. 11 465 real estate commercials were used to perform the
experiment. The main task was “Search”. Here we present more descriptions.

36 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 36LURaksti751-datorzin.indd 36 2009.06.18. 11:07:172009.06.18. 11:07:17

Formal Context Filling

“Search of real estate system” tool was developed (Fig. 5, 21) for formal context
fi lling. The tool was created in PHP language and MySQL database was selected. This
tool can be used to create search criteria and administrate the formal context. It allows
to edit the formal context.

Fig. 21. Real estate system: inserting object in the formal context

ToscanaJ tool was used to analyze the data collected in the formal concept.
ToscanaJ is a pure viewer/browser for conceptual schemes; it is optimized for a non-
expert audience, it comes with additional tools for creating the data displayed and offers
options of additional and more technical analysis. The four main tools are:

ToscanaJ: the viewer/browser component;•
Elba: an editor for conceptual schemes on relational databases. Database-aware •
and offering extra tools like exporting SQL scripts;
Siena: in many ways similar to Elba (mostly thanks to shared code), Siena edits •
conceptual schemes that store their data in memory;
Lucca: an experimental editor that is supposed to make use of implication •
analysis of SQL clauses to allow very explorative and intuitive creation of
database-connected systems.

ToscanaJ is the most prominent, however, possibly the most important program of
the ToscanaJ suite. It is a very advanced viewer for conceptual schemes that is able to
display information queried from the database in lattice diagrams or just using memory-
mapped data structures (Fig. 4). There is an opportunity to insert the new concept into
formal context quickly (Fig. 17).

The form hyperlink “INSERT” means that there are no searched concepts in the
formal context. By clicking the hyperlink “INSERT”, the concept can be inserted into
the formal context (Fig. 21). Then information is processed.

Results and Conclusions
The review of ontology and formal concept structures shows that they are quite

similar and both are represented in a hierarchical form. Lightweight ontology has
classes, attributes, and relationships. Objects, attributes and relationships are used for
formal concept analysis as well. Nevertheless, heavyweight ontology allows to describe

37Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 37LURaksti751-datorzin.indd 37 2009.06.18. 11:07:182009.06.18. 11:07:18

the domain in more detail because it has function terms, restrictions, rules, and axioms.
Heavyweight ontology is extensively axiomatized and lightweight ontology often is
presented as simple taxonomic structures, and is either slightly or not at all axiomatized.

This paper has proposed a structure of distributional formal context. That solution
allows to save more data in the context and to simplify the usage of context in information
systems. Two methods of using distributional formal contexts are described in this paper.
One of these methods allows to connect the many contexts and to use multi-formal
context in the network.

Performing the experiment using the method that realised regular process,
concepts were collected and corrected in 1 week. Concepts were collected and
corrected in 3 hours when the experiment was performed using our proposed method.
Please note that the time of development of “Search of real estate system” tool is not
included into evaluation. We also would like to stress that for performing the fi rst
experiment, an additional analyst was needed. To perform the second experiment,
only the user was needed and the analyst could have been needed if another type of
ontology was developed.

The experiment showed that the proposed method allows to search the terms (objects)
quickly while analysing a large amount of data. We can show the hierarchical tree
(structure) of concepts by using data collected in the formal context. Later, we can also
develop ontology from the collected data using another representation language. That
allows searching for the dependences, matching, repeated structures, exceptions, etc.

References
1. Bugaite D., Vasilecas O. Ontology-Based Elicitation of Business Rules. In: A. G. Nilsson et al. (eds.)

Proc. of the Fourteenth International Conference on Information Systems Development 2005, Advances
in Information Systems Development: Bridging the Gap between Academia and Industry. Karlstad,
Sweden, 15–17 August, 2005, Springer, 2006, p. 795–806.

2. Dau F. (2004) Types and Tokens for Logic with Diagrams. In: K. E. Wolff, H. Pfeiffer, & H. Delugach
(eds.), Conceptual Structures at Work: 12th International Conference on Conceptual Structures. Berlin:
Springer, p. 62–93.

3. Ganter B., Wille R. (1998) Applied Lattice Theory: Formal Concept Analysis. In: G. Grätzer: General
lattice theory. 2nd ed. Birkhäuser Verlag, Basel.

4. Ganter B., Wille R. (1999) Formal Concept Analysis: Mathematical Foundations. Berlin-Heidelberg:
Springer.

5. Godin R., Gecsei J., Pichet C. (1989) Design of browsing interface for information retrieval. In:
N. J. Belkin & C. J. van Rijsbergen (eds.), Proc. SIGIR ’89, p. 32–39.

6. Guarino N. (1997) Understanding, building and using ontologies. Int. Journal of Human-Computer
Studies, vol. 45, no. 2/3 (Feb/Mar).

7. Lavbic D., Krisper M. Rapid Ontology Development Model Based On Business Rules Management
Approach For The Use In Business Applications. Proceedings of the 6th ICEIS Doctoral Consortium
(DCEIS 2008) in conjunction with 10th International Conference on Enterprise Information Systems
(ICEIS 2008), Cardoso, Jorge (ed.), Barcelona, Spain, pp. 24–35 (81).

8. Ling Liu and M. Tamer Özsu (eds.) (2008) Encyclopedia of Database Systems, Springer-Verlag.
9. Margolis E., Laurence S. (2007) The Ontology of Concepts – Abstract Objects or Mental Representations?

Nous, vol. 41, issue 4, p. 561.
10. Martin J., Odell J. (1994) Object-Oriented Methods: A Foundation. Prentice-Hall, p. 52.
11. Mayers A., Maulsby D. (2004) Glossary (Online). Available: http://acypher.com/wwid/

BackMatter/Glossary.html.
12. Sasa A., Matjaz B. J., Krisper M. Service-oriented framework for human task support and automation.

IEEE transactions on industrial informatics. Nov. 2008, vol. 4, no. 4, p. 292–302.

38 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 38LURaksti751-datorzin.indd 38 2009.06.18. 11:07:182009.06.18. 11:07:18

13. Tilley T. (2004) Formal Concept Analysis Application to Requirements Engineering and Design. School
of Information Technology and Electrical Engineering, University of Queensland, PhD Thesis, December.
Available: http://www.tomtilley.net/publications/tilley04formal.pdf

14. Vasilecas O., Bugaite D. Ontology-based Information Systems Development: the Problem of Automation
of Information Processing Rules. In: E. Neuhold, T. Yakhno (eds.), Proc. of the Fourth International
Conference Advances in Information Systems (ADVIS‘2006), Izmir, Turkey, 18–20 October, 2006,
Springer, LNCS 4243, p. 187–196.

15. Wikipedia (2008) Concept. Wikipedia: The Free Encyclopedia. [Accessed on 2008-02-22]. http://
en.wikipedia.org/wiki/Concept.

16. Wikipedia (2008) Ontology (computer_science). Wikipedia. The Free Encyclopedia. Available: http://
en.wikipedia.org/wiki/Ontology_(computer_science)

17. Wille R. (1982) Restructuring Lattice Theory: an approach based on hierarchies of concept. Ordered sets
(editor I. Rival). Reidel, Dordrecht-Boston, p. 445–470.

18. Wille R. (1992) Concept Lattices and Conceptual Knowledge Systems. Computers & Mathematics with
Applications, 23, 493–515.

19. Wille R. (1997a) Introduction to Formal Concept Analysis. In: G. Negrini (ed.), Modelli e modellizzazione.
(Models and modelling.) Consiglio Nazionale delle Ricerche, Instituto di Studi sulli Ricerca e
Documentazione Scientifica, Roma, 39–51.

20. Wille, R. (1997b) Conceptual Graphs and Formal Concept Analysis In: Dickson Lukose, Harry Delugach,
Marry Keeler, Leroy Searle, and John F. Sowa (eds.), Conceptual Structures: Fulfilling Peirce’s Dream,
Proc. of the Fifth Int. Conf. on Conceptual Structures (ICCS’97), August 3–8, University of Washington,
Seattle, USA, LNAI, Number 1257, Springer Verlag, Berlin, 290–303.

21. Wille R. (2001) Why Can Concept Lattices Support Knowledge Discovery in Databases? ICCS’01
International Workshop on Concept Lattices-Based KDD, 7–20.

22. Wolf K. (1993) A first course in formal concept analysis. In: Faulbaum, F. (ed.), SoftStat’93 Advances in
Statistical Software 4, p. 429–438.

23. WORDNET (2008) A lexical database for the English language [Online]. Available: http://wordnet.
princeton.edu/ perl/webwn?s =concept

39Darius Jurkevicius, Olegas Vasilecas. Formal Concept Analysis for Concept Collecting ..

LURaksti751-datorzin.indd 39LURaksti751-datorzin.indd 39 2009.06.18. 11:07:182009.06.18. 11:07:18

Automatic Verifi cation of the Conceptual Model and
Its Documentation

Algirdas Laukaitis1 and Olegas Vasilecas1, 2

1 Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania
algirdas.laukaitis@fm.vgtu.lt, olegas@fm.vgtu.lt

2 Klaipeda University, Herkaus Manto 84, LT-92294 Klaipeda, olegas.vasilecas@ik.ku.lt

By using background knowledge of general and specifi c domains, and by processing a new natural
language corpus, experts are able to produce a conceptual model for some specifi c domain. In this
paper, we present a model that tries to capture some aspects of this conceptual model ing process.
This model is functionally organized into two information processing streams: one refl ects the
process of formal concept lattice gen eration from the domain conceptual model; the other refl ects
the process of formal concept lattice generation from the domain documentation. It is expected
that similarity between those concept lattices refl ects simi larity between documentation and the
conceptual model. In addition to this process of formal verifi cation, a set of natural language
processing artifacts are created. Those artifacts then can be used for the develop ment of information
system natural language interfaces. To demonstrate it, an experiment of concept identifi cation
from natural language queries is provided at the end of this paper.

Keywords: information systems engineering, formal concept analysis, IS document self-
organization, natural language processing.

1 Introduction
Software engineers spend hours in defi ning information systems (IS) require-

ments and fi nding common ground of understanding. The overwhelming ma jority
of IS requirements are written in a natural language supplemented with a conceptual
model and other semi-formal UML diagrams. In the form of semantic indexes, the
bridge between documents and the conceptual model can be useful for more effective
communication and model management. Therefore, integration of the natural language
processing (NLP) into information system documenta tion process is an important factor
for meeting the challenges of modern software engineering methods. Reusing natural
language IS requirement specifi cations and compiling them into formal statements
has been a prolonged challenge [2], [17]. Kevin Ryan claimed that NLP is not mature
enough to be used in requirement engineering [16] and our research justifi es that as
well. Nevertheless, we hope that the current paper will suggest some promising fi ndings
towards this chal lenging task.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 40–51 P.

LURaksti751-datorzin.indd 40LURaksti751-datorzin.indd 40 2009.06.18. 11:07:182009.06.18. 11:07:18

In this paper, by combining the symbolic and connectionist paradigms, we present
our efforts to overcome diffi culties and problems of the natural language usage in all
stages of IS development. The self-organizing map (SOM) [13] is proposed as a tool
to analyze the documents and communication utterance, and Formal Con cept Analysis
(FCA) [5] is suggested as a method to reinterpret SOM topology and to verify the
comprehensibility and soundness of the information system doc umentation and
model. All presented ideas and methodological inference have been tested with the
IBM Information FrameWork (IFW) [9], which is a com prehensive set of banking-
specifi c business models from the IBM corporation. For our research, we have chosen
the set of models under the name Banking Data Warehouse. We defi ne the following
problems: 1) How can we formally verify the IS documentation if we have at least
several sentence description for each business information system component? 2) What
is the architectural so lution of the system where the designers, modelers, requirement
engineers can verify new pieces of textual documentation and automatically generate
hierarchi cal prototypes of the information system model? 3) What components from
the new modeling system can be taken and reused as plugins in the natural language
interfaces (i.e. database querying [1])? It must be proved on an experimental ba sis that
those components can compete with the existing natural language systems.

The solutions to the stated problems organize the rest of the paper as follows: fi rst,
we present the general framework of an automated model generation system from
the IS documentation and utterances by engineers. Next, we present the IBM’s IFW
solution and the model which we used in our experiments. We present FCA as the formal
technique to analyze the IS model on the object:attribute sets. In Section 4, we present
the architectural solution of the natural lan guage processing (NLP) system which was
built from open source, state-of-the-art NLP components. Then we present an idea of the
conceptual model vector space. The motivation for introducing this stage to the modeling
process is that it helps us deal with the modeling documentation and its topological
structures numerically. Then the SOM of the conceptual model is introduced in Chapter
5. Finally, to prove the soundness of the proposed method, we provide a numerical
experiment in which the ability of the system to identify concepts from user utterance
is tested. The IBM Voice Toolkit for WebSphere [10] (an approach based on statistical
machine learning) solution is compared with the system suggested in this paper.

2 The General Framework of the Solution
Conceptual models offer an abstract view on certain characteristics of the domain

under consideration. They are used for different purposes – such as a communi-
cation instrument between users and developers, for managing and understand ing the
complexity within the application domain, etc. The presence of tools and methodology
that supports integration of the requirement documents and communication utterance
into conceptual model development is crucial for a successful development of the IS
architectural framework.

In this paper, we suggest the use of SOM to classify IS documentation and IS
utterance on a supervised and unsupervised basis. SOM has been extensively studied
in the fi eld of textual analysis. Such projects as WEBSOM [11] [14] have shown that
the SOM algorithm can organize very large text collections and that SOM is suitable for

41Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 41LURaksti751-datorzin.indd 41 2009.06.18. 11:07:182009.06.18. 11:07:18

visualization and intuitive exploration of the document col lection. The experiments with
the Reuters corpus (a popular benchmark for text classifi cation) were investigated in [8];
there was evidence that SOM can outperform other alternatives.

Nevertheless, in the fi eld of IS modeling the connectionist paradigm has been met
with some skepticism. The reason is that IS architects and modelers want to give the
credibility on how clusters received from document processing are related and explain
the semantic meaning of the underlying topology of docu ments. To overcome this
problem, we suggest that FCA can give more on that account by formally analyzing
the set of objects and their attributes. On the other hand, when directly applied to the
large data set of textual information, FCA is of little meaning for the presentation of
the overwhelming lattice. Those arguments motivate integration of FCA and other text
clustering techniques. In that sense, our work bears some resemblance with the work of
Hotho et al. [7]. They used BiSec-kk-Means algorithm for text clustering and then FCA
was ap plied to explain relationships between clusters. Authors of the paper have shown
the usability of such approach in explaining the relationships between clusters of the
Reuters-21578 text collection.

Fig. 1. Process of integration: conceptual modeling, textual description cluster detection and
interpretation by use of FCA

Our approach differs in two important respects. First, our goal is not text clustering.
Our goal is automated generation of the ontology from textual doc uments if there is no
knowledge base produced by human experts. In case the knowledge base has already
been developed, we seek for the method that formally measures the comprehensibility of
the knowledge base topology and in case of new documents and concepts, automatically
integrates them into the knowledge base.

The overall process of automatically clustering concept descriptions and then
deriving concept hierarchies from SOM is presented in Figure 1. First, the corpus
is created from the model concept descriptions; it is called domain descriptions in

42 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 42LURaksti751-datorzin.indd 42 2009.06.18. 11:07:182009.06.18. 11:07:18

Figure 1. Then vector space of the corpus is created using natural language processing
framework, domain ontology, and WordNet ontology [15]. SOM is built and used for
cluster analysis. Next, with conceptual context and concept lattice (CL) improvements
are made in the understanding of cluster relation ships. Simultaneously, CL is created
directly from the conceptual model. The analyst can compare the lattice received from
IS documentation and the lattice generated from the conceptual model. If both lattices
are similar, we can say that the quality of IS documentation is acceptable.

3 Business Knowledge Bases and Formal Concept Analysis
The problem with data-centric enterprise-wide models is that they are diffi cult to

understand. Their abstract and generic concepts are unfamiliar to both business people
and IS professionals, and remote from their local organizational contexts [4]. Natural
language processing and understanding techniques can be used to solve the mentioned
problems. Nevertheless, before applying the NLP techniques in IS engineering, we must
have some formal method to deal with the sets of {classes, object, and attributes} which
are the products of systems of natural language processing. In this section we introduce
FCA as the method for automatical building of a hierarchical structure of concepts (or
classes) from the {object:attribute} set.

In Figure 2 (left side) we can see an excerpt from the IBM IFW fi nancial services
data model (FSDM) [9], which is a domain-specifi c model based on the ideas of the
experts of the IBM fi nancial service solutions center. The IBM fi nancial services data
model consists of a high level strategic classifi cation of domain classes integrated with
particular business solutions (e.g., Credit Risk Analysis) and logical and physical data
entity-relationship (ER) models.

CL of the extract from the model have been produced by FCA with Galicia software
[19] and are shown on the right side of Figure 2. As we can see, it is consistent with the
original model. It replicates the underlying structure of the conceptual model originally
produced by a human expert team; in addition, it suggests one formal concept that
aggregates Arrangement and Resource Item: the two top concepts of the original model.

Fig. 2. Left side: a small extract from the fi nancial services conceptual model. Right side: CL
from this conceptual model. (We see that FCA depicts the structure of the conceptual model.)

43Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 43LURaksti751-datorzin.indd 43 2009.06.18. 11:07:182009.06.18. 11:07:18

FCA is used to represent underlying data in the hierarchical form of the concepts.
The most adapted form in the FCA analysis for data representation is CL. Due to its
comprehensive form in visualising the underlying hierarchical structure of the data and
rigorous mathematical formalism, FCA has developed into a fully-fl edged theory for
data analysis since its introduction in the 1980s [5]. FCA has been successfully applied
in many areas, but our interest in this paper is the ability to use it in the area of IS
modeling. In defi ning the concepts and attributes, FCA is similar to the database theory
and object orientated system design. Due to this fact, FCA has been often applied in
class diagram design in IS [5].

For the introduction to the area of FCA, we can return to Figure 2. The conceptual
model extract in the fi gure has 12 objects. Let us name them the set G. Let M be the
set of attributes that characterise the set of objects, i.e., an attribute is included into
the set M if it is an attribute for at least one object from the set G. In our example we
have 137 attributes (the whole model has more than 1000 objects and more than 4000
attributes). We identify the index I as a binary relationship between two sets G and M,
i.e., I ⊆ G × M. In our example the index I will mark that, eg., an attribute “Interest Rate”
belongs to an object “Arrangement” and that it does not belong to an object “Event”.

In order to be able to start FCA algorithms, we defi ne a triple K := (G, M , I) which
is called a formal context. Further, we defi ne subsets A ⊆ G and B ⊆ M as follows:

A′ := {m ∈ M|(g,m) ∈ I for all g ∈ G};

B′ := {g ∈ G|(g,m) ∈ I for all m ∈ B}.
Then a formal concept of a formal context (G, M, I) is defi ned as a pair (A, B) with

A ⊆ G, B ⊆ M, A′ = B and B′ = A. The sets A and B are called extend and intend of
the formal concept (A, B). The set of all formal concepts B(K) of a context (G, M, I)
together with the partial order (A1, B1) �(A2, B2) : ⇔ A1 ⊆ A2 is called the concept
lattice of the context (G, M, I) .

In Figure 2, the FCA algorithm Incremental Lattice Builder generated 11 for mal
concepts. In the lattice diagram, the name of an object g is attached to the circle and
represents the smallest concept with g in its extent. The name of an attribute m is always
attached to the circle representing the largest concept with m in its intent. In the lattice
diagram an object g has an attribute m if and only if there is an ascending path from
the circle labeled by g to the circle labeled by m. The extent of the formal concept
includes all objects whose labels are below in the hierarchy, and the intent includes all
attributes attached to the concepts above. For example, the concept 7 has {Building; Real
Property} as extend (the label E: in the diagram), and {Postal Address; Environmental
Problem Type;Owner;... etc} as intent (due to the huge number of attributes they are not
shown in the fi gure).

4 Vector Space Representation of the Conceptual Model
The vector space model (VSM) for document transformation into vectors is a well-

known representation approach that transforms a document into a weight vector in
automatic text clustering and classifi cation. The method is based on the bag-of-words
approach, which ignores the order of words in a sentence and uses basic occurrence
information [18].

44 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 44LURaksti751-datorzin.indd 44 2009.06.18. 11:07:182009.06.18. 11:07:18

On the other hand, the vector space model’s dimensionality is based on the total
number of words in the data set and it brings diffi culties for the large data sets. The
document corpus of the conceptual model described above in cluded 3587 words. The
process of dimensionality reduction and noise fi ltering is depicted in Figure 4. All
presented processes are described in detail below.

1) Transform conceptual model. As the fi rst step we transform conceptual model
to the Web Ontology Language (OWL) structure. The motivation behind this step is
that the OWL is one of the most used standard in describing the knowledge base and
we already use it in Semantic Web applications. Additional motivation for using OWL
is the availability of the knowledge base development tools such as Protégé – OWL
editor [12] that supports OWL standard.

2) Extract triplet. The triplet consists of concept name, the most abstract parent
concept name – class label for a particular document, and description of the concept.
To be more specifi c, the following steps were performed: fi rst, we selected only
concepts (entities) from ‘C’ level of the conceptual model and then selected the
textual description of each entity. We received 1256 documents in the corpus, each
document describing one concept. Each document in the corpus has been labeled with
its original concept name and its top parent con cept name. For example, the concept
“Employee” has the following entry in the corpus: { Concept-Employee; Parent-
Individual; Top parent concept – In volved Party ; Description – An Employee is an
Individual who is currently, potentially or previously employed by an Organization,
commonly the Financial Institution itself... }. We had to add textual descriptions to
254 concepts. It was done because we wanted to measure additional documentation
impact on the classifi cation accuracy of concepts. The descriptions were taken from
web dictionaries. 198 concepts were removed due to short textual descriptions and our
inability to supplement them from the web dictionaries. After these steps, we obtain
our fi nal corpus for the evaluation. It consists of the 1058 documents, distributed over
9 top parent concepts (involved party, products, arrangement, event, location, resource
items, condition, classifi cation, business).

Fig. 3. The processes of dimensionality reduction and the conceptual model SOM design

45Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 45LURaksti751-datorzin.indd 45 2009.06.18. 11:07:182009.06.18. 11:07:18

3) GATE – Natural Language Processing Engine is a well-established infra-
structure for customization and development of NLP components [3]. It is a robust and
scalable infrastructure for NLP and it allows users to use various modules of NLP as
plugins. We briefl y describe modules used in our research for building vector spaces of
concepts. The Unicode tokeniser splits the text into simple to kens. The tagger produces
a part-of-speech tag as an annotation for each word or symbol. The gazetteer further
reduces dimensionality of the document corpus prior to classifi cation. The semantic
tagger provides fi nite state transduction over annotations based on regular expressions.
It produced an additional set of named entities, and we replaced each named entity
with the class label. Orthographic Coreference module adds identity relations between
named entities found by the semantic tagger. SUPPLE is a bottom-up parser that
constructs syntax trees and logical forms of English sentences. We used it only to
remove tokens not annotated by this module. All modules within GATE produced
annotations – pairs of nodes pointing to positions inside the document content, and a
set of attributes-values, encoding linguistic information.

4) Abstraction. The basic idea of the abstraction process is to replace terms by
more abstract concepts as defi ned in a given thesaurus in order to capture similarities
at various levels of generalization. For this purpose we used WordNet [15] and
annotated GATE corpus as the background knowledge base. WordNet consists of
the so-called synsets, together with a hypernym/hyponym hierarchy [6]. To modify
the word vector representations, all nouns have been replaced by the corresponding
concept of WordNet (‘synset’). Some words have several semantic classes (‘synsets’)
and in that case we used a disambiguation method provided by WordNet – the most
common meaning for a word in English was our choice. The words replaced by
the GATE named entities annotation scheme were not included in the WordNet
processing.

5) Vector space. In our experiments we used vector space of the terms vectors
weighted by tfi df (term frequency inverse document frequency) [18], which is defi ned
as follows:

tfidf (c,t)= tf (c,t) × log |C|
|Ct|

.

where t f (c,t) is the frequency of term t in concept description c, and C is the total
number of terms, and Ct is the number of concept descriptions containing this term.
t f idf (c,t) weighs the frequency of a term in a concept description with a factor that
discounts its importance when it appears in almost all concept descriptions.

5 Self-Organizing Map of the IS Conceptual Model
Neurally inspired systems, also known as the connectionist approach, replace the use

of symbols in problem solving by using simple arithmetic units through the process of
adaptation. The winner-take-all algorithms, also known as the self-organizing network,
select the single node in a layer of nodes that responds most strongly to the input pattern.
In the past decade, SOM have been extensively studied in the area of text clustering. The
ideas and results presented here are of general purpose and could be applied in knowledge
development by means of the connectionist paradigm in general.

46 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 46LURaksti751-datorzin.indd 46 2009.06.18. 11:07:182009.06.18. 11:07:18

SOM consists of a regular grid of map units. Each output unit i is represented by
A prototype vector, mt = [mi1...mid], where d is input vector dimension. Input units take
the input in terms of a feature vector and propagate the input onto the output units. The
number of neurons and topological structure of the grid determines the accuracy and
generalization capabilities of SOM.

During learning the unit with the highest activation, i.e. the best matching unit
regarding a randomly selected input vector is adapted in a way that it will exhibit
even higher activation regarding this input in the future. Additionally, the units in the
neighborhood of the best matching unit are also adapted to exhibit higher activation
regarding the given input.

As a result of training SOM with the text corpora of the IBM IFW fi nancial
warehouse conceptual model, we obtain a map which is shown in Figure 4. SOM has
been trained for 100,000 learning iterations with learning rate initially set to 0.5. The
learning rate decreased gradually to 0 during the learning iterations.

Table 1

Classifi cation accuracy (CA) and average quantization error (AQE) of THE conceptual
model SOM

No
hypernym

WordNet
synset

replacements

One level up
hypernym

replacements

Two levels
up hypernym
replacements

Three levels
up hypernym
replacements

CA 29.57 29.56 41.53 39.27 26.44
ACQ 4.83 4.81 4.56 4.83 4.28

It was expected that if the conceptual model vector space has some clusters that
resemble the conceptual model itself, the model will be easier to understand compared
with the model of a more random structure. On a closer look at the map, we can
fi nd regions containing semantically related concepts. For example, the upper right
side of the fi nal map represents a clus ter of concepts “Arrangement” and the lower
right side “Resource items”. Such map can be used as an interface to the underlying
conceptual model. To obtain information from the collection of documents, the users
may formulate queries describing their information needs in terms of the features of
the required con cept.

Fig. 4. SOM for the conceptual model. Labels: invol, accou, locat, arran, event, produ, resou,
condi represent concepts: involved party, accounting, location, event, product, resource,

condition.

47Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 47LURaksti751-datorzin.indd 47 2009.06.18. 11:07:192009.06.18. 11:07:19

Figure 5 shows the concept lattice computed from SOM shown in Figure 4. We
obtain a list of 23 formal concepts. Each of them groups several neurons from SOM. We
can fi nd the grouping similarity of the neurons that are located in the neighborhood of
each other. On the other hand, some concepts group neurons that are at some distance
form each other. The basic idea of this step is that we receive a closed loop in the
business knowledge engineering by an artifi cial intelligent agent. The agent classifi es
all IS textual information with the help of the SOM technique and then, using FCA, it
builds hierarchical knowledge bases. For the details on how to apply FCA in cluster
analysis (SOM in our case), we refer to the paper [7]. The paper describes an algorithm
which has been used in our research.

The impact of the abstraction and natural language processing on the per formance
of the information system model can be checked with classifi cation accuracy (CA)
measure. It simply counts the minority of concepts at any grid point and presents the
count as a classifi cation error. For example, after the training each map unit has a label
assigned by the highest number of concepts (Figure 4). In Figure 4, the neuron on
the upper left side mapped 4 concepts with the label Arrangement and 2 with label
Event. Thus, classifi cation accuracy for this neuron is 66%. Another metric to measure
classifi cation accuracy is average quantization error AQE. It is defi ned as the average
distance between every input vector and its best matching unit:

where N is the total number of input patterns, xi is the vector of each pattern and
bi is best matching unit (BMU) for each pattern xi. Findings of the infl uence of terms
abstraction and natural language processing are shown in Table 1.

We can see that the hypernym level one is optimal compared with more abstract
concepts. The phenomena can be explained by the fact that different meanings of the
term, if too abstract, will be treated as the same and, as a result, semantics of discretionary
power will be lost.

Fig. 5. Concept lattice received from the SOM presented in Figure 4.

48 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 48LURaksti751-datorzin.indd 48 2009.06.18. 11:07:192009.06.18. 11:07:19

6 The Experiment
In the previous sections, we have shown how to build a hierarchical conceptual

model from IS documentation and how to verify formally the business informa tion
system model. In addition, as mentioned in the introduction, one of the objectives of
this research project was to fi nd the techniques and tools of IS modeling that give an
opportunity to reuse IS model components as the fi nal products in IS natural language
interfaces. We argue that such component can be SOM of the IS conceptual model.

Reusing SOM in IS interfaces is quite simple. Each time the sentence is presented to
the system, we have one activated neuron which is associated with one concept from the
conceptual model. Additionally, we have the set of formal concepts associated with the
activated neuron. Both the label of the activated neuron and the set of formal concepts
can be used by formal language generation engines (i.e., structured query language
(SQL) sentence generator for querying databases). Then the following hypothesis is
formulated in this section: SOM received from IS documentation can compete with the
state-of-the-art concept identifi cation solutions currently available in the market.

The following experiment was conducted to test this hypothesis. IBM Web Sphere
Voice Server NLU toolbox, which is part of the IBM WebSphere software platform,
was chosen as the solution competitive to the one suggested in this paper. From IBM
presentation [10] it appeared that the system is primarily in tended to support database
interfaces in the telecommunication market. It was a challenging task to test it on a more
complex system, i.e., a full enterprise conceptual model for the fi nancial market.

SOM of the conceptual model and CL was used as an alternative to the IBM
WebSphere Voice Server NLU solution. We adopted the black box approach for both
solutions: put the training data, compile, and test the system response for the new data
set. The data set of 1058 pairs textual description:concept name mentioned above was
constructed to train the IBM NLU model. The same set was used to get SOM of the
business model.

Then a group consisting of 9 students was instructed about the database model.
They had the task to present for the system 20 questions about informa tion related
to the concept “Involved Party”. For example, one of the questions was “How many
customers we have in our system?” We scored the answers from the system as correct
if it identifi ed the correct concept “Involved Party”.

Table 2

Concept identifi cation comparison between IBM NLU toolbox and SOM
of the database conceptual model

CN = 9 CN = 50 CN = 200 CN = 400 CN = 500
IBM NLU 36.82 17.26 14.82 11.15 8.22
SOM 46.73 30.70 27.11 20.53 18.83
No additional descriptions 38.24 18.43 15.72 12.77 9.52

In the beginning only 9 top concepts were considered, i.e. all 1058 documents
were labeled with the most abstract concept names from the conceptual model. For
example, documents that described concepts “Loan” and “Deposit” were labeled with

49Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 49LURaksti751-datorzin.indd 49 2009.06.18. 11:07:192009.06.18. 11:07:19

the concept name “Arrangement” because concepts “Loan” and “Deposit” are subtypes
of the concept “Arrangement”.

Next, we increased the number of concept names that we put into the model up to 50.
For example, documents that described concepts “Loan” and “De posit” were labeled
with “Loan” and “Deposit” names. Then we increased the number of concept names
up to 200, 400 and, fi nally, 500. Table 2 shows the results of the experiment. Columns
show the number of concepts. The row named IBM NLU represents results for the IBM
WebSphere Voice Server NLU toolbox. The row named SOM represents results for the
SOM of the concep tual model that has been constructed with the method described in
this paper. The row named No additional descriptions represents results for SOM of the
conceptual model without the 254 additional documents mentioned above. To detect the
classifi cation error, the proportion of correctly identifi ed concepts was determined.

As we can see, the performance of the IBM system was similar to the SOM response.
The behavior of the IBM system is diffi cult to explain because it is close system and
there was no description of algorithms used. For all cases i.e. IBM, SOM and SOM
without additional descriptions the performance decreased when the number of concepts
increased. The solution that can increase accuracy of concepts identifi cation is suggested
by comparing results in the third and second row of Table 2. We see that the 254
descriptions we added to the system signifi cantly improved the response of the system.

7 Conclusion
Conceptual models and other forms of knowledge bases can be viewed as products

that have emerged from human natural language processing. Self-organization is the
key property of human mental activity, and the present research focuses on what self-
organization properties can be found in the knowledge base docu mentation. It has been
suggested to build a conceptual model vector space and its SOM by comparing the
concept lattice received from a manually constructed conceptual model and the concept
lattice received from SOM of the conceptual model. We argued that if both concept
lattices resemble each other, we can assert that IS documentation quality is acceptable.

The presented architectural solution for the software developers can be labor-
intensive. The payoff of such approach is an ability to generate formal language
statements directly from IS documentation and IS user utterance. We have shown that
with SOM and FCA we can indicate inadequate concept descriptions and improve the
process of knowledge base development. The presented methodology can serve as the
tool for maintaining and improving enterprise-wide knowledge bases.

There have been many research projects concerning questions of semantic parsing,
i.e., the automatic generation of the formal language from the natural language. But
those projects have been concerned only with semantic parsing as a separate stage not
integrated into the process of software development. The solution presented in this paper
allows us to integrate IS design and analysis stages with the stage of semantic parsing.
In this paper, we demonstrated that we can label documents and user questions with
concept names of the conceptual model. In the future we hope to extend those results
by generating SQL sentences and then querying databases. The present research has
shown that if we want to build a comprehensible model, we must give more attention to
describing concepts by the natural language.

50 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 50LURaksti751-datorzin.indd 50 2009.06.18. 11:07:192009.06.18. 11:07:19

References
1. Androutsopoulos I., Ritchie G. D., Thanisch P. Time, Tense and Aspect in Natural Language Database

Interfaces. Natural Language Engineering, 4, 1998, 229–276.
2. Burg J. F. M., Riet R. P. Enhancing CASE Environments by Using Linguistics. International Journal of

Software Engineering and Knowledge Engineering 8(4), 1998, 435–448.
3. Cunningham H. GATE, a General Architecture for Text Engineering. Computers and the Humanities, 36,

2002, 223–254.
4. Darke P., Shanks G. Understanding Corporate Data Models. Information and Man agement 35, 1999,

19–30.
5. Ganter B., Wille R. Formal Concept Analysis: Mathematical Foundations. Springer, Berlin-Heidelberg,

1999.
6. Hofmann T. Probabilistic latent semantic indexing. In: Research and Development in Information

Retrieval, 1999, 50–57.
7. Hotho A., Staab S., Stumme G. Explaining text clustering results using semantic structures. In: Principles

of Data Mining and Knowledge Discovery, 7th European Conference, PKDD 2003, Croatia. LNCS.
Springer 2003, 22–26.

8. Hung C., Wermter S., Smith P. Hybrid Neural Document Clustering Using Guided Self-organisation and
WordNet. Issue of IEEE Intelligent Systems, 2004, 68–77.

9. IBM. IBM Banking Data Warehouse General Information Manual. Available from on the IBM corporate
site http://www.ibm.com (accessed on July 2007).

10. IBM Voice Toolkit V5.1 for WebSphere Studio. http://www-306.ibm.com/software/ (accessed on July
2007).

11. Kaski S., Honkela T., Lagus K., Kohonen T. WEBSOM self-organizing maps of document collections.
Neurocomputing, 21, 1998, 101–117.

12. Knublauch H., Fergerson R., Noy N. F. The Protege-OWL plugin: an open develop ment environment for
semantic web applications. Third International Semantic Web Conference. ISWC2004, Lecture Notes in
Computer Science, 3298. Springer-Verlag: Heidelberg 2004, 229–243.

13. Kohonen T. Self-Organizing Maps, Springer-Verlag, 2001.
14. Lagus K., Honkela T., Kaski S., Kohonen T. WEBSOM for textual data mining. Artificial Intelligence

Review, 13 (5/6) 1999, 345–364.
15. Miller G. A. WordNet: A Dictionary Browser, Proc. of 1st Int’l Conf. “Information in Data”, 1985, 25–28.
16. Ryan K. The role of natural language in requirements engineering. Proceedings of IEEE International

Symposium on Requirements Engineering, IEEE Computer Society Press, 1993, 240–242.
17. Rolland C., Proix C. A Natural Language Approach to Requirements Engineering. 4th International

CAiSE Conference, Manchester UK, 1992, 257–277.
18. Salton G. Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by

Computer. Addison-Wesley, 1989.
19. Valtchev P., Grosser D., Roume C., Rouane H. M. GALICIA: an open platform for lattices. In: A. de Moor,

B. Ganter, editors, Using Conceptual Structures: Contri butions to 11th Intl. Conference on Conceptual
Structures 2003, 241–254.

51Algirdas Laukaitis, Olegas Vasilecas. Automatic Verifi cation of the Conceptual Model ..

LURaksti751-datorzin.indd 51LURaksti751-datorzin.indd 51 2009.06.18. 11:07:192009.06.18. 11:07:19

Ontology Transformation:
from Requirements to Conceptual Model*

Justas Trinkunas1 and Olegas Vasilecas2, 3

1 Information Systems Research Laboratory, Faculty of Fundamental Sciences, Vilnius Gediminas
Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania, justas@isl.vgtu.lt

2 Information Systems Research Laboratory, Faculty of Fundamental Sciences, Vilnius Gediminas
Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania, olegas@isl.vgtu.lt

3 Department of Computer Science, Faculty of Natural Sciences, Klaipeda University,
Herkaus Manto 84, LT-92294 Klaipeda, olegas.vasilecas@ik.ku.lt

Information systems are increasingly complex, especially in the enormous growth of the volume
of data, different structures, different technologies, and the evolving requirements of the users.
Consequently, current applications require an enormous effort of design and development. The
fast-changing requirements are the main problem in creating and/or modifying conceptual data
models. To improve this process, we proposed to reuse already existing knowledge for conceptual
modelling. In the paper, we have analysed reusable knowledge models. We present our method for
creating conceptual models from various knowledge models.

Keywords: transformation, ontology, data modelling.

1 Introduction
Most of information systems analysts have at least once considered how many times

they have to analyse the same problems, create and design the same things. Most of them
ask, is it possible to reuse already existing knowledge? Our answer is yes. We believe
that knowledge can and should be reused for information systems development. The
knowledge reuse could be really of help to information systems analysts and engineers
who develop information systems in one particular area for many years or have one
software product line.

However, even these days, most domain knowledge is elicited from documents,
experts and usually waste previous efforts, time, and resources. In this paper, we present
available knowledge sources which could be reused in software engineering process,

* The work is supported by Lithuanian State Science and Studies Foundation according to High Technology
Development Program Project “Business Rules Solutions for Information Systems Development (VeTIS)”
Reg. No. B-07042.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 52–64 P.

LURaksti751-datorzin.indd 52LURaksti751-datorzin.indd 52 2009.06.18. 11:07:192009.06.18. 11:07:19

and we present a new approach of building conceptual models from these sources.
Real world domain knowledge or, as we call it, domain ontology can bring outstanding
benefi ts in software engineering. We already proved in [11] that ontologies can be reused
for conceptual data modelling.

In this paper we are proposing a method of knowledge reuse for those who seek an
effi cient and quality driven approach for data structure development, data integration
strategies, enterprise data models, logical data models, database design, data warehouse
design, or data mart design.

The paper is organised as follows: the next chapter describes the theoretical
background; in Chapter 3 we present and analyse available knowledge sources which
could be reused for conceptual data modelling; and in Chapter 4 we present the method
for knowledge reuse for data modelling.

2 Related Work
In this chapter we present ontology and metamodel based transformations used in

our proposed method. We also discuss quality metrics which could be used for evaluation
of the method and data sources.

2.1 Ontology

Computer science defi nes ontology as “a formal, explicit specifi cation of a shared
conceptualization” [24]. This defi nition is based on the idea of conceptualization: a
simplifi ed view of the world that we want to represent. Conceptualization is the process
by which human mind forms an idea about part of the reality. This idea is a mental
representation free of accidental properties and based on essential characteristics of the
elements. Therefore, the (computer science) ontology concept is joined to a domain
or mini-world, and the specifi cation represented in ontology is concerned with that
domain. In computer science, the main idea to create ontologies is to take a concrete
model of the world and, through a descriptive process (function), to create an abstract
model that captures its essence.

Many authors propose different ontology defi nitions. We accept the ontology
defi nition proposed in [18]. Ontology defi nes the common terms and concepts
(meanings) used to describe and represent an area of knowledge. Ontology can range
in expressivity from taxonomy (knowledge with minimal hierarchy or a parent/child
structure) to thesaurus (words and synonyms) to a conceptual model (with more complex
knowledge), to a logical theory (with very rich, complex, consistent, and meaningful
knowledge).

2.2 Metamodel-Based Transformations

The notion of model transformation is central to Model Driven Engineering. A model
transformation takes as input a model that conforms to a given metamodel and produces
as output another model that conforms to a given metamodel. A model transformation
may also have several source models and several target models. One of the characteristics
of a model transformation is that a transformation is also a model, i.e. it conforms to a
given metamodel. More information on metamodels can be found in [16].

53Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 53LURaksti751-datorzin.indd 53 2009.06.18. 11:07:192009.06.18. 11:07:19

Model Driven Architecture (MDA) [17] defi nes three viewpoints (levels of
abstraction) from which a system can be viewed. From a chosen viewpoint, a
representation of a given system (viewpoint model) can be defi ned. These models each
correspond to the viewpoint with the same name, and they are Computation Independent
Model (CIM), Platform Independent Model (PIM), and Platform Specifi c Model
(PSM). MDA is based on four-layer metamodeling architecture, and several OMG’s
complementary standards. There are the meta-metamodel (M3) layer, metamodel (M2)
layer, model (M1) layer, and instance (M0) layer.

We analyse ontology transformation to a data model. The mapping from OWL
(ontology web language) to ER was described in [18]. However, this mapping is
incomplete and it is not clear which elements from the OWL ontology are not transformed
into data model. As a result, some information from OWL ontology cannot be used in
data model. Metamodel-based transformations are shown in Figure 1.

Fig. 1. Metamodel-based transformation

2.3 Quality Properties

We have to discuss the quality properties that could be used for transformation
evaluation. The paper [19] provides a list of quality properties. The main quality
properties are: annotation, appropriateness, completeness, conceptual clarity,
consistency, correctness, expressiveness, testability, unambiguity, understandability,
verifi ability. However, this list is not very useful because we need a systematic
approach to quality improvements.

Another author [20] defi nes the following properties.
Legibility. To measure legibility which expresses the ease with which a •
conceptual schema can be read, we propose two subcriteria, namely clarity and
minimality. Clarity is a purely aesthetic criterion. It is based on the graphical
arrangement of the elements composing the schema. The second sub-criterion
is minimality. A schema is said to be minimal when every aspect of the
requirements appears only once.

54 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 54LURaksti751-datorzin.indd 54 2009.06.18. 11:07:192009.06.18. 11:07:19

Expressiveness. A schema is said to be expressive when it represents users •
requirements in a natural way.
Simplicity. A schema is said to be simple if it contains the minimum possible •
constructs.
Correctness. The property is used in a wide range of contexts leading to very •
different interpretations. A schema is syntactically correct when concepts are
properly defi ned in the schema.
Completeness. A schema is complete when it represents all relevant features •
of the application domain [10]. More specifi cally, the completeness can be
measured by the degree of coverage of user’s requirements by the conceptual
schema.
Understandability. Understandability is defi ned as the ease with which the user •
can interpret the schema. This criterion is very important for the validation
phase and, consequently, infl uences directly the measure of completeness.
The understandability of a conceptual schema relies on how much modelling
features are explicit.

Using these properties, we will evaluate transformation.

3 Available Domain Knowledge Sources
In this section we review and analyse available knowledge sources which could

be reused for conceptual data modelling. It is very important to have good quality
domain knowledge source because transformation quality straightforwardly depends
on knowledge quality. Of course, the transformed model can and should be improved
manually.

Information systems are increasingly complex, especially because of the enormous
growth of the volume of data, different structures, different technologies, and the
evolving requirements of the users. Consequently, current applications require an
enormous effort of design and development. In fact, such applications require a detailed
study of their fi elds in order to defi ne their concepts and to determine the concepts’
relationships [10].

Knowledge models are reusable models, in other words, ‘templates’ to help jump
start and/or quality assure data modelling efforts. They can be used to save time and
costs on efforts to develop enterprise data models, logical data models, database, and
data warehouse.

There are many books and articles written on the subject of data modelling, and most
system professionals know how to model data. Actually, what they need are reusable
knowledge models which could be reused for real projects and could save many hours
of work [2].

If we want to get a high quality data model after transformation, the knowledge
model has to be simple, correct, and complete.

If the knowledge model is not simple after the transformation, we will get a complex
conceptual schema, which will have to be improved manually.

If the knowledge model is not correct, after the transformation we will get the same
mistakes in the conceptual model.

55Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 55LURaksti751-datorzin.indd 55 2009.06.18. 11:07:202009.06.18. 11:07:20

If the knowledge model is not complete (at least in our domain), after the transfor-
mation we will get an incomplete conceptual model.

We propose to improve knowledge model iteratively. All mistakes noticed in
the conceptual model should also be rechecked in the knowledge model. Also, if
the conceptual model is incomplete, we have to add the needed information into the
knowledge model. Step by step we can create a sophisticated source of knowledge. We
will not discuss the creation of ontologies in this paper because this topic needs more
attention and is out of the scope of this paper.

In the next chapters, we analyse different knowledge sources which could be reused
for conceptual data model building, and we try to evaluate which of them is the most
suitable.

The knowledge sources can be classifi ed into three main categories – commercial
(for example, IBM data model, industry data models [2]), freely available (for example,
SUMO and OpenCyc), and manually created for a specifi c purpose.

3.1 SUMO

In this section we present SUMO domain ontology which could be used as a
knowledge model. The main difference between universal models and domain ontologies
is that usually ontologies are more abstract. To reuse ontology is more complicated than
to reuse a universal model. However, domain ontologies are a really good knowledge
source that could be reused.

SUMO is the largest free, formal ontology [1]. It contains more than 20,000 terms
and 70,000 axioms if all domain ontologies are combined. SUMO consists of SUMO
itself, the MId-Level Ontology (MILO), and domain ontologies (communications,
countries and regions, distributed computing, economy, fi nance, engineering
components, geography, government, military, North American industrial classifi cation
system, people, physical elements, transportation, etc). SUMO is written in the SUO-
KIF language.

SUMO ontology also provides check rules. Most signifi cantly, SUMO ontology is
freely available for everyone. Everyone can participate in the ontology development
and improvement process. Other advantage is that ontologies provide a set of rules,
i.e. we can restrict the model. However, most of these ontologies do not cover all
domain areas.

3.2 Cyc and OpenCyc

OpenCyc [5] is the open source version of the Cyc technology, the world’s largest
and most complete general knowledge base and commonsense reasoning engine. The
entire Cyc ontology contains hundreds of thousands of terms, along with millions of
assertions that relate the terms to each other, forming an upper ontology, whose domain
is all the human consensus about reality.

The Cyc project has been described as “one of the most controversial endeavours
of the artifi cial intelligence history” [13]; hence, it has inevitably garnered its share of
criticism.

OpenCyc is similar to full Cyc, but its knowledge base is just a few percent of the
full knowledge base and its functionality is greatly reduced. Since Cyc’s success lies in

56 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 56LURaksti751-datorzin.indd 56 2009.06.18. 11:07:202009.06.18. 11:07:20

the completeness of its knowledge base, the only people who really know the extent of
Cyc’s progress are Cycorp employees [4].

Furthermore, with trying to cover the entire world, Cyc becomes too enormous and
abstract. The reuse of this ontology is very complicated. Some issues about Cyc reuse
are discussed in [14].

3.3 Wikipedia-Based Ontologies

In recent years some communities tried to extract structured information from
Wikipedia. As a result, YAGO [7], DBpedia [8], and FreeBase [9] ontologies were
created. In this section we shortly introduce these ontologies.

YAGO is a huge semantic knowledge base. According to [7], YAGO contains more
than 2 million entities and 20 million facts about these entities. The authors of YAGO
state that YAGO has a manually confi rmed accuracy of 95%.

DBpedia [8] is a knowledge base which allows to make sophisticated queries in
Wikipedia, and to link other data sets on the Web to Wikipedia data. The DBpedia data set
currently provides information on more than 2 million entities. Altogether, the DBpedia
data set consists of 218 million pieces of information (RDF triples). The accuracy of
DBpedia is not confi rmed at the moment.

Freebase [9] is an open, shared database that contains structured information on
millions of topics in hundreds of categories. This information is compiled from open
datasets like Wikipedia, MusicBrainz, the Securities and Exchange Commission, and
the CIA World Fact Book, as well as contributions from user community. The accuracy
of Freebase is not confi rmed at the moment.

YAGO, DPpedia, and Freebase knowledge sources are really valuable. At the
moment DBpedia is the biggest Wikipedia-based ontology. The accuracy of YAGO has
been confi rmed.

3.4 Industry Data Models

The book [2] provides a series of industry universal data models for each phase of
an enterprise’s business cycle: people and organizations, products (services or physical
goods), commitments which are established between people and/or organizations,
transport shipment, work efforts, invoices, budgeting and accounting, human resources
management and tracking.

An industry data model or universal data model is a model that is widely applied
in some industry. Suffi ciently effective industry data models have been developed in
banking, insurance, pharmaceuticals and other industries to refl ect the strict standards
applied in customer information gathering, customer privacy, consumer safety, or “just
in time” manufacturing.

The authors of the book [2] claim that 60% of a data model (corporate or logical)
or data warehouse design consists of common constructs that are applicable to most
enterprises. This means that most data modelling or data warehouse design efforts are
at some point recreating constructs that have already been built many times before in
other organizations.

The authors provide nine subject areas: accounting and budgeting, human resources,
invoicing and billing, orders and agreements, people and organizations, product,
shipments and deliveries, web and e-commerce, work effort and project management.

57Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 57LURaksti751-datorzin.indd 57 2009.06.18. 11:07:202009.06.18. 11:07:20

In addition, several industry specifi c universal data models are available, including
banking, investments and fi nancial services, healthcare, insurance, manufacturing,
professional services, telecommunications, and travel.

These universal data models are very useful for data modelling. However, we can
reuse only the structure; these models do not contain any business rules, which also are
a very important knowledge resource.

3.5 Commercial Data Models

There are many commercial data models which could be reused. We analysed the
well-known IBM data model M1. M1 database contains the Banking Data Warehouse
Model. The model is composed of an entity-relationship model for application
development. It contains 910 entities and 5237 attributes.

Let us examine the ‘product’ defi nition of the IBM data model.
‘Product’ identifi es goods and services that can be offered, sold, or purchased by the

fi nancial institution, its competitors, and other involved parties, or in which the fi nancial
institution has an interest during the normal course of its business activity; for example,
‘Product#220 (Xyz bank’s private banking residential mortgage loan)’, ‘Product #988
(personal checking account)’, ‘Product #440 (securities trading service)’. ‘Product’ has
22 attributes and 28 relationships in the model. A small part from the model is provided
in Figure 2.

The IBM data model has three levels – the abstract level, the middle level, and the
model level. Such organisation of the model is very convenient for reuse.

Commercial data models usually are very expensive and there are many
restrictions.

3.6 Other Ontologies

Protégé [6] provides more than 50 domain ontologies; however, none of them can
be used for conceptual data modelling because most of them contain only a few dozens
of concepts and are totally immature.

WordNet is a large lexical database of English [15]. Nouns, verbs, adjectives,
and adverbs are grouped into sets of cognitive synonyms (synsets) that each express a
distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical
relations. The resulting network of meaningfully related words and concepts can be
navigated with the browser. WordNet is also freely and publicly available for download.
WordNet’s structure makes it a useful tool for computational linguistics and natural
language processing. WordNet cannot be straightforwardly reused, but it is very useful
for fi nding synonyms and more abstract terms.

4 The Proposed Approach
In the previous section we analysed available sources which could be reused

for conceptual modelling. In this section we describe our method for knowledge
reuse for conceptual modelling. We performed a few experiments, including reuse
of knowledge from already existing resources and from the resources which were
created manually.

58 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 58LURaksti751-datorzin.indd 58 2009.06.18. 11:07:202009.06.18. 11:07:20

We briefl y describe the proposed method for building a conceptual model from
reusable models. The method consists of four main steps.

1. Building of requirements using ontology.
2. Finding or creation of an appropriate knowledge source which can be used for

transformation.
3. Transformation of the knowledge model into a specifi c data model with our

plug in OntER. The created data model can be opened with Sybase Power
Designer 12.0 tool and adapted for specifi c needs. Transformation rules can
be found in [24].

4. The last step is the generation of the physical data model with Power Designer
12.0 for a particular database management systems (DBMS). This feature is
already implemented in the original version of Power Designer 12.0.

By a simple generation procedure, the conceptual data model can be transferred to
the physical data model. The physical data model adapts your design to the specifi cs of
a DBMS and puts you well on the way to complete physical implementation.

The transformation process is shown in Figure 2.
The fi rst experiments were carried out with the domain ontology found in Protégé

site [6]. Other experiments were performed with ontology created by us. Finally, we
tried to experiment with other ontologies.

Fig. 2. The transformation process

We created a requirement metamodel with the Eclipse tool (Figure 3). We also used
the requirement model taken from [22]. This requirement model [21] is composed of a
Function Refi nement Tree (Figure 4) to specify the hierarchical decomposition of the
system, a Use Case Model to specify the system communication and functionality, and
Sequence Diagrams specify the required object-interactions that are necessary to realize
each Use Case. The ontology is presented in Figure 5.

59Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 59LURaksti751-datorzin.indd 59 2009.06.18. 11:07:202009.06.18. 11:07:20

Fig. 3. Requirement metamodel

Fig. 4. Function Refi nement Tree

60 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 60LURaksti751-datorzin.indd 60 2009.06.18. 11:07:202009.06.18. 11:07:20

Below a small piece of ontology “Enterprise” in Protégé (frames) format (defclass
Supplier “someone whose business is to supply a particular service or commodity”) is
provided.

(is-a Enterprise)
(role concrete)
(single-slot city

;+ (comment “a place (city) where supplier is located”)
(type INSTANCE)

;+ (allowed-classes City)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot country

;+ (comment “country where supplier is located”)
(type INSTANCE)

;+ (allowed-classes Country)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot name_

;+ (comment “name of supplier”)
(type STRING)

;+ (cardinality 1 1)
(create-accessor read-write)))

Below the result of “Enterprise” ontology transformation into a conceptual model
in Power Designer native format is provided.

(<o:Entity Id=”o58”>
<a:ObjectID>8B135BB3-7264-4809-910F-3DD4BEFC7DE0</a:ObjectID>
<a:Name>Supplier</a:Name>
<a:Code>Supplier</a:Code>
<a:CreationDate>1144263520</a:CreationDate>
<a:Creator>Justas</a:Creator>
<a:Modifi cationDate>1144263684</a:Modifi cationDate>
<a:Modifi er>Justas</a:Modifi er>
<c:Attributes>
<o:EntityAttribute Id=”o92”>
<a:ObjectID>07DEFDAC-0AD3-4A1C-AE20-4AD63A6A065A</a:ObjectID>
<a:CreationDate>1144263539</a:CreationDate>
<a:Creator>Justas</a:Creator>
<a:Modifi cationDate>1144263539</a:Modifi cationDate>
<a:Modifi er>Justas</a:Modifi er>
<c:DataItem>
<o:DataItem Ref=”o93”/>
</c:DataItem>
</o:EntityAttribute>
</c:Attributes>
</o:Entity>

61Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 61LURaksti751-datorzin.indd 61 2009.06.18. 11:07:202009.06.18. 11:07:20

Below a small piece of ontology “Salary” in Protégé (OWL) format and in graphical
form (Figure 5) is provided.

<owl:Class rdf:ID=”WageRate”>
 <rdfs:comment xml:lang=”en”>Wage rate is amount of money
paid per unit of time or per unit of products</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:about=”#Wage”/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID=”Quantity”/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID=”Time”/>
 </owl:disjointWith>
</owl:Class>

Fig. 5. Payroll ontology

62 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 62LURaksti751-datorzin.indd 62 2009.06.18. 11:07:202009.06.18. 11:07:20

Below the result of “Salary” ontology transformation into a conceptual model in
Power Designer native format is provided.

(<o:Entity Id=”o40”>
 <a:ObjectID>2E0D229D-A725-4078-9EFD-D6F2F036E775</a:ObjectID>
 <a:Name>WageRate</a:Name>
 <a:Code>WageRate</a:Code>
 <a:CreationDate>1144314871</a:CreationDate>
<a:Creator>Justas</a:Creator>
<a:Modifi cationDate>1144314877</a:Modifi cationDate>
<a:Modifi er>Justas</a:Modifi er>

5 Conclusions and Future Works
We analysed available knowledge sources which could be reused for conceptual

data modeling and proposed a method for knowledge reuse. The experiment
showed that the proposed method is really effective. However, it is very important
to have a good enough quality domain knowledge source because evaluation of the
transformation process showed that quality strongly depends on the quality of the
knowledge model.

After a thorough analysis of available knowledge sources, we decided that the most
completed ontology is CYC. The most expressive is SUMO. However, the most suitable
by all the quality properties listed in the Chapter 2 are universal and commercial data
models.

Nevertheless, after series of transformations carried out, we found that many tools
do not follow already accepted standards, and this situation makes research work
even more diffi cult. We plan to extend the research work and create OWL to UML
transformation in Eclipse environment with ATL language.

6 References
1. Suggested Upper Merged Ontology (SUMO), http://www.ontologyportal.org/, [2008-04-28].
2. Silverston L. (2001) The Data Model Resource Book: A Library of Universal Data Models for All

Enterprises, Revised Edition, Volume 1. John Wiley & Sons.
3. Embarcadero Technologies, http://www.embarcadero.com/, [2008-04-20].
4. Friedman J. The Sole Contender for AI, Harvard Science Review 2003, http://www.scribd.com/doc/1814/

An-Article-about-the-Cyc-Project [2008-04-18].
5. OpenCyc 1.0.2, www.opencyc.org, [2008-04-19].
6. Protégé ontologies, http://protege.stanford.edu/download/ontologies.html, [2008-04-19].
7. Yago, http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/ [2008-11-03].
8. DBpedia, http://dbpedia.org/About [2008-11-03].
9. Freebase, http://www.freebase.com/ [2008-11-03].
10. Mhiri M., Chabaane S., Mtibaa A., Gargouri F. An Algorithm for Building Information System’s Ontologies.

Eight International Conference on Enterprise Information Systems, Paphos, Cyprus, 2006, 467–470.
11. Trinkunas J., Bugaite D., Vasilecas O. Formal Transformation of Domain Ontology into Conceptual

Model. Izvestia of the Belarusian Engineering Academy, 2006, Vol. 1 (21)/2, 2006, 112–117.
12. Brewster C. et al. Data driven ontology evaluation. Proceedings of Int. Conf. on Language Resources and

Evaluation, Lisbon, 2004.
13. Bertino E., Zarri G. P., Catania B. Intelligent Database Systems. Addison-Wesley Professional, 2001.

ISBN 0-201-87736-8

63Justas Trinkunas, Olegas Vasilecas. Ontology Transformation: from Requirements to ..

LURaksti751-datorzin.indd 63LURaksti751-datorzin.indd 63 2009.06.18. 11:07:212009.06.18. 11:07:21

14. Conesa J., Palol X., Olive A. Building Conceptual Schemes by Refining General Ontologies. 14th
International Conference on Database and Expert Systems Applications – DEXA ‘06, volume 2736 of
LNCS, 2003, 693–702.

15. Wordnet – a lexical database for the English language, Princeton University Cognitive Science Laboratory,
http://wordnet.princeton.edu/ [2008-04-19].

16. Kanai S., Kishinam T., Tomura T. (2000) Object-oriented Graphical Specification and Seamless Design
Procedure for Manufacturing Cell Control Software Development. Proc. of the 2000 IEEE lntemational
Conference on Robotics & Automation, San Francisco, 401–407.

17. Miller J., Mukerji J. (eds.) (2003) MDA Guide Version 1.0. OMG Document: omg/2003-05-01. http://
www.omg.org/docs/omg/03-05-01.pdf (2007-03-20).

18. OMG (2006) Ontology Definition Metamodel Specification. Adopted Specification 2006-10-11. http://
www.omg.org/docs/ptc/06-10-11.pdf (2007-03-20).

19. Lindland O. I., Sindre G., Sølvberg A. (1994) Understanding Quality in Conceptual Modeling, IEEE
Software, v. 11 n. 2, 42–49.

20. Cherfi S., Akoka J., Comyn-Wattiau I. (2002) Conceptual Modeling Quality – From EER to UML
Schemes Evaluation. In: Stefano Spaccapietra, Salvatore T. March, and Yahiko Kambayashi, editors,
Proceedings of the 21st International Conference on Conceptual Modeling, Volume 2503 of Lecture
Notes in Computer Science, Tampere, Finland. Springer-Verlag, 414–428.

21. Abrahão, S., Genero, M., Insfran, E., Carsí, J. A., Ramos, I., Piattini, M. (2008) Quality-Driven Model
Transformations: From Requirements to UML Class Diagrams. In: Model-Driven Software Development:
Integrating Quality Assurance. IGI Publishing.

22. Reto Tool, http://reto.dsic.upv.es/reto [2008-06-19].
23. Gruber T. R. A translation approach to portable ontology specifications. Knowledge Acquisition 5 (2),

1993, 199–220.
24. Trinkunas J., Vasilecas O. A Graph-Oriented Model for Ontology Transformation into Conceptual Data

Model. Information Technology and Control, Kaunas, Technologija, 2007, Vol. 36, No. 1A, pp. 126–131.

64 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 64LURaksti751-datorzin.indd 64 2009.06.18. 11:07:212009.06.18. 11:07:21

Using the Sponsor-User-Programmer Model
to Improve the Testing Process

Guntis Arnicans, Vineta Arnicane
University of Latvia, Raiņa Blvd 19, Rīga, Latvia

Guntis.Arnicans@lu.lv, Vineta.Arnicane@lu.lv

This paper describes the Sponsor-User-Programmer (SUP) model, which offers simplifi ed and
structured views of certain aspects of software requirements. The principles of the model are
based on the idea that there are three major players or stakeholders in software development –
the client or sponsor, the user, and the programmer or software developer. Each of these people
has his or her own vision and documentation about the behavior and features of the software
that is being developed. The SUP model brings together software requirements, classifying
them in easily perceived classes according to which stakeholders agree with them and whether
they are realized. The authors give an insight into how project managers, stakeholders, and
testers can use the SUP model. The relation between the SUP model and testing processes is
described.

Keywords: requirement engineering, testing, testing process improvement, software process
improvement.

1 Introduction
There are many methodologies for software development which offer a detailed

description of the development process as such, as well as the testing process and its role
in the overall design process. The availability of these methodologies, however, does not
in and of itself mean that they are put to practical use. On the other hand, “[..] meeting
real customer needs and improving project estimates and visibility with the customer
were to be key drivers for the software process improvement” [1] in industry. Moreover,
software development processes involve such people as clients and users, who are often
quite unfamiliar with IT technologies and design methodologies.

In recent years, people without specifi c knowledge have become involved in testing
procedures more and more often because of the ever more acute lack of software testing
specialists. Without education and training, these employees do not ensure high-quality
testing, nor are they truly aware of their role in the process at large [2]. The same is true
of clients and those who fi nance software development. They, too, require simplifi ed
and basic knowledge to oversee the situation at hand. Hence, “modeling conventions,

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 65–79 P.

LURaksti751-datorzin.indd 65LURaksti751-datorzin.indd 65 2009.06.18. 11:07:212009.06.18. 11:07:21

methodologies, and strategies all help to simplify requirement engineering techniques
so that the techniques can be used successfully by typical practitioners” [3].

The fi rst conceptual version of the SUP model has been established to make it easier
for the many persons involved in software development to understand the situation.
This model, to put it simply, offers a bird’s eye view of many important aspects of the
quality and testing of software. The model divides the persons involved in software
development into three groups – Sponsors (those who commission the software, own
it, and fi nance the process), Users (the target audience for the software that is being
designed), and Programmers (those who prepare the software – programmers, system
analysts, and other IT specialists). The fi rst letters of the names of those groups form the
SUP model’s name.

In the context of the SUP model, we use the term Product as “any deliverables of
life cycle – code, documents, diagrams, etc” and term Project as “any piece of work we
may need to test – project, on-going maintenance, emergency fi x, etc”, like in [4].

The goal of introducing the SUP model is to improve the testing process by improving
the understanding of all involved persons in terms of the work that is being done.

There are at least two views on quality expressed in literature [5–7]. One way
of considering the quality of software is to determine whether it is in line with the
requirements that have been stated. Such requirements, it is believed, are documented in
a written form. That is particularly true in outsourcing projects, because documents help
to uphold the formal relations between the client and the service provider.

Users, however, can have a different view of quality. They want to know whether
the software meets their expectations. Software is of quality, in other words, if it is
convenient and easy to use. This approach is typical in those cases when software is
designed for a wide range of users, and profi ts depend on whether users are prepared to
support the software by buying it.

The SUP model involves both of the aforementioned principles as equally important,
and only the user of the model decides whether to take either or both of those principles
into account. The fi rst view of quality is based on the fact that requirements vis-à-vis the
software have been documented. Thus, the SUP model includes the “Document View”
(SUP-D). The second principle is more diffi cult to quantify because the understanding
of quality is based on the feelings, expectations, and visions of individuals regarding
the software that is being designed. This can be called the “Vision View” (SUP-V). The
model takes into account the fact that there can be differences between an individual’s
vision of the product, on the one hand, and the written requirements which have been
prepared by that individual, on the other hand.

Testing activities must begin as soon as possible in the lifecycle of software
development, and they must iteratively continue throughout the process [8]. This applies
to the planning stage as well as to all others, and testing helps to ensure that the work that
is being done is in line with all relevant stakeholders. The SUP model makes it possible
to review the process at any of its stages and to determine the issues that have been
inadequately addressed, as well as the issue of whether the testing has been suffi ciently
extensive and adequate.

The reminder of this paper is structured as follows: section 2 describes the concept
of the SUP model. Section 3 demonstrates interpretation of SUP regions in detail, section
4 outlines how to use the SUP model in testing process improvement. Finally, section 5
presents conclusions and describes directions for future work.

66 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 66LURaksti751-datorzin.indd 66 2009.06.18. 11:07:212009.06.18. 11:07:21

2 The Concept of the SUP Model
The SUP model, in essence, is a set of various views of software under development.

The main components in the model are the stakeholders – Sponsor, User, and Programmer;
let us call them Actors – their views on the Product, both in terms of the Vision View
and the Document View, overlap and create common areas of viewpoints. Each existing
or future behavior or feature of the Product will be in line with one of these areas. The
areas can be of different levels of importance in terms of how necessary for the Actors
are the requirements contained in each of them. Product quality is improved when steps
are taken to reduce the number of requirements in less important areas and to enhance
the scope of the important areas.

2.1 Origins of the SUP Model
The ideas behind the SUP model have been developed over the course of several

years of investigation why software testing is often inadequate and incomplete, why
resources are frequently wasted in the process, and why it occurs spontaneously and
without any clear planning ever so often. We determined that the main problem was
that design teams have mediocre or even poor knowledge about software testing.
Software sponsors and users, of course, have even poorer knowledge. Each stakeholder
has a different understanding of testing, and that can lead to disagreements.

The search was on for a model that all stakeholders in software development
could understand, one which would offer understandable concepts that can be
described in a single presentation or lecture. The initial model was largely based
on the principle described in [9] – that software behavior can be discussed from
the viewpoint of specifi cation and/or of the actual software. It is the viewpoint of
software developers to software testing. Testers need to look for differences between
these two sets of information. Test cases are used to test various parts of the process,
both in terms of the areas of viewpoints and in terms of issues which are outside
those areas. Different testing methods test software behavior in different ways.
Visual images (Venn diagrams) help readers understand better what the methods do
and do not test.

2.2 Actors in the SUP Model and Their Views
The central role in the SUP model is played by several important groups of persons

involved in software development and their views on the fi nal Product.

2.2.1 Actors and Their Classifi cation

We have defi ned three important groups of stakeholders in the process of software
development:

1) the Sponsor – the person or persons who commission the software, fi nance its
design, and wish to gain material benefi ts from it;

2) the User – the person or persons who are the target audience of the software
and will use it for work or personal purposes;

3) the Programmer – the person or persons who design the software and receive
payment or other remuneration for their work.

67Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 67LURaksti751-datorzin.indd 67 2009.06.18. 11:07:212009.06.18. 11:07:21

There are cases in which a specifi c individual is in several of these groups, and in
that case the individual is playing several roles simultaneously. That is good in the sense
that the number of different viewpoints is smaller, but it is not good in the sense that the
individual’s viewpoint may be narrow and even erroneous.

Fig. 1. Each Actor has a unique view (visions and documented requirements) of the Product.
Here we see the interaction between the Sponsor, User, and Programmer.

Table 1 shows the graphic designations of the various states of software used in the
diagrams of the SUP model.

Table 1

Graphic designations of the states of software in the SUP model

Shape Meaning

Dashed area Ideas and visions about the software which are not written down

Solid line area

Written requirements (specifi cations, software design, etc)

Filled area

Requirements implemented in the software (the behavior and properties
of the software, the properties of the source code, the properties of the
documentation)

2.2.2 The Different Views of Stakeholders vis-à-vis the Product

Software and its aspects can also be reviewed at three levels:
1) the idea and vision as to what kind of software is needed and what its functions

should be. We can regard this as the mental model of the software envisaged
by an individual. Let us call this Vision (dashed area in the diagrams).

2) Visions, ideas, and requirements written down in formal documents, letters,
diagrams, etc. These specify the requirements of the client, the requirements
and complaints of the users, the proposed software design, etc. Let us call
these Documents (solid line area in the diagrams).

3) The software which consists of the executable program, its code, and its
support documentation – Product (fi lled area in the diagrams).

68 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 68LURaksti751-datorzin.indd 68 2009.06.18. 11:07:212009.06.18. 11:07:21

2.2.3 The Visions of the Stakeholders

Each stakeholder in software development will have his or her own ideas and
visions about the behavior and properties of the software that is being designed. The
closer those ideas are to the actual behavior and properties of the fi nal Product, the more
likely it is that the stakeholders will appreciate the level of its quality.

Each Actor has a different view on the necessary system behavior in most cases,
and often these views are widely divergent. Figure 2 (a) shows the relationship among
the various visions. Let us refer to the views of all involved Actors as the SUP-Vision
(SUP-V). Each region is identifi ed by a name – “S” for Sponsor, “U” for User, and “P”
for Programmer or any combination of them. Each region here and in the rest of the
paper represents graphically the appropriate set of unwritten (in SUP-V) or written (in
SUP-D) requirements of software behavior and/or properties.

Fig. 2. The SUP-Vision View (a), the SUP-Documents View (b) and their segments

2.2.4 The Requirements Documented by Actors

The requirements of all Actors are identifi ed and documented during the software
development process. The developers come up not just with the source code but
also, when needed, with additional specifi cations that are appropriate for the given
situation – user handbooks, help systems, etc. We must remember that some of the
documents prepared by the Sponsor and the User are also part of the fi nal Product.

The documents can be classifi ed in terms of their claims or requirements. Each
person could look at each claim and declare whether it is or is not in line with the
ideas of the relevant person vis-à-vis the software. By classifying all of the claims in
the documents, we can defi ne the view SUP-Documents (SUP-D, Figure 2 (b)). Each
segment can be given an identifying name, as in the SUP-Vision above. It is assumed
that the claim has been formally accepted by the person to whose range of interests the
relevant segment belongs.

2.2.5 The Links between Visions and Documented Requirements

When systems are commissioned and designed, the ideas of each of the stakeholders
in the process are documented. The User hands in written requirements, the Sponsor
sets high-level requirements and specifi cations, the Programmer prepares the initial
designs of the software, supplements specifi cations, develops the code, writes the user
handbooks, etc. The fact is, however, that not all wishes are put in writing, and not all
wishes are realistic. Figure 3 (a) shows this situation, V represents an area related to
SUP-Vision, D represents an area related to SUP-Documents.

69Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 69LURaksti751-datorzin.indd 69 2009.06.18. 11:07:212009.06.18. 11:07:21

Fig. 3. The relationship between Vision and Documents and Product from the viewpoint
of the User, Sponsor, or Programmer: (a) no requirements implemented; (b) some

requirements from each region have already been implemented

Now let us review Figure 3 from the perspective of the User. We see that their
Vision (the dashed area – V and VD) is different from the written requirements (the
solid line area – VD and D). The area marked as VD is where the vision coincides
with the requirements vis-à-vis the properties of the software. It is all but impossible,
however, for users to put absolutely all of their desires into writing. The requirements
which are not described are in the area V. There can also be mistakes in written
requirements – ones that are not really in line with the User’s wishes and vision. These
are in the area D. The fi lled areas in Figure 3 (b) represent requirements from each
region that the Programmer has already implemented.

If we look at Figure 3 from the viewpoint of the Sponsor or Programmer, we see that
the situation is analogous to that of the User, as described above.

In a perfect world, V and D would coincide. All the wishes of the User, Sponsor,
and Producer would be written down, and that which is written down would be fully in
line with that which is desired. Thus, all the wishes and ideas of the Actors would be
included in the initial design, the documentation, and the later phases of the lifecycle
of the software. Furthermore, everything would have been accomplished without any
mistakes or misunderstandings. Of course, that never happens in real life because of the
signifi cant cost of software development and because of the fact that the various Actors
inevitably have at least a few contradictory wishes.

2.2.6 The Interaction between the Views of Actors

As we saw in Figure 2, some of the ideas or visions are common to all Actors – what
the User and Sponsor want the Programmer is ready to provide (SUP). Some ideas are
common to the Sponsor and User (SU), some are common to the User and Programmer
(UP), and some are common to the Sponsor and Programmer (SP). Each stakeholder
usually has some idea about the software that is unknown to the other stakeholders or to
which the others do not agree (“S” for Sponsors, “U” for Users, and “P” for Programmers
in Figure 2). The situation with documented requirements is similar.

2.3 The Product and Its Relationship with Views
We have so far focused on the vision and written requirements related to the

Product. The job is to produce a Product that is as close as possible to the Vision of
all relevant Actors. Some of these Visions will be documented as requirements. Only

70 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 70LURaksti751-datorzin.indd 70 2009.06.18. 11:07:212009.06.18. 11:07:21

some will end up in the fi nal software source code (in Figure 3 (b), the fi lled areas
represent the produced software behavior and properties that are in line with the
requirements in the relevant segments). The sad fact is that different people interpret
requirements in different ways, which results in mistakes. This means that part of the
Product will satisfy the Vision, another part will satisfy the Document (documented
requirements) and the third part will satisfy both (the fi lled area in the segments in
Figure 3). The Product, moreover, can have behavior and properties which are not
in line with the desires or requirements of the Actors (the fi lled area outside the
segments).

A few interpretations, for instance, from the perspective of the User:
in segment VD, where visions and documented requirements coincide, we •
see that there are requirements which have already been implemented. They
are in the fi lled area, and that means that not all requirements have yet been
implemented, because the entire segment has not been fi lled in.
If the software behavior and properties are in line with items from segment V, •
that means the Programmer has taken into account the User’s wishes that have
not been set out in writing but that are nevertheless necessary and in line with
needs.
If the behavior and properties are in line with items from segment D, that means •
the Programmer has implemented mistaken requirements of the User (i.e., the
written document does not truly refl ect the wishes of the User).
Software code that is outside the segments V, VD, and D refers to everything •
else that has been done – items about which the user has neither visions nor
requirements. These may be specifi c requirements from the Sponsor, items
which simply make it easier to maintain and test the software, as well as
functions nobody needs.

The (a) and (b) parts of Figure 4 together depict the structure of the SUP model,
which is its basic framework for testing needs. One conclusion usually drawn by
those who study the SUP model is that testing must be very diverse to check many
different issues (Figure 4 (b) alone has 16 different segments – 7 segments, for
instance, U, SU, UP, and 8 fi lled circles that represent requirements implemented in
software according to each segment).

Fig. 4. SUP views during software development – (a) visions about the software
(the SUP-V model) and the resulting software; (b) documented requirements

for the software (the SUP-D model) and the resulting software

71Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 71LURaksti751-datorzin.indd 71 2009.06.18. 11:07:212009.06.18. 11:07:21

2.4 Regions of Views
2.4.1 Regions: the Cornerstone to Classify and Evaluate Situations

Because of the varying number of Actors, there can be various combinations in
terms of situations that can be represented in the relevant region. It is not diffi cult to
fi nd the real-life interpretation of each region. Let us consider some of these. Various
methods can be used to identify and process any situation.

Not all situations are equal in terms of necessity and utility. Furthermore,
interpretation of the situation will differ depending on the current phase of the project’s
lifecycle. Each region in the SUP model can be weighted so as to emphasize the fact that
not all regions are equal at any given time.

Let us consider an instance of the project deadline drawing near. The greatest weight
will be in the fi lled-in fi eld of the SUP region. That means that the views of the Sponsor,
the User, and the Programmer coincide regarding the behavior and properties of the
software, and the relevant requirements have been implemented in the Product. To us,
this is a desirable situation.

Next, we could consider the fi lled areas in the SP, UP, and SU regions. These refer
to those parts of software requirements which lack the support of just one of the Actors.
Relationships among these regions depend on which Actor is dominant.

Unpleasant situations which are less important are represented in the open areas
in the regions – the desired or required behavior has not been ensured. The worst of
this situation is the open area in the SUP region at the end of the project, because
there unanimity on requirements is achieved, but those requirements have not been
implemented in an executable code.

A less clear situation exists with software which no one really needs – software
which has perhaps been created by mistake (the fi lled-in fi eld outside the regions). The
open area outside the regions represents unknown future potential, both in a positive and
a negative sense.

When a specifi c project is developed, the weighting of various regions can occur on
the basis of specifi c principles. Within a single company, however, a weighting principle
that is valid for more than one project can be developed. This is done while taking into
account the company’s specifi cs and culture.

Fig. 5. Paths from regions with smaller weight to regions with greater weight

2.4.2 Strategies for Quality Improvements from the Perspective of Regions

Strategies for quality improvement with the help of the regions can be described in
a simplifi ed way:

1) identify requirements of the Product in each SUP model’s region;

72 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 72LURaksti751-datorzin.indd 72 2009.06.18. 11:07:222009.06.18. 11:07:22

2) set a goal in terms of the target region in which we wish to see each identifi ed
requirement. The goal may be to throw out the unnecessary requirement, too;

3) choose the pathway from the initial region to the target region, moving to
neighboring regions which are of greater weight (if there are several pathways,
we choose the optimal one);

4) take steps to achieve our goals.
The fi rst of the steps is primarily based on various testing methods. The fourth

step can be taken by changing the Product appropriately or by using explanations and
arguments to change the views of other Actors regarding the Product.

2.5 The Dynamics of the SUP Model
In working with the SUP model, we must remember that its components change

their status over the course of time. That is primarily because people change their minds
about things. They like things which they used to dislike and vice-versa. If Document
View has changed, the documents become erroneous. Those who maintain the software
can make changes which are no longer in line with the vision of the documentation of
an Actor.

Depending on the segment that is affected, changes can be radical or minimal;
positive or negative. The SUP model can help judge how important the changes are and
decide whether they are, generally speaking, desirable or undesirable.

3 Interpretation of SUP Regions
One of the main goals of the SUP model is to inform Actors about typical situations

that are described in the regions so that the software testing process can be aimed at
identifying those situations; furthermore, steps can be taken to change them in the
desired way.

Let us look at the situation in Figure 4 (b) (relations between SUP-D and the
Product).

The fi lled-in part of the SUP region• is the ideal situation in terms of this view
because it represents a set of specifi cations about which the Sponsor, User, and
Programmer have reached a written agreement. The Product fully corresponds to
those specifi cations. We want this area to be as large as possible. In terms of testing,
it would be enough if only a couple of tests showed correspondence to this section.
Additional tests ensure greater psychological security, but they really are a waste
of resources. Examination of sample tests will not change the Product quality. The
tests that are available in this segment are very useful, however, to explain the
specifi cations more precisely, to conduct testing during the software development
process, and to offer examples in the user documentation that is used.
The open area in the SUP region• represents the issues which all stakeholders have
agreed upon but which have not been implemented in the code of the Product for
one reason or another. One must carefully consider how the relevant properties can
be ensured in the Product and what resources are needed for that purpose. As the
design process draws to a close, testing must focus primarily on this region, because
the existence of such region makes it clear that the Programmer has failed in one

73Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 73LURaksti751-datorzin.indd 73 2009.06.18. 11:07:222009.06.18. 11:07:22

way or another. We must remember, however, that from the perspective of SUP-V,
if the relevant behavior is in a different region, the specifi cations must be changed.
It is quite possible that there is a fundamental reason for such a situation, and that
reason must be identifi ed.
The fi lled-in area in the SU region• represents things which Users wanted and the
Sponsor specifi ed and which the Programmer did in opposition to their own offi cial
view. If the Programmer can offi cially accept that, the requirements of functionality
move to the fi lled-in area of the SUP region (this is required because otherwise the
Programmer can just remove functionality from the Product).
The open area in the SU region• represents things which Users want and have
specifi ed, but which the Programmer cannot promise and perhaps has no intention
to do. If compromise can be found as the project develops, the situation might move
from this region to the SUP region.
The UP region• – the User has written down requirements which the Programmer
is prepared to accept (the open area) or has already implemented (fi lled-in area),
but which the Sponsor is not going to fi nance or which are not included in project
specifi cations for any other reason. This situation often occurs in in-house projects,
when the Programmer communicates directly with the User, but specifi cations are
never really put together because of lack of time or other reasons. What happens next
depends on whether the relevant request has already been satisfi ed. The User and/
or Programmer can attempt to convince the Sponsor to change the specifi cations. It
is also possible that everyone is satisfi ed with the situation, even though it has not
been put into the specifi cation – resources have been saved! Another possibility is
that a key goal of the Sponsor is not pursued precisely. For instance, the Sponsor
may want to limit user access to data, while the User wants to access all data (the
latter is simpler to implement for the Programmer). In that case, the developed code
may have to be revised.
The SP region• represents things which have been listed in the specifi cation,
implemented in the software, or are to be implemented by the Programmer, but which
the User does not need. The reason may be that the User is simply not interested in
them. This applies to things such as the security system, testware to make testing
easier, handling of mistakes, or establishment of an audit trail. It may be, however,
that because of incompetence, functions that are bothersome or even hazardous for
the User are requested and installed. The User and the Sponsor alike need to be
convinced to reach an agreement on what to do. The Sponsor, of course, is free to
spend his/her money as he/she sees fi t; nonetheless, specifi cations can be mistaken.
The S region• represents things that are listed in specifi cations, are not demanded by
the User, and which the Programmer does not intend to implement. These situations
can move to the SP region as the Programmer continues their work, but it is also
possible that the requirements which are found here will never be pursued because
the User categorically objects to them. The response here is similar to that in the
SP region.
The U region• represents things which the User wants but the Sponsor is, for one
reason or another, unwilling to put in the specifi cations for the Programmer. The
Users can communicate with the Sponsor to ensure that the requirements are placed
in the specifi cations (in which case the situation moves to the SU region), or they can

74 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 74LURaksti751-datorzin.indd 74 2009.06.18. 11:07:222009.06.18. 11:07:22

deal directly with the Programmer (PU), reaching an agreement with the Sponsor
afterwards. Sadly, this is quite common in real life, because the Users are often
brought into the development process very lately or not at all.
The P region• represents behavior or properties of software that are denoted in the
software development or in the documents which the Programmer has put together
for their needs, but which have been requested neither by the User nor by the
Sponsor in their specifi cations. Perhaps such functionality is unnecessary, or it is
necessary but neither the Sponsor nor the User has thought of it, therefore it is not
in the specifi cation. This often applies to functionality the technical personnel that
run the system need. This can concern things such as the LOG trail to fi nd out what
work or calculations are being done. Specifi cations usually do not include handling
of low-level errors.
If suffi cient real life examples are given when potential users of the SUP model are

taught about the SUP model, they quickly learn to identify situations and to see what
should be done in response to them.

4 Improvement of the Testing Process
Requirements are at heart of each software development project. Testers have to do

both – validate compliance of requirements to stakeholders’ claims, and verify correctness
of implementation of requirements through all stages of software development.

4.1 Support of the Testing Process Management
Exploitation of the SUP model can in and of itself improve the testing process

because structured knowledge about all possible situations make it possible to view
testing in a different way and to restructure the relevant activities. The model defi nes
directions to pursue, but it does not address testing in detail.

The SUP model can be a tool that helps start testing early, do it thoroughly
and differently, guides planning of testing through the whole lifecycle of software
development. All these issues are essential to quality testing [8]. In such a way SUP
model supports iterative reassessment of the quality of testing itself in order to improve
testing processes [4, 10, 11].

Testing allows project managers to know facts about software – what kinds of faults
were found in the software, how many faults were found and where in the software
they were found. Quality testing also shows what kinds of faults have been sought but
not found. This is an iterative process. Each time the project is reviewed there must
be consideration of whether any changes in the project have been forgotten. Thus, it
is possible to reassess the entire project situation and to make informed decisions on
improving the relevant processes.

The SUP model makes it possible to improve software quality by highlighting project
weaknesses, such as requirements which the Programmer has followed by request of the
User but which are not found in the Sponsor’s specifi cations.

The SUP method makes it possible to use resources more rationally – not at the end
of the software development process, which is when testing usually takes place. It makes
it possible to learn early on that the requirements of the Sponsor (the S region) are not

75Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 75LURaksti751-datorzin.indd 75 2009.06.18. 11:07:222009.06.18. 11:07:22

in line with Users’ wishes, so the Users will not accept them (in which case the situation
is in the SP region). The model makes it possible to monitor whether the Sponsor has
agreed upon all specifi cations that will affect the User before the Programmer starts the
work (the desired movement is from the S region to the SU region and then to the SUP
region).

4.2 Seeking Problems in a Project Using SUP Views
At the beginning of a project, when requirements are fi rst being developed and the

goals of the system are being designed (SUP-V view), all wishes are going to be in the
S, U, and P regions. Testers can work with requirements, for instance, from the U region.
They can do usability testing, reviews of these requirements in order to help the Users:

specify their wishes;•
see which requirements are contradictory;•
prepare to advocate their requirements in the eyes of the Sponsor.•

Later the SUP-D view of the model is used in testing to ensure a proper view of the
project as a whole:

the requirements on which the Actors have and have not reached an agreement; ○
which requirements have been and have not been fulfi lled in the software; ○
recollection that there may be additional functionality that is not specifi cally ○
requested.

Views of SUP model give to testers a clear sight on requirements.
What issues is each Actor thinking about (regions S, U, P)? •
Which requirements are going to be discussed in the future (regions SU, SP, UP)?•
Which requirements are implemented in each region? Which are not? Why?•
Is there functionality in the software that is not included in the requirements? •
Is it really redundant or not (for instance, if requirements from UP region
are implemented – issues that the User needs, the Programmer agrees on
with the User, but the Sponsor is not ready to include in the offi cial project
specifi cation)?
Are the documented requirements truly those of the User, Sponsor and •
Programmer?
Are there contradictions among the various requirements?•
Is the set of requirements complete? For instance, are there requirements with •
which one of the Actors is not particularly familiar, perhaps requirements in
which certain Actors have no interest at all? Usability requirements which are
not directly related to business requirements are often, and sadly, examples
of this kind of situation. For instance, sometimes specifi cations state the
maximum amount of time that can pass before the system responds to a user
request. Seldom, however, is there an indication of the minimum font sizes on
the screen – something that is important to users, given that different people
have different ability of vision.

Simultaneously with the job of harmonization the Users, Sponsors, and Programmers
do, testers can start to prepare use cases, scenarios, test specifi cations for future testing,
feeling the real needs of the User and Sponsor.

76 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 76LURaksti751-datorzin.indd 76 2009.06.18. 11:07:222009.06.18. 11:07:22

4.3 Choice and Use of Testing Methods
While the requirements have not yet been implemented, testers use only static

methods in their work – inspections, reviews, prototype usability testing on paper.
The overall lexicon and collection of requirements of the project is constantly

supplemented and expanded in collaboration with other project developers.
Testers also prepare testing plans and user scenarios for those requirements which

are already in the SUP region. They give thought to the dynamic testing that will be
necessary in the future.

As soon as parts of the Product are implemented, testers continue the work that they
have done before as well as start to inspect whether the requirements and the executable
code are in line with one another.

Have the requirements been implemented correctly?•
Have any requirements on which the Actors have not yet agreed been •
implemented?
Does the code include unnecessary functionality which no one has requested?•

During this period, testers use traditional dynamic test methods to make sure
that all requirements have been realized implemented as intended. Implementation of
unexpected requirements or of completely unnecessary functionality is identifi ed by
structural testing methods (the white box methods), exploratory testing, ad hoc testing,
and code reviews.

Typical black box testing methods, which are based only on the written requirements
of the Sponsor, are operational from the SUP-D view and in relation to all regions which
involve the letter S. They have little to do with interests of the User, and they cannot be
used to identify unnecessary programming in the region P or outside all of the regions.

Typical white box testing methods, by contrast, use the source code, but they cannot
in and of themselves check the regions S, SU, and U because essentially they are valid
for all regions which involve the letter P.

Static testing methods inspect the source code while simultaneously reviewing
requirement documents. Testing occurs in all regions, but there are two key shortcomings
here: testers must be highly qualifi ed, and it is not possible to identify specifi c errors that
affect the behavior of the software (e.g., testing the speed of reaction of the system).

Acceptance testing, which is very popular and often greatly relied upon, basically
operates only in the SUP region, and that does not represent adequate testing.

5 Conclusions and Future Work
The SUP model described in this paper was established gradually as a means for

improving the testing process in order to help address certain problems that exist in
practice. The most important aspect of this model is that it offers a bird’s eye view of
software and its functionality from the perspective of the various Actors. The model can
be used by IT specialists as well as by various businesspeople whose knowledge on IT
and computers can be skimpy or incomplete.

The SUP model classifi es the many situations that can emerge from the visions and
written specifi cations of Actors and from the resulting software. When such situations
are explained with understandable examples, it is easier to achieve better understanding

77Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 77LURaksti751-datorzin.indd 77 2009.06.18. 11:07:222009.06.18. 11:07:22

of the testing process among the many persons involved in a software development
project. Then it is clear whether one of the Actors is being ignored, e.g., whether all
potential users are or are not brought into the discussion to an adequate degree. It is also
possible to tell whether testing is not too unilateral or narrowly drawn.

The User and Sponsor often do not have enough time to inspect the whole process,
so a narrower model can be proposed to them – just the SUP-V or SUP-D view, with
explanations of the relevant regions.

The SUP model can be used as an additional resource for better organization of
software development processes throughout the lifecycle of the project. The model
supports the launch of testing activities at the stage of initial visions, helping to plan the
project and analyze possible risks. In later phases, the model can be used to develop a
strategy for software testing, plan the testing, review and improve the plans, and select
the necessary testing methods and techniques.

The SUP model makes possible an extensive testing of software in order to make
sure that there is nothing distinctly unacceptable about the software development process
or the Product itself.

The SUP model is used as an additional resource in real projects. Students who
are trained as testers learn about the model at university and elsewhere. Up to now,
the model has been used informally and intuitively. Further research is needed to
formalize the SUP model and to defi ne a more precise methodology for its use. Several
algorithms or scenarios should be prepared for the use of the model, and guidelines for
their use should also be created. Particular attention could be given to the issue of how
to determine the existing condition of a project best – by identifying the problematic
regions in the SUP model, by highlighting critical problems or weaknesses, and by
clearly understanding what must be done to improve the situation. This can be achieved
by analyzing all project-related activities – meetings, the involved people, the drafted
documents, etc. Documents can be inspected, and everyone involved in the project can
be surveyed.

Acknowledgements

This research is partly supported by the European Social Fund with the grant
“Doctoral student research and post-doctoral research support for the University of
Latvia”.

References
1. O’Hara F. (2000) European Experiences with Software Process Improvement. Proceedings of the 22nd

International Conference on Software Engineering, Limerick, 635–640.
2. Arnicane V. (2007) Use of Non-IT Testers in Software Development. In: Münch J., Abrahamsson P. (eds.)

Product Focused Software Process Improvement. Lecture Notes in Computer Science, Vol. 4589. Berlin-
Heidelberg: Springer-Verlag, 175–187.

3. Cheng B. H. C., Atlee J. M. (2007) Research Directions in Requirements Engineering. Future of Software
Engineering (FOSE ‘07), IEEE Computer Society, 285–303.

4. Veenendaal E. (2002) The Testing Practitioner. UTN Publishers, Den Bosch.
5. Lewis W. E. (2005) Software Testing and Continuous Quality Improvement. 2nd edn. Boca Raton, London,

New York, Washington, D.C.: Auerbach Publications.
6. Conradi R., Fuggetta A. Improving Software Process Improvement. IEEE Software, Vol. 17, No. 4, IEEE

Computer Society, July/Aug. 2000, 76–78.

78 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 78LURaksti751-datorzin.indd 78 2009.06.18. 11:07:222009.06.18. 11:07:22

7. Van Solingen R. (2000) Product Focused Software Process Improvement. SPI in the Embedded Software
Domain. Eindhoven University of Technology, Eindhoven.

8. Perry W. E. (2000) Effective Methods for Software Testing. 2nd ed. New York, Chichester, Weinheim,
Brisbane, Singapore, Toronto: John Wiley & Sons, Inc.

9. Jorgensen P. C. (2002) Software Testing: A Craftman’s Approach. Boca Raton, London, New York,
Washington, D.C.: CRC Press.

10. Palyagar B., Moisiadis F. (2006) Validating Requirements Engineering Process Improvements – a Case
Study. First International Workshop on Requirements Engineering Visualization (REV’06 – RE’06
Workshop), 9.

11. Huo M., Zhang H., Jeffery R. (2006) An Exploratory Study of Process Enactment as Input to Software
Process Improvement. Proceedings of the 2006 International Workshop on Software Quality. Shanghai,
39–44.

79Guntis Arnicans, Vineta Arnicane. Using the Sponsor-User-Programmer Model ..

LURaksti751-datorzin.indd 79LURaksti751-datorzin.indd 79 2009.06.18. 11:07:222009.06.18. 11:07:22

Complexity of Equivalence Class and
Boundary Value Testing Methods

Vineta Arnicane
University of Latvia, Raiņa Blvd 19, Rīga, Latvia

vineta.arnicane@lu.lv

There are two groups of domain testing methods – equivalence class testing (ECT) methods and
boundary value testing (BVT) methods reviewed in this paper. This paper surveys 17 domain
testing methods applicable to domains of independent input parameters of a program. This survey
describes the basic algorithms used by domain testing methods for test case generation. The
paper focuses on the theoretical bounds of the size of test suites or the complexity of domain
testing methods. This paper also includes a subsumption hierarchy that attempts to relate various
coverage criteria associated with the identifi ed domain testing methods.

Keywords: software testing, domain testing, equivalence class testing, boundary value testing,
equivalence partitioning, partition analysis, boundary value analysis.

1 Introduction
A domain of a program with mutually independent parameters is a set of all

combinations of all values of these parameters. The input domain can be very big. The
main goal of domain testing methods is to achieve a test suite the size of which is
considerably smaller than the count of all inputs of the program, and which effectively
reveals failures of the program as much as possible.

The main approach is to divide the test object’s input domain in subdomains
or equivalence classes so that inputs from the same subdomain are processed in the
same way, that is, cease the same type of program’s output or behavior [1, 2]. Any
input represents all inputs of the subdomain to which it belongs. Assumption of the
approach is that if the few good representatives of the class are tested, most or all of the
bugs that could be found by testing every member of the class are found [1–5], and if
representatives do not catch the bug, the other elements of class will not either [3–5].

The equivalence classes of the program’s input domain can be obtained using both
the program’s structural analysis – path analysis, and functional analysis – equivalence
partitioning, domain analysis, boundary value analysis [3].

Path analysis approach is known since the 70s of the 20th century. It assumes that
domain error occurs if an input traverses the wrong path through a program [6]. Symbolic

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2009. Vol. 751
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 80–101 P.

LURaksti751-datorzin.indd 80LURaksti751-datorzin.indd 80 2009.06.18. 11:07:222009.06.18. 11:07:22

execution can be used to obtain path constraints [7] or system of inequalities [6, 8–10],
solution of which determines the subdomain of input domain, ensuring execution of this
path.

Partition analysis technique has developed since the 80s of the 20th century [11–15].
Equivalence partitioning technique subdivides input domain in equivalence classes on
the basis of the program’s specifi cation [1–5]. The fi rst step is to determine the domain
of valid values for each of the program’s parameters. These are the equivalence classes
of all valid input values, one class for each parameter. Second step is to establish the
domain of all invalid input values for each parameter. Invalid values are values that are
possible for the input parameter but are not included into the class of valid values. By
subsequent steps, the equivalence classes are refi ned in such a way that each different
requirement and each different program behavior is a response to an equivalence class.

The same principle of dividing into equivalence classes can be used for output data,
too. As a result, the equivalence classes of input values are refi ned according to the
principle that if two different inputs of program cause outputs that belong to different
equivalence classes of outputs, these inputs should be in different equivalence classes
of input values, too [1, 16].

Boundary value analysis devotes special attention to boundaries of equivalence
classes, because praxis shows that boundary values often reveal faults. Boundary value
testing methods for test cases choose boundary values, special values, as well as values
that are close to them – just above them or just below them.

There is the group of methods that different authors call domain testing methods
or domain analysis methods [17]. These methods also take into account dependencies
or interactions between input parameters [3, 4, 17–20]. By these methods, the input
domain often is seen as a geometrical shape and its edges – as boundaries. In most cases
the domains with linear boundaries can be examined [3, 17–21], but there are some
methods that allow to test nonlinear boundaries, too [4, 21–23].

Using path analysis and equivalence partitioning, equivalence classes are determined.
From each class one value can be chosen as a representative of the class for testing.
When we have some parameters of the program with some equivalence classes for each
of them, we should use a strategy how to combine them in test cases. A similar situation
is with values obtained by boundary value analysis. These approaches to domain testing
methods in this paper are accordingly called equivalence class testing (ECT) methods
and boundary value testing (BVT) methods.

The complexity of domain testing methods is the smallest size of the test suite
generated by a method. There are two parameters for comparing the testing methods –
relative effectiveness and cost [25]. The complexity of the method is closely related
with the cost of the method. If complexity is high, it means that there might be a large
count of test cases in the test suite. As the size of the test suite grows, more resources are
necessary for testing, for instance, testers, hardware, software, time, budget. Secondly,
we should consider the effectiveness of the method. A method is considered effective
if the software tested thoroughly according to that method is almost correct [25]. But
method should be effi cient too – if the test case fails, it is better if there is a small count
of candidates (input values of the test case) to blame.

Hence, it is very important to take into account the method’s complexity and
effectiveness during the planning stages of testing.

81Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 81LURaksti751-datorzin.indd 81 2009.06.18. 11:07:222009.06.18. 11:07:22

The aim of this paper is to review some ECT and BVT methods mentioned in
literature and assess their complexity. The paper focuses on the theoretical bounds of the
size of test suites or the complexity of domain testing methods. This paper also includes
a subsumption hierarchy of the identifi ed domain testing methods.

Section 2 gives some defi nitions useful in the context of this paper, section 3
explains the testing criteria of domain testing methods. There is a review of equivalence
class testing methods in section 4 and of boundary value testing methods in section 5.
In sections 4 and 5, the algorithm of testcase generation is shortly described and
the complexity of each identifi ed domain testing method is assessed. Section 6
summarizes the complexity of domain testing methods and provides the hierarchy of
domain testing methods according to subsume ordering. Finally, section 7 concludes
this survey with a summary of most important results and some future directions of
research.

2 Defi nitions
Suppose that P is a program with N input parameters Xi, where 1 ≤ i ≤ N. For

each parameter, input domain Di is partitioned into Mi equivalence classes with extreme
points as boundary values.

The meaning of boundary value testing is to examine the program when input
parameters assume extreme values for each equivalence class (maximal, minimal),
just above (for some small value ε) or just below the extreme values, and when value
is nominal – inside the equivalence class in distance from extreme values that is
considerably bigger than ε.

For the corresponding domain Di of each parameter’s Xi, each equivalence class
dij of the ordered elements can be graphically represented as showed in Fig. 1. The
minimal boundary value of class is xij min, maximal boundary value is xij max, where
1 ≤ j ≤ Mi. Nominal value of the class is xij nom. Values xij min-, xij max- are a little smaller
than appropriate boundary values, but xij min+, xij max+ are a little bit bigger. For the sake
of simplicity, min-, min, min+, nom, max-, max, max+ instead of xij min-, xij min, xij min+,
xij nom, xij max-, xij max, xij max+ will be used in this paper in cases when it cannot cause
misunderstanding.

Boundary values xij min and xij max may belong to an equivalence class, but they can
also be excluded from it. Nevertheless, they are boundary values for this class.

The following inequalities hold for each i, j, when 1 ≤ i ≤ N and 1 ≤ j ≤ Mi .

xij min - xij min- ≤ εij xij min+ - xij min ≤ εij xij nom - xij min ≥ εij

xij max+ - xij max ≤ εij xij max - xij max- ≤ εij xij max - xij nom ≥ εij

Fig. 1. Equivalence class dij: [xij min, xij max], its boundary values xij min, xij max, inner OFF points
xij min+, xij max-, outer OFF points xij min-, xij max+ and nominal value xij nom

82 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 82LURaksti751-datorzin.indd 82 2009.06.18. 11:07:222009.06.18. 11:07:22

Let us call values just above the minimal value and just below the maximal value
inner OFF points (they are inside equivalence class) and values just below the minimal
value un just above the maximal value outer OFF points.

We have two assumptions:
1) For each parameter Xi, conjunction of all equivalence classes is domain Di.

So,
1

iM

i ij
j

D d
=

=∪ for ∀ i, j ,

 where 1 ≤ i ≤ N and 1 ≤ j ≤ Mi.
2) There are no common values between equivalence classes – ∀ i, j, k ,
 where 1 ≤ i ≤ N, 1 ≤ j ≤ Mi, 1 ≤ k ≤ Mi and j ≠ k dij ∩ dik = ∅.

Although for each parameter, equivalence classes do not have common values, they
can have common boundary values. For instance, as it is shown in Fig. 2, if domain for
Xi consists of a closed interval [xia, xib] and left-open, right-closed interval (xib, xic],
they have a common boundary value x1b. Let us denote the size of the set of all common
boundary values for parameter Xi with Li.

Fig. 2. Common boundary value xib for intervals [xia, xib] and (xib, xic], Li={xib}.

For each parameter Xi, values which belong to its domain Di are called valid values,
all other values – invalid. Invalid values can also be divided into equivalence classes.
The size of the set of equivalence classes of invalid values for parameter Xi in this paper
is denoted by Qi.

Boundary value testing methods are also applicable in cases when the parameter’s
domain is a set of discrete elements. It is important in such cases that there exists any
function according to which elements of the domain can be ordered, for instance,
months Jan, Feb, Mar, [..] Dec, lexicographical ordering of strings, or order of data in
drop-down control.

3 Criteria of Domain Testing Methods
Complexity of a domain testing method is the smallest possible size of the test suite

generated by the method.
The essential part of any testing method is adequacy criterion. Adequacy criterion

explicitly specifi es test case selection, determines whether a test set is adequate, and
determines observations that should be done during the testing process [26].

Adequacy criteria of domain testing methods can be characterized by three
aspects:

1) which kind of values to choose for testing, for instance, only boundary values
or only representants of equivalence classes of valid values;

2) data coverage principle;

83Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 83LURaksti751-datorzin.indd 83 2009.06.18. 11:07:222009.06.18. 11:07:22

3) strategy how the chosen values are combined in test cases according to the
data coverage principle.

First aspect considers semantical information of test data according to observations
of the testing method, for instance, only boundary values are used or OFF points are
added, too, whether the invalid values of parameters are examined or not.

Second aspect is combinatorial strategy based on data coverage. Simplest coverage
criterion, each-used, does not take into account how selected values of different
parameters are combined, while the more complex coverage criteria, such as pair-wise
coverage, are concerned with combinations of values of different parameters.

Each-used (also known as 1-wise) coverage requires that every selected value of
each parameter is used at least in one test case of the generated test suite [27].

Pair-wise (2-wise) coverage requires that every possible pair selected values of
different parameters are included in the test cases of the test suite.

T-wise coverage requires that every possible combination of values of t parameters
is included in the test cases of the test suite. N-wise coverage is a special case of t-wise
coverage where N is the number of parameters.

As coverage degree t grows, the size of the test suite generated by the testing
method also grows. Each-used and N-wise coverage are widely applied in domain
testing methods.

Third aspect concerns the strategy how combinatorial coverage of chosen data is
implemented. For instance, each-used coverage can be achieved in different ways:

1) for every chosen boundary value of each parameter, generate its own test case
where all other parameters assume nominal values. In this case the size of the
test suite will be the sum of the count of selected values for all parameters
together;

2) all parameters assume boundary values in each test case – the size of the test
suite will be equal to the count of selected values of that parameter for which
this count is maximal.

The advantage of the second strategy is the smaller size of the test suite; however,
if the test case fails, it is very hard for the tester to say why. The advantage of the fi rst
strategy is the possibility to suspect of processing of used boundary value because all
other parameters assume nominal values. It is called single fault assumption, which
states that faults are very rarely the result of the simultaneous occurrence of two or more
faults [5].

Two fault assumption means that in test cases two of input variables assume their
boundary values while all remaining variables – their nominal values.

Generally, we can speak about N-fault assumption or multiple fault assumption
when the method requires a boundary value for all of program’s input variables for the
test case.

If the test suite is generated according to single fault assumption and some test case
fails, there is a good reason to suppose that the input parameter with boundary value
is incorrectly processed. But such test suite will be bigger or more complex than a test
suite generated according to N-fault assumption. On the other hand, if the test case
generated according to N-fault assumption fails, it is a more complex task to say which
boundary or boundaries were processed incorrectly.

84 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 84LURaksti751-datorzin.indd 84 2009.06.18. 11:07:222009.06.18. 11:07:22

4 Complexity of Equivalence Class Testing
Let us examine domain testing methods described in related works. There are two

groups of domain testing methods – equivalence class testing methods and boundary
value testing methods. If in related works only the methods how to pick values for
tests are described, but there are no rules given regarding combination of the selected
values in test cases, the author of this paper proposes that a test case is derived for
each of the selected values and the other input parameters of the test case assume some
valid nominal value.

For the sake of comprehensible drawings, the discussion relates to a program Z
with two input parameters X1 and X2. Parameter’s X1 domain is interval [x1a, x1d],
which is divided into three equivalence classes [x1a, x1b), [x1b, x1c), and [x1c, x1d].
Parameters’ X2 domain is interval [x2u, x2z], which is divided into two equivalence
classes [x2u, x2v) and [x2v, x2z]. There are invalid values outside domain equivalence
classes. For instance, for parameter X1 such classes are (∞, x1a) and (x1d, ∞), similarly,
for X2 – (∞, x2u) and (x2z, ∞).

If the infi nite values are boundaries for an equivalence class of valid values, they
should be treated as fi nite – maximal or minimal values that the computer can use for
an appropriate data type. The equivalence classes of incorrect values have no boundary
values [1].

Weak Equivalence Class Testing

The weak equivalence class testing method examines one representant from each
equivalence class of valid values of each parameter [2, 5, 28–32, 42]. The basis of
the method is single fault assumption. It is assumed that it is enough to test once each
equivalence class.

For our sample program Z, weak equivalence class testing method generates three
test cases, for instance as shown in Fig. 3 (a), because the domain of parameter X1 has
the biggest count of equivalence classes – 3.

Fig. 3. Test cases for (a) weak equivalence class testing and
(b) strong equivalence class testing

In general, for the program with N parameters, the size of the test suite according to

the weak equivalence class testing method is
N

ii 1
max(M)

=
.

85Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 85LURaksti751-datorzin.indd 85 2009.06.18. 11:07:232009.06.18. 11:07:23

Strong Equivalence Class Testing

The strong equivalence class testing method [5, 33] is based on multiple fault
assumption. The test case from each element of the Cartesian product of equivalence
classes is included in the test suite, for instance, as shown in Fig. 3 (b).

The strong equivalence class testing method allows to reach two aims – cover all
equivalence classes and examine all combinations of different inputs.

In general case, the size of the test suite is
N

i
i 1

M
=
∏ .

Robust Weak Equivalence Class Testing

Robust weak equivalence class testing is similar to weak equivalence testing. In
addition, it also considers equivalence classes of invalid values [1, 2, 5, 28–31, 34–38,
42] according to the following algorithm:

1) for valid values choose only one value from each equivalence class;
furthermore, all parameters have valid values in each test case;

2) for invalid values choose one value from each equivalence class and in each
test case combine one invalid value with all other valid values. Invalid values
for two or more input parameters of the program in the same test case are not
allowed (see Fig. 4 (a)).

In N parameters’ case, the count of generated test cases is
N N

i ii 1 i 1
max(M) Q

= =
+ ∑ , where

Qi is the size of the set of equivalence classes of invalid values for parameter Xi.

Fig. 4. Test cases for (a) robust weak equivalence class testing and
(b) robust strong equivalence class testing

Robust Strong Equivalence Class Testing

The robust strong equivalence class testing [5, 36, 39] method includes in the test
suite a test case from each element of Cartesian product of all equivalence classes of
valid and invalid values of all parameters, like it is shown in Fig. 4 (b).

In N parameters’ case, the count of generated testcases is
N

i i
i 1

(M Q)
=

+∏ .

Robust Mixed Equivalence Class Testing

Robust mixed equivalence class testing [1] method includes in the test suite a test
case from each element of Cartesian product of all equivalence classes of valid values.
For invalid values, choose one value from each equivalence class and in each test case

86 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 86LURaksti751-datorzin.indd 86 2009.06.18. 11:07:232009.06.18. 11:07:23

combine one invalid value with all other valid values. Invalid values for two or more
input parameters of the program in the same test case are not allowed (see Fig. 5).

In N parameters’ case, the count of generated testcases is
N N

i i
i 1i 1

M Q
==

+ ∑∏ .

Fig. 5. Test cases for robust mixed equivalence class testing

5 Complexity of Boundary Value Testing Methods

Weak IN Boundary Value Testing

The weak IN boundary value testing method [1, 5, 33, 35] examines boundary
values of equivalence classes, inner OFF points, and nominal values. This method is
based on single fault assumption – one of the parameters assumes examinable values
while all other parameters assume nominal values, like it is shown in Fig. 6 (a) for a
2-dimensional case.

Let us calculate the complexity of the method.
If the program has only one parameter X1, 5 test cases are obtained for each

equivalence class of valid values – min, min+, nom, max-, max. Because the count of
equivalence classes is M1, the count of test cases in the test suite is 5M1.

Fig. 6. Test cases for (a) weak IN boundary value testing and
(b) weak OUT boundary value testing

If the program has two parameters, test cases are generated according to the
following algorithm.

1) Hold nominal value of the fi rst equivalence class for the fi rst parameter and
obtain 4 test cases by changing the min, min+, max-, max points for the fi rst
class of the second parameter.

87Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 87LURaksti751-datorzin.indd 87 2009.06.18. 11:07:232009.06.18. 11:07:23

2) repeat step 1 for each equivalence class of X2.
There are 4M2 test cases obtained so far.
3) Optimize the test suite – exclude redundant test cases raised by overlapped

boundary values of adjacent equivalence classes.
Now we have 4M2 – L2 test cases in our test suite.
4) Repeat steps 1–3 for each equivalence class of parameter X1.
There are (4M2 – L2)M1 test cases obtained so far.
5) Repeat steps 1–4 with parameters in exchanged roles.
There are (4M1 – L1)M2 + (4M2 – L2)M1 testcases obtained during steps 1–5.
6) Now we have to add point test cases when both parameters have nominal

values for all elements of Cartesian product of valid equivalence classes of
both parameters.

So, we obtain M1M2 test cases in this step.
The size of the resulting test suite is:
(4M1 – L1)M2 + (4M2 – L2)M1 + M1M2 = 9M1M2 – L1M2 – L2M1.

There will be
N NN

i i j
i 1i 1 j 1

j i

(4N 1) M (L M)
== =

≠

+ − ∑∏ ∏

test cases in the test suite generated

by the weak IN boundary testing method for the program with N parameters. This is a
lower bound of complexity of the weak IN boundary testing method.

If we skip step 3, we obtain that weak IN boundary testing will give no more than
test cases. It is the upper bound of complexity of the weak IN boundary testing method,
which is achievable in cases when there are no overlapped boundary values between
equivalence classes.

Weak OUT Boundary Value Testing

The weak OUT boundary value testing method examines boundary values of
equivalence classes, outer OFF points, and nominal case as shown in Fig. 6 (b) [30, 34].
It is very similar to the weak IN boundary value testing method. The only difference is
that the weak IN boundary value testing method uses inner OFF points while the weak
OUT boundary value testing method uses outer OFF points.

The size of the generated test suite is the same as for the weak IN boundary value

testing method – there will be no less than
N NN

i i j
i 1i 1 j 1

j i

(4N 1) M (L M)
== =

≠

+ − ∑∏ ∏ test cases and

no more than
N

i
i 1

(4N 1) M
=

+ ∏ test cases.

Weak Simple OUT Boundary Value Testing

The weak simple OUT boundary value testing method examines boundary values
of equivalence classes and outer OFF points [2, 30, 31, 33, 34, 40]. The only difference
from the weak OUT boundary value testing method is that it uses nominal points while
the weak simple OUT boundary value testing method does not (Fig. 7 (a)).

88 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 88LURaksti751-datorzin.indd 88 2009.06.18. 11:07:242009.06.18. 11:07:24

Fig. 7. Test cases for (a) weak simple OUT boundary testing, (b) robust weak boundary value
testing and (c) robust weak simple boundary value testing

The size of the generated test suite is smaller than for the weak IN boundary value
testing method or the weak OUT boundary value testing method – the lower bound of

complexity is
N NN

i i j
i 1i 1 j 1

j i

4N M (L M)
== =

≠

− ∑∏ ∏ test cases while the upper bound –
N

i
i 1

4N M
=
∏

test cases.

Robust Weak Boundary Value Testing

The robust weak boundary value testing method [2, 5, 34–36, 38, 42] examines
boundary values of equivalence classes, inner and outer OFF points, nominal case
(Fig. 7 (b)).

The size of the generated test suite can be obtained similarly to the weak IN

boundary value testing method – there will be no less than
N NN

i i j
i 1i 1 j 1

j i

(6N 1) M (L M)
== =

≠

+ − ∑∏ ∏

test cases and no more than
N

i
i 1

(6N 1) M
=

+ ∏ test cases.

Robust Weak Simple Boundary Value Testing

The robust weak simple boundary value testing method [2, 42] examines boundary
values of equivalence classes, inner and outer OFF points, but unlike the robust weak
boundary value testing, it does not test nominal case (Fig. 7 (c)).

The size of the generated test suite can be obtained similarly to the weak IN

boundary value testing method – there will be no less than
N NN

i i j
i 1i 1 j 1

j i

6N M (L M)
== =

≠

− ∑∏ ∏

test cases and no more than
N

i
i 1

6N M
=
∏ test cases.

Worst Case Boundary Value Testing

The worst case boundary value testing method [5, 41] tests boundary values, inner
OFF points, and nominal point. While weak IN boundary value testing used single fault
assumption only, the worst case boundary value testing method also uses multiple fault
assumption. It means that the method checks what happens if one or all parameters of
the program assume special values (Fig. 8 (a)).

89Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 89LURaksti751-datorzin.indd 89 2009.06.18. 11:07:242009.06.18. 11:07:24

If the program has only one parameter X1, we obtain 5 test cases for each equivalence
class. After that redundant test cases raised by overlapped boundary values of adjacent
equivalence classes should be excluded.

So, there are 1 15M L− test cases in one parameter’s case.

Fig. 8. Test cases for (a) worst case boundary testing and (b) robust worst case boundary testing

If the program has two parameters, test cases are generated according to the
following algorithm.

1) Hold minimal value of the fi rst equivalence class for the fi rst parameter and
obtain 5 test cases by changing the min, min+, max, nom, max+ points for the
fi rst class of the second parameter.

2) Repeat step 1 for min+, max, nom, max+ of the fi rst equivalence class of X1.
There are 5 × 5 test cases obtained so far.
3) Repeat the steps 1–2 for each equivalence class of X1 and optimize the test

suite by excluding redundant test cases.
Now we have 1 15x(5M L)− test cases in our test suite.
4) Repeat steps 1–3 for each equivalence class of parameter X2.
There are 1 1 2 2(5M L)x(5M L)− − test cases obtained so far.

For N parameters’ case, we obtain
N

i i
i 1

(5M L)
=

−∏ test cases as the method’s lower

bound of complexity, but as the upper bound of complexity, the worst case boundary

value testing method will give no more than
N NN

i i
i 1 i 1

5M 5 M
= =

=∏ ∏ test cases.

Robust Worst Case Boundary Value Testing

The robust worst case boundary value testing method [5, 39] tests boundary values,
inner and outer OFF points, and nominal point (Fig. 8 (b)).

Acting according to the algorithm that is analogical to the worst case boundary value

testing method, we obtain that program with N parameters will have
N

i i
i 1

(7M 2L)
=

−∏ test

cases or no more than
NN

i
i 1

7 M
=
∏ test cases.

90 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 90LURaksti751-datorzin.indd 90 2009.06.18. 11:07:242009.06.18. 11:07:24

Weak Corner IN Boundary Value Testing

Weak corner IN boundary value testing complies with multiple fault assumption.
It tests cases when all parameters assume the same type of special values – boundary
values, inner OFF points, or nominal point as it is shown in Fig. 9 (a) [1, 41].

Fig. 9. Test cases for (a) weak corner IN boundary value testing and (b) weak diagonal IN
boundary value testing

If the program has two parameters, test cases are generated according to the
following algorithm.

1) Let us take boundary values of the fi rst equivalence class of both parameters.
We obtain 4 test cases (min, min), (min, max), (max, min), and (max, max).

2) Let us consider inner OFF points of the fi rst equivalence class of both
parameters. We again obtain 4 test cases (min+, min+), (min+, max-), (max-,
min+), and (max-, max-).

3) Nominal points of the fi rst equivalence class of both parameters will give one
test case (nom, nom).

Now we have 2 × 22 + 1 testcases for the fi rst element in the set of Cartesian
product of equivalence classes. For all elements, there will be (2 × 22 + 1)
Μ1Μ2 test cases.

4) Now exclude redundant test cases raised by overlapping boundary values and

obtain
2 222 1

i i i
i 1i 1 j 1

j i

(2 1) M 2 (L M)+

== =
≠

+ − ∑∏ ∏ test cases.

There will be
N NNN 1

i i i
i 1i 1 j 1

j i

(2 1) M 2 (L M)+

== =
≠

+ − ∑∏ ∏ test cases in the test suite generated

by the weak corner IN boundary testing method for the program with N parameters.
If we skip step 4, we obtain that the weak corner IN boundary value testing method

will give no more than
NN 1

i
i 1

(2 1) M+

=
+ ∏ test cases.

91Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 91LURaksti751-datorzin.indd 91 2009.06.18. 11:07:252009.06.18. 11:07:25

Weak Diagonal IN Boundary Value Testing

Weak diagonal IN boundary value testing complies with multiple fault assumption,
too. But it tests cases when all parameters assume the same type and meaning of special
values – if it is boundary values, all parameters assume minimal values or all assume
maximal values, the same goes for inner OFF points or nominal point as it is shown in
Fig. 9 (b) [41].

If the program has two parameters, test cases are generated according to the
following algorithm.

1) Let us take boundary values of the fi rst equivalence class of both parameters.
We obtain 2 test cases (min, min), (max, max).

2) Let us consider inner OFF points of the fi rst equivalence class of both
parameters. We again obtain 2 test cases (min+, min+) and (max-, max-).

3) Nominal points of the fi rst equivalence class of both parameters will give one
test case (nom, nom).

Now we have 5 test cases for the fi rst element in the set of Cartesian product of
equivalence classes. For all elements, there will be 1 25M M test cases.

4) Now exclude redundant test cases raised by overlapping boundary values and
obtain 1 2 1 25M M L L− test cases.

There will be no less than
N N

i i
i 1 i 1

5 M L
= =

−∏ ∏ test cases in the test suite generated by the

weak diagonal IN boundary testing method for the program with N parameters.
If we skip step 4, we obtain that the weak diagonal IN boundary value testing

method will give no more than
N

i
i 1

5 M
=
∏ test cases.

Multidimensional Boundary Value Testing

The multidimensional boundary value testing method requires at least one test case
for each boundary value of each equivalence class (Fig. 10 (a)) [1, 2, 5, 28–30, 32, 33].

In the case of N parameters, there will be
N

i ii 1
max(2M L)

=
− test cases or no more than

N

ii 1
max(2M)

=
 test cases if we do not have overlapping boundaries.

Fig. 10. Test cases for (a) multidimensional boundary value testing and (b) robust corner OUT
boundary value testing

92 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 92LURaksti751-datorzin.indd 92 2009.06.18. 11:07:252009.06.18. 11:07:25

Robust Corner OUT Boundary Value Testing

The robust corner OUT boundary value testing method tests cases when parameters
assume boundary values or outer OFF points as it is shown in Fig. 10 (b) [42].

Let us count the test cases where one of inputs is OFF point.
If the program has only one parameter X1, 2 test cases are obtained for each

equivalence class of valid values – min- and max+. Because the count of equivalence
classes is M1, the count of test cases in the test suite is 2M1.

If the program has two parameters, test cases are generated according to the
following algorithm.

1) We obtain 2M1 test cases on each boundary of the second parameter, obtaining
1 2 22M (2M L)− test cases.

2) Repeat step 1 for each boundary class of X1 and obtain 2 1 12M (2M L)− .

Generalize this to N parameters –
NN

i j j
i 1 j 1

j i

(2M (2M L))
= =

≠

−∑ ∏ .

The count of the test cases where all inputs are boundary values is
N

i
i 1

2M
=
∏ .

So there will be at least
N NN

i i j j
i 1i 1 j 1

j i

2M (2M (2M L))
== =

≠

+ −∑∏ ∏ test cases in the test suite

generated by the robust corner OUT boundary testing method for the program with N
parameters.

The upper bound of the method’s complexity is

N N N N NN NN N N

i i j i j i
i 1 i 1i 1 j 1 i 1 j 1 i 1

j i

2M (2M 2M) 2 M (2 M) 2 (N 1) M
= == = = = =

≠

+ = + = +∑ ∑∏ ∏ ∏ ∏ ∏ .

Robust Strong Boundary Value Testing

The robust strong boundary value testing method [1] takes all boundary values,
inner OFF values, and outer OFF values of equivalence classes of valid values and
divides them into two sets – all valid values in one set and invalid values in the other
set (Fig. 11).

The method allows to combine freely all values from the set of valid values in test
cases.

The set of invalid values is revised. If there are two or more values from the same
equivalence class, only one of them is left in the set. The method requires exactly one
test case for each value that is left in the set where all the other values in the test case
are valid values.

For each parameter, we have Li overlapping borders. They will give 3Li valid values.
We also have 2Mi–2Li non-overlapping borders which will give exactly 2Mi–2Li invalid
values – outer OFF points that fall into classes of invalid values, and exactly 2Mi–2Li
valid values – inner OFF points of equivalence classes of valid values.

Hence, according to the method’s adequacy criterion, valid values for N parameters

will give
N N

i i i i ii 1 i 1
max(3L 2M 2L) max(2M L)

= =
+ − = + test cases, but invalid values

N
i i

i 1
(2M 2L)

=
−∑ test cases.

93Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 93LURaksti751-datorzin.indd 93 2009.06.18. 11:07:252009.06.18. 11:07:25

The only question is about exactly 2Mi–2Li boundary values. They can be valid if
each interval of valid equivalence classes is closed or otherwise invalid.

Thus, the lower bound of the method can be achieved when all questionable values

are valid:
N NN

i i i i i ii 1 i 1i 1
max(2M L) (2M 2L) max(2M 2L)

= ==
+ + − + −∑ .

Fig. 11. Test cases for robust strong boundary value testing; (a) shows lower bound case,
fi gure (b) – upper bound case. Filled dots represent test cases of overlapping borders, unfi lled
squares – test cases of inner OFF points of non-overlapping borders. Unfi lled dots represent
test cases of outer OFF points of non-overlapping borders. Filled squares show test cases of

boundary values of non-overlapping borders when (a) they all are valid values, (b) they all are
invalid values.

The upper bound of method can be achieved when all questionable values
are invalid:

N NN N N
i i i i i i i i i ii 1 i 1i 1 i 1 i 1

max(2M L) (2M 2L) (2M 2L) max(2M L) 4 (M L)
= == = =

+ + − + − = + + −∑ ∑ ∑ .

6 The Complexity and Subsumption Hierarchy of
Domain Testing Methods

The majority of comparisons of testing adequacy criteria in related works use
the subsume ordering. It was used to compare data fl ow testing adequacy criteria and
several other structural coverage criteria [43–48]. Other ways of comparing the testing
criteria have been studied and compared in [25, 49].

One of the formulations of subsume defi nition is the following: “let C1 and C2
be two software data adequacy criteria. C1 is said to subsume C2 if for all programs
p under test, all specifi cations s and all test sets t, t is adequate according to C1 for
testing p with respect to s implies that t is adequate according to C2 for testing p with
respect to s” [49]. In other words, C1 subsumes C2 if every test suite generated by
C1 is adequate for C2, too.

The hierarchy of domain testing methods according to subsume relation is showed
in Fig. 12. Principles of test case generation for the corresponding criteria of each box
are schematically showed in the fi gure.

94 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 94LURaksti751-datorzin.indd 94 2009.06.18. 11:07:262009.06.18. 11:07:26

Fig. 12. The hierarchy of domain testing methods according to subsume relation

In most cases the subsumption is immediate and because of the limited space of the
paper will not be discussed. Let us look at some cases.

1) Robust worst case BVT > Robust strong ECT
Robust strong ECT criterion requires a test case from each Cartesian product of

each parameter’s equivalence classes of valid values and equivalence classes of invalid
values. Robust worst case BVT provides inner OFF points and nominal point from each
Cartesian product of equivalence classes of valid values (points on boundaries are not
suitable because there is a possibility that a boundary does not belong to equivalence
class) and outer OFF points from Cartesian product in which equivalence classes of
invalid values are involved. In the 2-dimensional case, it looks as showed in Fig. 13.
Crosses and dots together are the test suite of robust worst case BVT criteria, but crosses
alone are an adequate test suite of robust strong ECT criteria. In such a way, from each
test suite of robust worst case BVT a test suite of robust strong ECT can be obtained.

95Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 95LURaksti751-datorzin.indd 95 2009.06.18. 11:07:262009.06.18. 11:07:26

Fig. 13. Crosses and dots together are the test suite of robust worse case BVT criteria, but
crosses alone are an adequate test suite of robust strong ECT criteria

2) Weak OUT BVT > Robust mixed ECT
Robust mixed ECT criterion asks for a test case from each element of Cartesian

product of equivalence classes of valid values and from each class of invalid values.
Weak OUT BVT provides nominal point for each element of Cartesian product of
equivalence classes of valid values and outer OFF points for adjacent equivalence
classes of invalid values. In the 2-dimensional case, it looks as showed in Fig. 14.
Crosses and dots together are the test suite of weak OUT BVT criteria, but crosses
alone are one of the adequate test suites of robust mixed ECT criteria. In such a
way, from each test suite of weak OUT BVT a test suite of robust mixed ECT can be
obtained.

Fig. 14. Crosses and dots together are the test suite of weak OUT BVT criteria, but crosses alone
are an adequate test suite of robust mixed ECT criteria

3) Weak simple OUT BVT does not subsume robust weak ECT.
Consider the situation in Fig. 15. Parameter X1 has one equivalence class for

valid values with boundaries that do not belong to it (x1a, x1b) and parameter X2
has the same situation – equivalence class (x2u, x2v).Weak simple OUT BVT cannot
provide a test case when both parameters assume valid values which is required by
robust weak ECT.

96 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 96LURaksti751-datorzin.indd 96 2009.06.18. 11:07:262009.06.18. 11:07:26

Fig. 15. Crosses and dots together are the testsuite of weak simple OUT BVT criteria. Crosses
alone are candidates for the test suite of robust weak ECT criteria, while square represents the

test case required by robust weak ECT that weak simple OUT BVT criteria cannot provide.

Table summarizes the lower and upper bounds of complexity of domain testing
methods. It is easy to see that the robust worst case BVT method which is at the top of
subsumption hierarchy in Fig. 12 also has the highest assessments of complexity. The
methods in the lowest level of hierarchy have the lowest assessments of complexity.

It is obvious that if an adequacy criterion of method C1 subsumes an adequacy
criterion of method C2, complexity of C1 is higher than of C2 of domain testing methods
and their data adequacy criteria.

However, we cannot conclude that if method’s C1 complexity is higher than
method’s C2 complexity, C1 subsumes C2. For instance, the complexity of the weak
simple OUT BVT method is higher than the complexity of the weak ECT method. But
the weak simple OUT BVT method tests a completely other kind of points than the weak
ECT method; hence, the weak simple OUT BVT method does not subsume the weak
ECT method.

Table

The summarizing table of complexity of domain testing methods, where N – count of
program’s parameters, Mi – size of the set of equivalence classes of valid values for

parameter Xi, Qi – size of the set of equivalence classes of invalid values for parameter Xi,
and Li – size of the set of all common boundary values for parameter Xi

No. Method Complexity
Lower bound Upper bound

1 Weak equivalence class
testing

N

ii 1
max(M)

=

The same as lower
bound

2 Strong equivalence class
testing

N
i

i 1
M

=
∏

The same as lower
bound

3 Robust weak equivalence
class testing

N N
i ii 1 i 1

max(M) Q
= =

+ ∑
The same as lower

bound

4 Robust strong equivalence
class testing

N
i i

i 1
(M Q)

=
+∏

The same as lower
bound

5 Robust mixed equivalence
class Testing

N N
i i

i 1i 1
M Q

==
+ ∑∏

The same as lower
bound

97Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 97LURaksti751-datorzin.indd 97 2009.06.18. 11:07:272009.06.18. 11:07:27

6 Weak IN boundary value
testing

N NN
i i j

i 1i 1 j 1
j i

(4N 1) M (L M)
== =

≠

+ − ∑∏ ∏
N

i
i 1

(4N 1) M
=

+ ∏

7 Weak OUT boundary value
testing

N NN
i i j

i 1i 1 j 1
j i

(4N 1) M (L M)
== =

≠

+ − ∑∏ ∏
N

i
i 1

(4N 1) M
=

+ ∏

8 Weak simple OUT boundary
value testing

N NN
i i j

i 1i 1 j 1
j i

4N M (L M)
== =

≠

− ∑∏ ∏
N

i
i 1

4N M
=
∏

9 Robust weak boundary value
testing

N NN
i i j

i 1i 1 j 1
j i

(6N 1) M 2 (L M)
== =

≠

+ − ∑∏ ∏
N

i
i 1

(6N 1) M
=

+ ∏

10 Robust weak simple
boundary value testing

N NN
i i j

i 1i 1 j 1
j i

6N M 2 (L M)
== =

≠

− ∑∏ ∏
N

i
i 1

6N M
=
∏

11 Worst case boundary value
testing

N
i i

i 1
(5M L)

=
−∏

NN
i

i 1
5 M

=
∏

12 Robust worst case boundary
value testing

N
i i

i 1
(7M 2L)

=
−∏

NN
i

i 1
7 M

=
∏

13 Weak corner IN boundary
value testing

N NNN 1
i i i

i 1i 1 j 1
j i

(2 1) M 2 (L M)+

== =
≠

+ − ∑∏ ∏
NN 1

i
i 1

(2 1) M+

=
+ ∏

14 Weak diagonal IN boundary
value testing

N N
i i

i 1 i 1
5 M L

= =
−∏ ∏

N
i

i 1
5 M

=
∏

15 Multidimensional boundary
value testing

N

i ii 1
max(2M L)

=
−

N

ii 1
2max(M)

=

16 Robust corner OUT boundary
value testing

N NN
i i j j

i 1i 1 j 1
j i

2M (2M (2M L))
== =

≠

+ −∑∏ ∏
NN

i
i 1

2 (N 1) M
=

+ ∏

17 Robust strong boundary
value testing

N N
i i i ii 1 i 1

N

i ii 1

max(2M L) (2M 2L)

max(2M 2L)

= =

=

+ + − +∑

+ −

N

i ii 1
N

i i
i 1

2max(M L)

2 (2M L)

=

=

+ +

+ −∑

7 Conclusions and Future Directions
Equivalence partitioning and boundary value analysis techniques are frequently

mentioned in the books about software testing. In most cases, they describe common
principles how to derive equivalence classes, boundary values, and present some

98 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 98LURaksti751-datorzin.indd 98 2009.06.18. 11:07:272009.06.18. 11:07:27

strategies how to make test cases from them. Each author or authors often emphasize
one or two of the strategies but do not analyze their weaknesses or strengths, just
demonstrate some examples. The positive exception is Jorgensen in [5].

This survey is an attempt to collect and describe some equivalence class testing and
boundary value testing methods frequently mentioned in literature in a comprehensive
manner. This paper assesses and summarizes complexity of domain testing methods
and provides the hierarchy of domain testing methods according to subsume ordering.
The complexity of testing methods is treated from the aspect of the size of the test suite
generated by the method.

The author concludes, if some domain testing method subsumes other domain
testing method, the fi rst method also has higher complexity than the second method.
However, the reverse statement is invalid.

This paper analyses the adequacy criteria of domain testing methods from three
aspects – the kind of values to choose for testing, the data coverage principle, and the
strategy how the chosen values are combined in test cases according to the data coverage
principle.

Analysis of literature shows that methods with the smallest complexity are described
in most cases. It shows that in praxis the most applicable are the methods that produce a
not-too-big size of the test suite and are also practical – the methods that use single fault
assumption in order to diagnose easier the cause of failure if it occurs.

Despite many sources of literature that cover boundary value analysis and
equivalence partitioning, several important issues still remain largely unexplored. One
of such issues is how the effectiveness and effi ciency of testing is affected by the choice
of data coverage criteria and the coverage of combinations of special or boundary values
of different parameters of software.

The second issue related to the use of domain testing methods that is not adequately
investigated is how to test the mutually dependent parameters of software better.

The third issue that needs further investigation is how the various models that
describe the behavior of software can be used with the aim to refi ne equivalence classes
of software input domain.

References
1. Spillner A., Linz T., Schaefer H. (2007) Software Testing Foundations. A Study Guide for the Certified

Tester Exam. Foundation Level, ISTQB compliant. Rocky Nook Inc.
2. Veenendaal E. (2002) The Testing Practitioner. UTN Publishers, Den Bosch, NL.
3. Beizer B. (1990) Software Testing Techniques. 2nd ed. New York: Van Nostrand Reinhold.
4. Beizer B. (1995) Black Box Testing. New York: John Wiley.
5. Jorgensen P. C. (1995) Software Testing: A Craftman’s Approach. Boca Raton, London, New York,

Washington D.C.: CRC Press.
6. Howden W. E. (1976) Reliability of the Path Analysis Testing Strategy. IEEE Trans. Softw. Eng. vol. 2,

no. 3, 208–215.
7. Barzdins J., Bicevskis J., Kalnins A. (1975) Construction of complete sample system for correctness

testing. In: Proc. MFCS 1975. LNCS, vol. 32, Berlin / Heidelberg: Springer, pp. 1–12.
8. Howden, W. E. (1975) Methodology for the Generation of Program Test Data. IEEE Transactions on

Computers, vol. 24, no. 5, 554–560.
9. Clarke L. A. (1976) A System to Generate Test Data and Symbolically Execute Programs. IEEE Trans. on

Softw. Eng. vol. 2, no. 3, 215–222.

99Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 99LURaksti751-datorzin.indd 99 2009.06.18. 11:07:282009.06.18. 11:07:28

10. Bičevskis J., Borzovs J., Straujums U., Zariņš A., Miller E. F. (1979) SMOTL – A System to Construct
Samples for Data Processing Program Debugging. IEEE Trans. Softw. Eng. 5, 1, 60–66.

11. Richardson D. J., Clarke L. A. (1981) A partition analysis method to increase program reliability. In:
Proceedings of the 5th international Conference on Software Engineering, IEEE Press, Piscataway, NJ,
244–253.

12. Richardson D. J., Clarke L. A. (1985) Partition analysis: a method combining testing and verification.
IEEE Trans. Softw. Eng. SE-11, 12, 1477–1490.

13. Jeng B., Weyuker E. (1989) Some observations on partition testing. In: Proceedings of the ACM SIGSOFT ‘89
Third Symposium on Software Testing, Analysis, and Verification, ACM, New York, NY, 38–47.

14. Hamlet D., Taylor R. (1990) Partition Testing Does Not Inspire Confidence (Program Testing). IEEE
Trans. Softw. Eng. 16, 12, 1402–1411.

15. Weyuker E. J., Jeng B. (1991) Analyzing Partition Testing Strategies. IEEE Trans. Softw. Eng. 17, 7,
703–711.

17. De Millo R., McCracken W. M., Martin R. J., Passafiume J. (1987) Software Testing and Evaluation.
Benjamin-Cummings Publishing Co., Inc.

18. White L. J., Cohen E. I. (1980) A Domain Strategy for Computer Program Testing. IEEE Trans. Softw.
Eng. 6, 3, 247–257.

19. Clarke L. A., Hassell J., Richardson D. J. (1982) A Close Look at Domain Testing. IEEE Trans. Softw.
Eng. 8, 4, 380–390.

20. Afifi F. H., White L. J., and Zeil S. J. (1992) Testing for linear errors in nonlinear computer programs. In:
Proceedings of the 14th international Conference on Software Engineering ICSE ‘92. ACM, New York,
81–91.

21. Jeng B., Weyuker E. J. (1994) A simplified domain-testing strategy. ACM Trans. Softw. Eng. Methodol. 3,
3, 254–270.

22. Zeil S. J., Afifi F. H., (1992) White L. J. Detection of linear errors via domain testing. ACM Trans. Softw.
Eng. Methodol. 1, 4, 422–451.

23. Hajnal Á., Forgács I. (1998) An applicable test data generation algorithm for domain errors. In: Tracz
W. (ed.) Proceedings of the 1998 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ‘98. ACM, New York, NY, 63–72.

24. Chien Y., Liu S. (2004) An Approach to Detecting Domain Errors Using Formal Specification-Based
Testing. In: Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC. IEEE
Computer Society, Washington, DC, 276–283.

25. Weyuker E. J., Weiss S. N., Hamlet D. (1991) Comparison of program testing strategies. In: Proceedings
of the Symposium on Testing, Analysis, and Verification, TAV4. ACM, New York, NY, 1–10.

26. Zhu H., Hall P. A., May J. H. (1997) Software unit test coverage and adequacy. ACM Comput. Surv. 29,
4, 366–427.

27. Grindal M., Offutt J., Andler S. F. (2005) Combination testing strategies: a survey. Software Testing,
Verification and Reliability, 15, 3, 167–199.

28. Kaner C., Bach J., Pettichord B. (2002) Lessons Learned in Software Testing: A Context Driven Approach.
New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, Inc.

29. Culbertson R., Brown C., Cobb G. (2001) Rapid Testing. Prentice Hall PTR.
30. Kaner C., Falk J., Nquyen H. Q. (1999) Testing Computer Software. 2nd ed. New York, Chichester,

Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, Inc.
31. Myers G. J. (2004) The Art of Software Testing. 2nd ed., Hoboken, New Jersey: John Wiley & Sons, Inc.
32. Nguyen H. Q., Johnsom B., Hackett M. (2001) Testing Applications on the Web: Test Planning for Mobile

and Internet-Based Systems. 2nd ed., John Wiley & Sons, Inc.
33. McGregor J. D., Sykes D. A. (2001) A Practical Guide to Testing Object-Oriented Software. Addison-

Wesley Longman Publishing Co., Inc.
34. Broekman B., Notenboom E. (2003) Testing Embedded Software. Addison-Wesley.
35. Link J., Frolich P. (2003) Unit Testing in Java: how Tests Drive the Code. Morgan Kaufmann Publishers

Inc.
36. Watkins J. (2001) Testing IT: an Off-the-Shelf Software Testing Process. Cambridge, United Kingdom:

Cambridge University Press.
37. Perry W. E. (2006) Effective Methods for Software Testing. 3rd ed. Hungry Minds Inc.
38. Craig R. D., Jaskiel S. P. (2002) Systematic Software Testing. Boston / London: Artech House

Publishers.

100 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti751-datorzin.indd 100LURaksti751-datorzin.indd 100 2009.06.18. 11:07:282009.06.18. 11:07:28

39. Dustin E. (2002) Effective Software Testing: 50 Ways to Improve Your Software Testing. Addison-Wesley
Longman Publishing Co., Inc.

40. Everett G. D., McLeod R., Jr. (2007) Software Testing: Testing Across the Entire Software Development
Life Cycle. Wiley-IEEE Computer Society Press.

41. Gao J. Z., Tsao J., Wu Y., Jacob T. H. (2003) Testing and Quality Assurance for Component-Based
Software. Artech House, Inc.

42. Copeland L. (2003) A Practitioner’s Guide to Software Test Design. Artech House, Inc.
43. Rapps S., Weyuker E. J. (1985) Selecting software test data using data flow information. IEEE Trans.

Softw. Eng. SE, 11, 4, 367–375.
44. Clarke L. A., Podgurski A., Richardson D., Zeil S. (1985) A comparison of data flow path selection

criteria. In: Proc. 8th ICSE, 244–251.
45. Frankl P. G., Weyuker J. E. (1988) An applicable family of data flow testing criteria. IEEE Trans. Softw.

Eng. SE, 14, 10, 1483–1498.
46. Ntafos S. C. (1988) A comparison of some structural testing strategies. IEEE Trans. Softw. Eng. SE, 14,

868–874.
47. Weiser M. D., Gannon J. D., McMullin P. R. (1985) Comparison of structured test coverage metrics.

IEEE Software, 2, 2, 80–85.
48. Weiss S. N. (1989) Comparing test data adequacy criteria. SIGSOFT Softw. Eng. Notes 14, 6, 42–49.
49. Hamlet R. (1989) Theoretical comparison of testing methods. In: Proceedings of the ACM SIGSOFT ‘89

Third Symposium on Software Testing, Analysis, and Verification, TAV3. ACM, New York, 28–37.

101Vineta Arnicane. Complexity of Equivalence Class and Boundary Value Testing ..

LURaksti751-datorzin.indd 101LURaksti751-datorzin.indd 101 2009.06.18. 11:07:282009.06.18. 11:07:28

LURaksti751-datorzin.indd 102LURaksti751-datorzin.indd 102 2009.06.18. 11:07:282009.06.18. 11:07:28

LURaksti751-datorzin.indd 103LURaksti751-datorzin.indd 103 2009.06.18. 11:07:282009.06.18. 11:07:28

LATVIJAS UNIVERSITĀTES RAKSTI
751. sējums, DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

Latvijas Universitātes Akadēmiskais apgāds
Baznīcas ielā 5, Rīgā, LV-1010

Tālr. 67034535

LURaksti751-datorzin.indd 104LURaksti751-datorzin.indd 104 2009.06.18. 11:07:282009.06.18. 11:07:28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

