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Abstract. This survey includes principal results on complexity
of inductive inference for recursively enumerable classes of total
recursive functions. Inductive inference is a process to find an
algorithm from sample computations. In the case when the given class
of functions is recursively enumerable it is easy to define a
natural complexity measure for the inductive inference, namely, the
worst-case mindchange number for the first n functions in the given
class. Surely, the complexity depends not only on the class, but
also on the numbering, i.e. which function is the first, which one
is the second, etc. It turns out that, if the result of inference is
Goedel number, then complexity of inference may vary between
log2n+o(log2n) and an arbitrarily slow recursive function. If the

result of the inference is an index in the numbering of the
recursively enumerable class, then the complexity may go up to
const-n. Additionally, effects previously found in the Kolmogorov
complexity theory are discovered in the complexity of inductive
inference as well. )

The time complexity of prediction strategies (the value f(m+l)
is predicted from £(0),...,f(m})) is investigated. It turns out that,
if a prediction strategy F is "error-optimal” (i.e. it makes at most
10g2n+0(logzlog£1} errors on the n-th function of the class), then

the time complexity of computation of F(<£(0),...,f(m})>) (i.e. a
Ccm
candidate for f(m+l)) may go up, in some sense, to 2° .

Special attention is paid to inductive inference by
probabilistic algorithms. It turns out that arbitrary recursively
enumerable class of total recursive functions can be identified with
In n + o(log n) mind- changes in an arbitrary numbering of the
class.

1. Introduction

"Inductive inference" is the term coined for £inding out the
algorithm from sample computations. We restrict ourselves to the
case when a total recursive function is to be identified. The first
paper in this area was [Go 67], yet (sometimes indirectly) the
research was influenced by the theory of experiments with finite
automata [Moo 56].
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There are several ways how to make this problem precise but all
of them are based on the same paradigm. There is a "black box" with
a given total recuréive function £ in it. We cannot see the program
of the device computing f but we can get the values of the function.
Since the function is total, with no restriction of generality we
can assume that the black box outputs the values in the natural
order: £(0),£f(1),£(2),£(3),...

The inductive inference machine (or the strategy) tries to use
the initial fragments of the function to figure out the algorithm
computing it. Hence, from the recursion theory point of wview, the
strategy is a functional mapping the class of total recursive
functions % into the set of nonnegative integers N. This functional
is to be computable in some sense. Theory of recursive functions
[Rog 67] has developed a precise notion for such a functional - the
notion of a recursive functional. Informally, recursive functional
is computed by a Turing machine with an input tape containing the
graph of the function f and a work tape. The machine works for some
time and then stops after finite number of steps (the machine
decides itself when to stop) and produces the result needed.

Unfortunately, only very simple classes of functions are
identifiable in this sense. Indeed, in finite number of steps only
finite number of values of the function can be observed. If two
functions differ only on a 1later value, then the machine
nevertheless produces the same output.

A more interesting type of identification was "identification
in the limit" considered in [Go 67]. Instead of being printed once
forever, the output ("hypothesis") is shown on a "screenboard" and,
if there is a need, it may be changed later. We say that the machine
has resulted in y if at some moment it has produced the output y and
after that moment this output is never changed.

Formally, the identifying strategy F is an arbitrary partial
recursive function. X g Xypeee X > is an effective numbering of all
tuples of nonnegative integers, using as the numbers all
nonnegative integers. {wl} is a Goedel numbering of all partial
recursive functions of one argument.

F(<f(0),...,f(n)>) is referred to as the n-th hypothesis by F
on the function f. The hypothesis p is called correct for f if wp=f.

We say that f is identified in the limit by F (denoted feEX(F))
if there is an n, such that for arbitrary n>n :
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1) F(<£(0),...,£(n)>)=F(<£(0),...,E(n))>),

2) the hypothesis F(<f(0),...,f(nb)>) is correct for f.

We say that the class U of total recursive functions is
identified in the limit by F (denoted USEX(F)) if every function feU
is identified in the limit by F.

We say that the class U of total recursive functions is
identifiable in the 1limit (U<EX) if there is a strategy F
identifying U in the limit.

The class U of total recursive function is called recursively
enumerable if there is a total recursive function g(i,x} such that:

1) for arbitrary i the function Ax-g(i,x) of one argument x is
in the class U,

2) for arbitrary feU there is an i such that ax-g(i,x)=f(x).

The function g introduces a numbering t={ti} of functions in U,
namely, the number i is called the index of the function f if
ri(x)=xx.g(i,x)=f(x).

THEOREM 1.1. (E.M.GOLD [Go 67]) If a class U is a subclass of a
recursively enumerable class of functions, then U is identifiable in
the limit,

PROOF. The strateqy produces as its n-th hypothesis

i, if i=n and i is the least

nonnegative integer j such that
<f(0),...,f(n)>=<rj(0),...,tJ(n)>;

n, if there is no such i for the given n.

It is easy to see that the strategy is total recursive and it
identifies U in the limit. Moreover, our strategy never allows more
than n mindchanges on the functions with indices 0,1,2,...,n.

o

The worst-case number of mindchanges for the first n functions
in the class U (more precisely: in the numbering T of the class U)
can be considered as a complexity measure for the pair (U,T). Our
paper is written to find out how the numbering influences this
complexity for the given recursively enumerable class U. We make a
terminological distinction: recursively enumerable class U of total
recursive func- tions but enumerated class (U,t), i.e. U with its
fixed numbering <T.

This way, we try to understand in this paper how different
complexities of distinct enumerated classes (U,t) based on the same

recursively enumerable class U can be.
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We will show that the linear complexity in the proof of Theorem
1.1 can be improved if we are interested only in getting a correct
Goedel number for the given function. On the other hand, the proof
of Theorem 1.1 yields us more than it is said in the formulation of
Theorem 1.1. The strategy with the linear complexity of mindchanges
produces the t-index, one can effectively find a Goedel number for
the same function but in the general case it is a recursively
unsolvable problem to find a tT-index, given arbitrary Goedel number.
Hence we can expect higher complexity for identification of
T-indices when compared with the identification of Goedel numbers.
In Section 3 we will see that this really is the case.

We will consider also a notion which appears to be closely
connected with the identification in the limit, called prediction of
functions.

In the prediction of functions the result F(<f(0},...,f(n)>} is
expected to be £f(n+l). Nevertheless arbitrary £finite number of
errors is allowed (but it is not allowed for the wvalue
F(<f(0),+..,f(n)>) to be undefined).

Prediction turns to be closely connected with identification in
the limit. Given arbitrary recursively enumerable class U of total
recursive functions and its numbering T, if (U,t) can be predicted
with =g(n) errors, themn (U,t) can be identified in the limit with
=g(n) mindchanges (see Theorem 1.2 below).

To be able to prove this (very simple) theorem and other
results like it we introduce a useful notation.

The string of integers £(0), £f(1),...,f(n) 1is denoted by £,
This allows us to write F(<f'™>) instead of F(<£(0),...,£(n)>).

We denote by ﬁw(f) the number of errors while predicting £ by
the predicting strategy F.

We fix a Goedel numbering p={p,} of all partial recursive
functions of one argument x. We denote by ﬁﬂ(f) the number of
mindchanges by F on £, provided F correctly identifies in the limit
a ¢-index of the function f£.(Please notice that for the sake of
brevity we have omitted ¢ in the notation Fm(f). Of course, it
should be written).

We denote by Eﬁjt(n) the maximum among {Eﬁv(to),
W(‘cl),...,‘f‘w(tn)}. Similarly, by Ffft(n) we denote the max among
{FEX(’EO), (T, ) oo B (T ) e

We denote by Ft(f) the number of mindchanges by F on £,
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provided F correctly identifies in the limit a t-index of the
function £f. We denote by Fz;r{n) the maximum among {Fr(yo),
FO(T,)rees F (T )}

THEOREM 1.2. For arbitrary enumerated class (U,T) and arbitrary
total recursive strateqgy F predicting U, there is a total recursive
strategy G identifying U in the limit such that th(n)sﬁrt(n).

PROOF. Let Yor¥yreeo¥, be a tuple of nonnegative integers and F
be the total recursive strateqy predicting U. We consider a partial
recursive function 7m defined as follows
Y, if x=n,

F(<yb,y1,...,y£>), if x=n+1,
F(<n(0),n(1),+..,m(x-1)>), if x>n+1.
The algorithm for computing values of 7% is uniform in

n{x)=

n,¥,/¥,s+++,y, - Hence there is a total recursive function 4j such
that j(<yh,y1,...,yg>) is a ¢p-index of the function 7, corresponding
the tuple (yb,yl,...,yn).

If £ is a total recursive function and the predicting strategy
F makes no more errors on initial fragments (£(0),£(1}),...,£(x})
containing (£(0),£(1);...,f(n}), then 7n is total and n=f.

We consider a strategy G such that

G(<Y,r¥ re-- 'yn>)=j(<yo’y1’ ceer¥ >)
for all values of the arqgument. For every total recursive function
f, the number of mindchanges by G equals the number of errors by F.
=]

A strategy F identifying t-indices for a class U is called
consistent if for arbitrary n and arbitrary feU the wvalue
F(<£(0),£(1),¢¢.,f(n)>) is a <T-index i such that r1(0)=f(0),
t‘(l)=f(1), . e ,ti(n)=f(n).

THEOREM 1.3. For arbitrary enumerated class (U,t) and arbitrary
consistent total recursive strategy H identifying for U t-indices in
the limit, there is a total recursive strategy F predicting U such
that F:;T,z(n)sH:'_c(n).

PROOF. If H(<£(0),f(1l}),...,f(n)>)=i, then set

F(<£(0),£(1),...,E(n)>)= T, (n+1).
Since H is consistent, every error by F implies a mindchange by H.
=3

We need a useful "folk lemma"” used by nearly all authors in
papers on inductive inference. We have added the complexity bounds
to the arqument used in this lemma.
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LEMMA 1.1. For arbitrary Goedel numbering {Fi} of all partial
recursive strategies there is a family {F'} of total recursive

strategies such that for arbitrary i and total recursive £ if

[n]

%ingi(<fhﬂ>) exists, then lim F/(<f">) exists as well, the

limits are equal, and for all n

(F{)g o (m)S(E) g (n)+1, (F])g (n)s(F)5

1'u,T i mt(n)+1‘

[nl]

PROOF. The strateqy F| on <f > simulates in total n steps of
[ol

Turing machine computation for F (<£7>), E}(<f“]>),

F (<£%>),... (in that order). The result F;(<f"'>) equals the

last completely computed value in this sequence. If time n does not
1ol [n]

suffice to compute F1(<f >), then F;(<f >)=0. o

2. Prediction and EX-identification

The proof of Theorem 1.1. provides strategies for prediction,
identification in the limit and identification of T-indices with the
following complexity bounds:

F:J“,,‘C(n) =n,
EX
G, ¢(n) =m,

R () = 0
for arbitrary enumerated classes (U,T). We prove in this section
that the first two bounds can be lowered.

THEOREM 2.1. ([BF 72}, [BF 74]) For arbitrary enumerated class
(U,T) and arbitrary positive integer k, there is a total recursive
strategy F such that for all n

ﬂft(n) = log2n+logélogzn+...+logélog2...logzn+

k times
+o(logzlog2...logzn)

kK times
PROOF. The main idea is as follows. We associate a certain
weight p, (Zpi=1) to every T-index i, and, then, to predict the next
value y;ﬂ=F(<yb,y1,2,...,y§>), we consider a parameter s, and for
arbitrary fixed value of s we total the weights for all integers j
such that
tj(0)=yo&tj(1)=y1&tj(2)=y2&...&tj(m)=yﬁ&rj(m+1)=s.
Our prediction of vy’ is the wvalue of s for which the

m+l
abovedescribed total is maximal.
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We assert that if our strategy of prediction makes k errors on
the function T, then
2 p =1. (2.1.)
Indeed, consider a graphical representation of the class U by

an infinite tree.

— —
¥, P

yO ’ yl yZ ’ y3

> (t.)
1

The infinite path drawn here corresponds to the function T_ (which
may have more than one t-index, by the way). The outgoing arrows
correspond to functions declining from T .

The function T has the total weights no less than p_ . Consider
the last error, the error number k. If our strateqy has chosen to
predict a value differing from that of T, it is only because the
weight of the declining arrow has had a weight no less than b, -
Hence the weight of the correct prediction at the moment of the
{(k-1)~th error has been at least 2'pn. Since the (k-1)-th error has
been commited, another declining arrow has had a weight 22-pn. Hence
the weight of the correct prediction at the moment of the (k-2)~-th
error has been at least 4-p . Continuing this consideration we get
(2.1.).

We conclude that our strategy makes no more than logé %— errors
n
on the function T . If we use the distribution of weights
c

n~(logén)(1ogélogén)...(logz...1ogén)(log2...log2n)2
k-1 times k times

{where ¢ is a constant such that an=1), we get the upper bound

ﬂrt(n)slogan+logzlogén+...+logélogz...log%n +
k times (2.2.)
+o(logélogz...log2n)

k times
We have been slightly incorrect so far. We cannot quarantee the

recursiveness of the strategy since absolutely precise computation
of an infinite series of weights is expected. Now we redefine the
strategy expecting the totals of weights being computed only
approximately, namely, the totals needed for the current prediction
being computed only up to a certain €, where €, depends only on the
number of errors already commited.

We have that the total of weights p for the prediction at the
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moment of the k-th (the last) error always satisfies
pte=p -€,
i.e. the weight of the right arrow at the previous moment is no less
than
. 2pn—2ek.
For the moment of the last but one error we have
p'*e, =2p -28,-¢,
and for the right arrow at the previous moment we have the weight
2 2
z2 -pn-2 -ek—28k_1.
Continuing this argument we finally get a weight
22%.p -2%¢ -...-2% _-2¢
n k 2 1
which cannot exceed 1. If we take ej=245, we have ZKTESZ and the
same inequality (2.2.).
o
THEOREM 2.2. ([BF 74]) For arbitrary enumerated class (U,T) and

arbitrary positive integer k, there is a total recursive strategy G
such that for all n

EX -
G%’t(n) = logzn+logzlog2n+...+logzlogé...logén +
k times
+o(logélog2...log2n) .

k times

PROOF. Immediately from Theorems 2.1 and 1.2.
o

In order to prove the lower bounds of the complexity of
prediction we introduce some auxiliary notions and prove an
important lemma.

We consider prediction of the values of nonrecursive functions.
It is easy to see that the number of errors should equal infinity.
However, we can consider the initial fragments f“ﬂ=<f(0),f(1),
oo E(n)>. By F (£
strategy F when predicting the first n values £(1),£(2),...,£(n).

) we denote the number of errors made by the

A.N.Kolmogorov [Kol 65] introduced a fundamental notion of
complexity of finite objects. According to this idea the complexity
of a function in a fixed numbering of functions is the binary
logarithm of its minimum index. In the class of all partial
recursive functions of one argument x, as shown by Kolmogorov [Kol
65], there is an optimal numbering x such that, if ¢ is an arbitrary
computable numbering of partial recursive functions, then there is a
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constant ¢ _ such that for arbitrary partial recursive function f its
complexity in k does not exceed the complexity of £ in ¢ plus CW'

We consider a counterpart of this complexity for numberings of
total recursive functions. Note that there may exist no optimal (in
this sense) numbering.

Let t={t} be an arbitrary computable numbering of total
recursive functions. We consider the complexity of initial fragments
of functions. By kr(f[“}) we denote the minimum <T-index of a
function h  such  that  hf™=f™, By Kt(f““) we denote

{n} {n]

}1. If £ is nonrecursive, then K_(f }—« with n—we. We

[nl)
LEMMA 2.1. Let (U,Tt) be an arbitrary enumerated class and m(p)
be a function such that Fm;(p)Sn(p). Then for arbitrary

u
{nonrecursive) function f and arbitrary n, Ekv(f“ﬂ)sn(kr(fh]}}.

[logzkt(f
try to find out a relation between Ehv(f“ﬂ) and Kt(f

PROOF. We have Eﬁft(p)Sn(p). Hence for arbitrary p it is true
that FNv(rl[)Y])sn(p) for all y. Let pn=kt(f(")). Then for x=n we have
= tnl, _ tnl, _ _ {nl
tp(x)—f(x). Hence gw(f } ﬁw(t%‘)-n(pn) ﬁ(kt(f Y.

n

o
THEOREM 2.3. ([BF 74]) For arbitrary enumerated class (U,t) and
arbitrary positive integer k, there is a total recursive strategy F
such that for arbitrary (nonrecursive) total function f and for all

n,

[n} {n]

{n} [n}
F (£%)=K_(£")+log K _(£" )+...+log,...log K (£ )+
k times
[n]
+a(logz...logéKt(f .

k times

PROCF. Immediately from Lemma 2.1 and Theorem 2.1.
[u]
THEOREM 2.4. ([BF 74]) There is an enumerated class (U,t) such
that for arbitrary strategy F and arbitrary positive integer k:
1) (¥n) (F, (n)>log,n-3),

2) (an)(Eﬂ?t(n)>logzn+logzlogzn+...+logélog2...logzn)
k times
PROOF. We define two enumerated classes (V,T’) and (W,t”) and
then join them making the class U=VUW and the numbering
{t;, if n=2k-1,

"n‘i’cg, if n=2k.
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The enumerated class (V,t’) 1is constructed to have the
property 1.

Let binary 0-1 strings be enumerated lexicographically. The
infinite string of wvalues T;(O}t;(l)t;(Z)... is obtained from the
i-th string in the lexicographical numbering by adding infinitely
many zeros after the string. It is easy to see that
(vn) (F, . (n)zlog,n~2).

To construct the class (W,t”) and to prove 2) we make use of
the following theorem by P.Martin-Lof [ML 66] (see also [ZL 70}).
Let h(n) be an arbitrary total recursive function such that the
series y2 ™™
true that

(3*n) (Ka(f["] )=n-h(n).

In the abovecited theorem one can take, for instance, the

diverges. Then for every 0-1 valued function f it is

function h(n)=log2n+log2n+...+logélogz...log2n+a(n), where a(n) is a
function growing to infinity sufficiently slowly.

The Martin-Lof theorem uses an optimal numbering B of partial
recursive functions. Hence we cannot use this result directly. On
the other hand, the proof of the theorem is based on the
construction of an effective. coding of initial fragments of
sequences. The effectiveness of the coding allows us to construct a
numbering 0={0{} of total recursive functions as well, such that

(3"n) (K, (£ )sn-h(n)).
For (W,t”) we take the numbering t”=0 and the class W numbered by o.

Assume from the contrary that

(an)(Eﬁ?o(n)51ogén+logzlog2n+...+logélog2...logén)

k times
Hence there is a constant ¢ such that

(Vn)(Eﬁ?o(n)Slogén+logzlog2n+...+log210g2...log2n+C).

k times
We denote log2n+log210g2n+...+logzlog2...logzn+c by mn(n) and use

Lemma 2.1. We get

{n} [n]

(V) (F,, (£ )slog k_(£™)+1log log k_(£™)+...+

In} f[nl

+log,log,. . -logk (£ )+C)=K (£ )+log K (£ )+. . .+

k times tnl
+log,log,...log K (f Myse.

k-1 times

Up to now our function f was arbitrary. Now we take a specific
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one, and, namely, we take the 0-1 valued function which is predicted

incorrectly at every step. Thus (Vn)(Fm(f["]
1 [n}

(vn) (nSKQ.(f[n )+log K (£ "+, .+log log, ...log K (£

k-1 times

}=n). We have
hyer,

On the other hand, from the modified Martin-Lof theorem we have

(3°°n) (Kcr( £t )Sn—logzn—logzlogzn— .o .-logzlogz. .. 1og2n-a(n) ).

Hence
(3%n) (ns(n—logzn—logzlogzn- .es —logzlogz. .. logzn—a(n) }+
+logz(n—logzn-logzlogzn-—. . .—logzlogz. . .1og2n-a(n) )+
+1ogzlog2(n—logzn—logzlogzn—. . .—-logzlogz. .o logzn—a(n) V4
Fooot
logzlogz. . .logz(n—logzn-logzlogzn- cee -logglogz. .o logzn—
~a(n))+C").
Contradiction.
o

We are going to prove the counterpart of Theorem 2.4 for
identification in the limit. For this, we need a counterpart of
Lemma 2.1.

By GEx(f["]) we denote the minimum (over all functions g such

that g™=f"") of ¢**(q).

LEMMA 2.2. Let (U,T) be an arbitrary enumerated class and 71{p)
be a function such that Gi’f,c(p)ﬁn(p). Then for arbitrary
[nl)sn(kt(f[n] )).
PROOF. We have Gif_c(p)sn(p). Hence for arbitrary p it is true

iyl [n]
that Gﬂ(rp” y=n{p} for all y. Let pn=k,c(fn

{nonrecursive) function f and arbitrary n, GEX(f

}» Then for x=n we have

t"n(x)=f(x)' Hence GEx(f‘"])=GEX(1,L:1)Sn(pn)__.n(kt(frnl)).

THEOREM 2.5. ([BF 74]) There is an enumerated class (U,t) such
that for arbitrary strategy G and arbitrary positive integer k:
1) (¥n) (sz,c( n) >logzn—const) ’

2) (an) (Gﬁft(n)>1c>gzn+logzlog2n+. . .+log2}.ogz. . .logzn) .
k times
PROOF. As in proof of Theorem 2.4. we define two enumerated
classes (V,t’) and (W,t”) and then join them making the class VW
and the numbering
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T,, if n=2k-1,

T T/, if n=2k.

The enumerated class (W,t”) is defined precisely as in the
proof of Theorem 2.4, only instead of Lemma 2.1 we use Lemma 2.2.

The class V is a subclass of the one as in the proof of Theorem
2.4. Now we define the numbering t’. With pairs (i,j) we associate
2} t’—indices. The corresponding functions are defined in such a way
that the strategy F; (from Lemma 1.1) either makes on one of these
functions no less than 1ogéZH=j mindchanges or does not identify at
least one of these functions.

We divide the sequence of all nonnegative integers (the
potential t‘-indices) into segments. The integers 2*sm<2**! make the

segment S Every segment is associated with a strategy from {F;}.

k+1®
Namely, the segments So’Szﬁi’se’Ss”" are associated with Fé. The
segments S ,S.,S.,S ,... are associated with F;. The segments
s,s ,8 ,5_,... are associated with F’, etc.
37117197 V27 2

Thus we have the following property. If Sr and SN2u1 are two
adjacent segments associated with the same strategy F;, and
deSr,leSpmiu, then 1 exceeds d no more than constant number of

times. Every t’-index in the segment S i+t does not exceed
i+1
. Our construction allows us to assert that at least one

T2
function f in S is such that (F;)“(f)Zr. Hence, for every n from
the segment S ,,i*1 or from the preceding segments, it is true that
(F;)Ex(t;)Zlogzn—const.

It remains to describe the functions in the segment Sk+1
associlated with F;. We define them in steps, first all the functiomns
in the segment for x=0, then for x=1, x=2, x=3,.... For O=x=si+k+1
the functions are defined to encode i and k (the string of the first
i+k+l values equals 0‘10“1). After that one half of the functions
gets the current value 0 and the other half gets 1. The strategy F;
is to change the hypothesis at least on one of these two functions.
When it has changed the hypothesis for the corresponding indices we
define again one half of the functions to be equal 0, and the other
half to be equal 1, etc. Either there is a function in the segment

which is not identified by F; or F; has at least k mindchanges.
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3. Identification of tT-indices

The trivial strategies for prediction and identification in the
limit provided by the proof of Theorem 1.1 were improved in Section
2. However, the counterpart of these improvements for identification
of tT-indices was not proved there. We will show that such a
counterpart is impossible.

THEOREM 3.1. ([Ba 74-1]) There is an enumerated class (U,t) of
total recursive functions such that for arbitrary total recursive
strategy H there is a constant ¢>0 such that for all n (but a finite
number of them)

HE,_c(n)>-rél.

PROOF. The construction of the class U={‘c°,'c1,'c2,...} is based
on a diagonalization. At first we divide the sequence of all
nonnegative integers (the potential tT-indices) into segments. The

X+1

integers 2 =m<2 form the segment S Every segment is

k+1 "
associated with a strategy from {F;} (see Lemma 1.1). Namely, the

segments So, S , 34, S Sa"" are associated with F(’). The segments

2 s’
81 ,SS, Sg, Sm, - are associated with F; . The segments
SS,S11 ’sw'sz'r' ..+ are associated with F; , etc.

Thus we have the following property. If SJ and Sj+21-1 are two

adjacent segments associated with the same strategy F;, and deSj,
leSj+21+1, then 1 exceeds d and the length of Sj no more than

constant number of times.
Now we define the functions T where 2k5m<2k+1, i.e. in the

segment Sku. Let this segment correspond to F;. Then

1, if x<i,

0, if x=i,

1, if i+lsxsi+k,

0, if x=i+k+1,
| to be defined below, if x>i+k+1.

T, (x) =

Thus we have coded i and k into an initial fragment of the

function.
i+k+z!>

)

supposed to be the <t-index of tT. If ‘c:l“k+21=(1101k02) and
F;(<"c:+k"21>)=m, then we define T (itk+l+z)=1 and T (x)=1 for all
x>i+k+1+z.

Let T  (2"sm<2

or the function of this segment which has no less zeros than any

Let z>0, and we define 'cm(i+k+1+z). We consider F; (<"cfn

l‘“) be either a function with i+k values 1 only
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other function T in this segment. Then either F; does not identify
its t-index correctly or F; makes no less than 2°-1 mindchanges.
Thus we have proved that the worst-case mindchange complexity

(F;)t(tm) in the segment S is no less than 2k—1zg. Hence the

k+1
worst-case mindchange complexity for the first segments SgrS resesS,
142

1) is no less than 2*-1=n/2°.

(where k+l<r=k+1+2
o
THEOREM 3.2. There is an enumerated class (U,Tt) of total
recursive functions such that, for arbitrary total recursive
strategy H and for infinitely many n,
Hg’t(n)>n—o(VH).

PROOF differs from the proof of Theorem 3.1 only in the length
k
of the segments. Now the length of the segment S, is 2°. Hence the

length and the worst-case mindchange complexity of every segment is
no less than the square of the total length of all of the preceding
segments.
Infinitely many segments are associated with every strategy Fl.
The functions in these segments which are the most complicated for
identification of t-indices by F provide the needed complexity
bound.
o
THEOREM 3.3. For arbitrary enumerated class (U,T) of total
recursive functions and for arbitrary constant c>0 there is a total
recursive strategy H such that for infinitely many n,
HE T(n)<2'
’ d

n
n+l
is the number of pairwise distinct functions among TorTrTyrenesT o

PROOF. We denote by p the real number p=lim sup

 where dn

The number p needs not to be a constructive real number but it can
be approximated by rationals.
It is possible to find effectively infinitely many n such that

,n_,n,... be effective increasing sequence of such

n
p-esy<pte. Let n ,n,,n,

n
n’s. Such that for arbitrary k, n >2 k=1,

The strategy H searches the t-index for the given functiomn f£,

first, among TorTyreeesT « It begins with computing the initial
1
segments of TorTyoresorT, until Z(p-e)(nl+1) distinct functions are

found. Then with no more than 28'0H+1) mindchanges the strategy
either stabilizes to the correct output or finds out that £ is not
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in this initial segment. In the latter case the strategy H goes on

to search the t~index among Tt TyrenerT o and so on.
2
Any case, the total number of mindchanges does not exceed nk-2€

for every function among TyeT peessT . For mn e {nk—[nk/2],
nk-[nk/2]+1, e ,nk} this makes no more than n-e mindchanges.

4, Influence of the numbering

We have proved several lower bounds in Sections 2 and 3. We
prove in this section that most of these lower bounds express the
complexity of the numbering rather than the complexity of the class
of functions.

THEOREM 4.1. ([BKP 74]) If the class U of total recursive
functions has a numbering T such that the property (TiEIj) is
decidable, then, for arbitrary total recursive function g(n) which
nondecreasingly grows to the infinity, there is a strategy H
identifying in the limit t-indices of U such that HE{r(n)Sg(n) for
all n.

PROOF. Let n 0,0 ,... be the sequence of the least numbers
such that g(nl)Zi. The strategy computes initial fragments of

Tt TyrererT sufficiently 1long wuntil all functions which are
i

different (as shown by the decidable property) really turn out to be
different. Then solely one of these functions can be equal to the
function under identification. The first hypothesis (with
insufficient information about the function) is O, and the second
hypothesis is the abovementioned sole function in the segment.

If the function turns out to be this function, then the only

suitable function is found among TorTyreserT, (at cost of one
2

additional mindchange), and so on. o

-COROLLARY. If the class U of total recursive functions has a
numbering t such that the property (1&Etj) is decidable, then for
arbitrary total recursive function g(n) which nondecreasingly grows
to the infinity there is a strategy G identifying U in the limit
such that Gﬁ?c(n)Sg(n) for all n.

PROOF. Immediately from Theorems 4.1, 1.2 and 1.3.
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For the contrast, we note that the counterpart of Theorem 4.1
for the prediction fails.

THEOREM 4.2. ([BKP 74]) If for an enumerated class (U,t) it is
true that for arbitrary total recursive function g(n) which
nondecreasingly grows to the infinity there is a strategy F
predicting U such that Eﬁit(n)Sg(n) for all n, then there is a
nonrecursive strategy K such that Kf%(n)=o(1).

PROOF. We use the term "pxq table of (U,T)" for the table of
values tl(x) with i=p, =x=g. All possible strategies H provide us
only a finite number of variants which function isto prefered when
predicting values -for Tofﬂ""’tp and for x=q. All these variants
can be enumerated and a number S(p,q) be found such that:

a) arbitrary strategy H makes no less than S(p,q) errors at a
line of the (pxq)-table of (U,T),

b) there is a strategy H which makes at an arbitrary line of
the (pxq)-table of (U,T) no more than S(p,q) errors.

Evidently, S(p,q) is a total recursive function which is
monotonic both in p and g. It is easy to see that

(¥p) (Va) By (p)=S(p,q) (4.1)
Since there 1is a total recursive strategy F with the property
Eﬁ&#p)SP, we conclude that for a fixed p the function S(p,q) is
bounded. Indeed, if S(p,q) were unbounded, then it would be possible
to find a total recursive function t(p) such that S(p,t(p))—=
monotonically. By (4.1), this contradicts the provisions of the
theorem.

We have proved (Vp)(vq)(S(p,g)sC). Now we can prove the
existence of the needed strategy K.

The inequality S(q,q)=C implies that, for every g the set ﬁq of
those strategies which make no more than C errors within the
(gxq)-table of (U,t), is nonempty. The set ﬁq is divided into a
finite system of equivalence classes where one class consists of
strategies which function equally within the (gxgq)-table of (u,T).
We denote this system by {ﬁ:,...,ﬁ:q}. It is easy to see that

(Vk=k__)(31sk ) (B cH’).
q+l q q+l q L.
Hence from the compactness theorem for trees with the finite

branching property, there is a strategy H such that
(va) (3k=k ) (Heﬁ‘;)
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or just HelH for all q . Thus H makes no more than C errors on every
q
(qxq)-table of (U,t), and Hl}:vt(q)=o(1).
I
o

5. Prediction and identification of finite automata

We saw in Section 2 that prediction and identification in the
limit <can be ©performed with a small number of errors
{resp.,mindchanges). Section 3 contained disappointing results
(Theorems 3.1 and 3.3) showing that for identification of t-indices
many mindchanges may be inevitable. On the other hand, we saw in
Section 4 that the negative results just indicate that these are
numberings which are complicate, not the classes of functions. Now
we are about to ask whether "natural® numberings make identification
easy or complicate.

For arbitrary classes of functions it is not possible to answer
such a question since we do not know the criteria according to which
numberings could be called "natural". Nevertheless, there is a happy
exception. There are classes of objects that can be considered as
recursively enumerable classes -of total recursive functions, and
simultaneously they have nontrivial natural numberings, the
naturalness of which is widely accepted. We are talking about finite
automata.

Finite automata were intensively studied in the fifties, and
the pioneering paper [Moo 56] was a starting point in several
directions of research, inductive inference including. Hence it is
natural to consider such an example.

Initial finite automata with input and output are considered.
The input alphabet is fixed X={1,2,...,a}. The output alphabet may
vary. We restrict it only to be a subset of {1,2,...,n}. The class
‘of all such automata is denoted by u. The subclass of u obtained
by fixing the output alphabet to be Y={1,2,...,b} is denoted by
U%b.

Automata are considered as "black boxes". We know only that
they are in U . Let the sequence of the inputs of such an automaton
A be

W={X(1), X(2), ooy X(E), .},
and
(1), ¥(2)s <oy y(E), ...}
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be the corresponding output sequence. The problem is, for an
arbitrary t, given {x(1l), ..., x(t)}, {y(1l), ..., y{(t)}, x(t+l), to
predict y(t+l). Arbitrary effective rules (called strategies) are
allowed.

We see that the problem cannot be solved without errors. We
study the minimal number of errors needed for such a prediction. The
main result of this section shows that the worst-case number of
errors can be very small, namely, o((a-l)-k-logzk) for automata with
k states and this estimate cannot be asymptotically improved. Note
that any exhaustive search gives the upper bound of K" type.

Let £ be a strateqgy, i.e. a total recursive function of one
arqument. We say that ¥ commits an error at moment t working on the
sequence w and the automaton A, if

Z(<x(Ll),eee,x(t),¥(1) eee,¥y(t), x(t+1)>)=y(t+l).

2*(w,A) is the cardinality of the set of those t when £ commits

an error at work on w and A. For arbitrary class U of automata

£ (w,U,k)=max ¥ (w,A),
where the maximum is taken over all automata AU with no more than k
states.

THEOREM 5.1. ([Ba 74-2]) Let az2. There is a strategy Z such
that for arbitrary input sequence w,

=" (w,U_,k)=(a-1)k-log k+o((a-1) -k-log,k).

PROOF. Instead of automata from Ua we consider the
corresponding automata graphs (see [TB 72]) with input alphabet
X={1l,...,a}. We take one representative per class of isomorphic
graphs (isomorphism for graphs with a fixed initial vertice is
considered). We order these representatives by the number of
vertices. We remove the graphs for which the part reachable from the
initial vertice coincides with a graph considered earlier (such
graphs do not generate new automata operators). The graphs with the
same number of vertices are ordered arbitrarily. We get a sequence
of graphs fgi(Gl,Ga,...,Gi,...}. Evidently, if the number of vertices
[6,| in the graph G does not exceed k, then

i=I(a,k), (5.1)
where I(a,k) is the number of all pairwise nonisomorphic initial
automata graphs with k vertices and a-letter input alphabet. It
follows from [Kor 67] that
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ak
( Kok, if a=3,
I(a,k) X (5.2)
n kak
l &2 T TR -k, if a=2.

{Since we consider initial automata graphs, we have the multiplier k
in (5.2), in contrast to the original version of the formula in [Kor
671).

Following the idea of the proof of Theorem 2.1 we associate
weights

Cc

0

i(log,(i+1))*

to graphs Gx' (Here the constant C0 is chosen to have Zp(GJ=$O<1.

P(G)= (5.3)

It is easy to see that the series converge effectively.)

First, we construct a nonrecursive "strategy"” ¥ which provides
the needed complexity bound. This strategy in the computation
process observes all the infinite sequence ¢. Next, we use the
effective convergence of Jp(G ) and modify this "strategy" making it
recursive.

The "strategy® ¥ is described as a sequential process of
predicting which ascribes output letters to the edges of the graph
(thus converting the graph into an automaton). The "strategy"
crosses out the graphs which have turned out to be inconsistent with
the input x(1),...,x(t) and output y(1l),...,y(t). Let the path
¥(l)...x(t) in the graph G be the path starting in the initial
vertice and following the input word x(1)...x(t).

We start the prediction at t=1 when we are to predict y(2) by
x(1), y(1), x%x(2). For the starting sequence of automata graphs we
take the sequence g?={G2,...,G?,...} which is essentially the same
gﬁ only on the edges outgoing from the initial vertice and labelled
by input letter x(1) the output symbol y(1l) is written. The weights
of the automata graphs remain the same as before. This way, we get a
sequence g?={G:,...,G:,...} with ascribed weights.

At the stage t we have the information x(1),...,x(t),
¥(1),+..,y(t),x(t+1). We take the sequence ?"={G:",...,G:",...}
produced at the previous stage. All graphs in this sequence have
output letters y(l), ¥(2),...,y(t) written on the edges of the path
x(1) x(2) ... x(t), and no edges have been ascribed contradicting
letters. In the general case &t may have not all automata graphs,
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since some of the graphs may contradict the existing information on
the input-output relation. In other terms, if Grais considered as a
partially defined automaton, then it produces y(1l)...y(t) as its
response to x{1)...x{t) and goes to the state gt=glx(l)‘..x(t}.

We say that GTJ at input x{t+l) outputs y if the edge outgoing
g, and corresponding x{t+1} is on the path x(1)...x{(t) and has the
output symbol y. If G?4 produces an output symbol in response to
x(t+1l), i.e., if the edge x{(t+1l}) from g, is on the path x(1})...x(t),
then we say that Gf4 participates the prediction.

Additionally, the elements of ¥ ' have got weights p(GTd) and
the total Zp(Gf4)=So<l. The "strategy” ¥ predicts the output symbol
with the maximal total weight.

To complete the description of the current stage t we have to
say that the new information is used to transform &' into &. The
output symbol y(t) is ascribed +to the edge of the graph
corresponding to x(t) on the path x(1l)...x(t-1)x(t). If this output
symbol contradicts to the earlier information for this graph, then
the graph is removed from the sequence.

The new weight is defined as follows. If the graph has not
participated in the prediction, then its weight is not changed. If
the graph has participated and has not been removed, then its weight
is multiplied to st/rt, where s, is the total of weights of the
automata having participated in the prediction and r, is the total
of weights of the automata having produced the right outcome.
Evidently, the total of weights over all the sequence % has not
changed, i.e. Zp(G:)=So.

Note that, if £ has made an error, then

——D (5.4)

Hence, every graph having produced a right prediction at least
doubles its weight.

Let Ga be the first graph in the sequence which is consistent
with the input-output information. At every moment of error, either
G, gets a new output symbol or doubles its weight. Hence the maximal
number of errors does not exceed a number z such that 2°7°%. ‘P(Gy)=1.
From this equality, using (5.1), (5.2}, (5.3), we can get

£ (0, U k) < z = (a-1)k-logk. (5.5)

It remains to modify ¥ and to get a recursive strategy I which

computes the infinite series only approximately and does about the
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same as 2. We use the constructive convergence of the series of
weights. This allows us to consider only finite initial fragments of
this series. The strategy I predicts y only when it has checked that
any other output symbol y’ may have the total of weights

p(y’)ﬁp(y)+3—%1'p(y), (5.6)
t

where jt is the number of errors already made up to this moment
(instead of p(y’)=p(y) for ¥). This modification does not influence
(5.5).

o
THEOREM 5.2. ([Ba 72-2]) Let az2. There exists an input
sequence W such that for every strategy £ and for every bx=2

*
= (wo,U%b,k}Z(a-l)-k-log2k+o((a—l)-k-logék}

{consequently, Zf(a%,U;,k)z(a—l)-k-logék+o((a—l)-k'logék)).

PROOF. Let X={x1,...,xa} be an input alphabet and Y={0,1} be an
output alphabet. Given any natural number kz64, we define the
automata class R as follows. A typical automaton in R is drawn in
Fig.5.1 ({containing only those arrows essential for further

considerations). As it is shown in Fig.5.1, automata in R have
[log_k~log leg k]

s+ua=2[logzk]+6+2 2 e -[logzk-logzlogzk]=k-o(k)

states. First s-1 states specify a  subautomaton called

k-encipherator (the same for all automata in Rk), the next k states

form a different subautomaton called the main.

First we give the formal description of k-encipherator. Given
the binary representation of the number k, we replace every
occurrence of the symbol 1 by the word xgxl,replace every symbol ©
by the word x,x, and add xxx to the end of the word obtained so
far. Let k denote the word we have obtained. Apparently,
s=2[log k]+6 is the length of k; let E=v1,v2,...,v;. The word k
contains no subword XXX . k-encipherator is supposed to ‘"let
through" (to the main subautomaton) only the words containing a
subword k, provided it starts updating in the initial state q,- The
definitions of k-encipherator (see Fig.5.1) and the word kX imply
that, provided x, repeated tree times preceeds kX, k-encipherator
will reach the state q, and wili stay in this state while X is on
input.

Now we describe the main subautomaton. It consists of many
distinct blocks. The i-th block begins with the state g

s+i¢f
states in Fig.5.1 are marked by *), the length of each block (i.e.,

(initial
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the number of states) is equal to a=[logzk—-log210g2k]=3, the total

number of blocks is u=2aslo§ % The output labels on the arrows from
2

the states in the i-th block labelled by x form the binary word

€, that is the binary representation of the number i

(containing so many zeros in the beginning that the total length is

o).

The word € € ...€ is said to be the characteristic sequence
of the block i. Hence, every block specifies its own characteristic
sequence. Note, that the number of distinct binary words of the
length a is Jjust equal to the number of blocks; therefore, every
binary word of the length « is the characteristic sequence for some
block. Arrows outgoing from the initial states of the blocks (i.e.,
from the states S i=0,1,...,u) and labelled by the input symbol
X, link initial states with the state q_ . Arrows outgoing from inner
states of blocks and labelled by input symbols differing from X
(call these arrows variable ones) link these states with arbitrary
initial states of blocks (there are 2% states of this kind). Just
the latter property differs any automaton in Rk from any other.

Now we consider variable arrows. The total number of these
arrows is equal to u=(a—l)u(a-i). Let us fix a linear ordering of
these arrows: dlﬂ%,...,du. Given any main subautomaton, associate
with it the binary sequence

LT RTEE SRR PRI RS FYRERIL I

of the length ou defined as follows: 5)1""’65a is the
characteristic sequence of the block having the initial state the
arrow dJ goes to. This sequence is called the characteristic
sequence of the given main subautomaton. It is easy to see (taking
into account values of o and p) that every binary sequence of the
length ou is the characteristic sequence for some main subautomaton.

Now we define one specific input sequence. Let d; stand for the
input symbol labelling dJ, and Vj be the sequence "transferring” q,
to the state the arrow dJ is outgoing from. We set

Dk={V1,d1,x1,...,xl,xz,....,V 1A Xy e e X X peceney
) ] 1 2
O times O times

V;,d;,xl,...,xl}.
o times
Consider, for a while, the main subautomaton as an independent
automaton with the initial state q .. For input string D, the
automaton outputs the sequence
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E={W, ;0,8 reverd (r0reee,W 0,8 10ueyd ,0,...

10! ot

S T PRI ¥
where Wj is the output sequence corresponding to the fragment VJ and

8 ,re++s8,  corresponds to the piece Xx,...,Xx directly following
] J O times
Vj. The subsequence
R REIT N RTRL NP PPPL N RRRYL ETERIL I
of the sequence E is, obviously, the characteristic sequence of the
given main subautomaton.
Let £ be any strategy. Now it is not difficult to show that

there is a main subautomaton Az that, provided A): is treated as an

independent subautomaton with the initial state q.. the strateqy Z,
being applied to the automaton As and the input sequence D, will
make mistakes just in those places corresponding to the fragments

X yees,x of D, i.e., for every j and 1l=l=a, 1=j=u, the inequality
O times

Z{V’1 A ,x

! ,...,xl,xz,....,vj,d’,x PR 9

1
O times J 1-1 times

IiyO, S reredd, or
will hold.

This inequality shows how the characteristic sequence of the

Opue e, W 0,8, yennrd, (1) e%, )28

required automaton A5 should be defined. Furthermore, given the
characteristic sequence, one can easily restore unambiguously the
automaton AZ' Hence,

£ (D, Ag) = ux = (a-1)u(x-1)c.
Finally, we are able to define the required input sequence:
w0={ED,DkO,(”EO"+"1‘),Dkoﬂ,...,E,Dk,...}, k,=64.

Let A be an arbitrary automaton in R . As it follows from the
definition of k-encipherator the automaton A reaches for the first
time the state g, on the input string W, just after the initial
fragment

k3.

Before A has reached q,r k-encipherator runs on wo(k) (let Qo(k)

w0={Eo,Dk°,...,Dk_1,
denote the sequence k-encipherator outputs on wo(k)). The sequence
w, is constructed so that D follows wo(k). Therefore, after the
string wo(k) is updated, the main subautomaton can be considered as
an independent automaton with the initial state q. input string D,
and prediction strategy according to
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= (9, €% )=E(w, (K) ,£;9 (k) ,£i%,) -
Let us ChOOfe AZ' as‘the main subautomaton for A. Then, clearly,
I (w,,A)zE’ (D, ,As, )z(a-1)u(a-1)a.
Therefore, Z‘(ub,Uag,s+ua)=(a—1)u(a—l)a. Using values of s,a,u, we
obtain
2‘(w0,Ua’2,k)s(a-l)k-log2k+o( (a-1)k-logk).
s}

One can consider identification in the 1limit of automata
instead of prediction of their behaviour. In this case, given a pair
{x(1), 0, x{t)}, {y(l},...,¥7{(t}}, one has to construct an automaton
A’ non-distinguishable from the ™black box" A on the string
w={x(1),~».,x(t),...}. Let {Aw} stand for the class of all such A’.
Strategy Z in this case is a general recursive function which, given
any string {x(1),...,x(t)}}, {y(1l),...,y(t)}, finds an automaton in
U (more precisely, given the number of the string, it finds the
number of an automaton in u).

Ax=2(x(l),...,x(t);y(l),...,y(t))
is said to be the hypothesis generated at the moment t. Let us
suppose that

a) for every t, the automaton A transforms the input word
x{(1)...x(t) into y{l)...y{t), i.e. A is not an  “explicitly”
incorrect guess;

b) there exists t such that A1=A“4=...wA’ and A’e{Ah}.

Then we say that the strategy X identifies in the limit the
automaton A on the sequence w.

By Zf(w,A) we denote the number of mindchanges, i.e. the number
of moments when the automaton produced at this moment differs from
the automaton produced at the previous moment. Additionally,
Z#(w,A)=m if the strategy Z does not identify in the limit the
automaton A on w. By analogy, we define 2#(w,U;,k)= maxZ#(w,A),
where the maximum is taken over all automata AcU_ with no more than
k states.

THEOREM 5.3. ([Ba 74-2]) Let az2. There exists a strategy X
such that for every input sequence w

z*(w,ua,k)s(a-—l)k-logak+o( (a-1)k-log k).

PROOF. Instead of the "strateqy" Z from the proof of Theorem
5.1 we use a "strategy" %’ which differs only in one aspect. The
"strategy" £' changes the sequence & only at the moments when an
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error is made. It is easy to see that the estimate (5.5) remains
valid since it was proved actually using only those moments t when
the strategy fails (i.e. the inequality (5.4) holds). Let
t1’tz""tn denote moments when errors were made, n=f"(w,A).
Therefore, our strategy 3 will use only subsequences
@, 9", 9,..., 9"

Now we are about, given the strategy ¥’, to define an effective
strategy X’. The symbol y, Z’ outputs at the moment t, has to

satisfy the inequality 5.6. Let te(t,,t, . 1. Then inequality is

1
transformed to

p(Y")=p(¥)+ % B(¥)- (5.7)

For any given te(tx'tnql’ the symbol y can be defined using at most

an initial fragment of the sequence g%i. This fragment is said to be
essential for the given moment t. Taking into account constructive
convergence of the series ?p(gf) one can show easily that it can be
effectively computed, given the pair {xX(1),.04,%x(t)},
{y(l),+..,y(t)}. Note, that, if an initial fragment, essential for
the moment t, is long enough, then it can be equally essential for

the next moment, and so on. Now, let ti,tl,...,tl be the moments
1 2 n
] when one has to change (i.e. to make longer) the

in (ti’tru
essential initial fragment chosen earlier (in order to make it
possible to check the inequality (5.7)). Note, furthermore, that, if
an essential initial fragment containing the required graph G, is
found and this fragment contains a sufficiently long "tail® after
Gy
(it will be changed when an error is made, and ¢ is to be changed

then at least the inequality (5.7) protects it from replacement

itself). This consideration implies that, if we choose every next
essential initial fragment sufficiently longer than the preceding
one (for instance, of the length 2", where n is the length of the
preceding fragment), then the total number of changes of essential
initial fragments implied by inequality (5.7) will not exceed
o(|G,|1eg,|G |). On the other hand, the number of changes of
essential initial fragments implied by changes of the sequence & is
equal to the number of & changes, i.e. the number of errors Z’
makes on the input string. The latter number, as it follows from the
proof of Theorem 5.1, does not exceed (a—l)k-logék+o(k-1ogék). We
obtain now that our strategy X’ changes essential initial fragments

at most
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(a-1)k-log k+o(k-log k)+o( |Ga|log2|Ga| )=

=(a—1)k-logzk+o(k~logzk)
times. While essential initial fragment is not changed the strategy
Z' predicts the next value using only this fragment and the current
vertex of each graph from the fragment. Namely, it means the
following. The current wvertex of Gj at the moment t is just the
vertex the automaton reaches reading x(1)...x(t) from the initial
state. Therefore, if we know the current vertex of the graph Gj,
then we can find the symbol y GJ (as an automaton) outputs reading
x(t+1l); there is no need to store information reflecting the word
x(1)...x(t).

It means that a finite automaton is able to perform prediction
which £’ is making while essential initial fragment is not changed.
The states of the required automaton are all possible orders of
current vertices in the chosen initial fragments (i.e., each state
is a chosen initial fragment, where just a single vertex, called
current, is marked in every graph; the choice of current vertices
distinguishes one state from the other). Transition from one state
to another is performed according to the transition of current
vertices in every graph while reading x. The automaton outputs the
symbol the strategy Z’ is supposed to output in the given case.

The above automaton is Jjust the hypothesis the required
strategy X is suppoosed to quess during the timefragment under
consideration. Evidently, the number of hypothesis changes is equal
to the number of changes of essential initial fragments. Therefore,

z“(w,A)s(a—l)k-log2k+o((a-l)-k-logzk).
o

The lower bound proved in Theorem 5.2, clearly, holds in the
given case too.

The cases considered above resemble in a way simple experiment.
Now we consider the case which resembles multiple experiment. Let
the sequence

Q={<pl,q>2,...,got,...}
be used as an input for a "black box" A and {nl,nz,...,‘qt,...} is
the corresponding sequence of output words (A reads every new word
starting from the initial state).

Prediction by the 3-tuple {goi,...,‘got}, {nl,'nz,...,nt}_, Prar
means prediction of M, In our case Z (Q,A) is the number of
distinct t such that
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z(wll".'¢t;n1'n2'.°"nt;wu4):ntu'

Given any pair {wl,...,wt}, {ni,nz,...,nt}, the goal of the
identification in the 1limit 1is to define an automaton A’
non-distinguishable from A on the input words Q. If(Q,A) is defined
like Zﬁ(w,A), but the words ¢ e, are used instead of x(t) and y(t)
respectively, and the hypothesis A is defined as
Z(wl,...,wt;nl,nz,...,nt).

Extending slightly proofs of Theorem 5.1 and Theorem 5.3, we
obtain the following, slightly more general results.

THEOREM 5.1’. ([Ba 74-2]) Let a=2. There exists a strategy Z
such that for every sequence Q of input words

£'(Q,U_,k)s(a-1)k-log k+o( (a-1)k-log k).

THEOREM 5.3’. ([Ba 74-2]) Let az2. There exists a strategy T

such that, for every sequence Q of input words,
£*(9,U_,k)s(a-1)k-log k+o((a-1)k-log k).

Theorem 5.3’ is a very important tool for investigation of the
synthesis of programs by hystories of their behaviour (see Section
6).

6. Notes on program synthesis from computational hystories

One of the most important problems in the theory of learning
evidently is program synthesis from computational histories. Note,
that even learning of such algorithms as addition and multiplication
usually proceeds as follows: the teacher demonstrates how the
algorithm is working on particular samples, i.e., gives the
histories of computation and then the learners are synthesizing
general algorithm (program) on the basis of this information
themselves. In 1972 Bierman [Bie 72] proposed heuristic algorithms
of synthesis from computational histories and implemented them on
computer. Still the mathematical basis of the process of such
synthesis have not been studied much at the time. Below we give the
first results in this field we obtained in 1974 (first published in
[Ba 74-31).

As a model we consider the Post machine. All the results can be
easily transformed for more general programming languages (to within

multiplying constants in evaluatioms).
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(1) 6 Fig.6.3
Fig.6.1

Let us consider one-tape Post machine with outer alphabet
{0,1}. It is given by the instructions of the type:
shift the head one cell leftwards,
shift the head one cell rightwards,

print ‘1’ in the current cell,

print ‘0’ in the current cell,

w oo o< b 1
i

conditional instruction: transfer by 1 if 1, transfer by 0
if o,
!

instruction ‘HALT’.
An example of a program is given in Fig.6.1l.
Given the input x=111 (Fig.6.2), the program produces y=1111
(Fig.6.3) executing the following sequence of instructions:
29?2922V e?2 2?2?22
The sequence is formed from all the instructions which are run
by the program working on the given x. Such a sequence will be
called operationally-logic history of the given program for the
given x (the notion is introduced in [Er 711).
Now let us state the problem. Let P be an arbitrary program of
the Post machine and
Q={x1,x2,...,xt,...}
be an infinite sequence of natural numbers. We assume that the
program P halts for any X, from Q@ and gives the result P(xt) (we
call such Q permissible for P). Let h - operationally-logic history
of program P for X, . Let there be given
{(xllhl)f“‘l(xtlht)}'
It is required to determine a program P’ such that P’ coincides with
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P on Q, i.e., P'(x)=P(x) for xeQl. We denote a collection of all such
P’ by {PQ}. An arbitrary total recursive function I mapping
<x1,h1,...,xt,ht> to programs for Post machines is called strategy.
The program Pt=H(x1,h1,...,xt,ht) is called the hypothesis produced
in the moment t. Let:

a) a program P coincide with P for any t at least for
X Xy reeerX

b) there exist T such that Pt=Pt+1="'=P’ and P’E{PQ}.
Then we say that the strategy I synthesizes from operationally-logic
histories the program P on the sequence Q in the limit. We denote by
H#(Q,P) the number of changing the hypothesis, i.e., the number of
different t, such that Pt¢Pt+1.
evaluate Iﬁ(Q,P). Let us denote by I[Pl the number of conditional
instructions in P.

THEOREM 6.1. {([Ba 74-3]) There exists a strategy I such that
for any program P and any sequence

n‘*(Q,P)snpulogzupu+o( IPilog, IIPH) .
Using advanced enough algorithmic languages IPI usually is not

Otherwise, T'(Q,P)=w=. Our aim is to

too large. For instance, for the program of multiplication of
matrices WPI=3. Therefore Theorem 6.1 shows that there exists a
strategy which makes quite a few mistakes in the process of
synthesis (almost comparable with the number of mistakes the
programmers usually do when writing similar programs).

To Z
following automaton P oos with input alphabet {0,1}. Let program P

rove Theorem 6.1 we associate with any program P the

begin with a conditional instruction (this does not restrict the
generality), and let us represent it as a graph. Let us keep in the
graph only those vertexes corresponding to instructions "2?2" and "i",
the paths consisting of other vertexes we replace by arrows. More
precisely, if the path is of the type given in Fig.6.4a, we replace
it by the arrow with entry label ¢ and exit label {71,72,...,78,6)
(Fig.6.4b). As the result we obtain a diagram of a certain
automaton, which we denote by P_ .. For the program given in Fig.6.1
the corresponding automaton is shown in Fig.6.5, the input alphabet
is {(=»,2), (Vser?) (e 2) (20 1))
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Fig.6.4
Fig.6.5

Evidently it is possible to restore the program P by Paut q(we
denote it by (Paut)progr}.

We associate the input word ¢ =€, € € (atje{o,l}) with
1 2 t

x, and ht=?u1?u2?...?u1 , Where u, is the sequence of instructions
t
(unconditional) between conditional comstructions, in the following

way: €, €. ... | are the sequences of values which take the
ccnditio;alginstrlctions working on x, in correspondence to history
h ~(we assume that conditional instruction "?" takes 1, if the cell
in question contains 1, and 0 otherwise). To put it differently, the
word ¢, in the diagram of automaton P o determines the same path as
the word x, with history ht in the program P. Now, substituting ?,
for x, in Q={x1,...,xt,...} we obtain the sequence of words
={w1,...,¢t,...}.

The following assertion stating the relationship between
synthesis of automata and programs is evident now:

A, If A is an arbitrary automaton undistinguishable from P
on the sequence of input words Q' (input of all words starts on
state 1), then the program (A)progr obtained from automaton A is
undistinguishable from program P on the sequence Q (i.e., they have
the same histories and give the same results).

Let us apply the strategy £ from Theorem 5.3°. We obtain

z“(n',paut)qpaut|1og2|pa = (IiPI+1)log, (IPI+1) (6.1)
The strategy Z uses 2t-tuple

Kt=<¢1"..'¢L'Paut(wl)'."'Paut(pt)>
to produce (t+l)-hypothesis. On the other hand, the intended
strategy II can use only 2t-tuple Nt=<x1,h1,...,xt,ht>. Nevertheless,
evidently it is possible to construct K, effectively from Nt.
Therefore the strategy T works as follows. First, it finds the
2t-tuple K, from N, then it applies the strategy T to K, and finds

utl
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hypothesis At=Z(Kt) and finally it transforms the automaton A to
program (At)mmm and gives it as a result for N . From assertion A
and (6.1) it follows that
1*(Q,P)sIPlilog, IPI+o(IPIlog, IPI) .
[»]

NOTE. Actually we have proved a bit stronger assertion: the
obtained strategy synthesizes a program which produces not only the
same results as P on , but also the same operationally-logic
histories.

Let us consider the so-called operational histories [Er 71]
instead of operationally-logic histories. Usually they are the
minimal necessary information given to the learner in the process of
learning some algorithm. They can be obtained from
operationally-logic histories by omitting all conditional
instructions. For instance, operational history corresponding to the
example given above equals » > » V ¢« ¢ ¢ ¢ » !. Let us denote the
number of changing the hypothesis in this case by H‘(Q,P). Let |P|
be the number of instructions in P. Then the following theorem
holds.

THEOREM 6.2. ([Ba 74-3]) There exists a strategy II such that
for any program P and any sequence Q

I'(Q,P)s|P|log, |P|+o(|P|Llog, |P]).

Theorem 6.2 follows easily from Theorem 6.1. Note, that any
program P can be transformed to an equivalent program P’ putting the
conditional instruction "?2" 0——»0:::0 between any two instructions
0—0. obviously, IP'Is|P| and operational histories of P and P’
coincide. On the other hand, it is ©possible to restore
operationally-logic history ?K1?Kz?"'?Ks! by operational history
Kle...Ks!. Consequentﬁy, it is possible to use Theorem 6.1 for
program P’. Therefore 1I (Q,P')5"P'Hlog2HP’Hs}P|log2]P|.

a

The question whether a complete analogy with Theorem 6.1 holds
in the case of operational histories is open. It is also interesting
to study the synthesis of programs with small IP# : the given

evaluations cannot be used reasonably for the case.
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7. Errors versus complexity

Following the proof of Theorem 2.1 for an arbitrary enumerated
class (U,Tt) a total recursive prediction strategy F can be
constructed such that for all n:

Eﬁ?t(n)51ogzn+logzlogzn+o(logloglog nj.

In this chapter a general result will be proved from which it
follows that for such "error-optimal" strategies the time complexity

of computation of the prediction F(<f(0),...,f(m)>) (i.e. a
CI
candidate for f(mt+l)) may go up, in some sense, to 2% .

To put it precisely, we investigate general algorithms of
strategy construction instead of particular strategies. Such
algorithms are called uniform prediction strategies. The precise
definition is as follows.

Any numbering Tt of total functions (not necessarily computable)
can be treated as an oracle which answers to queries like "tl(j)=?".
Uniform prediction strategy F is a Turing machine with oracle <t
which computes a candidate for f(m+l) from the given values
£(0),...,f(m) (it is assumed that the function f is in the numbering
T). We denote this candidate value, as usual, by
Ft(<f(0),...,f(m)>). If the function f£ is not in the numbering =,
then the computation, maybe, does not halt. Thus, given any T, Ft is
a partial recursive prediction strategy in the sense of Section 1.

The number of errors committed by the strategy F during the
prediction of a function f from a numbering Tt we denote, as usual,
by

Fy (f)=card {m | F(<E£(0),ev., £(m)>)2f(m+1)}.

Let h(x) be any function of a real variable x defined for all
xz0. We say that a uniform strategy F uses h(m) queries, if for any
numbering T, any function f from T, and all m20 the computation
process of Fr(<f(0),...,f(m)>) issues =h(m) queries “tx(j)=?“ to
oracle t. The number of queries can be viewed as a rough lower bound
for time complexity of the prediction.

Our main interest is to investigate the power of uniform
prediction strategies which use h(m) queries for h(m)=2", 2°, x*,
Zfz me. However, the obtained upper and lower bounds hold for any
"reasonable" function h such that exp=<hs2®® (i.e. h(x) grows at
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least as fast as 2%, but not faster than 2£m). To put it
precisely, we introduce the following conditions for h:

Cl) h is a computable function of real variable, h(x) is
defined, positive and twice differentiable for all sufficiently
large x. For any integers m,n=0 it can be decided effectively
whether h(m)=n or not.

C2) There is a real constant a>0 such that for all sufficiently
large x: «

(log,h(x))’>a, (logh(x))"=0.
These conditions are satisfied by any "reasonable" function growing
at least as fast as 2.

C3) There are two real constants b,d=0 such that for all

sufficiently large x:
(logah(x))’sz

This condition is satisfied by any "reasonable" function growing not
X
faster than 2° .

One can verify easily that if the function h satisfies
Cci,C2,C3, then:
C4) so does the function h(x) ’

x+2
C5) h(x}) is strongly increasing and continuous for all

bx+d

sufficiently large x. This assures the existence of the inverse
function h™'(x).
C6) For all sufficiently large integers m:
o
hh‘(“—i-;—";lana. Zh(i)<-i-h(m+1).
i=0
THEOREM 7.1.([Po 77-1]) Let function h satisfy the conditions
Cl,C2, and let F be a uniform prediction strategy using h(m)
queries. Then there is a computable numbering T such that for
infinitely many n:
Fy (T )>log,n+h ™ (n)-0(1).
All functions of T are of the type N—{0,1} with a finite number of
l’s.
PROOF. For the given strategqy F we define a numbering T and
some function f.
First, since C6 holds for h, let m be an integer such that for
all mEm 3 h(m+1)}>h{(m)+1.} Then, for iSh(n%) let all functions T,
equal to zero. For all i>h(m°) and jémo set £(j)=0 and ti(j)=0. When
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during the computation of some Ft(<f(0),...,f(s)>), s=m_, F issues a
query "tx(j)=?"’ set ri(j)=0.

Suppose now that for some mzm, we have defined:

a) the functions T for all n<h(m),

b) the values £(0),...,f(m), such that £ coincides up tom
with all T for a sufficiently large n, and Ft makes m-m, false
predictions on £ up to m,

c) the values rl(O),...,ri(m) for all i>h(m).

Maybe, we have also defined a finite number of some other values
T, (3)-

Now we define all functions t  for h(m)<n=h(m+l), the value
f(m+l) and the values ti(m+1) for i>h(mtl). Let us simulate the
computation process of F (<£(0),...,f(m)>). When F issues a query
"tx(j)=?" and the value tx(j) is not defined yet, set tl(j)=0. The
process will end up and yield the prediction FT(<f(0),...,f(m)>).
(Suppose, this is not the case. Then we can set all the values ti(j)
and £(j) (not defined yet) equal to zero. Since f is now in T, the
prediction Ft(<f(0),...,f(m)>) must be defined.)

Then we define f(mtl)=s such that se{0,1} and
s#Ft(<f(0),...,f(m)>). Thus, this prediction of Ft is false, and the
total of errors is now mtl-m . Next we define T, (m+l) for all i (if
this value is not defined yet):

{s, if T, coincides with £ up to m,
ti(m+1)= . (*)
0, otherwise.
Since only a finite number of T, (m+l) has been defined before, the
function f will coincide up to m+l with all functions T, for a
sufficiently large 1i.

It remains to define other values of T h{m)<n=h(m+1), which
have not been defined. Set tn(j)=0 for all j, m+l<jsk, where k is
such that no value tl(j) has been defined up to now for i>h(m} and
j>k. The functions L h(m)<n=h{(m+1), fall into natural equivalence
classes:

By= o (ViEmL)T (5)=T(3)

(the values tn(j), mt+l<j=k, are equal to zero, i.e. they do not
influence the equivalence). Let A be any of these classes, set
t=[logécard(A)]. If t>0, we define for neA the values
tn(k+1),...,tn(k+t) using all 2" binary words of length t. For j>k+t

and neA set tn(j)=0. Thus, predicting the values tn(k+l),...,tn(k+t)
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any strategy will fail t times on some T s DeA.

Iteration of such steps gives full definition of the numbering
T. Let us show that T is the required numbering of the theorem.

One can easy verify the following

LEMMA 7.1. If 'cl(j)=f(j) for all j<jo’ and ti(jo)if(jo), then
'ci(j)=0 for all j, j°<j<k.

The rank r(A) of an equivalence class A (see above) is defined
as the maximum number r=m+l such that

(VT_eh) (Vi=r)T_(3)=£(3).

Clearly, r(A)zmo, and by the Lemma 7.1, different classes A have

different ranks. So we can denote all these classes by Am ; eeey Ar,
[o]

e ey Am+1' Predicting the values 'z:n(O), 1:“(1), ooy tn(r) (neAr) the
strategy F'c will fail at least r-m, times. After that, predicting
the values rn(k+1), ceey 'l:n(k+t) for some neh , the strategy Fo will
fail another t times, t=[1og2card(Ar)]. Hence, F_ fails on some T
neh , at least r+log2card(Ar)-mo-1 times.

Some of the classes A are sufficiently large:

LEMMA 7.2. There exist three constants c,d,e (depending on
function h) such that for all sufficiently large m there is r,
mtl-c=r=m+l, such that '

card(AP)>dh(m+1)-e.

Having this lemma we can easily prove the assertion of Theorem
7.1. Indeed, take any sufficiently large m and the class A of the
lemma. The strategy F. fails on some T, DeA , at least

r+log2card(Ar )-m -1
times. Now recall that h{m)<n=h(mt+l):

1) h(m+l)zn, hence m+lzh™'(n) and re=m+l-czh™'(n)-c.

2) h{m+l)zn, hence

1og2card(Ar)zlog2(dh(m+l)-e) z logz(dn—e)zlogzn—-e'

(e’ - a constant depending on d,e). Hence,
F:v (T,) >lo<_;2n+h'1 (n)-c-e’-m ~1.
o

PROOF OF LEMMA 7.2. First, let us note that the classes A

(m=r=m+l) cover all the numbers n, h(m)<n=h(m+l). Hence, using C6,
m+1

1
E card(Al_) > h(m+l)-h(m)-1 > (1_T+_a)h(m+l)_1'
r=mo
Let us prove now that, if c¢ is fixed but sufficiently large, then
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m-c

anrd(Ar) = Z(1+a) h(m+1),

r=m0
i.e. most of classes A are relatively small. Indeed, if r<mt+l and
neh , then during the computation of some Ft(<f(0),...,f(j)>),
1=j=r, the query “tn(r+l)=?“ must have been issued (otherwise,
according to (*), tn(r+1) would have been defined equal to f(r+l),
and the rank of A were not r). Hence, the total of queries issued
is at least

m-c

E::card(A%).

r=m
o]

On the other hand, for the prediction Fr(<f(0),...,f(j)>) at most
h(j) queries could have been used, hence, using C6,

= NG . 1 1 -c
card(A}) = h(j) = ah(m+1—c)sa(1+a) h(mt+1).

0
Now we have:
m+1

1 1 -
E card(A ) > (l-yiz)h(m+l)-1->(1+a) ‘h(m+l)=
m+1l-c 1 1 -c
=(l-m - E( 1+a) )h(m+1)—1,
and for some r, m+l-csr=m+l:
1 1 1 -c 1
card(Ar) > —C:T(l—m - E(1+a) )h(m"'l)—m'-
It remains to make ¢ large enough to satisfy
1 1 -c
1—'1—_'_—a— - ;( l+a) >0.

EXAMPLES. El) For any uniform strategy F using 2" queries:

3t38 F' (T )>21log,n-0(1).
E2) For any uniform strategy F using 2°" queries:

NV 1

3tdn F'(T,)>(1+3)log,n-0(1).
E3) For any uniform strategy F using m" queries:
logzn

o(1).
m

E4) For any uniform strategy F using 2° queries:
00

NV
AT3n Ft (tn)>1ogén+logzlogzn—0(1).

0 NV
3T3n Ft (rn)>1ogzn +TB§'7§if7; -

cm
E5) For any uniform strategy F using 2° queries:

o _NV 1
3t3n Ft (tn)>log2n+Elogzlog2n—O(1).
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COROLLARIES. a) If h(x) is growing slower than any exponent
2°*, then no uniform strategy F using h(m) queries can provide an
upper bound F;v(rn)5const-log n.

b) If h(x) is growing as an exponent 2°*, then no uniform
strategy F using h(m) queries can provide an upper bound
F:v(tn)51095n+o(loq n).

cXx
c) If h(x) is growing slower than any super-exponent 2% , then

no uniform strategy F using h(m) queries can provide an upper bound
sz(tn)51og2n+const-loglog n.
d) The uniform strateqgy F defined in the proof of The- orem 2.1

uses (for some numbering T and for infinitely many n) at least
cm
2 queries to compute Ft(<rn(0),...,tn(m)>).

Now let us turn to upper bounds. Let h(x) be a function
satisfying the condition Cl1l and E={nn} be a recursive series of
real numbers. By {hm} we denote the following modification of the
uniform prediction strategy from the proof of Theorem 2.1.

The prediction {hﬁ}t(<f(0),...,f(m)>) is computed as follows.
We consider the functions T, only for ish(m) and the weights m,
assigned to them. Find all numbers t such that

E={i | ish(m) & (vism) (T (3)=£(]) & T, (m+1)=t)}=#0.

If there are no such t's, set the prediction equal to zero. For each
t found compute its weight
w=p {m | ieE }
with the precision 2'2m, i.e. find rational number r, such that
|rt-wt|52'2m. Now find t with maximum r , and set
{hﬁ}_c(<f(0),...,f(m)>)=t.

{hm} is a total recursive prediction strategy using (m+2)h(m)
queries. There are two different types of errors committed by the
strategy {hﬁ}r during the prediction of values of the function T ¢

- type 1:

{hﬁ}t(<tn(0),...,rn(m)>)¢rn(m+1) & h(m)<n
(i.e. when computing the prediction, the function T is ignored),
- type 2:
{h'ﬁ}_c(<‘cn(0),...,‘cn(m)>)¢‘tn(m+1) & h(m)=n.
Slightly modifying the proof of Theorem 2.1 we obtain the following

LEMMA 7.3. Let the function h satisfy conditions C1,C2 and the
predictions {hﬁ}r(<tn(0),...,tn(m)>) be false for m=m ,m,...,m.
Let us denote: s, - the number of type 1 errors, s, - the number of
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type 2 errors (S=s1+52)' Then:
a) si<h_1(n),

s -
[+ ]

1
2
Sy ; 1 E
b)2 "t < 20 +2+ T,
n sl+1 j

1=1 3=0
where o =L {nj | h(m )<jsh(m )}.

Now we define a special sequence s
n° = - .
" -1 p(n)
h'h "(n)2
LEMMA 7.4. Let the function h satisfy conditions C1,C2 and C3.
Let the strateqy {hﬁo}t predict the function T_- Let us denote: s -
the number of type 1 errors, s, - the number of type 2 errors. Then:
-1
a) sl<h (n),
-1 y-1
b) s1+sz—logzs2 <h (n)+logzh h " (n)+0(1).

PROOF. One can verify easily that nz is a decreasing function,

hence for all n:
n

1 h " (x)
J,ph(x)2t

Summing up we have

hi{m ) +1
i+1

g < _—dx_____ .
! -1 h_l(x)
h'ht(x)2

h
(ml)

Substitute h(t) for x:
[+ ]

w0 ]
J dx . fhieide  fdt 1o
h,h-1(x)2h (x) h’(t)2 2
him ) i 1
Thus we have:
al<-lr11—22"“1 = 1%72"
{since mizi—l). Hence, by Lemma 7.3:

s -1
2 ©

8
2 0 -
2°m < 2'e +2+) 7° < const-s 21,
n sln j 2

i=1 j=0

o
+ < - s +
s, logznn 1ogzs2 s tconst,

s2-log2h'h_1(n)-h-1(n) < log,s, - s +const.
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Now we can prove the upper bound:

THEOREM 7.2. ([Po 77-1]) Let the function h satisfy conditions
C1,C2,C3. There is a total recursive uniform strategy F using h(m)
queries such that for any numbering T and all n:

ng(rn)slog2n+(b+1)hf1(n)+O(loglog n)
(the constant b is from condition C3).

PROOF. Take hl(x)=%£§l and the strategy {hlﬁo}. Since h1 also

satisfies C1,C2,C3 (with the same constants b,d), we have:
h! (x)sh, (x)2"*,
-1
h{h;l(n)shlhzl (n)zbh1 (n)+d
s-1 - -1
logéhihi(n)-logén+bh1(n)+d.
Hence, by Lemma 7.4:

sl+sz-logé52510gzn+(b+l)h;l(n)+0(l).

Since x—logzx5y implies x5y+logéy+0(1), and by C6, h?(n)=0(log nj:
sl+52510gén+(b+l)hf(n)+0(loglog n).

Since F:_v(tn)=si+s2 and hl(n)=h'1(n)+0(loglog n), the proof is
completed.
o
EXAMPLES. EE1) Let h{(x)=2*, then b=0 in C3. There is a uniform
strategy F using 2" queries such that
Fiv(tn)5210g2n+0(loglog n).
Compare example El.
EE2) Let h(x)=2°".There is a uniform strategy F using 2°"
queries such that
Fiv(tn)s(1+é)log2n+0(loglog nj.
Compare example E2.
EE3) Let h(x)=x".There is a uniform strategy F using m" queries

such that
RV log n
F. (‘cn)slogzn+0(loglog =)

Compare example E3.
X
EE4) Let h(x)=22. There is a uniform strategy F using

m
22 queries such that

NV
Ft (tn)slog2n+0(1oglog nj).

Compare example E4.
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8. Probabilictic strategies

In Sections 3,4 the complexity of deterministic identification
of T-indices was investigated, and the corresponding exact estimates
were obtained. In this section we obtain the exact estimate 1n n for
the number of mindchanges for the probabilistic identification of
T~indices.

The hypotheses F(<f(0),...,f(m)>) of a probabilistic strategy F
are random natural numbers which take their values over some fixed
probability space P. Formally, probabilistic strategy F is a mapping
which associates with each elementary event ecP some deterministic
strategy F_. Thus the hypothesis F(<f(0),...,f(m)>) takes its values
n with fixed probabilities

P, (<£(0), ..., £(m)>,n)=P{F(<£(0),...,£(m)>)=n}.

Recursive probabilistic strategies can be defined by means of
probabilistic Turing machines introduced first in [IMS 56]. Let a
random Bernoulli generator of some distribution (p,l1-p)} be fixed,
0<p<l. The generator is switched into deterministic "apparatus® of a
Turing machine. As a result, the operation of the machine becomes
probabilistic, and we can speak of the probability that the
operation satisfies certain conditions.

Consider the following Turing machine M operating with a fixed
Bernoulli generator. With input sequence

£(0),£(1),en-,f(m),...
this machine prints as output an empty, finite or infinite sequence
of natural numbers (hypotheses):

ho’h1""’hm""’
where h.m depends only on the values £f(0),...,f{m). To each infinite
realization of Bernoulli generator’s output (i.e. an infinite
sequence of 0's and 1's) corresponds a completely determined
operation of the machine M as a deterministic strategy in the sense
of Section 1.

By P{M,t,f} we denote the probability that a probabilistic
strategy M identifies in the limit a t-index of the function f.

By P{M,f,=k} we denote the probability that probabilistic
strategy M makes no more than k mindchanges by the function f.
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THEOREM 8.1. ([Po 75]) For any enumerated class (U,t) there
exists a probabilistic strategy M such that P{M,t,f}=1 for all feU,
and as n—x

P{M,T ,sln n+0(v1log n-loglog n)}—1l.
For a computable numbering T, a recursive probabilistic strategy M
can be constructed..

THEOREM 8.2. ([Po 75]) For any countable set ? of probabilistic
strategies there exists an enumerated class {U,t) such that for any
strategy Me®, if P{M,t,f}=1 for all feU, there is an increasing
sequence {nk} such that as k—w

P{M,tn ,=<ln nk—O(Vlog nk-loglog nk)}—ao.
k
For the class of all recursive probabilistic strategies a computable

numbering T can be constructed.

Let M,t,f be given. We consider some sufficient condition for
P{M,t,f}=1. Let us denote by £'™) the code <f(0),...,£(m)>, then the
random variable M(<f(0),...,f(m)>) can be denoted by M(f[m]). By
Pm(M,f) we denote the probability that M changes its hypothesis at
[m])¢M(f[m+1])}.

We say that strategy M is t-consistent on the function f if,

step m, i.e. P{M(f

for all m,

a) M(£™') is defined with probability 1,

b) if P{M(£™)=n}>0, then T _(j)=f(j) for all j=m.
By Borel-Cantelli lemma, M is t-consistent on the function £, then
ZPm(M,f) <o implies P{M,T,f}=1l. Thus in the case of consistent
m

strategies the fact of t-identification can be established in terms
of summing up the probabilities of mindchanges.

The upper bound 1In n is proved by means of probabilistic
counterpart of the strategy from the proof of Theorem 2.1. Essential
difficulties arise, however, not in the construction of the
strategy, but in its analysis.

Let (U,T) be an enumerated class of total functions. Take some

probability distribution {nn}, where nn>0 for all n and Zﬁn=1. Let
n
Moo be the following t-consistent probabilistic strategy.

If the set E°={n| rn(0)=f(0)} is empty, then we set Mtn(fm])
undefined with probability 1. If E is nonempty, we put Mtn(fm])=n

with probability n;/a for every nek , where 0=Z{nn|neE0}.

Let us assume now that the hypotheses Mtn(f“l) have already
fm-1]

been determined for j<m, and Mtn(f y=p. If p is "undefined”,
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*ly  undefined with probability 1. Else, Aif

then we set Mrn(f
T {m}=f{(m)} (i.e. the hypothesis p is correct also for the next
a;gument m), we set Mtn(f““)=p with probability 1. Now suppose
tp(m)#f(m).
Let us take the set of all (for the time being) appropriate
hypotheses, i.e.
E,={n| (Yi=m)T (3)=£(3)}-
If E is empty, we put Mrn(fh“) undefined with probability 1. If E
is nonempty, we put Mrn(f““)=n with probability nnla for every
neE , where G=Z{ﬂh|neEm}.
LEMMA 8.1. For all n,
L P (M, )sini.
"

n

From this it follows that for an arbitrary choice of
distribution 7, if n;>0 for all n, the strategy Mo identifies in
the limit <T-index of an arbitrary function in the class U with
probability 1.

LEMMA 8.2. Let the function feU be fixed. Then the following
events are independent:

A =M (£7)en (£, =0,1,2,.00.

It is curious that the events Ah(i.e. "at the m~th step
strategy Mo changes its mind") do not display any striking
indications of independence; nevertheless, they do satisfy the
formal independence criterion.

If we take

with the convention that 1/0=1 and ln 0=1, then by Lemma 8.1 the sum
of the probabilities of hypothesis correcting of strategy Mtn’ with
the function T, will not be greater than 1ln n+0O{loglog n). Lemma 8.2
and Chebyshev inequality allow to deduce from this that, as n—w,
P{M__.,,T ,<ln n+0(vIog n-loglog n)}—1.

It is easy to see that if the numbering T is computable, the
strategy M .. can be made recursive.

The lower bound 1ln n is based upon Lemma 8.3, below. Let {XJ}
be a sequence of independent random variables such that

p{xj=1}=-%-., p{xj=0}=1-—§—.

It can be shown that, as n—w,

[=]

n
P{ZXlen n-0(vIog n-loglog n)}—l.
1
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LEMMA 8.3. Let M be a probabilistic strategy, k and n natural
numbers with k<n, and £>0 a rational number. Then there is a set of
n functions Tlrees O such that if M identifies with probability 1
the o-number of an arbitrary function of the set, then with one of
these functions M changes its mind zk times with probability

z(l-e)P{% X =k} .

j=1
If M is recursive strategy, the set O,reee,0 can be constructed

effectively.

Let {Mx} be an enumeration of all probabilistic strategies from
countable class ®. With every pair (i,s) we associate the set of
functions of Lemma 8.3 for M=M, n=2°, k=s In 2 - VS log s, e=2"°.
Following the method of Section 4, a numbering T can be constructed
from these sets, thus proving Theorem 8.2.

For detailed proofs of lemmas see [Po 77-2].
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