
1

Version released: August 25, 2014

Introduction to Mathematical
Logic

Hyper-textbook for students

by Vilnis Detlovs, Dr. math.,
and Karlis Podnieks, Dr. math.

University of Latvia

This work is licensed under a Creative Commons License and is
copyrighted © 2000-2014 by us, Vilnis Detlovs and Karlis Podnieks.

Sections 1, 2, 3 of this book represent an extended translation of the corresponding
chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of
Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs.

Vilnis Detlovs. Memorial Page

In preparation – forever (however, since 2000, used successfully in a real logic course
for computer science students).

This hyper-textbook contains links to:
Wikipedia, the free encyclopedia;

MacTutor History of Mathematics archive
of the University of St Andrews;

MathWorld of Wolfram Research.

http://foto.lu.lv/arhiivs/1999/i_septembris/slides/45_021.html
http://www.wolfram.com/
http://mathworld.wolfram.com/
http://www.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://en.wikipedia.org/
http://podnieks.id.lv/Detlovs/
http://foto.lu.lv/arhiivs/1999/i_septembris/slides/45_021.html
http://creativecommons.org/licenses/by-nc-sa/1.0
http://www.lu.lv/
http://podnieks.id.lv/
http://creativecommons.org/licenses/by-nc-sa/1.0

2

Table of Contents
References..3
1. Introduction. What Is Logic, Really?...4

1.1. Total Formalization is Possible!..5
1.2. Predicate Languages...10
1.3. Axioms of Logic: Minimal System, Constructive System and Classical
System..26
1.4. The Flavor of Proving Directly...38
1.5. Deduction Theorems...41

2. Propositional Logic..51
2.1. Proving Formulas Containing Implication only...................................51
2.2. Proving Formulas Containing Conjunction..52
2.3. Proving Formulas Containing Disjunction...55
2.4. Formulas Containing Negation – Minimal Logic.................................58
2.5. Formulas Containing Negation – Constructive Logic..........................64
2.6. Formulas Containing Negation – Classical Logic................................66
2.7. Constructive Embedding. Glivenko's Theorem....................................69
2.8. Axiom Independence. Using Computers in Mathematical Proofs........72

3. Predicate Logic...87
3.1. Proving Formulas Containing Quantifiers and Implication only..........87
3.2. Formulas Containing Negations and a Single Quantifier.....................89
3.3. Proving Formulas Containing Conjunction and Disjunction................99
3.4. Replacement Theorems...101
3.5. Constructive Embedding...107

4. Completeness Theorems (Model Theory)..116
4.1. Interpretations and Models...116
4.2. Classical Propositional Logic − Truth Tables.....................................129
4.3. Classical Predicate Logic − Gödel's Completeness Theorem.............138
4.4. Constructive Propositional Logic – Kripke Semantics.......................157

5. Normal Forms. Resolution Method..177
5.1. Prenex Normal Form..179
5.2. Skolem Normal Form...189
5.3. Conjunctive and Disjunctive Normal Forms......................................194
5.4. Clause Form..199
5.5. Resolution Method for Propositional Formulas..................................205
5.6. Herbrand's Theorem..214
5.7. Resolution Method for Predicate Formulas..220

6. Miscellaneous...233
6.1. Negation as Contradiction or Absurdity...233

3

References

Hilbert D., Bernays P. [1934] Grundlagen der Mathematik. Vol. I, Berlin,
1934, 471 pp. (Russian translation available)

Kleene S.C. [1952] Introduction to Metamathematics. Van Nostrand, 1952
(Russian translation available)

Kleene S.C. [1967] Mathematical Logic. John Wiley & Sons, 1967 (Russian
translation available)

Mendelson E. [1997] Introduction to Mathematical Logic. Fourth Edition.
International Thomson Publishing, 1997, 440 pp. (Russian translation
available)

Podnieks K. [1997] What is Mathematics: Gödel's Theorem and Around.
1997-2012 (available online, Russian version available).

http://podnieks.id.lv/gt_rus/gram11.htm
http://podnieks.id.lv/gt.html
http://podnieks.id.lv/
http://en.wikipedia.org/wiki/Elliott_Mendelson
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kleene.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kleene.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bernays.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html

4

1. Introduction. What Is Logic, Really?

WARNING! In this book,

predicate language is used as a synonym of first order language,

formal theory – as a synonym of formal system, deductive system,

constructive logic – as a synonym of intuitionistic logic,

algorithmically solvable – as a synonym of recursively solvable,

algorithmically enumerable – as a synonym of recursively enumerable.

What is logic?

See also Factasia Logic by Roger Bishop Jones.

In a sense, logic represents the most general means of reasoning used by
people and computers.

Why are means of reasoning important? Because any body of data may
contain not only facts visible directly. For example, assume the following data:
the date of birth of some person X is January 1, 2000, and yesterday,
September 14, 2010 some person Y killed some person Z. Then, most likely, X
did not kill Z. This conclusion is not represented in our data directly, but can
be derived from it by using some means of reasoning – axioms (“background
knowledge”) and rules of inference. For example, one may use the following
statement as an axiom: “Most likely, a person of age 10 can´t kill anybody”.

There may be means of reasoning of different levels of generality, and of
different ranges of applicability. The above “killer axiom” represents the
lowest level – it is a very specific statement. But one can use laws of physics
to derive conclusions from his/her data. Theories of physics, chemistry,
biology etc. represent a more general level of means of reasoning. But can
there be means of reasoning applicable in almost every situation? This – the
most general – level of means of reasoning is usually regarded as logic.

Is logic absolute (i.e. unique, predestined) or relative (i.e. there is more than
one kind of logic)? In modern times, an absolutist position is somewhat
inconvenient – you must defend your “absolute” concept of logic against
heretics and dissidents, but very little can be done to exterminate these people.
They may freely publish their concepts on the Internet.

So let us better adopt the relativist position, and define logic(s) as any
common framework for building theories. For example, the so-called

http://www.rbjones.com/
http://www.rbjones.com/rbjpub/logic/

5

absolute geometry can be viewed as a common logic for both the Euclidean
and non-Euclidean geometry. Group axioms serve as a common logic for
theories investigating mathematical structures that are subtypes of groups.
And, if you decide to rebuild all mathematical theories on your favorite set
theory, then you can view set theory as your logic.

Can there be a common logic for the entire mathematics? To avoid the absolutist approach let
us appreciate all the existing concepts of mathematics – classical (traditional), constructivist
(intuitionist), New Foundations etc. Of course, enthusiasts of each of these concepts must
propose some specific common framework for building mathematical theories, i.e. some
specific kind of logic. And they do.

Can set theory (for example, currently, the most popular version of it – Zermelo-Fraenkel's set
theory) be viewed as a common logic for the classical (traditional) mathematics? You may
think so, if you do not wish to distinguish between the first order notion of natural numbers
(i.e. discrete mathematics) and the second order notion (i.e. "continuous" mathematics based
on set theory or a subset of it). Or, if you do not wish to investigate in parallel the classical and
the constructivist (intuitionist) versions of some theories.

1.1. Total Formalization is Possible!

Gottlob Frege (1848-1925)
Charles S. Peirce (1839-1914)
Bertrand Russell (1872-1970)
David Hilbert (1862-1943)

How far can we proceed with the mathematical rigor – with the axiomatization
of some theory? Complete elimination of intuition, i.e. full reduction of all
proofs to a list of axioms and rules of inference, is this really possible? The
work by Gottlob Frege, Charles S. Peirce, Bertrand Russell, David Hilbert and
their colleagues showed how this can be achieved even with the most
complicated mathematical theories. All mathematical theories were indeed
reduced to systems of axioms and rules of inference without any admixture of
sophisticated human skills, intuitions etc. Today, the logical techniques
developed by these brilliant people allow ultimate axiomatization of any
theory that is based on a stable, self-consistent system of principles (i.e. of any
mathematical theory).

What do they look like – such "100% rigorous" theories? They are called
formal theories (the terms “formal systems” and “deductive systems” also are
used) emphasizing that no step of reasoning can be done without a reference to
an exactly formulated list of axioms and rules of inference. Even the most
"self-evident" logical principles (like, "if A implies B, and B implies C, then A
implies C") must be either formulated in the list of axioms and rules explicitly,

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://math.boisestate.edu/~holmes/holmes/nf.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Development_group_theory.html

6

or derived from it.

What is, in fact, a mathematical theory? It is an "engine" generating
theorems. Then, a formal theory must be an "engine" generating theorems
without involving of human skills, intuitions etc., i.e. by means of a precisely
defined algorithm, or a computer program.

The first distinctive feature of a formal theory is a precisely defined
("formal") language used to express its propositions. "Precisely defined"
means here that there is an algorithm allowing to determine, is a given
character string a correct proposition, or not.

The second distinctive feature of a formal theory is a precisely defined
("formal") notion of proof. Each proof proves some proposition, that is called
(after being proved) a theorem. Thus, theorems are a subset of propositions.

It may seem surprising to a mathematician, but the most general exact
definition of the "formal proof" involves neither axioms, nor inference rules.
Neither "self-evident" axioms, nor "plausible" rules of inference are distinctive
features of the "formality". Speaking strictly, "self-evident" is synonymous to
"accepted without argumentation". Hence, axioms and/or rules of inference
may be "good, or bad", "true, or false", and so may be the theorems obtained
by means of them. The only definitely verifiable thing is here the fact that
some theorem has been, indeed, proved by using some set of axioms, and by
means of some set of inference rules.

Thus, the second distinctive feature of "formality" is the possibility to verify
the correctness of proofs mechanically, i.e. without involving of human
skills, intuitions etc. This can be best formulated by using the (since 1936 –
precisely defined) notion of algorithm (a "mechanically applicable
computation procedure"):

A theory T is called a formal theory, if and only if there is an algorithm
allowing to verify, is a given text a correct proof via principles of T, or not.
If somebody is going to publish a "mathematical text" calling it "proof of a
theorem in theory T", then we must be able to verify it mechanically whether
the text in question is really a correct proof according to the standards of
proving accepted in theory T. Thus, in a formal theory, the standards of
reasoning should be defined precisely enough to enable verification of proofs
by means of a precisely defined algorithm, or a computer program. (Note that
we are discussing here verification of ready proofs, and not the much more
difficult problem – is some proposition provable in T or not, see Exercise 1.1.5
below and the text after it).

Axioms and rules of inference represent only one (but the most popular!) of
the possible techniques of formalization.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm

7

As an unpractical example of a formal theory let us consider the game of
chess, let us call this "theory" CHESS. Let 's define as propositions of CHESS
all the possible positions – i.e. allocations of some of the pieces (kings
included) on a chessboard – plus the flag: "whites to move" or "blacks to
move". Thus, the set of all the possible positions represents the language of
CHESS. The only axiom of CHESS is the initial position, and the rules of
inference – the rules of the game. Rules allow passing from some propositions
of CHESS to some other ones. Starting with the axiom and iterating moves
allowed by the rules we obtain theorems of CHESS. Thus, theorems of
CHESS are defined as all the possible positions (i.e. propositions of CHESS)
that can be obtained from the initial position (the axiom of CHESS) by moving
pieces according to the rules of the game (i.e. by using the inference rules of
CHESS).

Exercise 1.1.1 (optional). Could you provide an unprovable proposition of
CHESS?

Why is CHESS called a formal theory? When somebody offers a
"mathematical text" P as a proof of a theorem A in CHESS, this means that P is
a record of some chess-game stopped in the position A. Checking the
correctness of such "proofs" is a boring, but an easy task. The rules of the
game are formulated precisely enough – we could write a computer program
that will execute the task.

Exercise 1.1.2 (optional). Try estimating the size of this program in some
programming language.

Our second example of a formal theory is only a bit more serious. It was
proposed by Paul Lorenzen, so let us call this theory L. Propositions of L are
all the possible "words" made of letters a, b, for example: a, b, aa, aba, baab.
Thus, the set of all these "words" is the language of L. The only axiom of L is
the word a, and L has two rules of inference: X ⊢Xb, and X ⊢ aXa. This
means that (in L) from a proposition X we can infer immediately the
propositions Xb and aXa. For example, the proposition aababb is a theorem of
L:

a ⊢ab ⊢aaba ⊢aabab ⊢aababb
rule1 rule2 rule1 rule1

This fact is expressed usually as L ⊢aababb ("L proves aababb", being a⊢
"fallen T").

Exercise 1.1.3. a) Verify that L is a formal theory. (Hint: describe an algorithm
allowing to determine, is a sequence of propositions of L a correct proof, or
not.)

b) (P. Lorenzen) Verify the following property of theorems of L: for any X,

http://en.wikipedia.org/wiki/Paul_Lorenzen
http://www.conservativebookstore.com/chess/

8

 if L ⊢X, then L ⊢aaX.

One of the most important properties of formal theories is given in the
following

Exercise 1.1.4. Show that the set of all theorems of a formal theory is
algorithmically enumerable, i.e. show that, for any formal theory T, a
algorithm AT can be defined that prints out on an (endless) paper tape all

theorems of this theory (and nothing else). (Hint: we will call T a formal
theory, if and only if we can present an algorithm for checking texts as correct
proofs via principles of reasoning of T. Thus, assume, you have 4 functions:
GenerateFirstText() – returns Text, GenerateNextText() – returns Text,
IsCorrectProof(Text) – returns true or false, ExtractTheorem(Text) – returns
Text, and you must implement the functions GenerateFirstTheorem() – returns
Text, GenerateNextTheorem() – returns Text).

Unfortunately, such algorithms and programs cannot solve the problem
that the mathematicians are mainly interested in: is a given proposition A
provable in T or not? When, executing the algorithm AT, we see our

proposition A printed out, this means that A is provable in T. Still, in general,
until that moment we cannot know in advance whether A will be printed out
some time later or it will not be printed at all.

Note. According to the official terminology, algorithmically enumerable sets
are called "recursively enumerable sets", in some texts – also "listable sets".

Exercise 1.1.5. a) Describe an algorithm determining whether a proposition of
L is a theorem or not.

b) (optional) Could you imagine such an algorithm for CHESS? Of course,
you can, yet... Thus you see that even, having a relatively simple algorithm for
checking the correctness of proofs, the problem of provability can be a very
complicated one.

T is called a solvable theory (more precisely – algorithmically solvable
theory), if and only if there is an algorithm allowing to check whether some
proposition is provable by using the principles of T or not. In the Exercise
1.1.5a you proved that L is a solvable theory. Still, in the Exercise 1.1.5b you
established that it is hard to state whether CHESS is a "feasibly solvable"
theory or not. Determining the provability of propositions is a much more
complicated task than checking the correctness of ready proofs. It can be
proved that most mathematical theories are unsolvable, the elementary (first
order) arithmetic of natural numbers and set theory included (see, for example,
Mendelson [1997], or Podnieks [1997], Section 6.3). I.e. there is no algorithm
allowing to determine, is some arithmetical proposition provable from the
axioms of arithmetic, or not.

9

Note. According to the official terminology, algorithmically solvable sets are
called "recursive sets".

Normally, mathematical theories contain the negation symbol not. In such
theories solving the problem stated in a proposition A means proving either A,
or proving notA ("disproving A", "refuting A"). We can try to solve the
problem by using the enumeration algorithm of the Exercise 1.1.4: let us wait
until A or notA is printed. If A and notA will be printed both, this will mean
that T is an inconsistent theory (i.e. using principles of T one can prove some
proposition and its negation). In general, we have here 4 possibilities:

a) A will be printed, but notA will not (then the problem A has a positive
solution),

b) notA will be printed, but A will not (then the problem A has a negative
solution),

c) A and notA will be printed both (then T is an inconsistent theory),

d) neither A, nor notA will be printed.

In the case d) we may be waiting forever, yet nothing interesting will happen:
using the principles of T one can neither prove nor disprove the proposition A,
and for this reason such a theory is called an incomplete theory. The famous
incompleteness theorem proved by Kurt Gödel in 1930 says that most
mathematical theories are either inconsistent or incomplete (see
Mendelson [1997] or Podnieks [1997], Section 6.1).

Exercise 1.1.6. Show that any (simultaneously) consistent and complete
formal theory is solvable. (Hint: use the algorithm of the Exercise 1.1.4, i.e.
assume that you have the functions GenerateFirstTheorem() − returns Text,
GenerateNextTheorem() − returns Text, and implement the function
IsProvable(Text) – returns true or false). Where the consistency and
completeness come in?

Exercise 1.1.7 (optional). a) Verify that "fully axiomatic theories" are formal
theories in the sense of the above general definition. (Hint: assume, that you
have the following functions: GenerateFirstText() − returns Text,
GenerateNextText() − returns Text, IsPropositon(Text) − returns true or false,
IsAxiom(Proposition) − returns true or false, there is a finite list of inference
rule names: {R1, ..., Rn}, function Apply(RuleName, ListOfPropositions) −

returns Proposition or false, and you must implement the functions
IsCorrectProof(ListOfPropositions) − returns true or false,
ExtractTheorem(Proof) − returns Proposition).

b) (for smart students) What, if, instead of {R1, ..., Rn}, we would have an

infinite list of inference rules, i.e. functions GenerateFirstRule(),

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Godel.html

10

GenerateNextRule() returning RuleName?

1.2. Predicate Languages

History

For a short overview of the history, see Quantification.

See also:

Aristotle (384-322 BC) – in a sense, the "first logician", "... was not primarily a mathematician
but made important contributions by systematizing deductive logic." (according to MacTutor
History of Mathematics archive).

Gottlob Frege (1848-1925) – "In 1879 Frege published his first major work Begriffsschrift,
eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (Conceptual
notation, a formal language modelled on that of arithmetic, for pure thought). A.George and R
Heck write: ... In effect, it constitutes perhaps the greatest single contribution to logic ever
made and it was, in any event, the most important advance since Aristotle. ... In this work
Frege presented for the first time what we would recognise today as a logical system with
negation, implication, universal quantification, essentially the idea of truth tables etc."
(according to MacTutor History of Mathematics archive).

Charles Sanders Peirce (1839-1914): "... He was also interested in the Four Colour Problem
and problems of knots and linkages... He then extended his father's work on associative
algebras and worked on mathematical logic and set theory. Except for courses on logic he gave
at Johns Hopkins University, between 1879 and 1884, he never held an academic post."
(according to MacTutor History of Mathematics archive).

Hilary Putnam. Peirce the Logician. Historia Mathematica, Vol. 9, 1982, pp. 290-301 (an
online excerpt available, published by John F. Sowa).

Richard Beatty. Peirce's development of quantifiers and of predicate logic. Notre Dame J.
Formal Logic, Vol. 10, N 1 (1969), pp. 64-76.

Geraldine Brady. From Peirce to Skolem. A Neglected Chapter in the History of Logic.
Elsevier Science: North-Holland, 2000, 2000, 625 pp. (online overview at
http://www.elsevier.com/wps/find/bookdescription.cws_home/621535/description#description
).

When trying to formalize some piece of our (until now – informal) knowledge,
how should we proceed? We have an informal vision of some domain
consisting of “objects”. When speaking about it, we are uttering various
propositions, and some of these propositions are regarded as “true” statements
about the domain.

Thus, our first formalization task should be defining of some formal language,
allowing to put all our propositions about the domain in a uniform and precise

http://www.elsevier.com/wps/find/bookdescription.cws_home/621535/description#description
http://people.cs.uchicago.edu/~brady/
http://www.jfsowa.com/pubs/index.htm
http://www.jfsowa.com/peirce/putnam.htm
http://www.fas.harvard.edu/~phildept/putnam.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
http://en.wikipedia.org/wiki/Quantification

11

way.

After this, we can start considering propositions that we are regarding as
“true” statements about the domain. There may be an infinity of such
statements, hence, we can't put down all of them, so we must organize them
somehow. Some minimum of the statements we could simply declare as
axioms, the other ones we could try to derive from the axioms by using some
rules of inference.

As the result, we could obtain a formal theory (in the sense of the previous
Section).

In mathematics and computer science, the most common approach to
formalization is by using of the so-called predicate languages, first
introduced by G. Frege and C. S. Peirce.

(In many textbooks, they are called first order languages, see below the warning about
second order languages.)

Usually, linguists analyze the sentence "John loves Britney" as follows: John –
subject, loves – predicate, Britney – object. The main idea of predicate
languages is as follows: instead, let us write loves(John, Britney), where
loves(x, y) is a two-argument predicate, and John, and Britney both are objects.
Following this way, we could write =(x, y) instead of x=y. This approach –
reducing of the human language sentences to variables, constants, functions,
predicates and quantifiers (see below), appears to be flexible enough, and it is
much more uniform when compared to the variety of constructs used in the
natural human languages. A unified approach is much easier to use for
communication with computers.

Another example: "Britney works for BMI as a programmer". In a predicate language, we
must introduce a 3-argument predicate "x works for y as z", or works(x, y, z). Then, we may
put the above fact as: works(Britney, BMI, Programmer).

Language Primitives

Thus, the informal vision behind the notion of predicate languages is centered
on the so-called "domain" – a (non-empty?) collection of "objects", their
"properties" and the "relations" between them, that we wish to "describe" (or
"define"?) by using the language. This vision serves as a guide in defining the
language precisely, and further – when selecting axioms and rules of inference.

Object Variables

Thus, the first kind of language elements we will need are object variables
(sometimes called also individual variables, or simply, variables). We need an
unlimited number of them):

12

x, y, z, x1, y1, z1, ...

The above-mentioned "domain" is the intended "range" of all these variables.

Examples. 1) Building a language that should describe the "domain of people", we must start
by introducing "variables for people": x denotes an arbitrary person.

2) Building the language of the so-called first order arithmetic, we are thinking about "all
natural numbers" as the range of variables: 0, 1, 2, 3, 4, ... (x denotes an arbitrary natural
number).

3) Building the language of set theory, we think about "all sets" as the range of variables: x
denotes an arbitrary set.

“Domain of people” represented as UML class diagram

Note. Since our screens and printers allow only a limited number of pixels per
inch, in principle, we should generate variable names by using a finite set of
characters, for example, by using a single letter x:

x, xx, xxx, xxxx, xxxxx, ...

Object Constants

The next possibility we may wish to have in our language are the so-called
object constants (sometimes called individual constants, constant letters, or
simply, constants) – names or symbols denoting some specific "objects" of our
"domain".

Examples. 1) In our "language for people" we may introduce constants denoting particular
people: John, Britney etc.

2) In the language of first order arithmetic, we may wish to introduce two constants – 0 and 1
to denote "zero" and "one" – two natural numbers having specific properties.

http://en.wikipedia.org/wiki/Class_diagram

13

3) In the language of set theory, we could introduce a constant denoting the empty set, but
there is a way to do without it as well (for details, Podnieks [1997], Section 2.3).

Function Constants

In some languages we may need also the so-called function constants
(sometimes called function letters) – names or symbols denoting specific
functions, i.e. mappings between "objects" of our "domain", or operations on
these objects.

Examples. 1) In our "language for people" we will not use function constants.

2) In the language of first order arithmetic, we will introduce only two function constants "+"
and "*" denoting the usual addition and multiplication of natural numbers, i.e. the two-
argument functions x+y and x*y.

3) In the language of set theory, we could introduce function constants denoting set
intersections x∩ y , unions x∪ y , set differences x–y, power sets P(x) etc., but there is
a way to do without these symbols as well (for details, Podnieks [1997], Section 2.3).

In mathematics, normally, we are writing f(x, y) to denote the value of the
function f for the argument values x, y. This (the so-called "prefix" notation) is
a uniform way suitable for functions having any number of arguments: f(x),
g(x, y), h(x, y, z) etc. In our everyday mathematical practice some of the two-
argument functions (in fact, operations) are represented by using the more
convenient "infix" notation (x+y, x*y instead of the uniform +(x, y), *(x, y),
etc.).

Note. In a sense, object constants can be viewed as a special case of function
constants – an object constant is a “zero-argument function”.

Predicate Constants

The last (but the most important!) kind of primitives we need in our language
are the so-called predicate constants (sometimes called predicate letters) –
names or symbols denoting specific properties (of) or relations between
"objects" of our "domain".

Note. Using "predicate" as the unifying term for "property" and "relation" may
seem somewhat unusual. But some kind of such unifying term is necessary.
Properties are, in fact, unary (i.e. one-argument) "predicates", for example, "x
is red". Relations are, two- or more-argument "predicates", for example, "x is
better than y", or "x sends y to z".

Examples. 1) In our "language for people" we will use the following predicate constants (see
the class diagram above):

Male(x) − means "x is a male";

Female(x) − means "x is a female";

Mother(x, y) − means "x is mother of y";

14

Father(x, y) − means "x is father of y";

Married(x, y) − means "x and y are married, y being wife";

x=y − means "x an y are the same person".

The first two constants represent, in fact, "properties" (or, "classes") of our objects. The other
4 constans represents "relations" between our objects. The term "predicate" is used to include
both versions. We do not introduce Person(x) as a predicate because our domains consists of
persons only.

2) It may seem strange to non-mathematicians, yet the most popular relation of objects used in
most mathematical theories, is equality (or identity). Still, this is not strange for
mathematicians. We can select an object x in our "domain" by using a very specific
combination of properties and relations of it, and then – select another object y – by using a
different combination. And after this (sometimes it may take many years to do) we prove that
x=y, i.e. that these two different combinations of properties and relations are possessed by a
single object. Many of discoveries in mathematics could be reduced to this form.

In the language of first order arithmetic, equality "=" is the only necessary predicate constant.
Other"basic" relations must be reduced to equality. For example, the relation x<y for natural
numbers x, y can be reduced to equality by using the addition function and the formula

z(x+z+1=y).∃
3) In the language of set theory a specific predicate constant "in" denotes the set membership
relation: "x in y" means "x is a member of y". The equality predicate x=y also will be used – it
means "the sets x an y possess the same members".

The uniform way of representation suitable for predicates having any number
of arguments is again the "prefix" notation: p(x), q(x, y), r(x, y, z) etc. In the
real mathematical practice, some of the two-argument predicates are
represented by using the "infix" notation (for example, x=y instead of the
uniform =(x, y), etc.).

Zero-argument predicate constants? In an interpretation, each such predicate must become
either "true", or "false". Hence, paradoxically, zero-argument predicate constants behave like
"propositional variables" – they represent assertions that do not possess a meaning, but possess
a "truth value".

Summary of Language Primitives

Thus, the specification of a predicate language includes the following
primitives:

1) A countable set of object variable names (you may generate these names,
for example, by using a single letter "x": x, xx, xxx, xxxx, ...).

2) An empty, finite, or countable set of object constants.

3) An empty, finite, or countable set of function constants. To each function
constant a fixed argument number must be assigned.

4) A finite, or countable set of predicate constants. To each predicate constant a
fixed argument number must be assigned.

15

Different sets of primitives yield different predicate languages.

Examples. 1) Our "language for people" is based on: a) object variables x, y, z, ...; b) object
constants: John, Britney, ...; c) function constants: none; d) predicate constants: Male(x),
Female(x), Mother(x, y), Father(x, y), Married(x, y), x=y.

2) The language of first order arithmetic is based on: a) object variables x, y, z, ...; b) object
constants: 0, 1; c) function constants: x+y, x*y; d) predicate constant: x=y.

3) The language of set theory is based on: a) object variables x, y, z, ...; b) object constants:
none; c) function constants: none; d) predicate constants: x in y, x=y.

The remaining part of the language definition is common for all predicate
languages.

Terms and formulas

By using the language primitives, we can build terms, atomic formulas and
(compound) formulas.

Terms are expressions used to denote objects and functions:

a) Object variables and object constants (if any), are terms.

b) If f is a k-argument function constant, and t1, ..., tk are terms, then the string

f(t1, ..., tk) is a term.

c) There are no other terms.

Examples. 1) In our "language for people" only variables x, y, z, ..., and object constants
John, Britney, ... are terms.

2) In the language of first order arithmetic, for addition and multiplication the "infix" notation
is used: if t1, t2 are terms, then (t1+t2) and (t1*t2) are terms. Of course, the object constants 0, 1

and variables x, y, z, ... are terms. Examples of more complicated terms: (x+y), ((1+1)*(1+1)),
(((1+1)*x)+1).

3) In the language of set theory, variables x, y, z, ... are the only kind of terms.

If a term does not contain variable names, then it denotes an "object" of our
"domain" (for example, ((1+1)+1) denotes a specific natural number – the
number 3). If a term contains variables, then it denotes a function. For
example, (((x*x)+(y*y))+1) denotes the function x2+y2+1. (Warning! Note
that the language of first order arithmetic does not contain a function constant
denoting the exponentiation xy, thus, for example, we must write x*x instead
of x2.)

Of course, the key element of our efforts in describing "objects", their
properties and relations, will be assertions, for example, the commutative law
in arithmetic: ((x+y)=(y+x)). In predicate languages, assertions are called
formulas (or, sometimes, well formed formulas – wff-s, or sentences).

Atomic formulas (in some other textbooks: elementary formulas, prime

16

formulas) are defined as follows:

a) If p is a k-argument predicate constant, and t1, ..., tk are terms, then the

string p(t1, ..., tk) is an atomic formula.

b) There are no other atomic formulas.

For the equality symbol, the "infix" notation is used: if t1, t2 are terms, then

(t1=t2) is an atomic formula.

Examples. 1) In our "language for people", the following are examples of atomic formulas:
Male(x), Female(Britney), Male(Britney) (not all formulas that are well formed, must be
true!), Father(x, Britney), Mother(Britney, John), Married(x, y).

2) Summary of the atomic formulas of the language of first order arithmetic: a) constants 0
and 1, and all variables are terms; b) if t1 and t2 are terms, then (t1+t2) and (t1*t2) also are

terms; c) atomic formulas are built only as (t1=t2), where t1 and t2 are terms.

3) In the language of set theory, there are only two kinds of atomic formulas: x∈ y , and
x=y (where x and y are arbitrary variables).

In the language of first order arithmetic, even by using the only available
predicate constant "=" atomic formulas can express a lot of clever things:

((x+0)=x); ((x+y)=(y+x)); ((x+(y+z))=((x+y)+z));
((x*0)=0); ((x*1)=x); ((x*y)=(y*x)); ((x*(y*z))=((x*y)*z));

(((x+y)*z)=((x*z)+(y*z))).

Exercise 1.2.1. As the next step, translate the following assertions into the
language of first order arithmetic (do not use abbreviations!): 2*2=4, 2*2=5,
(x+y)2 = x2+2xy+y2.

(Compound) Formulas

The following definition is common for all predicate languages. Each
language is specific only by its set of language primitives.

To write more complicated assertions, we will need compound formulas, built
of atomic formulas by using a fixed set of propositional connectives and
quantifiers (an invention due to G. Frege and C. S. Peirce). In this book, we
will use the following set:

Implication symbol: B→C means "if B, then C", or "B implies C", or "C
follows from B".

Conjunction symbol, B∧C means "B and C".

Disjunction symbol, B∨C means "B, or C, or both", i.e. the so-called non-
exclusive "or".

Negation symbol, ¬B means "not B.

17

Universal quantifier, ∀x B means "for all x: B".

Existential quantifier, ∃ x B means "there is x such that B".

The widely used equivalence connective ↔ can be derived in the following
way: B↔C stands for ((B →C)∧(C → B)) . If you like using the so-called
exclusive "or" (“B, or C, but not both”), you could define B xor C as
¬(B ↔C) .

Warning! For programmers, conjunction, disjunction and negation are
familiar "logical operations" – unlike the implication that is not used in
"normal" programming languages. In programming, the so-called IF-
statements, when compared to logic, mean a different thing: in the statement
IF x=y THEN z:=17, the condition, x=y is, indeed, a formula, but the
"consequence" z:=17 is not a formula – it is an executable statement. In logic,
in B→C ("if B, then C"), B and C both are formulas.

We define the notion of formula of our predicate language as follows:

a) Atomic formulas are formulas.

b) If B and C are formulas, then (B → C) ,(B∧C) ,(B∨C) , and (¬B)
also are formulas (B and C are called sub-formulas).

c) If B is a formula, and x is an object variable, then (xB) and (xB) also are∀ ∃
formulas (B is called a sub-formula).

d) (If you like so,) there are no other formulas.

See also:

Notes on Logic Notation on the Web by Peter Suber.

Knowledge Representation by Means of Predicate Languages

Examples. 1) In our "language for people", the following are examples of compound
formulas:

((Father (x , y))∨(Mother (x , y))) "x is a parent of y"

(∀x(∀y ((Father (x , y))→ (Male (x)))))
"fathers are males" – could serve as an
axiom!

(∀x(∀y ((Mother (x , y))→(¬ Male (x)))))
"mothers are not males" – could be
derived from the axioms!

(∀x(∃ y (Mother (y , x))))
"each x has some y as a mother" – could
serve as an axiom!

(∀x(Male (x)∨Female(x)))
What does it mean? It could serve as an
axiom!

http://www.earlham.edu/~peters/hometoc.htm
http://www.earlham.edu/~peters/writing/logicsym.htm

18

∀x(∀y (∀z((Mother (x , z)∧Mother (y , z))→(x= y))))

∀x(∀y (∀z((Father (x , z)∧Father (y , z))→(x=y))))

What does it mean? It could serve as an axiom!

2) Some simple examples of compound formulas in the language of first order arithmetic:

Warning! Speaking strictly, predicate symbols "<", ">", "≤", "≥", "≠" etc. do not belong to
the language of first order arithmetic.

(u(x=(u+u))) ∃ "x is an even number"

(u(((x+u)+1)=y))∃ "x is less than y", or, x<y

(0< y∧∃ u(x=(y∗u)))
"x is divisible by y", speaking strictly,
x<y must be replaced by u(((x+u)∃
+1)=y)).

((1< x)∧(¬(∃ y(∃ z (((y< x)∧(z< x))∧(x=(y∗z)))))))

formula prime(x), "x is a prime number", speaking strictly, the 3 subformulas of the kind
x<y should be replaced by their full version of the kind u(((x+u)+1)=y)).∃

(∀w(∃ x ((w< x)∧(prime(x)))))

"There are infinitely many prime
numbers" (one of the first mathematical
theorems, VI century BC), speaking
strictly, w<x must be replaced by

u(((w+u)+1)=x)), and ∃ prime(x) must be
replaced by the above formula.

∀ x∀ y(0< y →∃ z∃ u(u< y∧x=y∗z+ u)) What does it mean?

3) Some simple examples of compound formulas in the language of set theory:

(∃ y (y∈x)) "x is a non-empty set"

(∀ z ((z∈x)→(z∈y))) "x is a subset of y", or x≤y

((∀ z ((z∈x)↔ (z∈ y)))→(x=y))
What does it mean? Will serve as an
axiom!

(∀ y (∀ z ((y ∈x)∧(z∈x))→ y=z)) "x contains zero or one member"

(∀ u((u∈x)↔((u∈y)∨(u∈ z)))) "x is union of y and z", or x=yUz

Of course, having a predicate language is not enough for expressing all of
our knowledge formally, i.e. for communicating it to computers. Computers do
not know in advance, for example, how to handle sexes. We must tell them

19

how to handle these notions by introducing axioms. Thus, the above-
mentioned formulas like as

(∀x (Male (x)∨Female (x))) , or
(∀ x (∀ y ((Father (x , y))→(Male (x)))))

will be absolutely necessary as axioms. As we will see later,

 language + axioms + logic = theory,

i.e. in fact, to formulate all of our knowledge formally, we must create
theories.

Exercise 1.2.2. Translate the following assertions into our "language for
people":

"x is child of y";
"x is grand-father of y";

"x is brother of x”; “x is sister of y";
“x is cousin of y”; “x is nephew of y”; “x is uncle of y”.

Exercise 1.2.3. Translate the following assertions into the language of first
order arithmetic:

"x and y do not have common divisors" (note: 1 is not a divisor!);
" √2 is not a rational number".

(Warning! ¬∃ p∃ q(√2=
p
q

) , and ∃ x(x∗x=2) are not correct solutions. Why?)

Exercise 1.2.3A. Imagine an alternative language of arithmetic that does not
contain function constants + and *, but contains predicates sum(x, y, z) and
prod(x, y, z) instead (meaning x+y=z and x*y=z correspondingly). Translate
the following assertions into this language:

x+0=x ; x+ y= y+x ; x+(y+1)=(x+ y)+1 ; (x+ y)∗z=(x∗z)+(y∗z) .

Warning! Some typical errors!

1a) Trying to say “for all x>2, F(x)”, do not write ∀ x(x>2∧F (x)) . This
formula would imply that ∀ x(x>2) – a silly conclusion! Indeed, how about
x=1? The correct version: ∀ x(x>2→F (x)) .

1b) Trying to say “there is x>2, such that F(x)”, do not write
∃ x (x>2→F (x)) . The formula under the quantifier is true for x=1, hence,

the entire formula cannot guarantee that “there is x>2, such that F(x)”. The
correct version: ∃(x>2∧F (x)) .

2) Some computer programmers do not like using the implication connective
→, trying to write formulas as conditions of IF- or WHILE-statements, i.e. by
using conjunction, disjunction and negation only. This "approach" makes most
logical tasks much harder than they really are! More than that − some people

http://en.wikipedia.org/wiki/Uncle
http://en.wikipedia.org/wiki/Nephew_and_niece
http://en.wikipedia.org/wiki/Cousin

20

try saying, for example, "Persons are not Departments", as follows:
∀x (Person(x)∧¬ Department(x)) − instead of the correct version:

∀x (Person(x)→¬Department (x)) .

3) Do not use abbreviations at this early stage of your studies. For example, do
not write (x>2) yF(x, y)∀ ∃ to say that "for all x that are >2, there is y such that
F(x, y)". Instead, you should write x(x>2→ yF(x, y))∀ ∃ . Similarly, instead of
(a>2) bG(a, b)∃ ∃ , you should write ∃ a(a> 2∧∃ b G(a , b)) .

To say "there is one and only one x such that F(x)", you shouldn't write !x∃
F(x) (at this stage of your studies), you should write, instead,

((∃ xF (x))∧(∀ x1(∀ x2 ((F (x1)∧F (x2))→(x1=x2))))) .

4) Predicates cannot be substituted for object variables. For example, having 3
predicate constants working(x, y), Person(x), Department(y), do not try writing
working(Person(x), Department(y)) to say that "only persons are working, and
only in departments". The correct verssion:

 ∀ x∀ y (working (x , y)→ Person(x)∧Department (y)) .

5) Trying to say “each person is working in some department”, do not write

∀x∃ y (Person(x)∧Department(y)→ working(x , y)) .

 The correct version:

 ∀x (Person(x)→∃ y (Department (y)∧working (x , y))) .

What is the difference?

Exercise 1.2.4. Try inventing your own predicate language. Prepare and do
your own Exercise 1.2.2 for it.

Exercise 1.2.5 (optional). In computer science, currently, one the most popular
means of knowledge representation are the so-called UML class diagrams
and OCL (UML − Unified Modeling Language, OCL − Object Constraint
Language). The above diagram representing our “domain of people” is an
example. In our “language of people”, put down as many axioms of the
domain you can notice in the diagram. For example, “every person is either
male, or female”, “all fathers are males”, “every person has exactly one
mother”, “a person can marry no more than one person” etc.

Many-sorted Languages

Maybe, you have to describe two or more kinds of "objects" that you do not wish to reduce to
"sub-kinds" of one kind of "objects" (for example, integer numbers and character strings).
Then you may need introducing for each of your "domains" a separate kind ("sort") of object
variables. In this way you arrive to the so-called many-sorted predicate languages. In such
languages: a) each object constant must be assigned to some sort; b) for each function
constant, each argument must be assigned to some some sort, and function values must be

http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language

21

assigned to a (single) sort; c) for each predicate constant, each argument must be assigned to
some sort. In many-sorted predicate languages, the term and atomic formula definitons are
somewhat more complicated: building of the term f(t1, ..., tk) or the formula p(t1, ..., tk) is

allowed only, if the sort of the term ti values coincides with the sort of the i-th argument of f or

p respectively. And the "meaning" of quantifiers depends on the sort of the variable used with
them. For example, x means "for all values of x from the domain of the sort of x".∀
Theoretically, many-sorted languages can be reduced to one-sorted languages by introduding
the corresponding predicates Sorti(x) ("the value of x belongs to the sort i"). Still, in

applications of logic (for example, in computer science) the many-sorted approach is usually
more natural and more convenient. (See Chapter 10. Many-Sorted First Order Logic, by Jean
Gallier.)

Warning about second order languages!

In our definition of predicate languages only the following kinds of primitives were used:
object variables, object constants, function constants and predicate constants. You may ask:
how about function variables and predicate variables? For, you may wish to denote by r "an
arbitrary property" of your "objects". Then, r(x) would mean "x possess the property r", and
you would be able to say something about "all properties", for example,

r x y(x=y→(r(x)∀∀∀ ↔r(y)). In this way you would have arrived at a second order language!
In such languages, function and predicate variables are allowed. But properties lead to sets of
objects, for example, {x | r(x)} would mean the set of all objects that possess the property r.
But, why should we stop at the properties of objects? How about "properties of sets of objects"
etc.? As it was detected long ago, all kinds of sets can be fully treated only in set theory!
Thus, instead of building your own second order language, you should better try applying your
favorite ("first order") set theory. An unpleasant consequence: the existence of the (much less
significant) notion of second order languages forces many people to call predicate languages
"first order languages" − to emphasize that, in these languages, the only kind of variables
allowed are object variables.

On the other hand, when trying to implement realistic formal reasoning software, then using
of some second order constructs is, as a rule, more efficient than implementing of a pure first
order reasoning. See, for example, Notices of the AMS, Special Issue on Formal Proof, Vol. 55,
N 11, 2008 (available online).

For details, see: Second-order-logic. About second order arithmetic see Reverse
Mathematics. About an almost (but not 100%) successful attempt to create a set theory "as
simple as logic" (by Georg Cantor and Gottlob Frege) – see Podnieks [1997], Section 2.2.

Omitting Parentheses

Our formal definitions of terms and formulas lead to expressions containing
many parentheses. Let us remind, for example, our formula expressing that "x
is a prime number":

((1< x)∧(¬(∃ y (∃ z (((y< x)∧(z< x))∧(x=(y∗z))))))) .

Such formulas are an easy reading for computers, yet inconvenient for human
reading (and even more inconvenient – for putting them correctly). In the

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Cantor.html
http://en.wikipedia.org/wiki/Reverse_Mathematics
http://en.wikipedia.org/wiki/Reverse_Mathematics
http://en.wikipedia.org/wiki/Second-order-logic
http://www.ams.org/notices/200811
http://www.cis.upenn.edu/~jean/home.html
http://www.cis.upenn.edu/~jean/home.html

22

usual mathematical practice (and in programming languages) we are allowed
to improve the look of our formulas by omitting some of the parentheses −
according to (some of) the following rules:

a) Omit the outermost parentheses, for example, we may write A→(B→C)
instead of the formally correct (A→(B→C)). In this way we may improve the
final look of our formulas. Still, if we wish to use such formulas as parts of
more complicated formulas, we must restore the outermost parentheses, for
example: (A→(B→C))→D.

b) We may write, for example, simply:

x+ y+ z+ u , x∗y∗z∗u , A∧B∧C∧D , A∨B∨C∨D ,∃ x∀ y∃ z∀ u F

instead of the more formal

((x+y)+z)+u, ((x*y)*z)*u, ((A∧B)∧C)∧D ,((A∨B)∨C)∨D ,
x(y(z(u(F)))).∃ ∀ ∃ ∀

In this way we can simplify the above expression "x is a prime number" as
follows:

(1< x)∧(¬(∃ y∃ z ((y< x)∧(z< x)∧(x=(y∗z))))) .

c) We can apply the so-called priority rules. For example, the priority rank of
multiplications is supposed to be higher than the priority rank of additions.
This rule allows writing x+y*z instead of the more formal x+(y*z) − because
of its higher priority rank, multiplication must be "performed first". The most
popular priority rules are the following:

c1) The priority rank of function constants is higher than the priority rank of
predicate constants. This allows, for example, writing x*y = y*x instead of
(x*y)=(y*x), or x∈ y∪z − instead of x∈(y∪ z) .

c2) The priority rank of predicate constants is higher than the priority rank of
propositional connectives and quantifiers. This allows, for example, writing

y< x∧z< x instead of (y< x)∧(z< x) .

c3) The priority rank of quantifiers is higher than the priority rank of
propositional connectives. This allows, for example, writing
∃ x F∧∀ yG instead of (∃ x (F))∧(∀ y (G)) , or writing ¬∃ x F

instead of ¬(∃ x (F)) .

c4) The priority rank of negations is higher than the priority rank of
conjunctions and disjunctions. This allows, for example, writing
¬A∧¬B instead of (¬ A)∧(¬ B) .

c5) The priority rank of conjunctions and disjunctions is higher than the
priority rank of implications. This allows, for example, writing A → A∨B
instead of A →(A∨B) .

23

In the usual mathematical practice some additional priority rules are used, but
some of them are not allowed in the common programming languages. To
avoid confusions do not use too many priority rules simultaneously!

According to the above priority rules, we can simplify the above expression "x
is a prime number" obtaining a form that is much easier for human reading
(but is somewhat complicated for computers to process it):

1< x∧¬∃ y∃ z (y< x∧z< x∧x= y∗z) .

As you see, all the above rules are mere abbreviations. In principle, you could
use any other set of abbreviation rules accepted by your audience. If
computers would do logic themselves, they would not need such rules at all
(except, maybe, for displaying some of their results to humans, but why?).

Exercise 1.2.6. "Translate" the following assertions into our "language for
people":

"x and y are siblings";
"x and y are brothers"; “x and y are sisters”;

“x is cousin of y”;
“parents of x and y are married”;

construct formulas expressing as much well-known relationships between
people as you can.

But how about the predicate Ancestor(x, y) − "x is an ancestor of y"? Could it
be expressed as a formula of our "language for people"? The first idea − let us
"define" this predicate recursively:

∀ x∀ y (Father (x , y)∨Mother (x , y)→ Ancestor(x , y)) ;
∀ x∀ y∀ z (Ancestor (x , y)∧Ancestor (y , z)→ Ancestor (x , z)) .

The second rule declares the transitivity property of the predicate. The above
two formulas are axioms, allowing to derive the essential properties of the
predicate Ancestor(x, y). But how about a single formula F(x, y) in the
"language for people", expressing that "x is an ancestor of y"? Such a formula
should be a tricky combination of formulas Father(x, y), Mother(x, y) and x=y.
And such a formula is impossible! See Carlos Areces. Ph.D. Thesis, 2000, (a
non-trivial!) Theorem 1.2.

Exercise 1.2.7. "Translate" the following assertions into the language of first
order arithmetic:

"x and y are twin primes" (examples of twin pairs: 3,5; 5,7; 11,13; 17,19;...),
"There are infinitely many pairs of twin primes" (the famous Twin Prime

Conjecture),
"x is a power of 2" (Warning! n(x=2∃ n) is not a correct solution. Why?
Because exponentiation does not belong to the language of first order

http://www.utm.edu/research/primes/glossary/TwinPrimeConjecture.html
http://www.utm.edu/research/primes/glossary/TwinPrimeConjecture.html
http://www.utm.edu/research/primes/lists/top20/twin.html
http://www.loria.fr/~areces/content/papers/files/thesis.pdf
http://www.loria.fr/~areces/

24

arithmetic.),
"Each positive even integer ≥4 can be expressed as a sum of two primes"

(the famous Goldbach Conjecture).

Free Variables and Bound Variables

The above expression "x is a prime number":

1< x∧¬∃ y∃ z (y< x∧z< x∧x= y∗z)

contains 3 variables: x − occurs 4 times in terms, y − 2 times in terms and 1
time in quantifiers, z − occurs 2 times in terms and 1 time in quantifiers. Of
course, x is here a "free" variable – in the sense that the "truth value" of the
formula depends on particular "values" taken by x. On the contrary, the "truth
value" of the formula does not depend on the particular "values" taken by the
two "bound" variables y and z − the quantifiers y, z force these variables to∃ ∃
"run across their entire range".

More precisely, first, we will count only the occurrences of variables in terms,
not in quantifiers. And second, we will define a particular occurrence ox of a

variable x in (a term of) a formula F as a free occurrence or a bound
occurrence according to the following rules:

a) If F does not contain quantifiers x, x, then o∃ ∀ x is free in F.

b) If F is xG or xG, then o∃ ∀ x is bound in F.

c1) If F is G∧H ,G∨H , or G→H, and ox is free in G (or in H), then ox is

free in F.

c2) If F is ¬G, yG, or yG, where y ∃ ∀ is not x, and ox is free in G, then ox is

free in F.

d1) If F is G∧H ,G∨H , or G→H, and ox is bound in G (or in H), then ox is

bound in F.

d2) If F is ¬G, yG, or yG (where y is any variable, x included), and o∃ ∀ x is

bound in G, then ox is bound in F.

Thus, the above formula 1< x∧¬∃ y∃ z (y< x∧z< x∧x= y∗z) contains 4
free occurrences of x, 2 bound occurrences of y, and 2 bound occurrences of z.

Exercise 1.2.8. Verify that an occurrence of x in F cannot be free and bound
simultaneously. (Hint: assume that it is not the case, and consider the sequence
of all sub-formulas of F containing this particular occurrence of x.)

Formally, we can use formulas containing free and bound occurrences of a

http://www.utm.edu/research/primes/glossary/GoldbachConjecture.html

25

single variable simultaneously, for example, x> 1→∃ x (x> 1) . Or, many
bound occurrences of a single variable, for example,

(∀ xF (x)∧∃ xG (x))∨∀ xH (x)

means the same as

(∀ xF (x)∧∃ yG(y))∨∀ zH (z) .

Still, we do not recommend using a single variable in many different roles in a
single formula. Such formulas do not cause problems for computers, but they
may become inconvenient for human reading.

Let us say, that x is a free variable of the formula F, if and only if F contains
at least one free occurrence of x, or F does not contain occurrences of x at all.

If a formula contains free variables, i.e. variables that are not bound by
quantifiers (for example: x=0∨ x=1), then the "truth value" of such
formulas may depend on particular values assigned to free variables. For
example, the latter formula is "true" for x=1, yet it is "false" for x=2. Formulas
that do not contain free occurrences of variables, are called closed formulas,
for example:

∀ w∃ x(w< x∧ prime (x)) .

Closed formulas represent "definite assertions about objects of theory", they
are expected to be (but not always really are) either "true", or "false".

Term Substitution

To say that x is a free variable of the formula F, we may wish to write F(x)
instead of simply F. Replacing all free occurrences of x by a term t yields an
"instance" of the formula F. It would be natural to denote this "instance" by
F(t).

For example, if F(x) is y(y+y=x) and t is z*z+z, then F(t), or F(z*z+z) will∃
denote y(y+y=z*z+z).∃
However, if t would be y*y+y, then F(t), or F(y*y+y) would be

y(y+y=y*y+y). Is this really F(y*y+y)?∃
Thus, sometimes, substitutions can lead to crazy results. Another example: in
our expression "x is a prime number", let us replace x by y. Will the resulting
formula mean "y is a prime number"? Let's see:

1< y∧¬∃ y∃ z (y< y∧ z< y∧ y= y∗z) .

Since y<y is always false, the second part ¬ y z(...) is true, hence, the latter∃ ∃
formula means simply that "1 is less than y", and not that "y is a prime
number".

26

Of course, we failed because we replaced a free variable x by a variable y in
such a way that some free occurrence of x became bound by a quantifiers for
y (y). In this way we ∃ deformed the initial meaning of our formula.

The following simple rule allows to avoid such situations. Suppose, x is a free
variable of the formula F. We will say that the substitution F(x/t) (i.e. the
substitution of the term t for x in the formula F) is admissible, if and only if
no free occurrences of x in F are located under quantifiers that bind variables
contained in t. If the substitution F(x/t) is admissible, then, by replacing all
free occurrences of x in F by t, of course, we do not change the initial meaning
of the formula F(x), and hence, we may safely denote the result of this
substitution by F(t).

Exercise 1.2.9. Is x/y an admissible substitution in the following formulas?
Why?

x=0∨∃ y (y> z) ;
x=0∨∃ y(y> x) .

Exercise 1.2.10 (optional). a) Mathematicians: think over the analogy between
bound variables in logic and bound variables in sum expressions and integrals.
b) Programmers: think over the analogy between bound variables in logic and
loop counters in programs.

1.3. Axioms of Logic: Minimal System, Constructive System
and Classical System

The Problem of Reasoning

Now we go on to the second phase of formalization: after having defined a
formal language (predicate language) allowing to put down propositions about
our domain of interest, and having formulated some of the propositions as
axioms, and must introduce some means of reasoning allowing to derive other
statements that are “true” of our domain.

Indeed, having formulated some fragment of our knowledge as a set of axioms
A1, ..., An in some predicate language L, we do not think that A1, ..., An
represent all statements that are “true” of the objects we are trying to
investigate. Many other statements will follow from A1, ..., An as

consequences.

Example. Assume, we have formulated the following axioms in our "language
for people": ¬∃ x (Male(x)∧Female (x)) ; ∀ x (Male(x)∨Female (x)) ,

27

and the following facts: Male(John) ; Female (Britney) . Then we do not
need to formulate ¬ Female (John) ;¬ Male (Britney) as separate facts.
These facts can be derived from the already registered facts.

The problem of reasoning: "formula F follows from A1, ..., An", what does it

mean? The answer must be absolutely precise, if we wish to teach reasoning
to computers.

Solution of the Problem

First of all, let us notice that there are axioms and rules of inference that are
applicable to any predicate languages, independently of the specific features of
their domains. Such axioms and rules could be called “generally valid”.

For example, assume, some formula F has the following form:

(B → D)→ ((C → D)→ (B∨C → D)) ,

where B, C, D are some formulas. Then F is “true” independently of the
specific facts represented in the formulas B, C, D.

Similarly, the following rule of inference MP is applicable independently of
the facts represented in the formulas B, C:

Having derived the formulas B, B→C, derive the formula C.

If we have B→D and B→D already derived, then – by applying the rule MP to
the above formula F – we derive that B∨C → D .

Now, we will try formulating a complete set of "generally valid" principles
(axioms and rules of inference) of "logically correct reasoning". "Generally
valid" means that these principles will be applicable to any predicate language.
I.e. for any fixed predicate language L, we wish to formulate a uniform list of
logical axioms and inference rules that would allow formalization of
principles of reasoning that are "valid” for all languages. Such principles are
called sometimes "pure logical" principles. The existence of such general
principles (and even, in a sense, a complete system of them) is the result of a
2500 year long history of great discoveries (or inventions? − see below).

Aristotle (384-322 BC),

Gottlob Frege (1848-1925),

Charles Sanders Peirce (1839-1914).

Bertrand Russell (1872-1970) − "The Principia Mathematica is a three-volume work
on the foundations of mathematics, written by Bertrand Russell and Alfred North Whitehead
and published in 1910-1913. It is an attempt to derive all mathematical truths from a well-
defined set of axioms and inference rules in symbolic logic. The main inspiration and
motivation for the Principia was Frege's earlier work on logic, which had led to some

http://www.wikipedia.org/wiki/Frege
http://www.wikipedia.org/wiki/Symbolic_logic
http://www.wikipedia.org/wiki/Alfred_North_Whitehead
http://www.wikipedia.org/wiki/Bertrand_Russell
http://www.wikipedia.org/wiki/Mathematics
http://www.wikipedia.org/wiki/Principia_Mathematica
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html

28

contradictions discovered by Russell." (according to Wikipedia).

David Hilbert (1862-1943),

Wilhelm Ackermann (1896-1962).

D.Hilbert, W.Ackermann. Grundzüge der theoretischen Logik. Berlin (Springer), 1928 (see
also: Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

The first version of logical axioms was introduced in 1879 by G. Frege in his
above-mentioned Begriffsschrift. The next important version was proposed in
1910-1913 by B. Russell and A. Whitehead in their famous book Principia
Mathematica. And finally, in 1928 D. Hilbert and W. Ackermann published in
their above-mentioned book, in a sense, the final version of logical axioms.
Modifications of this version are now used in all textbooks of mathematical
logic.

In our version, the axioms will be represented by means of the so-called axiom
schemas (programmers might call them templates). Each schema (template)
represents an infinite, yet easily recognizable collection of single axioms. For
example, schema L3: B∧C → B may represent the following axioms

("instances of the schema") in the language of first order arithmetic:

x= y∧x=x → x= y ,

1∗1=1∧1+ 1=1+ 1→1∗1=1 ,

and many other axioms: take any formulas B, C, and you will obtain an axiom
B∧C → B .

We will not specify properties of the equivalence connective in axioms. We
will regard this connective as a derived one: B↔C will be used as an
abbreviation of (B →C)∧(C → B) .

Axioms of Logic

Suppose, we have specified some predicate language L. We adopt the
following 15 axiom schemas as the logical axioms for the language L.

In the axiom schemas L1-L11 below, B, C and D are any formulas in the

language L.

The first two axiom schemas L1, L2 represent the "definition" of the

implication connective:

L1: B →(C → B) (what does it mean?),

L2: (B →(C → D))→((B →C)→(B → D)) (what does it mean?).

http://www.math.uwaterloo.ca/~snburris/
http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Ackermann.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html

29

The following axiom schemas L3–L5 represent the "definition" of the AND-

connective (conjunction):

L3: B∧C → B (what does it mean?),

L4: B∧C → C (what does it mean?),

L5: B →(C → B∧C) (what does it mean?).

The following axiom schemas L6–L8 represent the "definition" of the (non-

exclusive) OR-connective (disjunction):

L6: B → B∨C (what does it mean?),

L7: C → B∨C (what does it mean?),

L8: (B → D)→ ((C → D)→ (B∨C → D)) (what does it mean?).

The next xiom schema L9 represents the "definition" of the NO-connective. In

fact, it is a formal version of a proof method well-known in mathematics −
refutation by deriving a contradiction (Reductio ad absurdum):

L9: (B →C)→((B →¬C)→¬B) (what does it mean?).

The next axiom schema L10 represents the famous principle "Contradiction

Implies Anything" (Ex contradictione sequitur quodlibet, or Ex falso sequitur
quodlibet):

L10: ¬B →(B →C) (what does it mean?).

The following axiom schema L11 represents the famous Law of Excluded

Middle (Tertium non datur):

L11: B∨¬B (what does it mean?).

The above 11 schemas (plus the Modus Ponens rule of inference, see below)
represent the classical propositional logic in the language L.

Now, the "definitions" of the universal and existential quantifiers follow.

In the following axiom schemas L12, L13, F is any formula, and t is a term

such that the substitution F(x/t) is admissible (in particular, t may be x itself):

L12: ∀x F (x)→ F (t) (in particular, ∀x F (x)→ F (x) , what does it

mean?),

L13: F (t)→∃ x F (x) (in particular, F (x)→∃ x F (x) , what does it

mean?).

30

In the following schemas L14, L15, F is any formula, and G is a formula that

does not contain x as a free variable:

L14: ∀x(G → F (x))→(G →∀x F (x)) (what does it mean?),

L15: ∀x(F (x)→ G)→(∃ x F (x)→ G) (what does it mean?).

Rules of Inference

In the following rules of inference, B, C and F are any formulas.

Modus Ponens: B→C; B C (what does it mean?).⊢
Generalization: F(x) ⊢ ∀x F (x) (what does it mean?).

This list of logical axioms and rules of inference represents the so-called
classical predicate logic in the predicate language L (or, simply − the
classical logic in the language L).

Some of the logical axioms are "wrong, but useful"!

The axioms L1, L2 represent the (currently) most popular version of "defining"

the implication connective. About other (equivalent) versions − containing 3 or
4 axioms − see Hilbert, Bernays [1934] (Chapter III) and Exercise 1.5.2.

The axiom L9 represents the (currently) most popular version of "defining" the

negation connective. About other (equivalent) versions − see Hilbert, Bernays
[1934] (Chapter III), Exercise 2.4.2.

Three of the above axiom schemas seem to be (at least partly) problematic.

For example, how do you find the funny axiom L10: ¬B →(B →C) ? If ¬B

and B were true simultaneously, then anything were true? Ex contradictione
sequitur quodlibet? Is this a really "true" axiom? Of course, it is not. Still, this
does not matter: we do not need to know, were C "true" or not, if ¬B and B
were "true" simultaneously. By assuming that "if ¬B and B were true
simultaneously, then anything were true" we greatly simplify our logical
apparatus. For example, we will prove in Section 2.6 that, in the classical
logic, ¬¬B→B. This simple formula can't be proved without the "crazy" axiom
L10 (see Section 2.8).

In fact, the first axiom L1: B→(C→B) also is funny. If B is (unconditionally)

true, then B follows from C, even if C has nothing in common with B?
Moreover, in Exercise 1.4.2(d) we will see that the axioms L1, L9 allow

proving that ¬B, B ¬C, i.e. if ¬B and B were true simultaneously, then⊢

31

anything were false (thus, in a sense, L1 contains already 50% of L10!). After

this, could we think of L1 as a really "true" axiom? Of course, we can't. Still,

this does not matter: if B is (unconditionally) true, then we do not need to
know, follows B from C or not. By assuming that "if B is true, then B follows
from anything" we greatly simplify our logical apparatus.

The above two phenomena are called paradoxes of the material implication,
see Paradoxes of Material Implication by Peter Suber, and Falsity Implies
Anything by Alexander Bogomolny.

May our decision to "greatly simplify" the logical apparatus have also some
undesirable consequences? Let us consider the following formula F(x):

y(child(x, y)→Female(y)). It seems, F(x) is intended to mean: "All the∀
children of x are female". However, in our system of logic, F(x) is regarded as
true also, if x does not have children at all! If you do not have children at all,
then all your children are female! Or male? Or smart? Etc. Seems funny, but
is, in fact, harmless...

Constructive Logic

Still, the most serious problem is caused by the axiom L11: Bv¬B − the Law of

Excluded Middle. How can we think of L11 as a "true" axiom, if (according to

Gödel's Incompleteness Theorem) each sufficiently strong consistent theory
contains undecidable propositions? I.e. we postulate that either B, or ¬B "must
be true", yet for some B we cannot prove neither B, nor ¬B! Knowing that
Bv¬B is "true" may inspire us to work on the problem, but it may appear
useless, if we do not succeed... Should we retain L11 as an axiom after this?

Some other strange consequences of L11 also should be mentioned (see

Exercise 2.6.4):

B∨(B →C) ,
(B → C)∨(C → B) ,
((B →C)→ B)→ B (the so-called Peirce's Law).

For these (and some other) reasons some people reject L11 as a "valid" logical

axiom.

The above list of 15 axiom schemas as it stands is called the classical logic.

By excluding L11 from the list the so-called constructive (historically, and in

most textbooks − intuitionistic) logic is obtained. As a concept, it was
introduced by Luitzen Egbertus Jan Brouwer in 1908:

L. E. J. Brouwer. De onbetrouwbaarheid der logische principes (The unreliability of the

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Brouwer.html
http://www.cut-the-knot.com/
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.earlham.edu/~peters/hometoc.htm
http://www.earlham.edu/~peters/courses/log/mat-imp.htm

32

logical principles), Tijdschrift voor Wijsbegeerte, 2 (1908), pp.152-158.

Brouwer's main objection was against non-constructive proofs which are
enabled mainly by "improper" use of the Law of Excluded Middle.

For elegant examples of non-constructive proofs see Constructive
Mathematics by Douglas Bridges in Stanford Encyclopedia of Philosophy.

Note. A similar kind of non-constructive reasoning is represented by the so-
called Double Negation Law: ¬¬B→B, see Section 2.6.

As a formal system, the intuitionistic logic was formulated by Arend Heyting
in 1930:

A. Heyting. Die formalen Regeln der intuitionistischen Mathematik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930, pp.42-
56.

The constructive concept of logic differs from the classical one mainly in its
interpretation of disjunction and existence assertions:

− To prove BvC constructively, you must prove B, or prove C. To prove
B∨C by using the classical logic, you are allowed to assume ¬(B∨C)

as a hypothesis to derive a contradiction. Then, by the Law of Excluded
Middle (BvC)∨¬(BvC) you obtain B∨C . Having only such a "negative"
proof, you may be unable to determine, which part of the disjunction BvC is
true − B, or C, or both. Knowing that B∨C is "true" may inspire you to
work on the problem, but it may appear useless, if you do not succeed...

− To prove xB(x) ∃ constructively, you must provide a particular value of x
such that B(x) is true. To prove xB(x) by using the classical logic, you are∃
allowed to assume x¬B(x) as a hypothesis to derive a contradiction. Then, by∀
the Law of Excluded Middle ∃ xB (x)∨¬∃ xB(x) you obtain xB(x).∃
Having only such a "negative" proof, you may be unable to find a particular x
for which B(x) is true. Knowing that xB(x) is "true" may inspire you to work∃
on the problem, but it may appear useless, if you do not succeed...

Note. Informally, we may regard existence assertions as "huge disjunctions".
For example, in the language of first order arithmetic, xB(x) could be∃
"thought" as B(0)∨B(1)∨B (2)∨... , i.e. as an infinite "formula". Thus, the
above two theses are, in a sense, "equivalent".

The constructive (intuitionist) logic is one of the great discoveries in
mathematical logic − surprisingly, a complete system of constructive reasoning
(as we will see later, in Section 4.4) can be obtained simply by dropping the
Law of Excluded Middle from the list of valid logical principles.

See also Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia of Philosophy.

Luitzen Egbertus Jan Brouwer (1881-1966): "He rejected in mathematical proofs the Principle

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Brouwer.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/s44
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Heyting.html
http://plato.stanford.edu/contents.html
http://www.math.canterbury.ac.nz/~mathdsb/
http://plato.stanford.edu/entries/mathematics-constructive/#1
http://plato.stanford.edu/entries/mathematics-constructive/#1

33

of the Excluded Middle, which states that any mathematical statement is either true or false. In
1918 he published a set theory, in 1919 a measure theory and in 1923 a theory of functions all
developed without using the Principle of the Excluded Middle." (according to MacTutor
History of Mathematics archive). "Como Heinrich Scholz solia decir en sus cursos: no son ni
Heidegger ni Sartre los verdaderos renovadores de la filosofia, sino Brouwer porque sólo él ha
atacado el bastión dos veces milenario del platonismo: la concepción de los entes matematicos
como cosas en si." (quoted after Andrés R. Raggio, Escritos Completos, Prometeo Libros,
2002).

Minimal Logic

By excluding both L10 and L11 the so-called minimal logic is obtained. It was

introduced by Ingebrigt Johansson in 1936:

I.Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio
Mathematica, 1936, Vol. 4, N1, pp.119-136.

As a separate concept, the minimal logic is much less significant than the
constructive logic. Indeed, since it allows proving of ¬B, B ¬C (in a sense,⊢
50% of L10!), dropping of L10 is not a very big step.

First Order Theories

Having defined our predicate language L, and having formulated for L all the
logical axioms and rules of inference, do we need more?

To complete the formalization of our informal vision of our domain of interest,
we must formulate at least some specific axioms describing the specific
features of the domain. Logical axioms and rules of inference are valid for any
domains, i.e. they are “content-free” in the sense that, by using them only, one
cannot derive specific information about the domain.

For example, one cannot derive from (any) logic, that

∀ x (Male(x)∨Female (x)) .

To communicate this fact to the computer, we must formulate it as a specific
axiom.

And, as we will prove in Section 4.3, we will never need introducing of
specific rules of inference. All we need are the two logical rules of inference –
Modus Ponens and Generalization.

Thus, as the result of the formalization process, we will obtain the so-called
first order theories.

Each first order theory T includes:

a) a specific predicate language L(T);

http://en.wikipedia.org/wiki/Ingebrigt_Johansson
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/

34

b) logical axioms and rules of inference for this language (classical or
constructive version may be adopted, see below);

c) a set of specific (non-logical) axioms of T.

As the first example, let's use our "language for people" to build a “theory for people”.

Examples of instances of logical axioms for the “language for people”:

L1: ∀ x(Male(x)→(Female (x)→ Male (x))) ;

L6: ∀ x∀ y(Mother (x , y)→ Mother (x , y)∨Father (x , y)) ;

L11: Male (John)∨¬Male (John) ;

L12: ∀x(Female(x))→Female (Britney) ;

etc.

And let's introduce the following non-logical axioms:

∀ x(Male(x)∨Female(x)) ;
¬∃ x(Male (x)∧Female(x)) ;
∀ x∀ y(Father (x , y)→ Male(x)) ;
∀ x(∀ y (∀ z ((Father (x , z)∧Father (y , z))→(x=y)))) ...

Exercise 1.3.1. Extend this list of axioms as far as you can. Is your list complete? What do
you mean by “complete”?

Another example of a first order theory − the so-called first order arithmetic PA (also called
Peano arithmetic):

The language of PA:

a) The constants 0 and 1, and all variables are terms.

b) If t1 and t2 are terms, then (t1+t2) and (t1*t2) also are terms.

c) Atomic formulas are built as (t1=t2), where t1 and t2 are terms.

Since we can use, for example, the expression 2x2-3y2-1=0 as a shortcut for
(1+1)*x*x=(1+1+1)*y*y+1, we can say simply that, in first order arithmetic, atomic formulas
of are arbitrary Diophantine equations.

Instances of logical axioms for the language of first order arithmetic:
L1: x=0 →(y=1→ x=0) ;

L6: x=y → x=y∨z=1 ;

L11: 0=1∨¬(0=1) ;

L12: ∀x(x=1)→ x=1 ;

etc.

The specific (non-logical) axioms of first order arithmetic:

x=x,
x=y→y=x,
x=y→(y=z→x=z),
x=y→x+1=y+1,

http://en.wikipedia.org/wiki/Diophantine_equation
http://en.wikipedia.org/wiki/Peano_axioms

35

¬(0=x+1),
x+1=y+1→x=y,
x+0=x,
x+(y+1)=(x+y)+1,
x*0=0,
x*(y+1)=(x*y)+x,

B(0)∧∀x(B(x)→ B(x+ 1))→∀xB (x) , where B is any formula.

The axioms 7-10 represent recursive definitions of addition and multiplication. As the last the
so-called induction schema is listed.

For the most popular axiom system of set theory – see Zermelo-Fraenkel's set theory.

Proofs and Theorems

In general, any sequence of formulas F1, F2, ..., Fm could be regarded as a

(correct or incorrect) formal proof (or simply, a proof) of its last formula Fm.

In a correct proof, formulas can play only the following roles:

a) Axioms. Some formulas may be instances of logical or non-logical axioms.

b) Consequences of earlier formulas, obtained by using rules of inference. For
example, if F25 is A, and F34 is A→B, and F51 is B, then we can say that F51
has been obtained from F25 and F34 by using the Modus Ponens rule. Or, if F62
is C(x), and F63 is xC(x), then we can say that F∀ 63 has been obtained from

F62 by using the Generalization rule.

c) Hypotheses. Some formulas may appear in the proof without any formal
justification, simply by assuming that they are "true".

Thus, the following notation can describe the actual status of a formal proof:

[T]: A1, A2, ..., An B,⊢

where T is a first order theory (it determines which formulas are axioms and
which are not), A1, A2, ..., An are all the hypotheses used in the proof, and B is

the formula proved by the proof. Each formula in such a proof must be either
an axiom, or a hypothesis from the set A1, A2, ..., An, or it must be obtained

from earlier formulas (in this proof) by using a rule of inference. You may read
the above notation as "in theory T, by using formulas A1, A2, ..., An as

hypotheses, the formula B is proved".

As the first example, let us consider the following proof:

 [L5, MP]: B ,C ⊢ B∧C .

http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

36

(1) B Hypothesis.

(2) C Hypothesis.

(3) B→(C →B∧C) It's the axiom schema L5.

(4) C→B∧C It follows from (1) and (3) by
Modus Ponens.

(5) B∧C It follows from (2) and (4) by
Modus Ponens.

For more serious examples of formal proofs see the next Section 1.4 (Theorem
1.4.1 and Theorem 1.4.2).

In the real mathematical practice, when proving [T]: A1, A2, ..., An B, we⊢

may apply some theorem Q that already has been proved earlier. If we would
simply insert Q into our formal proof, then, formally, this would yield only a
proof of [T]: A1, A2, ..., An, Q B, i.e. Q would be qualified as a hypothesis.⊢

To obtain the desired formal proof of [T]: A1, A2, ..., An B, we must insert⊢

not only Q itself, but the entire proof of Q! In this way we obtain the
following

Theorem 1.3.1. If there is a proof [T]: A1, A2, ..., An, Q B, and a proof [T]:⊢

A1, A2, ..., An Q, then there is a proof of [T]: A⊢ 1, A2, ..., An B.⊢

Proof. The proof of [T]: A1, A2, ..., An, Q B is a sequence of formulas F⊢ 1,

F2, ..., Q, ..., Fm, B, and the proof of [T]: A1, A2, ..., An Q is some sequence⊢

of formulas G1, G2, ..., Gp, Q. Let us replace Q by G1, G2, ..., Gp, Q:

F1, F2, ..., G1, G2, ..., Gp, Q, ..., Fm, B,

and eliminate the duplicate formulas. This sequence is a proof of [T]: A1,

A2, ..., An B. Q.E.D.⊢

If, in some proof, hypotheses are not used at all, then we may write simply [T]:
 B, or even T B, and say that B is a ⊢ ⊢ theorem of theory T. Of course, by

using axioms directly one almost never can prove really complicated
theorems. Still, we can retain our simple formal definition of the notion of
theorem because of the following

Corollary 1.3.1. If there is a proof of [T]: A1, A2, ..., An B, and proofs of⊢

[T]: A⊢ 1, [T]: A⊢ 2, ..., [T]: A⊢ n, then there is a proof of [T]: B.⊢

37

Proof. Immediately, by Theorem 1.3.1.

Consistency

Sometimes, a seemingly plausible set of axioms allows deriving of
contradictions (the most striking example − Russell's paradox in the "naive"
set theory). A formula F is called a contradiction in the theory T, if and only if
[T]: F and [T]: ¬F, i.e. if T proves and disproves F simultaneously.⊢ ⊢
Theories allowinf to derive contradictions are called inconsistent theories.
Thus, T is called a consistent theory; if and only if T does not allow deriving
of contradictions.

Normally, for a first order theory, the set of all theorems is infinite, and,
therefore, consistency cannot be verified empirically. We may only hope to
establish this desirable property by means of some theoretical proof (see
Podnieks [1997], Section 5.4 for a more detailed discussion of this problem).

For theories adopting the above logical axioms, inconsistency is, in a sense,
"the worst possible property". Indeed, the axiom L10: ¬B →(B →C) says

that if a theory allows deriving a contradiction, then, in this theory, anything is
provable. In Section 2.4 we will − without L10 − prove 50% of it:

¬B →(B →¬C) . Thus, even without L10 (but with L1): if a theory allows

deriving a contradiction, then, in this theory, anything is disprovable.

Is consistency enough for a theory to be "perfect"? In Section 4.3 we will
prove the so-called Model Existence Theorem: if a first order theory is
consistent, then there is a "model" (a kind of a "mathematical reality") where
all its axioms and theorems are "true".

Completeness

If a formula contains free variables, i.e. variables that are not bound by
quantifiers (for example: x=0∨x=1), then the "truth value" of such
formulas may depend on particular values assigned to free variables. For
example, the latter formula is "true" for x=1, yet it is "false" for x=2. Formulas
that do not contain free occurrences of variables, are called closed formulas,
for example:

∀ w∃ x(w< x∧ prime (x)) .

Closed formulas represent "definite assertions about the objects of our theory",
and they are expected to be either "true", or "false". Or, in a first order theory,
they are expected to be either provable, or disprovable (refutable). The above
closed formula (stating that "there are infinitely many prime numbers") is

http://en.wikipedia.org/wiki/Russell's_paradox

38

provable − if our theory is first order arithmetic.

T is called a complete theory, if and only if for each closed formula F in the
language of T: [T]: F or [T]: ¬F, i.e. if and only if T proves or disproves⊢ ⊢
any closed formula of its language. In other words: a complete theory can
solve any problem from the domain of its competence.

In an incomplete theory, some closed formulas ("definite assertions about the
objects of theory") can be neither proved, not disproved. Thus, an incomplete
theory can't solve some of the problems from the domain of its competence.

Formally, according to this definition, an inconsistent theory is complete.
Indeed, the axiom L10: ¬B→(B→C) says that if a theory allows deriving a

contradiction, then, in this theory, anything is provable, i.e. it is a complete
theory.

Of course, if T would be both consistent and complete, then we could call it
"absolutely perfect". Unfortunately, Gödel's incompleteness theorem says thata
all fundamental mathematical theories are either inconsistent or
incomplete, i.e. none of them is "absolutely perfect" (see Mendelson [1997] or
Podnieks [1997], Section 6.1).

Exercise 1.3.2 (optional). Re-formulate the above axiom system for a many-
sorted predicate language (or, see Chapter 10. Many-Sorted First Order
Logic, by Jean Gallier.)

1.4. The Flavor of Proving Directly

Theorem 1.4.1. [L1, L2, MP]: A→A for any formula A. What does it mean?⊢

It's the so-called reflexivity property of implication.

The following sequence of formulas represents a proof of the formula A→A:

(1)
(A→((C→A)→A))→((A→(C→A))→
(A→A))

It's the axiom schema L2:

(B→(C→D))→((B→C)→(B
→D)), with B = A, C = C→A,
D = A.

(2) A→((C→A)→A)
It's the axiom schema L1:

B→(C→B), with B = A, C =
C→A.

http://www.cis.upenn.edu/~jean/home.html
http://www.cis.upenn.edu/~cis511/chap10.pdf
http://www.cis.upenn.edu/~cis511/chap10.pdf
http://en.wikipedia.org/wiki/Peano_axioms

39

(3) (A→(C→A))→(A→A)
It follows from (1) and (2) by
Modus Ponens.

(4) A→(C→A)
It's the axiom schema L1:

B→(C→B), with B = A, C =
C.

(5) A→A
It follows from (3) and (4) by
Modus Ponens.

As you can see, the proof is easy to verify, but it could be hard to build it from
scratch. "Why" should we take "the axiom L2 with B = A, C = C→A, D = A"

for (1)?

How could one invent a proof like the above one? One of the versions could be as follows.
First, let's try to find an axiom, from which we could get A→A as a consequence. By trying
L1, i.e. B→(C→B), and setting B=C=A, we could obtain A→(A→A), a dead end, perhaps.

So, let's try L2, i.e. (B→(C→D))→((B→C)→(B→D)). By setting B=D=A we obtain

(A→(C→A))→((A→C)→(A→A)). It seems to be a good decision − because the first premise
A→(C→A) is, in fact, L1. Hence, by applying the MP rule, we obtain (A→C)→(A→A). Now,

how to make A→C "provable"? Since C is, in fact, an arbitrary formula, we can replace C by
C→A, obtaining (A→(C→A))→(A→A). The premise is here, again, L1, hence, by applying

the MP rule, we obtain A→A. Q.E.D. By performing all our replacements at the very
beginning, we obtain the above proof of the formula A→A. [BTW, the above two smart
"operations" − obtaining A→A within L2, and making L1 of A→C, are applications of the so-

called unification, a very general and very important method used in intellectual computer
programs, for details, see Section 5.7.]

Theorem 1.4.2. [L1, L2, MP]: A→B, B→C A→C, for any formulas A, B, C.⊢

What does it mean? It's the so-called Law of Syllogism (by Aristotle), or the
transitivity property of implication.

The following sequence of formulas represents a proof of the formula A→C
from the hypotheses A→B and B→C:

(1) A→B Hypothesis.

(2) B→C Hypothesis.

(3)
(A→(B→C))→((A→B)→(A
→C))

It's the axiom schema L2:

(B→(C→D))→((B→C)→(B→D)),
with B = A, C = B, D = C.

(4) (B→C)→(A→(B→C))
It's the axiom schema L1: B→(C→B),

with B = B→C, C = A.

http://s57/

40

(5) A→(B→C)
It follows from (2) and (4) by Modus
Ponens.

(6) (A→B)→(A→C)
It follows from (3) and (5) by Modus
Ponens.

(7) A→C
It follows from (1) and (6) by Modus
Ponens.

Note. Only axiom schemas L1 and L2 , and inference rule Modus Ponens are

used for proving the Theorems 1.4.1 and 1.4.2. Hence, these theorems will
remain valid for any logical system containing L1, L2 and Modus Ponens.

Exercise 1.4.1. Build sequences of formulas representing the following proofs
(only the axiom schemas L1 and L2 and Modus Ponens are necessary):

a) [L1, MP]: A B→A (a sequence of 3 formulas). What does it mean? ⊢

b) [L2, MP]: A→B, A→(B→C) A→C (a sequence of 5 formulas). What⊢

does it mean?

c) [L1, L2, MP]: A→(B→C) B→(A→C) (a sequence of 9 formulas − thanks⊢

to Pavel Andreyev for the idea). What does it mean? It's the so-called Premise
Permutation Law.

d) [L1, L2, MP]: A→(A→B) A→B (easy solution - a sequence of 9⊢

formulas, smart solution by Arnold Ostrovsky – 8 formulas). What does it
mean?

Theorem 1.4.3. [L14, MP, Gen] If F is any formula, and G is any formula that

does not contain x as a free variable, then

G→F(x) G→ xF(x).⊢ ∀
The following sequence of formulas represents a proof of the formula
G→ xF(x) from the hypothesis G→F(x):∀

(1) G→F(x) Hypothesis.

(2) x(G→F(x))∀ It follows from (1) by
Generalization.

(3) x(G→F(x))→(G→ xF(x))∀ ∀ It's the axiom schema L14 (G does

not contain x as a free variable).

41

(4) G→ xF(x)∀ It follows from (2) and (3) by Modus
Ponens.

Exercise 1.4.2. Build sequences of formulas representing the following proofs
(F is any formula, and G is a formula that does not contain x as a free
variable):

a) [L15, MP, Gen]: F(x)→G xF(x)→G (a sequence of 4 formulas). What⊢∃

does it mean?

b) [L3-L5, MP]: A∧B ⊢ B∧A (a sequence of 8 formulas). What does it

mean?

c) [L6-L8, MP]: ⊢ A∨B → B∨A (a sequence of 5 formulas). What does it

mean?

d) [L1, L9, MP]: B, ¬B ¬C (a sequence of 9 formulas). What does it mean?⊢

It's 50% of the axiom L10!

e) [L3, L4, L9, MP]: ⊢ ¬(A∧¬A) (a sequence of 5 formulas). What does it

mean? It's the so-called Law of Non-Contradiction.

f) [L1, L8, L10, MP]: ⊢ ¬A∨B →(A→ B) (a sequence of 5 formulas). What

does it mean?

g) [L8, L11, MP]: A→B, ¬A→B B (a sequence of 7 formulas). What does it⊢

mean?

h) [L1-L8, MP]: A → B ⊢ A∨C → B∨C (a sequence of 11 formulas).

What does it mean?

i) [L1-L11, MP]: ⊢ A∨(A→ B) (a sequence of 15 formulas). What does it

mean? Does it mean anything at all?

Exercise 1.4.3 (optional, for smart students). Could you build shorter
sequences proving the formulas of Exercise 1.4.1 c, d) and Exercise 1.4.2 b,
d)? Evgeny Vihrov verified in 2011 that any proof of the formula of Exercise
1.4.1 d) will be longer than 5 formulas.

1.5. Deduction Theorems

If, by assuming B as a hypothesis, we have proved C, then we have proved
that B implies C. This natural way of reasoning is formalized in the so-called

42

deduction theorems (introduced by Jacques Herbrand and Alfred Tarski):

J. Herbrand. Recherches sur la théorie de la démonstration. PhD Thesis, University of Paris,
1930 (approved in April 1929).

A. Tarski. Ueber einige fundamentale Begriffe der Metamathematik. "Comptes Rendus de
Séances de la Société des Sciences et des Lettres de Varsovie, Classe III", 1930, Vol.23, pp.
22-29.

We will prove two such theorems – Deduction Theorem 1 (for propositional
logic) and Deduction Theorem 2 (for predicate logic).

Theorem 1.5.1 (Deduction Theorem 1). If T is a first order theory, and there
is a proof of

[T, MP]: A1, A2, ..., An, B C,⊢

 then there is a proof of

[L1, L2, T, MP]: A1, A2, ..., An B→C.⊢

I.e. having a Modus Ponens proof of C from the hypotheses A1, A2, ..., An, B,

we can build a Modus Ponens proof of B→C from the hypotheses A1, A2, ...,

An.

It appears that, usually, proving of [T, MP]: ... B C is easier (technically⊢
simpler) than proving of [T, MP]: ... B→C.⊢
Exercise 1.5.1 (optional, for smart students). Do not read the proof below. Try
proving yourself.

Proof (thanks to Sergey Kozlovich for the idea, see also Kleene [1967],
Exercise 10C). We must define a procedure allowing to convert any proof of
[T, MP]: A1, A2, ..., An, B C into a proof of [L⊢ 1, L2, T, MP]: A1, A2, ..., An ⊢

B→C.

The easy way to do this would be using an induction by the number of
formulas in the proof of [T, MP]: A1, A2, ..., An, B C. But we will use a more⊢

elegant idea. Any proof of [T, MP]: A1, A2, ..., An, B C is a sequence of⊢

formulas F1, F2, ...Fm. We will replace each formula Fi by 3 or 5 formulas, the

last of these being the formula B→Fi, retaining our sequence as a valid proof.

We must consider the following cases:

1) F is an axiom (i.e. an instance of a logical axiom or a non-logical axiom of
T). Replace F by 3 formulas: F, F→(B→F), B→F. The second formula is an
instance of L1, the third formula is obtained from the first two ones by using

Modus Ponens.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1967
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Tarski.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html

43

2) F is one of the hypotheses Ai. Replace F by 3 formulas: F, F→(B→F),

B→F. The second formula is an instance of L1, the third formula is obtained

from the first two ones by using Modus Ponens.

3) F is B. Replace F by the 5 formulas from the proof of Theorem 1.4.1, where
D can be any formula:

(B→((D→B)→B))→((B→(D→B))→(B→B)) (an instance of L2),

B→((D→B)→B) (an instance of L1),

B→(D→B))→(B→B) (by Modus Ponens),

B→(D→B) (an instance of L1),

B→B (by Modus Ponens).

The last formula is here, of course, B→F.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi
having the form Fj→F (i.e. Fj→F and Fj yield F by Modus Ponens). Then, the

formulas
B→Fj,

B→(Fj→F)

are already present in the converted proof (they appeared during the
replacement operations applied to the formulas Fj and Fj→F). So, replace F by

3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, MP] that is using the

hypotheses A1, A2, ..., An, but not B! The last formula of this proof is B→C

(because C is the last formula of our initial proof of [L1, L2, MP]: A1, A2, ...,

An, B C). Thus, we have a proof of [L⊢ 1, L2, MP]: A1, A2, ..., An B→C.⊢

Q.E.D.

The above proof of Deduction Theorem 1 includes, in fact, an algorithm
allowing to obtain a proof of [L1, L2, MP]: A1, A2, ..., An B→C from a given⊢

proof of [L1, L2, MP]: A1, A2, ..., An, B C. The resulting proof is longer than⊢

the given one: if the given proof consists of m formulas, then the resulting
proof consists of 3m or 3m+2 formulas).

44

Corollaries 1.5.1. 1) If there is a proof of

[T, MP]: A1, A2, ..., An, B1, B2, ..., Bk C,⊢

then there is a proof of

[L1, L2, T, MP]: A1, A2, ..., An (B⊢ 1→(B2→(...→(Bk→C)...))).

2) If T includes (or proves) schemas L1, L2, then, if there is a proof of [T, MP]:

A1, A2, ..., An, B C then there is a proof of [T, MP]: A⊢ 1, A2, ..., An B→C . ⊢

In particular, if [T, MP]: B C, then [T, MP]: B→C. ⊢ ⊢
And, if [T, MP]: B, C D, then [T, MP]: B→(C→D). ⊢ ⊢
Proof. 1) By iterating Deduction Theorem 1.

2) If T is a theory which includes or proves the schemas L1, L2, then [L1, L2,

T, MP] is equivalent to [T, MP]. Q.E.D.

Exercise 1.5.2 (optional, for smart students). In earlier versions of logical
axioms, instead of the axiom L2, in some texts, the following 3 axioms were in

use:

L21: (A→(A→B))→(A→B),

L22: (A→(B→C))→(B→(A→C)) (i.e. the Premise Permutation Law),

L23: (A→B)→((B→C)→(A→C)) (the Law of Syllogism, or the transitivity

property of implication).

Verify that both versions, i.e. [L1, L2, MP] and [L1, L21, L23, L23, MP] are

equivalent. (Hint: a) See Section 2.1 to verify that [L1, L2, MP] proves L21,

L23, L23. b) Verify that [L1, L21, L23, L23, MP] proves L2 either directly, or by

proving the Deduction Theorem 1 for [L1, L21, L23, L23, MP].)

Exercise 1.5.3 (optional, thanks to Sergey Kozlovich for the idea).

a) Prove the following "generalization" of the Modus Ponens rule:

[L1, L2, MP]: (D1→(D2→...(Dk→B)...), (D1→(D2→...(Dk→(B→C))...) ⊢

(D1→(D2→...(Dk→C)...).

b) Prove the following "generalization" of the axiom L14 (formulas D1, D2, ...,

Dk do not contain x as a free variable):

[L1, L2, L14, MP]: x(D⊢ ∀ 1→(D2→...(Dk→F(x))...) → (D1→(D2→...

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/s21

45

(Dk→ xF(x))...).∀

Exercise 1.5.4 (optional, for smart students). Investigate the size (the number
of formulas) of the proof of [L1, L2, MP]: A1, A2, ..., An, B→C as a function⊢

f(m) of the size m of the proof of [L1, L2, MP]: A1, A2, ..., An, B C. You may⊢

wish to report your result. We will publish your report on the web as an
appendix to this book. The current record holder is Sergey Kozlovich, 2004:
f(m) ≤ 3m+2. Improve this result, or prove that it is the best one possible.

Exercise 1.5.5 (optional, for smart students). Investigate the size (the number
of instances of atomic formulas) of the proof of [L1, L2, MP]: A1, A2, ..., An, ⊢

B→C as a function g(m) of the size m of the proof of [L1, L2, MP]: A1, A2, ...,

An, B C. You may wish to ⊢ report your result. We will publish your report on

the web as an appendix to this book. The current record holder is Kirils
Solovjovs, 2008: g(m, n) ≤ 7m+24n−2, where n is the number of instances of
atomic formulas in the formula B. Improve this result, or prove that it is the
best one possible.

Warning! Generalization involved...

Now, what, if in the proof of A1, A2, ..., An, B C not only ⊢ Modus Ponens, yet

also Generalization is used?

We must be careful, because, trying "simply" to apply Deduction Theorem 1,
we can obtain crazy results. Indeed, having a formula F(x), by Generalization,
we obtain the formula xF(x). Thus, F(x) xF(x). If Deduction Theorem 1∀ ⊢∀
could be extended to Gen without any restrictions, then we could conclude that

 F(x)→ xF(x). If this is true for any x, it is true also for x=2, hence, ⊢ ∀ ⊢
F(2)→ xF(x). Thus, if the number 2 is prime, then all numbers are prime?∀
So, let us try deriving a restricted formulation of the Deduction Theorem − it
seems, we should prohibit application of Gen to the free variables of B −
the hypothesis "to be moved".

Theorem 1.5.2 (Deduction Theorem 2). If T is a first order theory, and there
is a proof of

[T, MP, Gen]: A1, A2, ..., An, B C,⊢

where Generalization is not applied to the free variables of B, then there is a
proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An B→C. ⊢

Proof. We must extend the above proof of the Deduction Theorem 1 that
consisted of 4 cases. First, we must extend the first case:

http://podnieks.id.lv/mlog/155_Solovjovs.pdf
http://podnieks.id.lv/mlog/155_Solovjovs.pdf
mailto:Karlis.Podnieks@lu.lv
http://podnieks.id.lv/mlog/152_Kozlovich.doc
mailto:Karlis.Podnieks@lu.lv

46

1') F is an axiom (i.e. an instance of a logical axiom or a non-logical axiom of
T). Replace F by 3 formulas: F, F→(B→F), B→F. The second formula is an
instance of L1, the third formula is obtained from the first two ones by using

Modus Ponens.

And we must add the following case:

5) F is derived from some previous formula Fi by Generalization, thus, F

having the form xF∀ i, where x is not free in the formula B. Replace F by the

following 3 formulas:

x(B→F∀ i)→(B→ xF∀ i),

x(B→F∀ i),

B→ xF∀ i.

Since x is not free in B, the first formula is an instance of L14. The second

formula is obtained by Generalization from the formula B→Fi that is already

present in the converted proof (it appeared during the replacement operation
applied to the formula Fi). The third formula is obtained from the first two

ones by using Modus Ponens.

Thus, what we have now, is a correct proof in [L1, L2, L14, MP, Gen] that is

using the hypotheses A1, A2, ..., An, but not B! The last formula of this proof is

B→C (because C is the last formula our initial proof of [L1, L2, L14, MP,

Gen]: A1, A2, ..., An, B C). Thus, we have a proof of [L⊢ 1, L2, L14, MP, Gen]:

A1, A2, ..., An B→C. Q.E.D.⊢

Corollary 1.5.2. 1) If there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B1, B2, ..., Bk C,⊢

where Generalization is not applied to the the free variables of the formulas
B1, B2, ..., Bk, then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An (B⊢ 1→(B2→(...→(Bk→C)...))).

2) If B is a closed formula, and there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B C,⊢

then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An B→C. ⊢

3) If T is a theory whose axioms include schemas L1, L2, L14, then, if there is a

47

proof of

[T, MP, Gen]: A1, A2, ..., An, B C, ⊢

where Generalization is not applied to the the free variables of B, then there is
a proof of

 [T, MP, Gen]: A1, A2, ..., An B→C.⊢

In particular, if [T, MP, Gen]: B C, where ⊢ Generalization is not applied to
the free variables of B, then [T, MP, Gen]: B→C.⊢
Proof. Similar to the proof of the above Corollaries of Deduction Theorem 1.

Warning! Previously proved theorems involved...

In the real mathematical practice, when proving [T, MP, Gen]: A1, A2, ..., An ⊢

C, we may wish to apply some theorem Q that we have already proved earlier.
If we would simply insert Q into our formal proof, then, formally, this would
yield only that [T, MP, Gen]: A1, A2, ..., An, Q C. To obtain the desired⊢

formal proof of [T, MP, Gen]: A1, A2, ..., An C, we must insert not only Q⊢

itself, but the entire proof of Q!

Still, with the Deduction Theorem 2 this may be problematic. If we are
proving [T, MP, Gen]: A1, A2, ..., An, B C with the intention to apply⊢

Deduction Theorem 2 (to obtain [T, MP, Gen]: A1, A2, ..., An B→C), then,⊢

before inserting the proof of Q, we must ensure that, in this proof,
Generalization is not applied to the free variables of B. But, of course, the
original proof of Q could contain such Generalizations! To solve this problem,
we could try, in the proof of Q, before inserting it, rename simultaneously all
the variables to which Generalization is applied and which are free variables
in B. But this simultaneous renaming may affect the bound variables of Q, and
thus − destroy the intended use of Q.

The problem is solved completely by the following extension of the Deduction
Theorem 2:

Theorem 1.5.3 (Deduction Theorem 2A). If there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B C,⊢

where, after B appears in the proof, Generalization is not applied to the free
variables of B, then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An B→C.⊢

Indeed, having such a theorem, we obtain the necessary

48

Corollary 1.5.3. If there is a proof of

 [T, MP, Gen]: A1, A2, ..., An, B, Q C, ⊢

where, after B appears in the proof, Generalization is not applied to the free
variables of B, and there is a proof of

[T, MP, Gen]: A1, A2, ..., An Q,⊢

then there is a proof of

[T, MP, Gen]: A1, A2, ..., An B→C.⊢

Proof of the Corollary. In the proof of [T, MP, Gen]: A1, A2, ..., An, B, Q C,⊢

first, move all the hypotheses A1, A2, ..., An to the beginning. Then,

immediately after them, insert the proof of [T, MP, Gen]: A1, A2, ..., An Q.⊢

Now we have a proof of [T, MP, Gen]: A1, A2, ..., An, B C, where, after B⊢

appears in the proof, Generalization is not applied to the free variables of B.
By Deduction Theorem 2A, then there is a proof of [T, MP, Gen]: A1, A2, ...,

An B→C. Q.E.D.⊢

Proof of the Deduction Theorem 2A. Let us modify the above proof of the
Deduction Theorem 2.

We must define a procedure allowing to convert any allowed proof of [T, MP,
Gen]: A1, A2, ..., An, B C into a proof of [L⊢ 1, L2, T, MP, Gen]: A1, A2, ..., An

 B→C.⊢
Unlike the above proof, let us leave unchanged all the formulas of the proof of
[T, MP]: A1, A2, ..., An, B C ⊢ before B appears in the proof. After this,

starting with B, we will replace each formula F by 3 or 5 formulas, one of
them being the formula B→F.

We must consider the following cases:

1), 2), 3) − as in the proof of the Deduction Theorem 1.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi
having the form Fj→F (i.e. Fj→F and Fj yield F by Modus Ponens). Then, 4

subcases are possible.

4a) Fj and Fj→F both appear before B, i.e. they remain unchanged in the

converted proof. Let us replace F by the following 3 formulas: F, F→(B→F),
B→F. The second formula is an instance of L1, the third formula is obtained

by using Modus Ponens from the first two ones.

49

4b) Fj appears before B, and Fj→F is B or appears after B. Then, the formulas

Fj and B→(Fj→F) are already present in the converted proof. Let us replace F

by the following 5 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

Fj→(B→Fj) (an instance of L1),

B→Fj (by Modus Ponens),

B→F (by Modus Ponens).

4c) Fj is B or appears after B, and Fj→F appears before B. Then, the formulas

B→Fj and Fj→F are already present in the converted proof. Let us replace F

by the following 5 formulas from the proof of Theorem 1.4.2:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(Fj→F)→(B→(Fj→F)) (an instance of L1),

B→(Fj→F) (by Modus Ponens),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

4d) Fj and Fj→F both are B or appear after B. Then, the formulas B→Fj and

B→(Fj→F) are already present in the converted proof (they appeared during

the replacement operations applied to the formulas Fj and Fj→F). Let us

replace F by the following 3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

5) F is derived from some previous formula Fi by Generalization, thus, F is in

the form xF∀ i. Then, 2 subcases are possible.

5a) Fi appears before B. Then x is not free in B. Let us replace F by the

following 3 formulas:

F (by Generalization, x is not free in B),

F→(B→F) (an instance of L1),

50

B→F

5b) Fi is B or appears after B. Then x is not free in B, and the formula B→F i
that is already present in the converted proof (it appeared during the
replacement operation applied to the formula Fi). Let us replace F by the

following 3 formulas:

x(B→F∀ i) (by Generalization, x is not free in B),

x(B→F∀ i)→(B→ xF∀ i) (an instance of L14, since x is not free in B),

B→ xF∀ i (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, L14, T, MP, Gen] that is

using the hypotheses A1, A2, ..., An, but not B! The last formula of this proof is

B→C (because C is the last formula our initial proof of [T, MP, Gen]: A1,

A2, ..., An, B C). Thus, we have a proof of [L⊢ 1, L2, L14, T, MP, Gen]: A1, A2,

..., An B→C. Q.E.D.⊢

Exercise 1.5.6 (optional, for smart students). In some other textbooks, a
somewhat different system of logical axioms is used: instead of the axioms
L14, L15 and the Generalization rule the following two rules of inference are

used:

G→F(x) G→ xF(x) (-Introduction);⊢ ∀ ∀
F(x)→G xF(x)→G (-Elimination).⊢∃ ∃
Of course, here, G is a formula that does not contain x as a free variable.
Verify that both systems are equivalent in all of their versions (minimal,
constructive, and classical).

51

2. Propositional Logic

George Boole (1815-1864): "In 1854 he published An Investigation into the Laws of Thought,
on Which are founded the Mathematical Theories of Logic and Probabilities. Boole
approached logic in a new way reducing it to a simple algebra, incorporating logic into
mathematics. He pointed out the analogy between algebraic symbols and those that represent
logical forms. It began the algebra of logic called Boolean algebra which now finds
application in computer construction, switching circuits etc." (according to MacTutor History
of Mathematics archive).

See also:

G.Boole. The Calculus of Logic. The Cambridge and Dublin Mathematical Journal, vol. 3
(1848) (available online at http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/,
published by David R. Wilkins).

2.1. Proving Formulas Containing Implication only

Let us return to the Exercise 1.4.1(d), where you produced a sequence of 9
formulas proving the following:

d) [L1, L2, MP]: A→(A→B) A→B.⊢

Did you try the next step – proving of

d') [L1, L2, MP]: (A→(A→B))→(A→B)?⊢

For proving directly – almost an impossible task!

Now, having deduction theorems, we can simplify the task of proving d), and
make the task of proving d') feasible. More precisely – the task of proving
that d) and d') are provable. Indeed,

(1) A→(A→B) Hypothesis.

(2) A Hypothesis.

(3) A→B By MP, from (1), (2).

(4) B By MP, from (2), (3).

Thus, we have established that A→(A→B), A B. Now, by Deduction⊢
Theorem 1,

[L1, L2, MP]: A→(A→B) A→B.⊢

http://www.maths.tcd.ie/~dwilkins/
http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Boole.html

52

And let us apply this theorem once more,

[L1, L2, MP]: (A→(A→B))→(A→B).⊢

Note. In fact, we proved here only A→(A→B), A B, but ⊢ we did not prove
d) and d'), i.e. we did not produce the corresponding sequences of
formulas. We just proved that these sequences do exist! To produce them
really, we must apply the algorithm described in the proof of Deduction
Theorem 1.

Exercise 2.1.1. Imagine applying the algorithm described in the proof of
Deduction Theorem 1: a) to the above 4 formula sequence – producing a
sequence of 44 formulas proving [L1, L2, MP]: (A→(A→B))→(A→B); b)⊢

to your 9 formula proof of (d) – producing a sequence of 29 formulas proving
the same.

Warning! Always be careful when selecting hypotheses. For
example, to prove the strange formula (the so-called Peirce's Law) ⊢
((A→B)→A)→A (it is provable in the classical logic, not in the constructive
logic!), you can try proving that (A→B)→A A, but not A→B, A A. Why?⊢ ⊢
Because, by Deduction Theorem 1, from A→B, A A it follows that A→B ⊢ ⊢
A→A and (A→B)→(A→A), or A (A→B)→A and A→((A→B)→A).⊢ ⊢ ⊢
Where do you see ((A→B)→A)→A here?⊢
Exercise 2.1.2. Prove the following [L1, L2, MP]:

a) ((A→B)→(A→C))→(A→(B→C)). What does this formula mean?⊢
b) (A→B)→((B→C)→(A→C)). What does this formula mean? It's another⊢
version of the so-called Law of Syllogism (by Aristotle), or the transitivity
property of implication. Explain the difference between this formula and
Theorem 1.4.2: A→B, B→C A→C.⊢
c) (A→(B→C))→(B→(A→C)). What does this formula mean? It's another⊢
version of the so-called Premise Permutation Law. Explain the difference
between this formula and Exercise 1.4.1(c): A→(B→C) B→(A→C).⊢

2.2. Proving Formulas Containing Conjunction

Theorem 2.2.1. a) [L5, MP] A, B ⊢ A∧B .

b) [L3, L4, MP]: A∧B A,⊢ A∧B B.⊢

Let us prove (a).

53

(1) A Hypothesis.

(2) B Hypothesis.

(3) A →(B → A∧B)
Axiom L5: B →(C → B∧C) with

B = A, C = B.

(4) B → A∧B By MP, from (1) and (3).

(5) A∧B By MP, from (2) and (4).

Now, let us prove (b).

(1) A∧B Hypothesis.

(2) A∧B → A
Axiom L3: B∧C → B with B = A,

C = B.

(3) A By MP, from (1) and (2).

Thus, A∧B A.⊢
(1) A∧B Hypothesis.

(2) A∧B → B
Axiom L4: B∧C → C with B = A,

C = B.

(3) B By MP, from (1) and (2).

Thus, A∧B B.⊢
Theorem 2.2.1 allows easy proving of equivalences. Let us remind that B↔C
is defined as a shortcut for (B →C)∧(C → B) . Of course, we will call B
and C equivalent formulas, if and only if B↔C. For example, by Theorem ⊢
1.4.1, [L1, L2, MP] A→A, hence, [L⊢ 1, L2, L5, MP] ⊢ (A → A)∧(A→ A) ,

i.e.

[L1, L2, L5, MP] A↔A.⊢

Of course, (a) of the Exercise 2.1.2 is the reverse formula of the axiom L2.

Hence, by Theorem 2.2.1:

[L1, L2, L5, MP] (A→(B→C)) ↔ ((A→B)→(A→C)).⊢

By (c) of the Exercise 2.1.2, and Theorem 2.2.1:

[L1, L2, L5, MP] (A→(B→C))↔(B→(A→C))⊢

54

Now, let us prove another form of the Law of Syllogism, or Theorem 1.4.2
[L1, L2, MP]: A→B, B→C A→C:⊢

[L1-L4, MP] ⊢ (A → B)∧(B →C)→(A→ C) .

(1) (A → B)∧(B →C) Hypothesis.

(2) (A → B)∧(B →C)→(A→ B)
Axiom L3: B∧C → B with B =

A→B, C = B→C.

(3) (A → B)∧(B →C)→(B →C)
Axiom L4: B∧C →C with B =

A→B, C = B→C.

(4) A→B By MP, from (1) and (2).

(5) B→C By MP, from (1) and (3).

(6) A→C
By by the transitivity property of
implication (Theorem 1.4.2).

Thus, we have established that [L1-L4, MP]: (A → B)∧(B →C) A→C. By⊢

Deduction Theorem 1, [L1-L4, MP] ⊢ ((A→ B)∧(B →C))→(A→C) .

Exercise 2.2.1. Prove the following [L1- L5, MP]:

a) A→B, A→C ⊢ A → B∧C . What does it mean?

b) ⊢ (A → B)∧(A →C)→(A → B∧C) . What does it mean?

c) A → B∧C A→B. What does it mean? ⊢
d) A → B∧C A→C. What does it mean? ⊢
e) ⊢ (A → B∧C)→(A→ B)∧(A →C) . What does it mean?

Hence,

[L1- L5, MP]: ⊢ (A → B∧C)↔(A→ B)∧(A →C) .

Exercise 2.2.2. Prove the following, [L1- L5, MP]:

a) ⊢ A∧B ↔ B∧A . What does it mean? That conjunction is commutative.

b) ⊢ A∧(B∧C)↔(A∧B)∧C . What does it mean? That conjunction is
associative.

c) ⊢ A∧A↔ A . What does it mean? That conjunction is idempotent.

Exercise 2.2.3. Prove the following, [L1- L5, MP]:

55

a) ⊢ (A →(B →C))↔(A∧B →C) . What does it mean?

b) ⊢ (A → B)→ (A∧C → B∧C) . What does it mean? The converse formula
(A∧C → B∧C)→(A→ B) cannot be true. Explain, why.

c) A ⊢ B ↔ B∧A . What does it mean?

Exercise 2.2.4. Let us remind that the equivalence connective A↔B is defined
as a shortcut for (A → B)∧(B → A) . Prove the following properties of this
connective [L1- L5, MP]:

(a) A↔A (reflexivity),⊢
(b) (A↔B)→(B↔A) (symmetricity),⊢
(c) ⊢ (A ↔ B)∧(B ↔C)→(A↔C) (transitivity).

2.3. Proving Formulas Containing Disjunction

Exercise 2.3.1. Prove the following [L1, L2, L6-L8, MP]:

a) [L8, MP]: A→C, B→C ⊢ A∨B →C . What does it mean?

b) [L5, L6-L8, MP]: ⊢ A∨B ↔ B∨A . What does it mean? That disjunction

is commutative.

c) [L1, L2, L5, L6-L8, MP]: ⊢ A∨A ↔ A . What does it mean? That

disjunction is idempotent.

Theorem 2.3.0. [L1, L2, L8, MP]: If there is a proof of

 A1, A2, ..., An, B D,⊢

and a proof of

 A1, A2, ..., An, C D,⊢

then there is a proof of

A1 , A2 , ... , An , B∨C D. ⊢
Exercise 2.3.2. Prove Theorem 2.3.0.

By using Theorem 2.3.0, we can prove that disjunction is associative:

[L1, L2, L5, L6-L8, MP]: ⊢ A∨(B∨C)↔(A∨B)∨C .

Indeed, to prove, for example,

56

⊢ A∨(B∨C)→(A∨B)∨C (*)

we can first prove ⊢ A →(A∨B)∨C and ⊢ B∨C →(A∨B)∨C , and after
that – apply Theorem 2.3.0. Proving of the second formula can be reduced in
the same way. Thus, (*) would be proved, if we could prove that

 ⊢ A →(A∨B)∨C , ⊢ B →(A∨B)∨C , ⊢ C →(A∨B)∨C .

(1) C →(A∨B)∨C Axiom L7.

Now, let us prove that

 ⊢ B →(A∨B)∨C .

(2) B → A∨B Axiom L7.

(3) A∨B →(A∨B)∨C Axiom L6.

(4) B →(A∨B)∨C From (2) and (3), by the transitivity property of
implication (Theorem 1.4.2).

Now, let us prove that

 ⊢ A →(A∨B)∨C .

(5) A → A∨B Axiom L6.

(6) A∨B →(A∨B)∨C Axiom L6.

(7) A →(A∨B)∨C From (5) and (6), by the transitivity property of
implication (Theorem 1.4.2).

Exercise 2.3.3. a) Prove the converse:
 [L1, L2, L6-L8, MP]: ⊢ (A∨B)∨C → A∨(B∨C) .

b) Prove (use Deduction Theorem 1) that [L1, L2, L6-L8, MP]: ⊢
(A → B)→ (A∨C → B∨C) . What does it mean? The converse formula
(A∨C → B∨C)→(A → B) cannot be true. Explain, why.

c) Prove that [L1, L2, L6-L8, MP]: A→B, C→D ⊢ ⊢ A∨C → B∨D . What

does it mean?

The following theorem corresponds to the well-known distributive property
of (number) addition to multiplication: (a+b)c = ac+bc. Of course, the "dual"
distributive property (i.e. – of multiplication to addition) does not hold for
numbers: ab+c=(a+c)(b+c) would imply ab+c=ab+ac+bc+cc, c=ac+bc+cc,
and, if c<>0, then 1=a+b+c. Still, surprisingly, in logic,

57

Theorem 2.3.1. Conjunction is distributive to disjunction, and disjunction
is distributive to conjunction:

[L1-L8, MP]: ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) .

[L1-L8, MP]: ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) .

First, let us prove that ⊢ (A∧B)∨C →(A∨C)∧(B∨C) .

(1) Prove ⊢ A∧B →(A∨C)∧(B∨C)

(2) Prove ⊢ C →(A∨C)∧(B∨C)

(3) ⊢ (A∧B)∨C →(A∨C)∧(B∨C)
From (1) and (2), by Exercise
2.3.1(a).

Exercise 2.3.4. a) Prove (1) and (2). b) (optional) Do not read the following
proof. Try proving yourself.

Now, let us prove the converse: ⊢ (A∨C)∧(B∨C)→(A∧B)∨C .

Note. The proof below starts with C as a hypothesis. Why not with
(A∨C)∧(B∨C) ? Because, we will use Deduction Theorem 1 to prove the

intermediate formula (6) C →(B∨C → (A∧B)∨C) , not the final result!

(1) C Hypothesis.

(2) B→C From (1).

(3) C →(A∧B)∨C Axiom L7.

(4) B →(A∧B)∨C From (2) and (3).

(5) B∨C →(A∧B)∨C From (4) and (3).

(6) C →(B∨C → (A∧B)∨C)
From (1)-(5), by Deduction
Theorem 1.

(7) (B → A∧B)→(B∨C →(A∧B)∨C) Exercise 2.3.3(b).

(8) A →(B → A∧B) Axiom L3.

(9) A →(B∨C →(A∧B)∨C) From (8) and (7).

(10) A∨C →(B∨C →(A∧B)∨C) From (9) and (6).

(11) (A∨C)∧(B∨C)→(A∧B)∨C From (10), by Exercise
2.2.3(a).

58

Now, we must prove that ⊢ (A∨B)∧C →(A∧C)∨(B∧C) .

(1) Prove ⊢ A →(C →(A∧C)∨(B∧C))

(2) Prove ⊢ B →(C →(A∧C)∨(B∧C))

(3)
Prove ⊢
(A∨B)∧C →(A∧C)∨(B∧C)

Exercise 2.3.5. Prove the above (1), (2) and (3).

Finally, we must prove that ⊢ (A∧C)∨(B∧C)→(A∨B)∧C .

Exercise 2.3.6. Prove that.

2.4. Formulas Containing Negation – Minimal Logic

Theorem 2.4.1. a) If

[L1, L2, L9, MP]: A1, A2, ..., An, B C,⊢

and

 [L1, L2, L9, MP]: A1, A2, ..., An, B ¬C,⊢

 then

 [L1, L2, L9, MP]: A1, A2, ..., An ¬B.⊢

What does this mean?

b) [L3, L4, L9, MP]: ⊢ ¬(A∧¬A) . What does it mean? It's the so-called

Law of Non-Contradiction.

Proof. a) By Deduction Theorem 1, A1, A2, ..., An B→C, and A⊢ 1, A2, ..., An
 B→¬C. Let us continue this proof by adding the axiom ⊢ L9:

(B→C)→((B→¬C)→¬B) as the next step. After this, by applying MP twice
we obtain ¬B. Q.E.D.

b) See Exercise 1.4.2 (e).

Exercise 2.4.1. a) (optional, for smart students) Investigate the size (the
number of formulas) of the proof of [L1, L2, L9, MP]: A1, A2, ..., An, ¬B as a⊢

function f(k, m) of the sizes k, m of the proofs of [L1, L2, L9, MP]: A1, A2, ...,

An, B C and ⊢ 1, A2, ..., An, B ¬C. You may wish to ⊢ report your result. We

will publish your report on the web as an appendix to this book. The current

mailto:Karlis.Podnieks@mii.lu.lv
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#e142

59

record holder is Aiga Romane, 2008: f(k, m) ≤ 3(k+m)+7. Improve this result,
or prove that it is the best possible one.
b) [L1, L2, L9, MP]: A, ¬B ¬(A→B). Or, [L⊢ 1-L4, L9, MP]: ⊢

A∧¬B →¬(A → B) . What does it mean?

c) [L⊢ 1, L2, L9, MP]: (A→¬A)→¬A. What does it mean?

Attention: non-constructive reasoning! In Section 2.6, we will use the
classical logic [L1-L11, MP] to prove the converse formula of (c):

¬(A → B)→ A∧¬ B , i.e. the equivalence ¬(A → B)↔ A∧¬ B . This
formula cannot be proved in the constructive logic [L1-L10, MP] (see Section

2.8).

Theorem 2.4.2. [L1, L2, L9, MP]: (A→B)→(¬B→¬A).⊢

What does it mean? It's the so-called Contraposition Law.

Note. The following form of Theorem 2.4.2 is called Modus Tollens:

[L1, L2, L9, MP]: A→B, ¬B ¬A.⊢ ⊢

Attention: non-constructive reasoning! In Section 2.6, we will use the
classical logic [L1-L11, MP] to prove the converse formula

(¬B→¬A)→(A→B), i.e. the equivalence (A→B)↔(¬B→¬A). We will see
also that these formulas cannot be proved in the constructive logic [L1-L10,

MP] (see Section 2.8).

Exercise 2.4.2. a) Prove Theorem 2.4.2.

b) (optional) Verify that, in our axiom system, the Law of Non-Contradiction
and the Contraposition Law could be used instead of the axiom L9. More

precisely: prove L9 in the logic [L1-L5, Law of Non-Contradiction,

Contraposition Law, MP]. Be careful: do not use theorems depending on the
axiom L9.

Theorem 2.4.3. [L1-L9, MP]: (A→¬B)↔(B→¬A). What does it mean?⊢

First we prove that (A→¬B)→(B→¬A).⊢
(1) A→¬B Hypothesis.

(2) B Hypothesis.

(3) (A→B)→((A→¬B)→¬A)
Axiom L9:

(B→C)→((B→¬C)→¬B) with B =
A, C = B.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/241_Romane.doc

60

(4) A→B From (2) by Axiom L1 and MP.

(5) (A→¬B)→¬A From (3) and (4).

(6) ¬A From (1) and (5).

Thus, by Deduction Theorem 1, (A→¬B)→(B→¬A). By swapping A and B⊢
we obtain the converse formula: (B→¬A)→(A→¬B). Q.E.D.⊢
Attention: non-constructive reasoning! Warning! The (very similar to
Theorem 2.4.3) formula (¬A→B)↔(¬B→A) can be proved only in the
classical logic!

Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A. What does it mean? ⊢

(1) A Hypothesis.

(2) (¬A→A)→((¬A→¬A)→¬¬A) Axiom L9.

(3) A→(¬A→A) Axiom L1.

(4) ¬A→A From (1) and (3) by MP.

(5) (¬A→¬A)→¬¬A From (2) and (4) by MP.

(6) ¬¬A From (5) and Theorem 1.4.1 by MP.

Attention: non-constructive reasoning! In Section 2.6, we will use the
classical logic [L1-L11, MP] to prove the converse formula ¬¬A→A, i.e. the⊢

equivalence ¬¬A↔A (the so-called ⊢ Double Negation Law). We will see
also (Section 2.8) that these formulas cannot be proved in the constructive
logic [L1-L10, MP].

Still, in the minimal logic we can prove (Brouwer, 1923?):

Theorem 2.4.5. [L1, L2, L9, MP]: ¬¬¬A↔¬A. What does it mean?⊢

Indeed, by Theorem 2.4.4, ¬A→¬¬¬A. By the Contraposition Law⊢
(Theorem 2.4.2), (A→¬¬A)→(¬¬¬A→¬A). Hence, by Theorem 2.4.4, ⊢ ⊢
¬¬¬A→¬A. Q.E.D.

Theorem 2.4.5 (and some of the following formulas in this and in the next
section containing double negations) may seem uninteresting to people
believing unconditionally in the equivalence ¬¬A↔A. Still, it seems
interesting (at least – for a mathematician) to obtain a general characterization
of logical formulas that do not depend on the Law of Excluded Middle. In
Section 2.7 we will use these formulas to prove the elegant and non-trivial

61

Glivenko's theorem: a) A is provable in the classical propositional logic (i.e. in
[L1-L11, MP]), if and only if ¬¬A is provable in the constructive propositional

logic (i.e. in [L1-L10, MP]), b) ¬A is provable in the classical propositional

logic, if and only if ¬A is provable in the constructive propositional logic.

Theorem 2.4.6. a) [L1, L2, L9, MP]: (¬A→A)→¬¬A. What does it mean?⊢

b) [L1, L2, L6, L7, L9, MP]: ¬¬(Av¬A). What does it mean?⊢

In this weak form, the Law of Excluded Middle can be "proved
constructively". The formula ¬¬(A∨¬ A) can be proved in the constructive
logic, but A∨¬ A can't – as we will see in Section 2.8.

Exercise 2.4.3. Prove (a) and (b) of Theorem 2.4.6. The axiom L11 can't be

used in these proofs! (Hint for (b): derive a contradiction from ¬(Av¬A).)

Theorem 2.4.7. [L1-L9, MP]: a) (A→B)→(¬¬A→¬¬B). What does it⊢

mean?

b) ¬¬(A→B)→(¬¬A→¬¬B). What does it mean?⊢
c) (A→(B→C))→(¬¬A→(¬¬B→¬¬C)). What does it mean?⊢
d) ¬¬(A→B), ¬¬(B→C) ¬¬(A→C). What does it mean?⊢
e) ¬¬A, ¬¬(A→B) ¬¬B. What does it mean?⊢
The converse of (a): (¬¬A→¬¬B)→(A→B) cannot be proved in the
constructive logic (see Section 2.8).

To prove (a), we must simply apply twice the Contraposition Law:
(A→B)→(¬B→¬A)→(¬¬A→¬¬B). And, of course, (e) is an easy
consequence of (b).

Now, let us prove (b).

(1) ¬¬(A→B) Hypothesis.

(2) ¬¬A Hypothesis.

(3) ¬¬A→((A→B)→¬¬B)

From (a), by
transposing A→B and
¬¬A, by the Premise
Permutation Law.

(4) (A→B)→¬¬B From (2) and (3).

(5) ((A→B)→¬¬B)→(¬¬¬B→¬(A→B))
By the Contraposition
Law.

62

(6) ¬¬¬B→¬(A→B) From (4) and (5).

(7) (¬¬¬B→¬(A→B))→(¬¬(A→B)→¬¬¬¬B)
By the Contraposition
Law.

(8) ¬¬(A→B)→¬¬¬¬B From (6) and (7).

(9) ¬¬¬¬B From (1) and (8).

(10) ¬¬¬¬B→¬¬B By Theorem 2.4.5.

(11) ¬¬B From (9) and (10).

Thus, by Deduction Theorem 1, ¬¬(A→B)→(¬¬A→¬¬B).⊢
Let us prove (c).

(1) A→(B→C) Hypothesis.

(2) ¬¬A Hypothesis.

(3) ¬¬B Hypothesis.

(4) ¬¬A→¬¬(B→C) From (1), by (a).

(5) ¬¬(B→C) From (2) and (4).

(6) ¬¬B→¬¬C From (5), by (b).

(7) ¬¬C From (3) and (6).

Thus, by Deduction Theorem 1, (A→(B→C))→(¬¬A→(¬¬B→¬¬C)).⊢
Now we can prove (d). First, let us take (c) with A = A→B, B = B→C, C =
A→C:

(1) ((A→B)→((B→C)→(A→C)))→(¬¬(A→B)→(¬¬(B→C)→¬¬(A→C))).⊢

(2) (A→B)→((B→C)→(A→C)⊢ By transitivity of implication and
Deduction Theorem 1.

(3) ¬¬(A→B) Hypothesis.

(4) ¬¬(B→C) Hypothesis.

(5) ¬¬(A→C) From (1), (3) and (4).

Theorem 2.4.8. [L1-L9, MP]: a) ⊢ ¬¬(A∧B)↔(¬¬ A∧¬¬ B) . What does

it mean?

63

b) ⊢ ¬¬ A∨¬¬ B → ¬¬(A∨B) . What does it mean?

Attention: non-constructive reasoning! The converse of (b):
¬¬(A∨B)→ ¬¬ A∨¬ ¬ B cannot be proved in the constructive logic (see

Section 2.8). What does it mean? If we simply succeed in deriving a
contradiction from ¬(A∨B) , then, perhaps, we do not have a method
allowing to decide, which part of ¬¬ A∨¬¬ B is true – ¬¬A, or ¬¬B?

Exercise 2.4.4. Prove Theorem 2.4.8. (Hint: use the result of Exercise 2.2.3(a),
if needed.)

Theorem 2.4.9. [L1, L2, L9, MP] ¬A→(A→¬B) (compare with ⊢ Exercise

1.4.2(d)). What does it mean?

It's a weak form of the "crazy" axiom L10: ¬A→(A→B). This axiom says:

"Contradiction implies anything". In the minimal logic we can prove 50% of
L10: "Contradiction implies that all is wrong". Of course, this 50%-provability

of L10 decreases the significance of the minimal logic accordingly.

Proof. See Exercise 2.4.5.

Theorem 2.4.10. [L1-L9, MP]:

a) ⊢ ¬ A∨¬ B → ¬(A∧B) . It's a half of the so-called First de Morgan
Law. What does it mean?

b) ⊢ ¬(A∨B)↔ ¬ A∧¬ B . It's the so-called Second de Morgan Law.
What does it mean?

Attention: non-constructive reasoning! The second half of (a) – the converse
implication, i.e. the equivalence ¬(A∧B)↔ ¬ A∨¬ B can be proved in the
classical logic, yet not in the constructive logic (see Section 2.8). Explain,
why.

Augustus de Morgan (1806-1871): "He recognised the purely symbolic nature of algebra and
he was aware of the existence of algebras other than ordinary algebra. He introduced de
Morgan's laws and his greatest contribution is as a reformer of mathematical logic."
(according to MacTutor History of Mathematics archive).

Use Contraposition Law to prove (a) and (b→) in Exercise 2.4.5.

Let us prove (b←).

(0) ¬ A∧¬ B Hypothesis.

(1) ¬A From (0), by Axiom L3.

(2) ¬B From (0), by Axiom L4.

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/De_Morgan.html

64

(3) A→¬C
From (1), by Theorem 2.4.9: ¬A→(A→¬C). C is
any formula.

(4) B→¬C
From (2), by Theorem 2.4.9: ¬B→(B→¬C). C is
any formula.

(5) A∨B →¬ C
From (3) and (4), by Axiom L8:

(A →¬C)→ ((B → ¬C)→(A∨B →¬C)) .

(6) A∨B →¬ ¬C Repeat (3)-(5) with ¬¬C instead of ¬C.

(7) ¬(A∨B)
From (5) and (6), by Axiom L9:

(A∨B →¬ C)→((A∨B →¬¬C)→¬(A∨B))

Thus, by [L1, L2] Deduction Theorem 1,

 [L1-L9, MP] ⊢ ¬ A∧¬ B → ¬(A∨B) .

Exercise 2.4.5. Prove:

a) Theorem 2.4.9.

b) (a) and (b→) of Theorem 2.4.10. (Hint: use Contraposition Law).

c) [L1-L9, MP]: ⊢ (A → B)→ ¬(A∧¬ B) . What does it mean? Compare

with Exercise 2.4.1.

d) [L1-L8, MP]: ⊢ A∨B →((A → B)→ B) . What does it mean?

Attention: non-constructive reasoning! The converse implication of (a),
¬(A∧¬ B)→(A → B) cannot be proved in the constructive logic (see

Section 2.8). Explain, why. Still, we will prove this formula in the classical
logic.

The converse of (b): ((A→ B)→ B)→ A∨B cannot be proved in the
constructive logic (see Section 2.8). Explain, why. Still, we will prove this
formula in the classical logic.

2.5. Formulas Containing Negation – Constructive Logic

In this book, constructive logic is used as a synonym of intuitionistic logic!

Constructive logic includes the "crazy" axiom L10: ¬B→(B→C), but rejects

the Law of Excluded Middle L11: Bv¬B as a general logical principle.

65

Theorem 2.5.1. a) [L10, MP]: A, ¬A B. What does it mean? ⊢

b) [L1, L2, L8, L10, MP]: ⊢ A∨B →(¬ A→ B) . What does it mean?

c) [L1, L8, L10, MP]: ⊢ ¬ A∨B →(A→ B) . What does it mean?

Of course, (a) follows directly from L10, by MP.

Exercise 2.5.1. Prove (b) and (c) of Theorem 2.5.1. Note: when proving (c),
you cannot use Deduction Theorem 1 (because of the missing axiom L2). So,

simply build a sequence of 5 formulas representing the proof of (c).

Attention: non-constructive reasoning! The converse of (b), i.e.
(¬ A→ B)→ A∨B cannot be proved in the constructive logic (see Section

2.8). Explain, why. The converse of (c), i.e. (A → B)→ ¬ A∨B cannot be
proved in constructive logic (see Section 2.8). Explain, why.

Surprisingly, (b), i.e. the rule A∨B ,¬ A B seems to be a quite a "natural"⊢
logical principle, yet it cannot be proved without the "crazy" axiom L10! Why

not? Because it implies L10! Indeed,

(1) A∨B →(¬ A→ B) Hypothesis.

(2) ¬A Hypothesis.

(3) A Hypothesis.

(4) A → A∨B Axiom L6.

(5) A∨B By MP, from (3) and (4).

(6) B By MP, from (1), (5) and (2).

Hence, by Deduction Theorem 1, [L1, L2, L6, MP]: A∨B →(¬ A→ B) ⊢

¬A→(A→B).

In Section 2.8 we will prove that L10 cannot be derived from L1-L9, hence, (b)

also cannot be derived from L1-L9 (i.e. without L10).

Theorem 2.5.2. [L1-L10, MP]:

a) (¬¬A→¬¬B)→¬¬(A→B). It's the converse of Theorem 2.4.7(b). Hence,⊢
[L1-L10, MP]: ¬¬(A→B)↔(¬¬A→¬¬B).⊢

b) ¬¬A→(¬A→A). It's the converse of Theorem 2.4.6(a). Hence,⊢
[L1-L10, MP]: ¬¬A↔(¬A→A).⊢

66

c) ⊢ A∨¬ A →(¬ ¬ A → A) . What does it mean?

d) ¬¬(¬¬A→A). What does it mean?⊢
Of course, (b) is an instance of the axiom L10.

To prove (a), let us prove that [L1-L10, MP]: ¬¬A→¬¬B, ¬(A→B) ¬B, ¬¬B.⊢

Then, by Theorem 2.4.1, (a) (¬¬A→¬¬B)→¬¬(A→B).⊢
Exercise 2.5.2. a) Prove that [L1-L10, MP]: ¬¬A→¬¬B, ¬(A→B) ¬B, ¬¬B.⊢

b) Prove (c) and (d) of Theorem 2.5.2.

Exercise 2.5.3. Prove that in [L1-L10, MP]:

a) A ⊢ B ↔ B∨¬ A . What does it mean?

b) ⊢ B∨(A∧¬ A)↔ B . What does it mean?

c) ⊢ ((A∧¬ A)∧B)∨C ↔C . What does it mean?

2.6. Formulas Containing Negation – Classical Logic

If you agree to adopt the formula B∨¬ B , i.e. the Law of Excluded Middle
(Axiom L11 in the list of Section 1.3), you can prove, first of all, the so called

Double Negation Law:

Theorem 2.6.1. [L1-L11, MP]: ¬¬A → A. Hence, [L⊢ 1-L11, MP]: ¬¬A ↔⊢

A.

Indeed, by Theorem 2.5.2, [L1-L10, MP]: ⊢ A∨¬ A →(¬ ¬ A → A) , hence,

[L1-L11, MP]: ¬¬A→A. Q.E.D. ⊢

In the minimal logic we proved Theorem 2.4.4: [L1, L2, L9, MP]: A→¬¬A.⊢

Hence, [L1-L11, MP]: ¬¬A ↔ A.⊢

Attention: non-constructive reasoning! The formula ¬¬A→A cannot be
proved in the constructive logic, see Section 2.8. Why? Because it represents a
kind of non-constructive reasoning. Indeed, imagine, you wish to prove that
∃xB(x). Assume the contrary, ¬∃xB(x), and derive a contradiction. Thus you
have proved... the negation of ¬∃xB(x), i.e. ¬ ¬∃xB(x). To conclude ∃xB(x)
from ¬ ¬∃xB(x), you need the Double Negation Law. Hence, by adopting this
law as a logical principle, you would allow non-constructive existence proofs
– if you prove ∃xB(x) by assuming ¬∃xB(x), and deriving a contradiction, then

67

you may not obtain a method allowing to find a particular x satisfying B(x).

Exercise 2.6.1. Prove that [L8, L11, MP]: A→B, ¬A→B B. Or, by⊢

Deduction Theorem 1, [L1, L2, L8, L11, MP]: (A→B)→((¬A→B)→B). What

does it mean? This formula cannot be proved in the constructive logic (see
Section 2.8). Explain, why.

In the classical logic, you can prove also the full form of the Contraposition
Law:

Theorem 2.6.2. [L1-L11, MP]: (A→B) ↔ (¬B→¬A).⊢

We proved a half of this Law in the minimal logic as Theorem 2.4.2: [L1, L2,

L9, MP]: (A→B)→(¬B→¬A). Let us prove the remaining half: [L⊢ 1-L11,

MP] (¬B→¬A) → (A→B).⊢
(1) ¬B→¬A Hypothesis.

(2) A Hypothesis.

(3) ¬¬A→¬¬B From (1), by the first half.

(4) A→¬¬A Double Negation Law.

(5) ¬¬B→B Double Negation Law.

(6) B From (4), (3) ans (5).

By Deduction Theorem 1, [L1-L11, MP] (¬B→¬A) → (A→B).⊢

Attention: non-constructive reasoning! The formula (¬B→¬A) → (A→B)
cannot be proved in the constructive logic, see Section 2.8. Explain, why.

Exercise 2.6.1A. Prove that in [L1-L11, MP]:

a) (¬A→B)↔(¬B→A) (compare with Theorem 2.4.3).⊢
b) (A→B)→((¬A→¬B)→(B↔A)).⊢
Attention: non-constructive reasoning! These two formulas cannot be
proved in the constructive logic, see Section 2.8.

Theorem 2.6.3. [L1-L11, MP]: ⊢ ¬(A∧B)↔¬A∨¬B . It's the so-called

First de Morgan Law.

A half of this Law we proved in the minimal logic as Theorem 2.4.10(a): [L1-

L9, MP] ⊢ ¬ A∨¬ B →¬(A∧B) . Let us prove the remaining half: [L1-L11,

MP] ⊢ ¬(A∧B)→¬ A∨¬ B .

68

Attention: non-constructive reasoning! This formula cannot be proved in the
constructive logic, see Section 2.8. Explain, why.

Let us start by proving ¬(¬ A∨¬ B)→ A∧B .

(1) ¬(¬ A∨¬ B) Hypothesis.

(2) ¬(¬ Av ¬ B)→¬¬ A∧¬¬ B By the Second de Morgan Law
-Theorem 2.4.10(b).

(3) ¬¬ A∧¬¬ B →¬¬(A∧B) Theorem 2.4.8(a). [L1-L9, MP]!

(4) ¬¬(A∧B) From (1), (2) and (3).

Thus, by Deduction Theorem 1, [L1-L9, MP] ⊢ ¬(¬ A∨¬ B)→¬ ¬(A∧B) .

By applying the first half of the Contraposition Law (provable in the minimal
logic): [L1-L9, MP] ⊢ ¬¬¬(A∧B)→¬ ¬(¬ A∨¬ B) . By Theorem 2.4.5:

[L1-L9, MP] ⊢ ¬(A∧B)→ ¬¬¬(A∧B) , hence,

[L1-L9, MP] ⊢ ¬(A∧B)→ ¬¬(¬ A∨¬ B) . Now, by the Double Negation

Law, [L1-L11, MP] ⊢ ¬¬(¬ A∨¬ B)→ ¬ A∨¬ B , hence,

 [L1-L11, MP] ⊢ ¬(A∧B)→ ¬ A∨¬ B . Q.E.D.

In the classical logic, we can express implication by negation and disjunction.
Indeed, we already know that [L1-L10, MP]: ⊢ ¬ A∨B →(A→ B)

(Theorem 2.5.1(c)).

Theorem 2.6.4. a) [L1-L8, MP]: A∨C ⊢ (A → B)→ B∨C . Hence, [L1-

L8, MP]: A∨¬ A ⊢ (A → B)→ ¬ A∨B .

b) [L1-L11, MP]: ⊢ (A → B)↔ ¬ A∨B .

Of course, (b) follows from (a) and Theorem 2.5.1(c). Let us prove (a).

(1) A, A→B B⊢

(2) A, A→B ⊢ B∨C By Axiom L6.

(3) A ⊢ (A → B)→ B∨C By Deduction Theorem 1.

(4) C, A→B C⊢

(5) C, A→B ⊢ B∨C By Axiom L7.

69

(6) C ⊢ (A → B)→ B∨C By Deduction Theorem 1.

(7) AvC ⊢ (A → B)→ B∨C By Axiom L8.

Exercise 2.6.2. Prove that in [L1-L11, MP]:

a) ⊢ B∧(A∨¬ A)↔ B . What does it mean?

b) ⊢ ((A∨¬ A)∨B)∧C ↔C . What does it mean?

c) ⊢ ((A→ B)→ B)→ A∨B . What does it mean? Hence, by Exercise
2.4.5(d), [L1-L11, MP]: ⊢ ((A→ B)→ B)↔ A∨B .

Exercise 2.6.3. Prove that in [L1-L11, MP]:

a) ⊢ (A → B)↔¬(A∧¬ B) . What does it mean?

b) ⊢ ¬(A → B)↔ A∧¬ B . What does it mean?

c) ⊢ A∨B ↔(¬ A→ B) . What does it mean?

d) ⊢ A∧B ↔¬(A→¬ B) . What does it mean?

e) (optional, for smart students) Try detecting, which parts of these
equivalences are provable: 1) in the minimal logic, 2) in the constructive logic.

Strange formulas

Exercise 2.6.4. Prove in [L1-L11, MP] the following strange formulas:

a) ⊢ A∨(A→ B) . What does it mean? Does it mean anything at all?

b) ⊢ (A → B)∨(B → A) . What does it mean? Does it mean anything at all?
The most crazy theorem of the classical propositional logic?

c) ⊢ ((A→ B)→ A)→ A . What does it mean? Does it mean anything at all?
It is the so-called Peirce's Law from:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American
Journal of Mathematics, 1885, vol.7, pp.180-202.

2.7. Constructive Embedding. Glivenko's Theorem

Let us remind some of the results of previous sections concerning double
negations:

Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A.⊢

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce

70

Theorem 2.4.5. [L1-L9, MP]: ¬¬¬A↔¬A.⊢

Theorem 2.4.6(b). [L1-L9, MP]: ⊢ ¬¬(A∨¬ A) . In this weak form, the

Law of Excluded Middle can be "proved constructively".

Theorem 2.4.7. [L1-L9, MP]: a) (A→B)→(¬¬A→¬¬B).⊢

b) ¬¬(A→B)→(¬¬A→¬¬B).⊢
c) (A→(B→C))→(¬¬A→(¬¬B→¬¬C)).⊢
d) ¬¬(A→B), ¬¬(B→C) ¬¬(A→C).⊢
e) ¬¬A, ¬¬(A→B) ¬¬B.⊢
Theorem 2.4.8. [L1-L9, MP]: a) ⊢ ¬¬(A∧B)↔ (¬¬ A∧¬¬ B) .

b) ⊢ ¬¬ A∨¬¬ B →¬¬(A∨B) .

Theorem 2.5.2. [L1-L10, MP]: a) (¬¬A→¬¬B)→¬¬(A→B). It's the⊢

converse of Theorem 2.4.7(b).

d) ¬¬(¬¬A→A). ⊢
Theorem 2.6.1. [L1-L11, MP]: ¬¬A ↔ A.⊢

Does it mean that for any formula A: if [L1-L11, MP]: A, then [L⊢ 1-L10, MP]:

 ¬¬A? (The converse is obvious: if [L⊢ 1-L10, MP]: ¬¬A, then [L⊢ 1-L11, MP]:

 A by Theorem 2.6.1.)⊢
Imagine, we have a proof of [L1-L11, MP]: A. It is a sequence of formulas⊢

R1, R2, ..., Rn, where Rn = A. If this sequence does not contain instances of the

axiom L11, then it is a proof of [L1-L10, MP]: A as well. Hence, according to⊢

Theorem 2.4.4, [L1-L10, MP]: ¬¬A⊢

If the sequence R1, R2, ..., Rn contains some instances of L11, i.e. formulas

having the form B∨¬ B , then, according to Theorem 2.4.6(b), we could try
replacing each such formula by a sequence proving that [L1-L9, MP]: ⊢

¬¬(B∨¬ B) . It appears that each of the formulas ¬¬R1, ¬¬R2, ..., ¬¬Rn is

provable in [L1-L10, MP].

a) If Rk is an instance of the axioms L1-L10, then [L1-L10, MP]: ¬¬R⊢ k
(Theorem 2.4.4).

b) If Rk is an instance of the axiom L11, then [L1-L10, MP]: ¬¬R⊢ k (Theorem

2.4.6(b)).

71

c) Now, let us assume that i, j < k, and Ri, Rj R⊢ k directly by MP, i.e. Rj is

Ri→Rk. We know already that [L1-L10, MP]: ¬¬R⊢ i and [L1-L10, MP]: ⊢

¬¬(Ri→Rk). By Theorem 2.4.7(b), [L1-L9, MP]: ⊢

¬¬(Ri→Rk)→(¬¬Ri→¬¬Rk). Hence, [L1-L10, MP]: ¬¬R⊢ k.

Because A = Rn, we have proved the remarkable Glivenko's theorem from

1929:

V.Glivenko. Sur quelques points de la logique de M. Brouwer. Academie Royale de Belgique,
Bulletins de la classe des sciences, 1929, ser.5, vol.15, pp.183-188.

Valery Ivanovich Glivenko (1896-1940, see http://www.math.ru/history/people/glivenko, in
Russian) is best known by the so-called Glivenko-Cantelli theorem in probability theory.

Glivenko's Theorem. [L1-L11, MP]: A, if and only if [L⊢ 1-L10, MP]: ¬¬A.⊢

Or: a formula A is provable in the classical propositional logic, if and only if
its double negation ¬¬A is provable in the constructive propositional logic.

This theorem provides a kind of a "constructive embedding" for the classical
propositional logic: any classically provable formula can be "proved" in the
constructive logic, if you simply put two negations before it.

Corollary. [L1-L11, MP]: ¬A, if and only if [L⊢ 1-L10, MP]: ¬A. Or: a⊢

"negative" formula ¬A is provable in the classical propositional logic, if and
only if it is provable in the constructive propositional logic.

Indeed, if [L1-L11, MP]: ¬A, then by Glivenko's theorem, [L⊢ 1-L10, MP]: ⊢

¬¬¬A, and by Theorem 2.4.5, [L1-L10, MP]: ¬A. Q.E.D.⊢

Exercise 2.7.1. Prove the following version of Glivenko's theorem (see Kleene
[1952]):

a) If [L1-L11, MP]: A1, A2, ..., An C, then⊢

[L1-L10, MP]: ¬¬A1, ¬¬A2, ..., ¬¬An ¬¬C.⊢

b) If [L1-L11, MP]: ¬A1, ¬A2, ..., ¬An, B1, B2, ..., Bp ¬C, then⊢

[L1-L10, MP]: ¬A1, ¬A2, ..., ¬An , ¬¬B1, ¬¬B2, ..., ¬¬Bp ¬C.⊢

http://www.math.ru/history/people/glivenko

72

2.8. Axiom Independence. Using Computers in Mathematical
Proofs

If one of our axioms Li could be proved by using the remaining n-1 axioms,

then we could simplify our logical system by dropping Li as an axiom. A

striking example:

Theorem 2.8.1. The axiom L9: (A→B)→((A→¬B)→¬A) can be proved in

[L1, L2, L8, L10, L11, MP].

This fact was established by Augusts Kurmitis (on the web, also: A. A. Kurmit):

A. A. Kurmitis. On independence of a certain axiom system of the propositional calculus.
Proc. Latvian State University, 1958, Vol. 20, N3, pp. 21-25 (in Russian).

The following proof of L9 in [L1, L2, L8, L10, L11, MP] is due to Janis Sedols

(1939-2011).

First, let us establish that the formula (A→¬A)→¬A can be proved in [L1, L2,

L8, L10, L11, MP] (in Exercise 2.4.1 we established that [L1, L2, L9, MP]: ⊢

(A→¬A)→¬A):

(1) (A →¬ A)→((¬ A →¬ A)→(A∨¬ A)→¬ A) Axiom L8.

(2) A→¬A Hypothesis.

(3) ¬A→¬A
This is provable in [L1, L2,

MP] (Theorem 1.4.1).

(4) Av ¬ A Axiom L11.

(4) ¬A
From (1), (2), (3) and (4),
by MP.

(6) (A→¬A)→¬A

By Deduction Theorem 1
(which is valid for any
logical system containing
[L1, L2, MP]).

Now let us establish that in [L1, L2, L10, MP]: A→B, A→¬B A→¬A.⊢

http://jonins.mii.lu.lv/J_Sedols/JS.htm

73

(7) A→B Hypothesis.

(8) A→¬B Hypothesis.

(9) A Hypothesis.

(9) B From (7), (9), by MP.

(10) ¬B From (8), (9), by MP.

(11) ¬B→(B→¬A) Axiom L10.

(12) ¬A From (9), (10) and (11) by MP.

(13) A→B, A→¬B A→¬A⊢
By Deduction Theorem 1 (which is
valid for any propositional system
containing [L1, L2, MP]).

Finally, let us merge the proofs of (6) and (13), then by MP we obtain ¬A, i.e.

[L1, L2, L8, L10, L11, MP]: A→B, A→¬B ¬A.⊢

Now, by Deduction Theorem 1 (which is valid for any propositional system
containing [L1, L2, MP]) we obtain the axiom L9:

[L1, L2, L8, L10, L11, MP]: (A→B)→((A→¬B)→¬A).

Q.E.D.

What should we do after establishing that one of our axioms is "dependent"?

Do you think, we should drop L9 as an axiom of our logical system?

First, let's note that we have proved L9 by using three problematic axioms:

L1, L10, L11. But L9 itself is not problematic!

Secondly, L9 cannot be proved in [L1-L8, L10, MP] (see Theorem 2.8.2

below). Hence, if we would drop L9, then, instead of a simple definition

classical logic = constructive logic + L11,

we would have a more complicated one:

constructive logic = classical logic – L11 + L9.

Now, the question of questions:

Is the Law of Excluded Middle an independent logical principle?

74

I.e., could we prove the Law of Excluded Middle (the axiom L11: B∨¬ B)

by using the other axioms (i.e. [L1-L10, MP]) as we proved L9 in [L1, L2, L8,

L10, L11, MP]? If not, how could we demonstrate that this is impossible at all?

How could we demonstrate that some logical principle is independent, i.e.
that it cannot be derived from other principles?

Let us assume, we have an algorithm q computing for each formula A some its
"property" q(A) such that:

a) q(L1) is true, q(L2) is true, ..., q(L10) is true (i.e. the axioms L1-L10 possess

property q).

b) If q(A) is true and q(A→B) is true, then q(B) is true (i.e. MP "preserves"
property q). Hence, q(F) is true for all the formulas F that are provable in [L1-

L10, MP].

c) q(L11) is false (L11 does not possess property q).

If we could obtain such a property q, then, of course, this would demonstrate
that L11 cannot be proved in [L1-L10, MP], i.e. that the Law of Excluded

Middle is an independent logical principle.

The most popular way of introducing such properties of formulas are the so-
called "multi-valued logics" or "many-valued logics", introduced by Jan
Lukasiewicz and Emil Post:

J.Lukasiewicz. O logice trojwartosciowej. Ruch Filozoficzny (Lwow), 1920, vol. 5, pp. 169-
171

E.Post. Introduction to a general theory of elementary propositions. Amer. journ. math., 1921,
vol. 21, pp.163-195

Read more: Many-Valued Logic by Siegfried Gottwald in Stanford Encyclopedia of
Philosophy.

For example, let us consider a kind of "three-valued logic", where 0 means
"false", 1 – "unknown" (or NULL – in terms of SQL), 2 – "true". Then it
would be natural to define conjunction and disjunction as

A∧B = min(A,B)
A∨B = max(A,B).

But how should we define implication and negation?

A B A∧B A∨B A→B

0 0 0 0 i1

http://plato.stanford.edu/
http://plato.stanford.edu/
http://www.uni-leipzig.de/~logik/gottwald/
http://plato.stanford.edu/entries/logic-manyvalued/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html

75

0 1 0 1 i2

0 2 0 2 i3

1 0 0 1 i4

1 1 1 1 i5

1 2 1 2 i6

2 0 0 2 i7

2 1 1 2 i8

2 2 2 2 i9

A ¬A

0 i10

1 i11

2 i12

Thus, theoretically, we have here to explore: 39 = 19683 variants of
implication definitions and 33 = 27 negation definitions.

Do you think, it would be natural to set the values of ¬A as follows?

A ¬A

0 2

1 1

2 0

Yes, if we would try building a "natural" three-valued logic, in which "1"
would mean, indeed, "unknown". To fill in the “natural” table of three-valued
implication, we could use, for example, the classical equivalence
(A→B)↔¬AvB. In this way we could obtain the “natural” three-valued logic
used, for example, for handling of NULL-values in SQL.

However, our aim is here, in a sense, just the opposite of “natural”. We will

http://en.wikipedia.org/wiki/Null_(SQL)

76

consider

"under the above truth tables, formula A always takes "true" values"

as a kind of the above-mentioned "property" q(A). Hence, we will try to define
the tables for implication and negation in such a way that:

a) the axioms L1, L2, ..., L10 always take "true" values (i.e. 2),

b) Modus Ponens "preserves" taking always "true" values (i.e. if the formulas
A and A→B are always 2, then B also is always 2),

c) the axiom L11 sometimes takes the values 0 or 1.

Because of "violating" L11, the definitions of implication and negation, having

these properties, cannot be 100% natural. So, we must explore (at least some
of) the "unnatural" versions as well.

Exercise 2.8.1 (optional). Develop a simple (recursive) computer program
receiving as input:
a) Any such "truth tables".

b) Any formula F consisting of letters A, B, C, and propositional connectives.

and printing out "truth values" of the formula F, for example, if F =
B→(A→B):

A B B→(A→B)

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 2

2 1 2

2 2 2

In this example the axiom L1 always takes "true" values. Perhaps, we should

be interested only in those variants of our "truth tables" that "satisfy" at least
the axioms L1, L2, ..., L8 forcing them always to take "true" values.

77

Note. See my version of the program in C++: header file, implementation.

Thus, we consider

"under the above truth tables, formula A always takes "true" values"

as a kind of the "property" q(A).

Will Modus Ponens preserve this property? If A is "true", and A→B is "true",
how could B be not? Let us consider the relevant part of the above truth tables
(i.e. the part where A is "true"):

A B A→B

2 0 i7

2 1 i8

2 2 i9

If we would consider only those variants of our "truth tables" where i7 = 0 or

1, i8 = 0 or 1, and i9 = 2, then, if B would not be 2 for some values of its

arguments, then A→B also would not be 2 for the same values of arguments.

Hence, if we restrict ourselves to "truth tables" with i7 = 0 or 1, i8 = 0 or 1, and

i9 = 2, then MP preserves the property of "being true". I.e., from "true"

formulas MP can derive only "true" formulas.

The next idea: if we wish the axiom L6: A→AvB always taking the value

"true" (i.e. the value 2), then, if A≤B, then A→B must be 2.

Thus, of all the 39 = 19683 possible implication definition variants only the
following 3*2*2 = 12 variants are worth of exploring:

A B A→B

0 0 2

0 1 2

0 2 2

1 0 i4=0,1,2

1 1 2

1 2 2

http://podnieks.id.lv/mlog/kp_logc.txt
http://podnieks.id.lv/mlog/kp_logh.txt

78

2 0 i7=0,1

2 1 i8=0,1

2 2 2

Exercise 2.8.2. a) Verify that under any of these 12 implication definitions the
axioms L3, L4, L6, L7 always take the value 2, i.e. you do not need testing

these axioms any more.

b) For each of the axioms, L1, L2, L5 and L8, determine all the possible

combinations of the values of i4, i7, i8 forcing it to take always the value 2.

Note. The "intersection" of b) consists of 5 combinations (see the results file
#00).

Exercise 2.8.3 (optional) Extend your previous computer program by adding 6
nested loops: for i4=0 to 2, for i7=0 to 1, for i8=0 to1, for iaa=0 to 2, for ib=0 to

2, for ic=0 to 2. Let the program print out only those variants of "truth tables"

that make "true" all the axioms L1-L8. (My program yields 135 such variants,

see the results file #00).
Thus, now we have 135 variants of "truth tables" that make "true" all the
axioms L1-L8. Let us search among them for the variants that allow proving of

axiom independency results we are interested in.

Axiom L9

In Theorem 2.8.1 we established that the axiom L9: (A→B)→((A→¬B)→¬A)

can be proved in [L1-L8, L10, L11, MP]. Still,

Theorem 2.8.2. The axiom L9 cannot be proved in [L1-L8, L10, MP].

Proof. Let your program print out only those variants of "truth tables" that
make "true" all the axioms L1-L8, and make: L9 – not "true", and L10 – "true".

My program yields 66 such variants, see the results file #01. I like especially
the (most natural?) variant #33:

Implication variant #3:
2 2 2 2 2 2 0 1 2 L1-L8 true.
Variant #33. Negation: 2 1 0 L9 not true. L10 true. L11 not true.

A B A→B

0 0 2

http://podnieks.id.lv/mlog/kp_log01.txt
http://podnieks.id.lv/mlog/kp_log00.txt
http://podnieks.id.lv/mlog/kp_log00.txt
http://podnieks.id.lv/mlog/kp_log00.txt

79

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 0

2 1 1

2 2 2

A ¬A

0 2

1 1

2 0

See the extended results file #1 for this variant.

Under this variant the axioms L1-L8 and L10 are "true". As we know, under

this variant, by MP, from "true" formulas only "true" formulas can be derived.
The axiom L9 is not "true" under this variant:

A B (A→B)→((A→¬B)→¬A)

0 0 2

0 1 2

0 2 2

1 0 1

1 1 1

1 2 1

2 0 2

2 1 2

http://podnieks.id.lv/mlog/kp_log1.txt

80

2 2 2

Hence, L9 cannot be proved in [L1-L8, L10, MP]. Q.E.D.

In a similar way, we can obtain other independence results.

Axiom L10

Theorem 2.8.3. The "crazy" axiom L10: ¬B→(B→C) cannot be proved in the

minimal logic [L1-L9, MP], and even not in [L1-L9, L11, MP].

Proof. Let your program print out only those variants of "truth tables" that
make "true" all the axioms L1-L8, and make: L9 – "true", L10 – not "true", and

L11 – "true". My program yields 6 such variants, see the results file #02. I like

especially the (somewhat natural?) variant #1:

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true.
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.

See the extended results file #2 for this variant.

Under this variant the axioms L1-L9 and L11 are "true". As we know, under

this variant, by MP, from "true" formulas only "true" formulas can be derived.
The axiom L10 is not "true" under this variant:

A B ¬A→(A→B)

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 0

2 1 1

2 2 2

Hence, L10 cannot be proved in [L1-L9, L11, MP]. Q.E.D.

http://podnieks.id.lv/mlog/kp_log2.txt
http://podnieks.id.lv/mlog/kp_log02.txt

81

Axiom L11

Now, let us prove the main result of this section:

Theorem 2.8.4. The Law of Excluded Middle L11: B∨¬ B cannot be

proved in the constructive propositional logic [L1-L10, MP]. I.e. the Law of

Excluded Middle is an independent logical principle.

Proof. Let your program print out only those variants of "truth tables" that
make "true" all the axioms L1-L8, and make: L9 – "true", L10 – "true", L11 –

not "true". My program yields only one such variant, see the results file #03:

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true.
Variant #1. Negation: 2 0 0 L9 true. L10 true. L11 not true.

See the extended results file #3 for this variant.

Under this variant the axioms L1-L10 are "true". As we know, under this

variant, by MP, from "true" formulas only "true" formulas can be derived. The
axiom L11 is not "true" under this variant:

B ¬B B∨¬ B

0 2 2

1 0 1

2 0 2

Hence, L11 cannot be proved in [L1-L10, MP]. Q.E.D.

The results file #03 proves also the following

Theorem 2.8.5 (thanks to Pavels Mihailovs for a correction). The following
(classically provable) formulas cannot be proved in the constructive
propositional logic [L1-L10, MP]:

¬¬A → A
(¬B → ¬A) → (A→B)
(¬A→B)→(¬B→A)

(¬¬A → ¬¬B) → (A→B)
(A → B)→¬ A∨B

((A→ B)→ B)→ A∨B
((A→B)→A)→A

¬(A∧¬ B)→(A → B)
¬(A → B)→ A∧¬ B

http://podnieks.id.lv/mlog/kp_log03.txt
http://podnieks.id.lv/mlog/kp_log3.txt
http://podnieks.id.lv/mlog/kp_log03.txt

82

A∨(A → B)
(A→B)→((¬A→¬B)→(B→A))

Indeed, all these formulas take non-"true" values under the "truth tables" from
the proof of Theorem 2.8.4.

The following three formulas also cannot be proved in the constructive
propositional logic, yet, unfortunately, the "truth tables" from our proof of
Theorem 2.8.4 do not allow proving this:

¬(A∧B)→¬ A∨¬ B
¬¬(A∨B)→¬¬ A∨¬ ¬ B

(A → B)∨(B → A)

Indeed, under the above "truth tables", these formulas always take "true"
values (see results file #03). Another interesting conclusion: add these three
formulas as additional axioms to [L1-L10, MP] – and L11 will remain still

unprovable!

Thus, we did not succeed in building a three-valued logic that would allow
showing that the latter three formulas cannot be proved in the constructive
propositional logic. Is it possible at all to build a multi-valued logic that would
separate constructively provable propositional formulas from unprovable
ones? Kurt Gödel showed in 1932 that this is impossible: none of the finitely-
valued logics "matches" exactly the constructive propositional logic:

K. Gödel. Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wissenschaften
Wien, Math.-naturwiss. Klasse, 1932, Vol. 69, pp.65-66.

Exercise 2.8.4. a) (optional, for smart students) Verify that the latter three
formulas cannot be proved in the constructive propositional logic [L1-L10,

MP]. Or, see Section 4.4.
b) Verify that any of the following formulas could be used – instead of

B∨¬ B – as the axiom L11 of the classical propositional logic: i)

(A → B)→¬ A∨B , ii) ¬¬B→B, iii) ¬(A→B)→A (Hint: since all these
formulas are provable in [L1-L11, MP], it remains to prove L11 in [L1-L10,

MP] + (i), in [L1-L10, MP] + (ii), and in [L1-L10, MP] + (iii)).

c) Verify that with ¬¬B→B instead of L11 the "crazy" axiom L10 becomes

100% derivable from the other axioms. Perhaps, this is why many textbooks
prefer the combination L1-L9 + ¬¬B→B as the axiom list for the classical

propositional logic. But, then, we are forced to define the constructive
propositional logic not as a subset of the classical one, but as the classical
logic with the axiom ¬¬B→B replaced by the "crazy" axiom L10:

¬B→(B→C)!

http://podnieks.id.lv/mlog/kp_log03.txt

83

Axiom L10 again...

Finally, let us check which of the main results of Sections 2.5 (constructive
logic) and 2.6 (classical logic) depend on the "crazy" axiom L10:

¬A→(A→B). Let your program print out only those variants of "truth tables"
that make "true" all the axioms L1-L8, and make: L9 – "true", L10 – not "true".

My program yields 6 such variants, see the results file #04. Surprisingly, in all
these variants L11 also is "true" (thus, the results file #04 equals the results file

#02). As the most productive appears

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true.
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.
Constructively provable formulas
Not true: (A∨B)→((¬ A)→ B)
Not true: ((¬ A)∨B)→(A → B)
Not true: ((¬¬A)→(¬¬B))→(¬¬(A→B))
Not true: (¬¬A)→((¬A)→A)
Not true: (A∨(¬ A))→ ((¬ ¬ A)→ A)
Not true: ¬¬((¬¬A)→A)

Classically provable formulas
True: (¬¬(A∨B))→((¬¬ A)∨(¬ ¬ B))
True: (¬(A∧B))→((¬ A)∨(¬ B))
Not true: (¬¬A)→A
Not true: ((¬B)→(¬A))→(A→B)
Not true: ((¬A)→B)→((¬B)→A)
Not true: ((¬¬A)→(¬¬B))→(A→B)
True: (A → B)→ ((¬ A)∨B)
Not true: ((A→ B)→ B)→ (A∨B)
Not true: ((A→B)→A)→A
Not true: (¬(A∧(¬ B)))→(A→ B)
True: (A→B)→(((¬A)→B)→B)
Not true: (¬(A → B))→(A∧(¬ B))
Not true: A∨(A → B)
True: (A → B)∨(B → A)
Not true: (A→B)→(((¬A)→(¬B))→(B→A))

Thus, the following constructively provable formulas cannot be proved in the
minimal logic [L1-L9, MP] (and even in [L1-L9, L11, MP]), i.e. they cannot be

proved without the "crazy" axiom L10:

(A∨B)→(¬ A → B)

http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log04.txt
http://podnieks.id.lv/mlog/kp_log04.txt

84

¬ A∨B →(A→ B)
(¬¬A→¬¬B) → ¬¬(A→B)

¬¬A → (¬A→A)
A∨¬ A →(¬¬ A → A)

¬¬(¬¬A→A)

And the following classically provable formulas cannot be proved without the
"crazy" axiom L10 (thanks to Pavels Mihailovs for a correction):

¬¬A→A
(¬B→¬A)→(A→B)
(¬A→B)→(¬B→A)

(¬¬A→¬¬B)→(A→B)
((A→ B)→ B)→ A∨B

((A→B)→A)→A
¬(A∧¬ B)→(A → B)
¬(A → B)→ A∧¬ B

A∨(A → B)
(A→B)→((¬A→¬B)→(B→A))

Exercise 2.8.5 (thanks to Stanislav Golubcov for the idea). But how about the
remaining four (classically provable) formulas:

a) (A → B)→ ¬ A∨B ,
b) ¬(A∧B)→¬ A∨¬ B ,
c) ¬¬(A∨B)→ ¬¬ A∨¬ ¬ B ,
c1) (A→B)→((¬A→B)→B),

d) (A → B)∨(B → A) ?

Show that the formulas (a, b, c) can be proved without the "crazy" axiom L10,

i.e prove them in [L1-L9, L11, MP]. (Hint: use Theorem 2.6.4 (a) [L1-L8, MP]:

A∨¬ A ⊢ (A → B)→¬ A∨B.). For smart students: how about the
remaining formulas (c1, d)?

Using computers in mathematical proofs

Do you trust the above proofs? Personally, I trust much more my ability to write (relatively)
error-free computer programs than my ability to carry out error-free mathematical proofs. But
how about you? Of course, you do not need trusting my (or your own) program generating the
results files #00, #01, #02, #03 and #04. We used these files only to select the "truth table"
variants allowing to prove our independence results. The critical points to be trusted are (see
my implementation file) : a) the recursive program

int MyFormula::ValueAt(int A, int B, int C)

and b) the character string analyzer

int MyFormula::Analyze(int *pOperation, AnsiString *pSubFormula1, AnsiString
*pSubFormula2)

http://podnieks.id.lv/mlog/kp_logc.txt

85

You may wish to remove your worries by verifying directly that under all the 3 truth table
variants used above: a) the axioms L1-L8 are true, and b) the axioms L9, L10, L11 and other

formulas are true or not true according to the goal of each particular proof. Before you have
performed this 100%, you can feel the flavor of using computers in mathematical proofs (I
trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not
trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I
do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this
proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I
trust this proof, I do not trust it,...)

Unfortunately, in more complicated cases the situation does not allow the above simple exit
(i.e. manual verification of the solution found by a computer):

"The Four Colour Theorem was the first major theorem to be proved using a computer, having
a proof that could not be verified directly by other mathematicians. Despite some worries
about this initially, independent verification soon convinced everyone that the Four Colour
Theorem had finally been proved. Details of the proof appeared in two articles in 1977. Recent
work has led to improvements in the algorithm." (According to the article: The Four Colour
Theorem in MacTutor History of Mathematics archive).

The proof of the Four Colour Theorem was completed in 1976 by Kenneth Appel and
Wolfgang Haken, see their photographs published in European Mathematical Society,
Newsletter No. 46, December 2002, pp. 15-19.

"The best-known, and most debated, instance is the use of computer analysis by Kenneth
Appel and Wolfgang Haken of the University of Illinois in their 1976 proof of the four-colour
conjecture (that four colours suffice to colour in any map drawn upon a plane in such a way
that countries which share a border are given different colours). First put forward in 1852, the
conjecture had become perhaps the most famous unsolved problem in mathematics, resisting a
multitude of efforts at proof for over a century. Appel and Haken's demonstration rested upon
computerized analysis, occupying 1,200 hours of computer time, of over 1,400 graphs. The
analysis of even one of those graphs typically went beyond what an unaided human being
could plausibly do: the ensemble of their demonstration certainly could not be checked in
detail by human beings. In consequence, whether that demonstration constituted "proof" was
deeply controversial..." (according to

Donald MacKenzie. Computers and the Sociology of Mathematical Proof. In: Trends in the
History and Philosophy of Mathematics, Odense: University of Southern Denmark, 2004,
pp.67-86).

See also

Ken Appel on the 4CT proof, December 1998

Robin Wilson. Four Colours Suffice. European Mathematical Society, Newsletter No. 46,
December 2002, pp. 15-19 (online copy).

The Four Color Theorem, November 13, 1995, by Robin Thomas.

A computer-checked proof of the Four Colour Theorem, 2004, by Georges Gonthier.

Doron Zeilberger. Opinion 54: It is Important to Keep Looking for Non-Computer Proofs of
the Four-Color Theorem, But Not For the "Usual" Reasons (available online at
http://www.math.rutgers.edu/¬zeilberg/Opinion54.html).

Two other famous computer assisted mathematical proofs:

http://www.math.rutgers.edu/~zeilberg/Opinion54.html
http://www.math.rutgers.edu/~zeilberg/
http://research.microsoft.com/~gonthier/4colproof.pdf
http://www.math.gatech.edu/~thomas
http://emis.kaist.ac.kr/newsletter/newsletter46.pdf
http://emis.kaist.ac.kr/newsletter/index.html
http://www.mathematics.open.ac.uk/People/r.j.wilson
http://cs.nyu.edu/pipermail/fom/1998-December/002476.html
http://www.sps.ed.ac.uk/staff/mackenzie.html
http://emis.kaist.ac.kr/newsletter/index.html
http://en.wikipedia.org/wiki/Wolfgang_Haken
http://en.wikipedia.org/wiki/Kenneth_Appel
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/HistTopics/The_four_colour_theorem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/The_four_colour_theorem.html

86

- In 1989, by using Cray super-computers, Clement W. H. Lam finished his proof that finite
projective plane of order 10 is impossible (for details see Projective plane in Wikipedia).

- In 1998, Thomas C. Hales finished his proof of Kepler conjecture about the densest
arrangement of spheres in space (Johannes Kepler conjectured it in 1611, for details see
Kepler conjecture in Wikipedia).

See logical software links selected by Peter Suber.

Visit the Mizar Project.

http://mizar.uwb.edu.pl/project/
http://bit.ly/petersuber
http://www.earlham.edu/~peters/courses/logsys/lslinks.htm
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Kepler_conjecture
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kepler.html
http://www.math.pitt.edu/~thales/
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Projective_plane
http://www.cecm.sfu.ca/organics/authors/lam/

87

3. Predicate Logic

3.1. Proving Formulas Containing Quantifiers and Implication
only

Theorem 3.1.0. [L1, L2, L12, L13, MP] xB(x)→ xB(x). What does it⊢ ∀ ∃

mean? It prohibits "empty domains".

Indeed,

(1) xB(x)∀ Hypothesis.

(2) xB(x)→B(x)∀ Axiom L12.

(3) B(x) By MP.

(4) B(x)→ xB(x)∃ Axiom L13.

(5) xB(x)∃ By MP.

Thus, by [L1, L2, MP] Deduction Theorem 1, there is a proof of [L1, L2, L12,

L13, MP] xB(x)→ xB(x).⊢∀ ∃

Theorem 3.1.1. a) [L1, L2, L12, L14, MP, Gen] x(B→C)→(xB→ xC).⊢∀ ∀ ∀

What does it mean?

b) [L1, L2, L12-L15, MP, Gen] x(B→C)→(xB→ xC). What does it mean?⊢∀ ∃ ∃

Let us prove (a).

(1) x(B→C)∀ Hypothesis.

(2) xB∀ Hypothesis.

(3) x(B→C)→(B→C)∀ Axiom L12: xF(x)→F(x).∀

(4) B→C From (1) and (3), by MP.

(5) xB→B∀ Axiom L12: xF(x)→F(x).∀

(6) B From (2) and (5), by MP.

88

(7) C From (4) and (6), by MP.

(8) xC∀ From (7), by Gen.

In this proof, Gen is applied only to x, which is not a free variable in
x(B→C) and xB. Thus, by [L∀ ∀ 1, L2, L14, MP, Gen] Deduction Theorem 2,

there is a proof of [L1, L2, L12, L14, MP, Gen] x(B→C) → (xB→ xC).⊢∀ ∀ ∀

Let us prove (b).

(1) x(B→C)∀ Hypothesis.

(2) x(B→C)→(B→C)∀ Axiom L12: xF(x)→F(x).∀

(3) B→C From (1) and (2), by MP.

(4) C→ xC∃ Axiom L13: F(x)→ xF(x).∃

(5) B→ xC∃ From (3) and (4), by transitivity of
implication [L1, L2, MP].

(6) x(B→ xC)∀ ∃ From (5), by Gen.

(7) x(B→ xC)→(xB→ xC)∀ ∃ ∃ ∃
Axiom L15:

x(F(x)→G)→(xF(x)→G) (xC ∀ ∃ ∃
does not contain x as a free variable).

(8) xB→ xC∃ ∃ From (6) and (7), by MP.

In this proof, Gen is applied only to x, which is not a free variable in
x(B→C). Thus, by [L∀ 1, L2, L14, MP, Gen] Deduction Theorem 2, there is a

proof of [L1, L2, L12-L15, MP, Gen] x(B→C) → (xB→ xC).⊢∀ ∃ ∃

Q. .D.∃
Theorem 3.1.2. a) [L1, L2, L5, L12, L14, MP, Gen] x yB(x, y)↔ y xB(x,⊢∀∀ ∀ ∀

y). What does it mean?

b) [L1, L2, L5, L13, L15, MP, Gen] x yB(x, y)↔ y xB(x, y). What does it⊢∃ ∃ ∃ ∃

mean?

c) [L1, L2, L12-L15, MP, Gen] x yB(x, y)→ y xB(x, y). What does it⊢∃ ∀ ∀ ∃

mean? The converse implication x yB(x, y)→ y xB(x, y) cannot be true.∀∃ ∃ ∀
Explain, why.

Let us prove (b).

89

(1) B(x, y)→ xB(x, y)∃ Axiom L13 with F(x) = B(x, y).

(2) xB(x, y)→ y xB(x, y)∃ ∃ ∃ Axiom L13 with F(y) = xB(x, y).∃

(3) B(x, y)→ y xB(x, y)∃ ∃ From (1) and (2), by transitivity of
implication [L1, L2, MP].

(4) F(x)→G xF(x)→G⊢∃ Exercise 1.4.3(a): [L15, MP, Gen], x

not free in G.

(5) yB(x, y)→ y xB(x, y)∃ ∃ ∃ From (3), by (4), with F(y) = B(x, y),
G = x yB(x, y).∃ ∃

(6) x yB(x, y)→ y xB(x, y)∃ ∃ ∃ ∃ From (5), by (4), with F(x) = yB(x, ∃
y), G = x yB(x, y).∃ ∃

The proof of the converse implication [L1, L2, L13, L15, MP, Gen] y xB(x,⊢∃ ∃

y)→ x yB(x, y) is identical.∃ ∃
Now, by Axiom L5 we obtain the equivalence (b). Q.E.D.

Exercise 3.1.1. Prove (a) and (c) of Theorem 3.1.2.

Exercise 3.1.2. Prove in the constructive logic,

[L1-L10, L12-L15, MP, Gen] x(B(x)→C(x)) → (xB(x)→ xC(x)).⊢∃ ∀ ∃

3.2. Formulas Containing Negations and a Single Quantifier

Attention: non-constructive reasoning! ¬ xB → x¬B. This formula is∀ ∃
accepted in the classical logic: if no x can possess the property B, then there is
an x that does not possess B. It represents non-constructive reasoning in its
ultimate form: let us assume, all x-s possess the property B, if we succeed in
deriving a contradiction from this assumption, then – what? Is this a proof that
there is a particular x that does not possess the property B? Does our proof
contain a method allowing to build at least one such x? If not, do we have a
"real" proof of x¬B?∃
How many formulas can be built of the formula B by using negations and a
single quantifier?

¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∀

90

¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∃
Let us remind Theorem 2.4.5 [L1-L9, MP]: ¬¬¬A↔¬A. I.e., any number of⊢

negations can be reduced to zero, one, or two, and thus we obtain 3*2*3 = 18
formulas to be investigated. The following table represents the results of this
investigation from

A.Heyting. On weakened quantification. Journal of Symbolic Logic, 1936,
vol.11, pp.119-121 (see also Kleene [1952], Section 3.5).

Table 3.2

I

xB∀
--

¬¬ xB∀
==========================

x¬¬B∀
¬¬ x¬¬B∀

¬ x¬B∃

III

x¬B∃

¬¬ x¬B∃
¬ x¬¬B∀

==========================
¬ xB∀

II

xB∃
--

x¬¬B∃
--

¬¬ xB∃
¬¬ x¬¬B∃
¬ x¬B∀

IV

x¬B∀
¬¬ x¬B∀
¬ x¬¬B∃

¬ xB∃

Legend. a) In the classical logic, within each of the 4 groups all formulas are
equivalent, for example, in group III: ¬ xB↔ x¬B. Of course, formulas of∀ ∃
different groups cannot be equivalent (explain, why).

b) Two formulas within a group are constructively equivalent, if and only if
they have no separating lines between them. For example, in group II:
constructively, ¬ x¬B↔¬¬ xB, but not ¬ x¬B↔ xB (explain, why). All the∀ ∃ ∀ ∃
formulas of the group IV are constructively equivalent.

c) If two formulas F1, F2 within a group (F1 – above, F2 – below) are separated

by a single line, then: constructively, F1→F2, and ¬¬(F2→F1), but not F2→F1.

For example, in group II: constructively, xB→¬ x¬B, and∃ ∀
¬¬(¬ x¬B→ xB), but not ¬ x¬B→ xB (explain, why).∀ ∃ ∀ ∃

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952

91

d) If two formulas F1, F2 within a group (F1 – above, F2 – below) are

separated by a double line, then: constructively, F1→F2, but not F2→F1, and

even not ¬¬(F2→F1). For example, in group III: constructively, x¬B→¬ xB,∃ ∀

but not ¬ xB→ x¬B, and even not ¬¬(¬ xB→ x¬B) (try to explain, why).∀ ∃ ∀ ∃
Thus, the implication ¬ xB→ x¬B could be qualified as ∀ ∃ super-non-
constructive.

Now, let us prove the implications necessary for the positive part of the above
legend to be true.

Group I

I-1. Constructively, [L1, L2, L9, MP]: xB→¬¬ xB ⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.⊢

I-2. Constructively, [L1-L9, L12, L14, MP, Gen]: ¬¬ xB→ x¬¬B⊢ ∀ ∀

(1) xB→B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬ xB→¬¬B∀ From (1), by Theorem 2.4.7(a) [L1-L9,

MP]: (A→B)→(¬¬A→¬¬B).⊢

(3) x(¬¬ xB→¬¬B)∀ ∀ From (2), by Gen.

(4) ¬¬ xB→ x¬¬B∀ ∀ From (3), by Axiom L14:

x(G→F(x))→(G→ xF(x)).∀ ∀
I-3. Constructively, [L1, L2, L9, MP]: x¬¬B→¬¬ x¬¬B⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.⊢

I-4. Constructively, [L1, L2, L9, L12, L15, MP, Gen] ¬¬ x¬¬B→¬ x¬B⊢ ∀ ∃

(1) x¬¬B→¬¬B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬¬B→¬ x¬¬B∀
From (1), by the Contraposition Law
– Theorem 2.4.2. [L1, L2, L9, MP]: ⊢

(A→B)→(¬B→¬A).

(3) ¬B→¬¬¬B
By Theorem 2.4.4 [L1, L2, L9, MP]:

 A→¬¬A.⊢

92

(4) ¬B→¬∀x¬¬B
From (2) and (3), by transitivity of
implication – Theorem 1.4.2 [L1, L2,

MP].

(5) x(¬B→¬ x¬¬B)∀ ∀ From (4), by Gen.

(6) x¬B→¬ x¬¬B∃ ∀ From (5), by Axiom L15:

x(F(x)→G)→(xF(x)→G).∀ ∃

(7) ¬¬ x¬¬B→¬ x¬B∀ ∃ From (6), by the Contraposition Law
[L1, L2, L9, MP].

I-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB⊢ ∃ ∀

(1) ¬B→ x¬B∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ x¬B→¬¬B∃
From (1), by the Contraposition Law [L1,

L2, L9, MP].

(3) ¬¬B→B
Classical logic, Theorem 2.6.1 [L1-L11,

MP]: ¬¬A → A⊢

(4) ¬ x¬B→B∃ From (2) and (3), by transitivity of
implication [L1, L2, MP].

(5) x(¬ x¬B→B)∀ ∃ From (4), By Gen.

(6) ¬ x¬B→ xB∃ ∀ From (5), by Axiom L14:

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group I, constructively, F1→F2→F3→F4→F5,

and, in the classical logic, F5→F1. I.e. we have proved that in Group I: a) in

the classical logic, all the formulas are equivalent, and b) constructively, upper
formulas imply lower formulas.

I-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ x¬B→ x¬¬B⊢ ∃ ∀

(1) ¬B→ x¬B∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ x¬B→¬¬B∃
From (1), by the Contraposition Law [L1,

L2, L9, MP].

93

(3) x(¬ x¬B→¬¬B)∀ ∃ From (2), by Gen.

(4) ¬ x¬B→ x¬¬B∃ ∀ From (3), by Axiom L14:

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group I, constructively, [L1, L2, L9, L12 -L15,

MP, Gen]: F3→F4→F5→F3, i.e. that formulas F3, F4, F5 are constructively

equivalent.

For Group I, it remains to prove

I-7. Constructively, [L1-L10, MP] ¬¬(¬¬ xB→ xB)⊢ ∀ ∀

Immediately, by Theorem 2.5.2(d) [L1-L10, MP] ¬¬(¬¬A→A).⊢

Group II

II-1. Constructively, [L1, L2, L9, L12-L15, MP, Gen] xB→ x¬¬B⊢∃ ∃

(1) B→¬¬B
By Theorem 2.4.4 [L1, L2, L9, MP]: ⊢
A→¬¬A.

(2) x(B→¬¬B)∀ From (1), by Gen.

(3) xB→ x¬¬B∃ ∃
From (2), by Theorem 3.1.1(b) [L1, L2,

L12-L15, MP, Gen]

II-2. Constructively, [L1-L9, L12-L15, MP, Gen] x¬¬B→¬¬ xB⊢∃ ∃

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬¬B→¬¬ xB∃ From (1), by Theorem 2.4.7(a) [L1-L9,

MP]: (A→B)→(¬¬A→¬¬B).⊢

(3) x(¬¬B→¬¬ xB)∀ ∃ From (2), by Gen.

(4) x¬¬B→¬¬ xB∃ ∃
From (3), by Theorem 3.1.1(b) [L1, L2,

L12-L15, MP, Gen]

II-3. Constructively, [L1-L9, L12-L15, MP, Gen] ¬¬ xB→¬¬ x¬¬B⊢ ∃ ∃

Immediately from II-1, by From (1), by Theorem 2.4.7(a) [L1-L9, MP]: ⊢

(A→B)→(¬¬A→¬¬B).

II-4. Constructively, [L1-L9, L12, L15, MP, Gen] ¬¬ x¬¬B→¬ x¬B⊢ ∃ ∀

94

(1) x¬B→¬B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬B→¬ x¬B∀
From (1), by the Contraposition Law –
Theorem 2.4.2. [L1, L2, L9, MP]: ⊢
(A→B)→(¬B→¬A).

(3) x(¬¬B→¬ x¬B)∀ ∀ From (2), by Gen.

(4) x¬¬B→¬ x¬B∃ ∀ From (3), by Axiom L15:

x(F(x)→G)→(xF(x)→G).∀ ∃

(5) ¬¬ x¬¬B→¬¬¬ x¬B∃ ∀ From (4), by Theorem 2.4.7(a) [L1-L9,

MP]: (A→B)→(¬¬A→¬¬B).⊢

(6) ¬¬¬ x¬B→¬ x¬B∀ ∀ Theorem 2.4.5 [L1-L9, MP]: ⊢
¬¬¬A↔¬A

(7) ¬¬ x¬¬B→¬ x¬B∃ ∀ From (5) and (6), by transitivity of
implication [L1, L2, MP].

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB⊢ ∀ ∃

(1) ¬ x¬B→¬¬ xB∀ ∃ II-6 [L1, L2, L9, L13, L14, MP, Gen], see

below.

(2) ¬¬ xB→ xB∃ ∃ Classical logic, Theorem 2.6.1 [L1-L11,

MP]: ¬¬A → A⊢

(3) ¬ x¬B→ xB∀ ∃ From (1) and (2), by transitivity of
implication [L1, L2, MP].

Thus, we have proved that in Group II, constructively, F1→F2→F3→F4→F5,

and, in the classical logic, F5→F1. I.e. we have proved that in Group II: a) in

the classical logic, all the formulas are equivalent, and b) constructively, upper
formulas imply lower formulas.

II-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen] ¬ x¬B→¬¬ xB⊢ ∀ ∃

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃

95

(2) ¬ xB→¬B∃
From (1), by the Contraposition Law –
Theorem 2.4.2. [L1, L2, L9, MP]: ⊢
(A→B)→(¬B→¬A).

(3) x(¬ xB→¬B)∀ ∃ From (2), by Gen.

(4) ¬ xB→ x¬B∃ ∀ From (3), by Axiom L14:

x(G→F(x))→(G→ xF(x)).∀ ∀

(5) ¬ x¬B→¬¬ xB∀ ∃
From (4), by the Contraposition Law –
Theorem 2.4.2. [L1, L2, L9, MP]: ⊢
(A→B)→(¬B→¬A).

Thus, we have proved that in Group II, constructively, [L1-L9, L12-L15, MP,

Gen]: F3→F4→F5→F3, i.e. that formulas F3, F4, F5 are constructively

equivalent.

II-7. Constructively, [L1-L10, MP]: ¬¬(¬¬ xB→ xB)⊢ ∃ ∃

Immediately, by Theorem 2.5.2 [L1-L10, MP]: ¬¬(¬¬A→A).⊢

Thus, constructively, ¬¬(F3→F1), and F1→F2→F3→F4→F5→F3. By

Theorem 2.4.7(d), [L1-L9, MP] ¬¬(A→B), ¬¬(B→C) ¬¬(A→C). Thus, in⊢

fact, we have proved that in Group II, for all i, j, constructively, ¬¬(F i→Fj) (a

kind of "weak equivalence").

Group III

III-1. Constructively, [L1, L2, L9, MP]: x¬B→¬¬ x¬B⊢∃ ∃

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.⊢

III-2. Constructively, [L1, L2, L9, L12, L15, MP, Gen]: ¬¬ x¬B→¬ x¬¬B⊢ ∃ ∀

(1) x¬¬B→¬¬ x¬¬B∀ ∀ I-3 [L1, L2, L9, MP], see above.

(2) ¬¬ x¬¬B→¬ x¬B∀ ∃ I-4 [L1, L2, L9, L12, L15, MP, Gen], see

above.

(3) x¬¬B→¬ x¬B∀ ∃ From (1) and (2), by transitivity of
implication [L1, L2, MP].

96

(4) ¬¬ x¬B→¬ x¬¬B∃ ∀
From (3), by the Contraposition Law [L1, L2,

L9, MP].

III-3. Constructively, [L1-L9, L12, L14, MP, Gen]: ¬ x¬¬B→¬ xB⊢ ∀ ∀

(1) xB→¬¬ xB ∀ ∀ I-1 [L1, L2, L9, MP], see above.

(2) ¬¬ xB→ x¬¬B∀ ∀ I-2 [L1-L9, L12, L14, MP, Gen]

(3) xB→ x¬¬B∀ ∀ From (1) and (2), by transitivity of
implication [L1, L2, MP].

(4) ¬ x¬¬B→¬ xB∀ ∀
From (3), by the Contraposition Law [L1, L2,

L9, MP].

III-4. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ xB→ x¬B⊢ ∀ ∃

(1) ¬ x¬B→ xB∃ ∀ I-5: in the classical logic, [L1-L11, L13, L14,

MP, Gen]

(2) ¬ xB→¬¬ x¬B∀ ∃
From (1), by the Contraposition Law [L1,

L2, L9, MP].

(3) ¬¬ x¬B→ x¬B∃ ∃ Classical logic, Theorem 2.6.1 [L1-L11,

MP]: ¬¬A → A⊢

(4) ¬ xB→ x¬B∀ ∃ From (2) and (3), by transitivity of
implication [L1, L2, MP].

Thus, we have proved that in Group III, constructively, F1→F2→F3→F4, and,

in the classical logic, F4→F1. I.e. we have proved that in Group III: a) in the

classical logic, all the formulas are equivalent, and b) constructively, upper
formulas imply lower formulas.

III-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ x¬¬B→¬¬ x¬B⊢ ∀ ∃

(1) ¬ x¬B→ x¬¬B∃ ∀ I-6 [L1, L2, L9, L13, L14, MP, Gen]

(2) ¬ x¬¬B→¬¬ x¬B∀ ∃
From (1), by the Contraposition Law [L1, L2,

L9, MP].

Thus, we have proved that in Group III, constructively, F2→F3→F2, i.e. that

97

formulas F2, F3 are constructively equivalent.

III-5. Constructively, [L1-L10, MP]: ¬¬(¬¬ x¬B→ x¬B)⊢ ∃ ∃

Immediately, by Theorem 2.5.2 [L1-L10, MP]: ¬¬(¬¬A→A).⊢

Group IV

IV-1. Constructively, [L1, L2, L9, MP]: x¬B→¬¬ x¬B⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.⊢

IV-2. Constructively, [L1-L9, L12-L15, MP, Gen]: ¬¬ x¬B→¬ x¬¬B⊢ ∀ ∃

(1) x¬¬B→¬ x¬B∃ ∀
From II-2, II-3, II-4 [L1-L9, L12-L15, MP,

Gen], by transitivity of implication [L1, L2,

MP].

(2) ¬¬ x¬B→¬ x¬¬B∀ ∃
From (1), by the Contraposition Law [L1, L2,

L9, MP].

IV-3. Constructively, [L1, L2, L9, L12-L15, MP, Gen]: ¬ x¬¬B→¬ xB⊢ ∃ ∃

(1) xB→ x¬¬B∃ ∃ II-1 [L1, L2, L9, L12-L15, MP, Gen]

(2) ¬ x¬¬B→¬ xB∃ ∃
From (1), by the Contraposition Law [L1, L2,

L9, MP].

IV-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ xB→ x¬B⊢ ∃ ∀

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ xB→¬B∃
From (1), by the Contraposition Law [L1, L2,

L9, MP].

(3) x(¬ xB→¬B)∀ ∃ From (2), by Gen.

(4) ¬ xB→ x¬B∃ ∀ From (3), by Axiom L14:

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group IV all the formulas are constructively
equivalent.

And thus, we have proved the positive part of the legend of Table 3.2. The
negative part of the legend asserts that the following (classically provable)

98

formulas cannot be proved constructively:

(1) ¬¬ xB→ xB∀ ∀ See Group I. Simply, an instance of (the non-
constructive) ¬¬A→A.

(2) x¬¬B→¬¬ xB∀ ∀ See Group I. Super-non-constructive: even
¬¬(2) is non-constructive!

(3) ¬¬(x¬¬B→¬¬ xB)∀ ∀ ¬¬(2). See Group I.

(4) x¬¬B→ xB∃ ∃ See Group II. Nearly, an instance of (the non-
constructive) ¬¬A→A.

(5) ¬¬ xB→ x¬¬B∃ ∃ See Group II. Stronger than simply non-
constructivity of ¬¬A→A?

(6) ¬¬ x¬B→ x¬B∃ ∃ See Group III. Simply, an instance of (the
non-constructive) ¬¬A→A.

(7) ¬ xB→¬ x¬¬B∀ ∀ See Group III. Super-non-constructive:
even ¬¬(7) is non-constructive!

(8) ¬¬(¬ xB→¬ x¬¬B)∀ ∀ ¬¬(7). See Group III.

We will prove these facts in Section 4.5 (see Exercise 4.5.1).

Still, the most striking (classically provable) non-constructive quantifier
implications correspond to existence proofs via reductio ad absurdum:

(8) ¬ x¬B→ xB∀ ∃

¬¬(8) is constructively provable, but (8) is not,
see Group II. If we know how to derive a
contradiction from x¬B, then may be, we do ∀
not know how to find a particular x such that
B.

(9) ¬ x¬B→¬¬ x¬¬B∀ ∃

(9) is weaker than (8), but still non-
constructive, see Group II. If we know how to
derive a contradiction from x¬B, then may ∀
be, we do not know how to derive a
contradiction from ¬ x¬¬B.∃

(10) ¬ xB→ x¬B∀ ∃
ven ¬¬(10) is non-constructive, see Group III.∃

If we know how to derive a contradiction from
xB, then may be, we do not know how to ∀

find a particular x such that ¬B.

99

(11) ¬ xB→¬¬ x¬B∀ ∃

(11) is weaker than (10), but still super-non-
constructive (i.e. even ¬¬(11) is non-
constructive), see Group III. If we know how
to derive a contradiction from xB, then may ∀
be, we do not know how to derive a
contradiction from ¬ x¬B.∃

3.3. Proving Formulas Containing Conjunction and
Disjunction

Theorem 3.3.1.

a) [L1-L5, L12, L14, MP, Gen]: ⊢ ∀x (B∧C)↔∀xB∧∀xC .

b) [L1, L2, L6-L8, L14, MP, Gen]: ⊢ ∀xB∨∀xC →∀x(B∨C) . The

converse formula ∀x (B∨C)→∀xB∨∀xC cannot be true. Explain, why.

Exercise 3.3.1.

Prove [L3-L5, L12, MP, Gen]: ∀x (B∧C) ⊢ ∀xB∧∀xC and

 [L3-L5, L12, MP, Gen]: ∀xB∧∀xC ⊢ ∀x (B∧C) .

Since, in your first proof, Gen has been applied only to x, which is not a free
variable in x(B&C), then, by Deduction theorem 2 [L∀ 1, L2, L14, MP, Gen] we

obtain that

 [L1- L5, L12, L14, MP, Gen]: ⊢ ∀x (B∧C)→∀xB∧∀xC .

Similarly, in your second proof, Gen has been applied only to x, which is not a
free variable in ∀xB∧∀xC , then, by Deduction theorem 2 [L1, L2, L14,

MP, Gen] we obtain that

 [L1- L5, L12, L14, MP, Gen]: ⊢ ∀xB∧∀xC →∀x(B∧C) .

Now, by Theorem 2.2.1(a) [L5]: A, B ⊢ A∧B , we obtain the equivalence (a)

of Theorem 3.3.1.

Let us prove (b): ⊢ ∀xB∨∀xC →∀x (B∨C) .

(1) B → BvC Axiom L6.

(2) ∀x (B → B∨C) From (1), by Gen.

100

(3) ∀xB →∀x(B∨C)
From (2), by Theorem 3.1.1(a) [L1, L2,

L12, L14, MP, Gen].

(4) C → B∨C Axiom L7.

(5) ∀x (C → B∨C) From (4), by Gen.

(6) ∀xC →∀x(B∨C)
From (5), by Theorem 3.1.1(a) [L1, L2,

L12, L14, MP, Gen].

(7) ∀xB∨∀xC →∀x (B∨C) From (3) and (6), by Axiom L8.

The summary is [L1, L2, L6-L8, L12, L14, MP, Gen]. Q.E.D.

Theorem 3.3.2. a) [L1-L8, L12-L15, MP, Gen]: ⊢ ∃ x (B∨C)↔∃ xB∨∃ xC .

b) [L1-L5, L13-L15, MP, Gen]: ⊢ ∃ x (B∧C)→∃ xB∧∃ xC . The converse

implication ∃ xB∧∃ xC →∃ x (B∧C) cannot be true. Explain, why.

For the proof of ∃ x (B∨C)→∃ xB∨∃ xC , see Exercise 3.3.2(a) below.

Let us prove ∃ xB∨∃ xC →∃ x (B∨C) .

(1) B → B∨C Axiom L6.

(2) ∀x (B → B∨C) By Gen.

(3) ∃ xB →∃ x (B∨C)
By Theorem 3.1.1(b): [L1, L2, L12-L15,

MP, Gen] x(B→C)→(xB→ xC)⊢∀ ∃ ∃

(4) C → B∨C Axiom L7.

(5) ∀x (C → B∨C) By Gen.

(6) ∃ xC →∃ x (B∨C) By Theorem 3.1.1(b).

(7) ∃ xB∨∃ xC →∃ x (B∨C) From (3) and (6), by Axiom L8.

The summary is [L1, L2, L6-L8, L12-L15, MP, Gen].

Now, by Theorem 2.2.1(a) [L5]: A, B ⊢ A∧B , we obtain the equivalence

(a). Q.E.D.

Exercise 3.3.2. a) Prove (a→) of Theorem 3.3.2 (Hint: start with L13 and

finish by applying L15.)

101

b) Prove (b) of Theorem 3.3.2. (Hint: first, assume B∧C , derive
∃ xB∧∃ xC , and apply Deduction Theorem 1). The converse implication
∃ xB∧∃ xC →∃ x (B∧C) cannot be true. Explain, why.

3.4. Replacement Theorems

An example: we know that log xy=log x+ log y and log x y
= y⋅log x .

Hence,

log 2a 3b
=log 2a

+ log 3b
=a⋅log 2+ b⋅log3 .

Another example: we know that (in the classical logic):
⊢ (A → B)↔¬ A∨B . Hence, the formula (X→Y)→Z "should be"
equivalent to ¬(X → Y)∨Z , and to ¬(¬ X ∨Y)∨Z . We know also that

¬(A∨B)↔ ¬ A∧¬ B , hence, we can continue: (X→Y)→Z "should be"
equivalent to (¬¬ X ∧¬ Y)∨Z , and to (X ∧¬Y)∨Z (since ¬¬A↔A).⊢
Until now, in our logic, we could not use this very natural kind of
mathematical argument.

In this section we will prove meta-theorems that will allow replacing sub-
formulas by equivalent formulas. For example, if have proved the formula

xB→D, and we know that B↔C, then we can replace B by C, obtaining the∃ ⊢
formula xC→D. These theorems will make the above treatment of the∃
formula (X→Y)→Z completely legal.

We will prove also that the meaning of a formula does not depend on the
names of bound variables used in it. For example,

 (xB(x)→C)↔(yB(y)→C).⊢ ∃ ∃
Note. To prove all these replacement theorems we will need only the minimal
logic [L1-L9, L12-L15, MP, Gen].

Sub-formulas and Occurrences

Intuitively, B is a sub-formula of C, if B is a formula, and B is a part
(substring) of C. But note that a sub-formula may appear in the same formula
more than once, as, for example, in the following instance of the axiom L1:

xB(x)∃ →(xC(x)→∃ xB(x)∃). Thus, it would be more correctly to speak about
occurrences of sub-formulas. In the above example, there are two occurrences
of the formula xB(x).∃
The formal definition is as follows:

102

a) o(B) is an occurrence in B in B.

b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in ¬C,
C∧D , D∧C , C∨D , D∨C , C→D, and D→C.

b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in xC,∃
and xC.∀
We can define also the notion of propositional occurrences:

a) o(B) is a propositional occurrence in B in B.

b) If o(B) is a propositional occurrence of B in C, then o(B) is a propositional
occurrence of B in ¬C, C∧D , D∧C , C∨D , D∨C , C→D, and D→C.

Intuitively, o(B) is a propositional occurrence of B in C, if, in C, no quantifiers
stand over o(B).

Replacement Lemma 1. In the minimal logic, [L1-L9, MP]:

(a) A↔B (A→C)↔(B→C)⊢ [L1-L5, MP]

(b) A↔B (C→A)↔(C→B)⊢ [L1-L5, MP]

(c) A↔B ⊢ A∧C ↔ B∧C [L1-L5, MP]

(d) A↔B ⊢ C∧A↔ C∧B [L1-L5, MP]

(e) A↔B ⊢ A∨C ↔ B∨C [L1-L8, MP]

(f) A↔B ⊢ C∨A↔ C∨B [L1-L8, MP]

(g) A↔B ¬A↔¬B⊢ [L1-L9, MP]

Case (a). We will first prove that [L1, L2, L4, MP]: A↔B (A→C)→(B→C).⊢

(1) (A → B)∧(B → A) A↔B – hypothesis.

(2) A→C Hypothesis.

(3) B→A From (1), by Axiom L4.

(4) B→C
From (3) and (2), by transitivity of
implication [L1, L2, MP].

Thus, by [L1, L2, MP] Deduction Theorem 1, [L1, L2, L4, MP]: A↔B ⊢

(A→C)→(B→C).

103

In a similar way, we can prove that

[L1, L2, L3, MP]: A↔B (B→C)→(A→C).⊢

Now, by Theorem 2.2.1(a), we obtain (a).

Q.E.D.

Exercise 3.4.1. Prove (b, c, d) of Replacement Lemma 1.

Exercise 3.4.2. Prove (e, f , g) of Replacement Lemma 1.

This completes our proof of the Replacement Lemma 1.

Replacement Theorem 1. Let us consider three formulas: B, B', C, where B is
a sub-formula of C, and o(B) is a propositional occurrence of B in C (i.e. no
quantifiers stand over o(B)). Let us denote by C' the formula obtained from C
by replacing o(B) by B' . Then, in the minimal logic,

[L1-L9, MP]: B↔B' C↔C'.⊢

Proof. Induction by the "depth" of the propositional occurrence o(B).

Induction base: depth = 0. Then C is B, and C' is B'. The conclusion is
obvious.

Induction step. If C is not B, then one of the following holds:

a) C is F→G, and o(B) is in F.

b) C is F→G, and o(B) is in G.

c) C is F∧G , and o(B) is in F.

d) C is F∧G , and o(B) is in G.

e) C is F∨G , and o(B) is in F.

f) C is F∨G , and o(B) is in G.

g) C is ¬F, and o(B) is in F.

Case (a). By induction assumption, [L1-L9, MP]: B↔B' F↔F'. By⊢

Replacement Lemma 1(a), [L1-L9, MP]: F↔F' (F→G)↔(F'→G). Thus,⊢

 [L1-L9, MP]: B↔B' C↔C'.⊢

Exercise 3.4.3. Repeat the above argument for the remaining cases (b, c, d, e,
f, g).

Q.E.D.

Now, we can use the replacement argument mentioned at the beginning of this
section – at least, for propositional occurrences of equivalent sub-formulas.

104

Replacement Lemma 2. In the minimal logic, [L1-L9, L12-L15, MP, Gen]:

(a) B↔C xB↔ xC⊢∀ ∀ [L1-L5, L12, L14, MP, Gen]

(b) B↔C xB↔ xC⊢∃ ∃ [L1-L5, L12-L15, MP, Gen]

Exercise 3.4.4. Prove Replacement Lemma 2.

Replacement Theorem 2. Let us consider three formulas: B, B', C, where B is
a sub-formula of C, and o(B) is any occurrence of B in C. Let us denote by C'
the formula obtained from C by replacing o(B) by B' . Then, in the minimal
logic,

 [L1-L9, L12-L15, MP, Gen]: B↔B' C↔C'.⊢

Proof. Induction by the "depth" of the occurrence o(B).

Induction base: depth = 0. Then C is B, and C' is B'. The conclusion is
obvious.

Induction step. If C is not B, then one of the following holds:

a)-g) – as in the proof of Replacement Theorem 1.

h) C is xF, and o(B) is in F.∀
i) C is xF, and o(B) is in F.∃
Case (h). By induction assumption, [L1-L9, L12-L15, MP, Gen]: B↔B' ⊢

F↔F'. By Replacement Lemma 2(a), [L1-L9, L12-L15, MP, Gen]: F↔F' ⊢

xF↔ xF'. Thus, [L∀ ∀ 1-L9, L12-L15, MP, Gen]: B↔B' C↔C'.⊢

Case (i). By induction assumption, [L1-L9, L12-L15, MP, Gen]: B↔B' F↔F'.⊢

By Replacement Lemma 2(b), [L1-L9, L12-L15, MP, Gen]: F↔F' xF↔ xF'.⊢∃ ∃

Thus, [L1-L9, L12-L15, MP, Gen]: B↔B' C↔C'.⊢

Q.E.D.

Now (only now!) , we may use in our proofs the replacement argument
mentioned at the beginning of this section. And now, for any equivalent
sub-formulas!

Finally, let us prove that the meaning of a formula does not depend on the
names of bound variables used in it. Intuitively, it "must be so", but now we
can prove this intuition as a meta-theorem.

105

Replacement Lemma 3. If the formula B does not contain the variable y, then
(in the minimal logic):

a) [L5, L12, L14, MP, Gen]: xB(x)↔ yB(y)⊢∀ ∀

b) [L5, L13, L15, MP, Gen]: xB(x)↔ yB(y).⊢∃ ∃

First, let us prove [L12, L14, MP, Gen]: xB(x)→ yB(y).⊢∀ ∀

(1) xB(x)→B(y)⊢∀
Axiom L12: xF(x)→F(t). B(x) does∀

not contain y, hence, B(x/y) is an
admissible substitution.

(2) y(xB(x)→B(y))⊢∀ ∀ By Gen.

(3)
y(xB(x)→B(y))→(xB(x)⊢∀ ∀ ∀

→ yB(y))∀
Axiom L14:

x(G→F(x))→(G→ xF(x)). ∀ ∀
xB(x) does not contain y.∀

(4) xB(x)→ yB(y)⊢∀ ∀ By MP.

Now, let us prove [L12, L14, MP, Gen(x)]: yB(y)→ xB(x).⊢∀ ∀

(1) yB(y)→B(x)⊢∀
Axiom L12: xF(x)→F(t). B(x) does∀

not contain y, hence, B(y) contains
only free occurrences of y, i.e. B(y/x)
is an admissible substitution.

(2) x(yB(y)→B(x))⊢∀ ∀ By Gen.

(3)
x(yB(y)→B(x))→(yB(y)⊢∀ ∀ ∀

→ xB(x))∀

Axiom L14:

x(G→F(x))→(G→ xF(x)). ∀ ∀
yB(y) does not contain x as a free ∀

variable.

(4) yB(y)→ xB(x)⊢∀ ∀ By MP.

Now, by Theorem 2.2.1(a), we obtain (a).

To prove (b), first, let us prove [L13, L15, MP, Gen(y)]: yB(y)→ xB(x).⊢∃ ∃

(1) B(y)→ xB(x)⊢ ∃
Axiom L13: F(t)→ xF(t). B(x) does ∃
not contain y, hence, B(x/y) is an
admissible substitution.

106

(2) y(B(y)→ xB(x))⊢∀ ∃ By Gen.

(3)
y(B(y)→ xB(x))→(yB(y)⊢∀ ∃ ∃

→ xB(x))∃
Axiom L15:

x(F(x)→G)→(xF(x)→G). xB(x) ∀ ∃ ∃
does not contain y.

(4) yB(y)→ xB(x)⊢∃ ∃ By MP.

Now, let us prove [L13, L15, MP, Gen(x)]: xB(x)→ yB(y).⊢∃ ∃

(1) B(x)→ yB(y)⊢ ∃
Axiom L13: F(t)→ xF(x). B(x) does ∃
not contain y, hence, B(y) contains
only free occurrences of y, i.e. B(y/x)
is an admissible substitution.

(2) x(B(x)→ yB(y))⊢∀ ∃ By Gen.

(3)
x(B(x)→ yB(y))→(xB(x)⊢∀ ∃ ∃

→ yB(y))∃
Axiom L15:

x(F(x)→G)→(xF(x)→G). yB(y) ∀ ∃ ∃
does not contain x as a free variable.

(4) xB(x)→ yB(y)⊢∃ ∃ By MP.

Now, by Theorem 2.2.1(a), we obtain (b).

Q.E.D.

Replacement Theorem 3. Let y be a variable that does not occur in a formula
F, containing an occurrence of a quantifier x (or x). Let us replace by ∀ ∃ y all
occurrences of the variable x bound by this particular quantifier occurrence.
Let us denote the resulting formula by F'. Then, in the minimal logic,

 [L1-L9, L12-L15, MP, Gen]: F↔F'.⊢

Proof. Thus, the formula F contains a sub-formula xB(x) (or xB(x)), and we∀ ∃
wish to replace it by y(B(y) (or yB(y)), where y does not occur in F. By∀ ∃
Replacement Lemma 3, in the minimal logic, xB(x)↔ yB(y), and ⊢ ∀ ∀ ⊢

xB(x)↔ yB(y). Hence, by Replacement Lemma 2, in the minimal logic, ∃ ∃ ⊢
F↔F'. Q.E.D.

Now let us repeat our example. We know that (in the classical logic):
⊢ (A → B)↔¬ A∨B . Hence, the formula (X→Y)→Z is equivalent to

¬(X →Y)∨Z , and to ¬(¬ X ∨Y)∨Z . We know also that
¬(A∨B)↔¬ A∧¬ B , hence, we can continue: (X→Y)→Z is equivalent to
(¬¬ X ∧¬ Y)∨Z , and to (X ∧¬Y)∨Z (since ¬¬A↔A).⊢

Now, in our logic, we can use this very natural kind of mathematical argument.

107

3.5. Constructive Embedding

Glivenko's Theorem (see Section 2.7) provides a simple "constructive
embedding" for the classical propositional logic: any classically provable
formula can be "proved" in the constructive logic, if you put two negations
before it. This theorem does not hold for the predicate logic. For example (see
Section 3.2),

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB.⊢ ∀ ∃

The double negation of this formula, i.e. the formula ¬¬(¬ x¬B→ xB) cannot∀ ∃
be proved in the constructive predicate logic (see Section 4.5). Thus, instead of
the simple operation ¬¬F, we must search for a more complicated embedding
operation.

However,

Exercise 3.5.0 (optional, for smart students). Verify that a formula F is
provable in the classical predicate logic, if and only if ¬¬F is provable in the
constructive predicate logic plus the following axiom schema:

x¬¬B→¬¬ xB (the so-called ∀ ∀ Double Negation Shift schema, see
Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia of
Philosophy.

The first embedding operation was introduced by Andrey Nikolaevich
Kolmogorov (1903-1987) in

A.N.Kolmogorov. On the principle tertium non datur. Matem. sbornik, 1925,
vol.32, pp.646-667 (in Russian).

A quote from A Short Biography of A.N. Kolmogorov by Paul M.B. Vitanyi
follows:

"K. got interested in mathematical logic, and in 1925 published a paper in
Mathematicheskii Sbornik on the law of the excluded middle, which has been
a continuous source for later work in mathematical logic. This was the first
Soviet publication on mathematical logic containing (very substantial) new
results, and the first systematic research in the world on intuitionistic logic. K.
anticipated to a large extent A. Heyting 's formalization of intuitionistic
reasoning, and made a more definite correlation between classical and
intuitionistic mathematics. K. defined an operation for `embedding' one logical
theory in another. Using this – historically the first such operation, now called
the `Kolmogorov operation' – to embed classical logic in intuitionistic logic,
he proved that application of the law of the excluded middle in itself cannot

http://www.cwi.nl/~paulv/index.html
http://www.cwi.nl/~paulv/KOLMOGOROV.BIOGRAPHY.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kolmogorov.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kolmogorov.html
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/

108

lead to a contradiction. In 1932 K. published a second paper on intuitionistic
logic, in which for the first time a semantics was proposed (for this logic), free
from the philosophical aims of intuitionism. This paper made it possible to
treat intuitionistic logic as constructive logic."

See also Kolmogorov Centennial.

We will investigate the following version of an embedding operation: to obtain
O(F), in a formula F, put two negations before: a) every atomic formula, b)
every disjunction, c) every existential quantifier. More precisely, let us define
the following embedding operation O (you may wish to compare it with some
other versions possessing similar properties):

Operation O
Detlovs [1964]

Operation K
Kolmogorov
[1925]

Operation O'
Gödel [1933],
see Kleene [1952]

Operation Oo
Gentzen [1936],
see Kleene [1952]

If F is an atomic
formula, then O(F)
is ¬¬F.

K(F) is ¬¬F. O'(F) is F. Oo(F) is F.

O(F→G) is
O(F)→O(G).

¬¬(K(F)→K(G)) ¬(O ' (F)∧¬O ' (G)) Oo(F)→Oo(G)

O (F∧G) is
O (F)∧O (G) .

¬¬(K (F)∧K (G)) O' (F)∧O' (G) Oo
(F)∧O o

(G)

O (F∨G) is
¬¬(O (F)∨O (G))

¬¬(K (F)∨K (G)) ¬(¬O ' (F)∧¬O ' (G)) ¬(¬Oo (F)∧¬Oo(G))

O(¬F) is ¬O(F). ¬¬¬K(F), or ¬K(F)* ¬O'(F) ¬Oo(F)

O(xF) is xO(F).∀ ∀ ¬¬ xK(F)∀ xO'(F)∀ xO∀ o(F)

O(xF) is ¬¬ xO(F).∃ ∃ ¬¬ xK(F)∃ ¬ x¬O'(F)∀ ¬ x¬O∀ o(F)

(*) By Theorem 2.4.5, [L1-L9, MP]: ¬¬¬K(F)↔¬K(F).⊢

For example, let us take the above formula ¬ x¬B→ xB. If B is an atomic∀ ∃
formula, then

O(¬ x¬B→ xB) is ¬ x¬¬¬B→¬¬ x¬¬B, i.e. ¬ x¬B→¬¬ x¬¬B∀ ∃ ∀ ∃ ∀ ∃
The latter formula is constructively provable (see Section 3.2, Group II).

Lemma 3.5.1. For any formula F, in the classical logic, F↔O(F).⊢
Proof. By induction. Let us remind Theorem 2.6.1: [L1-L11, MP] ¬¬A ↔ A.⊢

1. Induction base: F is an atomic formula. Then O(F) is ¬¬F. By Theorem

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952
http://kolmogorov.com/Kolmogorov.html

109

2.6.1, [L1-L11, MP] ¬¬F↔F, hence, in the classical logic, O(F)↔F.⊢ ⊢

2. Induction step.

Case 2a: F is BvC. Then O(F) is ¬¬(O(B)vO(C)).

(1) O(B)↔B Induction assumption.

(2) O(C)↔C Induction assumption.

(3) B∨C ↔ O(B)∨C From (1), by Replacement
Theorem 1.

(4) O(B)∨C ↔O(B)∨O(C)
From (2), by Replacement
Theorem 1.

(5) O(B)∨O (C)↔ ¬¬(O(B)∨O(C))
Theorem 2.6.1: [L1-L11, MP] ⊢
¬¬A ↔ A.

(6)
B∨C ↔ ¬¬(O (B)∨O(C)) , i.e.

F↔O(F)
By transitivity of implication.

Case 2b: F is xB. Then O(F) is ¬¬ xO(B).∃ ∃
(1) O(B)↔B Induction assumption.

(2) xB↔ xO(B)∃ ∃ From (1), by Replacement Theorem 2.

(3) xO(B)↔¬¬ xO(B)∃ ∃ Theorem 2.6.1: [L1-L11, MP] ¬¬A ⊢
↔ A.

(4) xB↔¬¬ xO(B), i.e. F↔O(F)∃ ∃ By transitivity of implication.

Case 2c: F is B→C.

Case 2d: F is B&C.

Case 2e: F is ¬B.

Case 2f: F is xB.∀
Exercise 3.5.1.Prove (c, d, e, f).

Q.E.D.

Still, the key feature of the formulas having the form O(F) is given in

Lemma 3.5.2. For any formula F, there is a proof of

[L1-L9, L12, L14, MP,Gen]: ¬¬O(F)↔O(F).⊢

110

I.e., in the minimal logic, we may drop the double negation before O(F)
(before an arbitrary formula, we can do this only in the classical logic).

Note. In some other textbooks, if ¬¬G↔G can be proved in the constructive
logic, then G is called a stable formula. Thus, the embedding O(F) is a stable
formula for any F.

Proof. By Theorem 2.4.4, [L1, L2, L9, MP]: A→¬¬A. Thus, it remains to⊢

prove ¬¬O(F)→O(F). Let us proceed by induction. ⊢
1. Induction base: F is an atomic formula. Then O(F) is ¬¬F, and
¬¬O(F)→O(F) is ¬¬¬¬F→¬¬F. Let us remind Theorem 2.4.5: [L1-L9, MP] ⊢

¬¬¬A↔¬A. Hence, by taking A = ¬F:

 [L1-L9, MP] ¬¬¬¬F→¬¬F, i.e. [L⊢ 1-L9, MP] ¬¬O(F)→O(F).⊢

2. Induction step.

Case 2a: F is B∨C , or xB, or ¬B. Then O(F) is ∃ ¬¬(O(B)∨O(C)) , or
¬¬ xO(B), or ¬O(B). Hence, ∃ ¬¬O(F)→O(F) is ¬¬¬G→¬G, where G is

¬(O(B)∨O (C)) , or ¬ xO(B), or O(B). ∃ Let us remind Theorem 2.4.5: [L1-

L9, MP] ¬¬¬A↔¬A. Hence,⊢

 [L1-L9, MP] ¬¬¬G→¬G, i.e. [L⊢ 1-L9, MP] ¬¬O(F)→O(F).⊢

Case 2b: F is B→C. Then O(F) is O(B)→O(C). By induction assumption,

[L1, L2, L12, L14, MP, Gen]: ¬¬O(B)→O(B), and ¬¬O(C)→O(C).⊢ ⊢

(1) ¬¬O(C)→O(C) Induction assumption.

(2) ¬¬(O(B)→O(C)) ¬¬O(F) – hypothesis.

(3) ¬¬O(B)→¬¬O(C)
By Theorem 2.4.7(b): [L1-L9, MP] ⊢
¬¬(A→B)→(¬¬A→¬¬B).

(4) O(B)→¬¬O(B) By Theorem 2.4.4, [L1, L2, L9, MP]: A→¬¬A. ⊢

(5)
O(B)→O(C), i.e.
O(F)

From (4), (3) and (1), by transitivity of
implication [L1, L2, MP].

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2,

MP] we obtain that [L1-L9, L12, L14, MP, Gen] ¬¬O(F)→O(F).⊢

Case 2c: F is B∧C . Then O(F) is O(B)∧O (C) . By induction
assumption,

111

 [L1, L2, L12, L14, MP, Gen]: ¬¬O(B)→O(B), and ¬¬O(C)→O(C).⊢ ⊢

(1) ¬¬(O(B)∧O(C)) ¬¬O(F) – hypothesis.

(2) ¬¬O (B)∧¬¬ O(C)
From (1), by Theorem 2.4.8(a), [L1-L9, MP]

⊢ ¬¬(A∧B)↔(¬¬ A∧¬¬ B) .

(3) ¬¬O(B) From (2), by Axiom L3.

(4) ¬¬O(C) From (2), by Axiom L4.

(5) O(B) From (3), by induction assumption.

(6) O(C) From (4), by induction assumption.

(7)
O(B)∧O (C) , i.e.

O(F)
From (5) and (6), by Axiom L5.

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2,

MP] we obtain that [L1-L9, L12, L14, MP, Gen] ¬¬O(F)→O(F).⊢

Case 2d: F is xB. Then O(F) is xO(B). By induction assumption∀ ∀ ,

 [L1-L9, L12, L14, MP, Gen]: ¬¬O(B)→O(B). We must prove that ⊢ ⊢

¬¬ xO(B)→ xO(B).∀ ∀

(1) ¬¬ xO(B)→ x¬¬O(B)∀ ∀ Section 3.2, I-2: [L1-L9, L12, L14, MP, Gen]

 ¬¬ xB→ x¬¬B⊢ ∀ ∀

(2) ¬¬O(B)→O(B)⊢ Induction assumption

(3) x(¬¬O(B)→O(B))⊢∀ By Gen.

(4) x¬¬O(B)→ xO(B)⊢∀ ∀
From (3), by Theorem 3.1.1(a), [L1, L2, L12,

L14, MP, Gen] x(B→C)→(xB→ xC).⊢∀ ∀ ∀

(5) ¬¬ xO(B)→ xO(B)⊢ ∀ ∀ From (1) and (4), by transitivity of
implication [L1, L2, MP].

Q.E.D.

Lemma 3.5.3. If F is one of the (classical) axioms L1-L11, L12-L15, then, in

the constructive logic, [L1-L10, L12-L15, MP, Gen]: O(F).⊢

Note. The axiom L10 will be used in the proof of Lemma 3.5.3 only once – to

112

prove that O(L10) is provable in the constructive logic. But, of course, O(L10)

cannot be proved in the minimal logic, hence, in the Lemma 3.5.3, the
constructive logic cannot be replaced by the minimal one.

Proof.

Case 1. F (as an axiom schema) does not contain disjunctions and existential
quantifiers, i.e. if F is L1, L2, L3, L4, L5, L9, L10, L12, or L14., then O(F) is an

instance of the same axiom as F, i.e. [F]: O(F). For example, if F is L⊢ 1, i.e.

B→(C→B), then O(F) is O(B)→(O(C)→O(B)), i.e. O(F) is an instance of the
same axiom L1.

Case 2a. F is L6: B → B∨C . Then O(F) is O(B)→ ¬¬(O(B)∨O(C)) ,

and [[L1, L2, L6, L9, MP] O(F). Indeed:⊢

(1) O(B)→ O(B)∨O (C) Axiom L6.

(2)

O(B)∨O (C)→ ¬¬(O(B)∨O(C))

By Theorem 2.4.4, [L1, L2, L9,

MP]: A→¬¬A.⊢

(3) O(B)→ ¬¬(O(B)∨O(C))
By transitivity of implication
[L1, L2, MP].

Case 2b. F is L7: C → B∨C . Then O(F) is O(C)→¬ ¬(O(B)∨O(C)) ,

and [[L1, L2, L7, L9, MP] O(F). Proof is similar to Case 2a.⊢

Case 2c. F is L8: (B → D)→ ((C → D)→(B∨C → D)) . Then O(F) is

(O(B)→O(D))→ ((O(C)→ O(D))→(¬¬(O(B)∨O (C))→O (D))) .

(1) ¬¬O(D)→O(D)
By Lemma 3.5.2, [L1-L9, L12,

L14, MP,Gen]: ¬¬O(F)→O(F). ⊢

(2) O(B)→O(D) Hypothesis.

(3) (O(C)→O(D) Hypothesis.

(4) ¬¬(O(B)∨O(C)) Hypothesis.

(5)
(O(B)→O(D))→((O(C)→O (D))→(O (B)∨O(C)→O (D))) .

Axiom L8.

(6) O(B)vO (C)→O(D) By MP.

113

(7) ¬¬(O(B)∨O(C))→¬¬O (D)

From (6), by Theorem 2.4.7(a),
[L1-L9, MP] ⊢
(A→B)→(¬¬A→¬¬B)

(8) ¬¬O(D) By MP.

(9) O(D) From (1), by MP.

Hence, since Gen is not applied after hypotheses appear in the proof, by
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12,

L14, MP,Gen] O(F).⊢

Case 2d. F is L11: Bv¬B. Then O(F) is ¬¬(O(B)∨¬O(B)) . Let us remind

Theorem 2.4.6(b): [L1-L9, MP] ⊢ ¬¬(A∨¬ A) . Hence, [L1-L9, MP] ⊢

O(F).

Case 2e. F is L13: F(t)→ xF(x). Then O(F) is O(F(t))→¬¬ xO(F(x))), and∃ ∃

[[L1, L2, L9, L13, MP] O(F). Indeed:⊢

(1) O(F(t))→ xO(F(x))∃ Axiom L13.

(2) xO(F(x))→∃ ¬¬ xO(F(x))∃ By Theorem 2.4.4, [L1, L2, L9, MP]: ⊢
A→¬¬A.

(3) O(F(t))→¬¬ xO(F(x))⊢ ∃ By transitivity of implication [L1, L2,

MP].

Case 2f. F is L15: x(F(x)→G)→(xF(x)→G). Then O(F) is∀ ∃

x(O(F(x))→O(G))→(¬¬ xO(F(x))→O(G)).∀ ∃

(1) ¬¬O(G)→O(G)
By Lemma 3.5.2, [L1-L9, L12, L14,

MP,Gen]: ¬¬O(F)→O(F).⊢

(2) x(O(F(x))→O(G))∀ Hypothesis.

(3) ¬¬ xO(F(x))∃ Hypothesis.

(4)
x(O(F(x))→O(G))→ (xO(F(x))→O(G)). Axiom L∀ ∃ 15:

x(F(x)→G)→(xF(x)→G).∀ ∃

(5) xO(F(x))→O(G)∃ By MP.

114

(6) ¬¬ xO(F(x))→¬¬O(G)∃ From (4), by Theorem 2.4.7(a), [L1-L9, MP]

 (A→B)→(¬¬A→¬¬B)⊢

(7) ¬¬O(G) By MP.

(8) O(G) From (1), by MP.

Hence, since Gen is not applied after hypotheses appear in the proof, by
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12,

L14, L15, MP,Gen] O(F).⊢

Q.E.D.

Theorem 3.5.4. In the classical logic,

 [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn C,⊢

if and only if, in the constructive logic,

[L1-L10, L12-L15, MP, Gen]: O(B1), O(B2), ..., O(Bn) O(C).⊢

In particular, a formula F is provable in the classical logic, if and only if the
formula O(F) is provable in the constructive logic.

Proof.

1. Let [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn C. Induction by the length⊢

of the shortest proof.

Induction base. If C is an axiom, then, by Lemma 3.5.3, in the constructive
logic, O(C). If C is B⊢ i, then O(Bi) O(C) in any logic.⊢

Induction step.

If C is derived by MP from B and B→C, then, by induction assumption, in the
constructive logic: O(B1), O(B2), ..., O(Bn) O(B), and O(B⊢ 1), O(B2), ...,

O(Bn) O(B→C). Let us merge these two proofs. Since O(B→C) is⊢

O(B)→O(C), then, by MP, in the constructive logic: O(B1), O(B2), ..., O(Bn) ⊢

O(C).

If C is xB(x), and is derived by Gen from B(x), then, by induction∀
assumption, in the constructive logic: O(B1), O(B2), ..., O(Bn) O(B(x)).⊢

Hence, by Gen, in the constructive logic: O(B1), O(B2), ..., O(Bn) ⊢

xO(B(x)), i.e. O(B∀ 1), O(B2), ..., O(Bn) O(F).⊢

Q.E.D.

115

2. Let in the constructive logic: O(B⊢ 1), O(B2), ..., O(Bn) O(C). By Lemma⊢

3.5.1, in the classical logic, B⊢ i→O(Bi) for all i, and O(C)→C. Hence, in⊢

the classical logic, B1, B2, ..., Bn C.⊢

Q.E.D.

Corollary 3.5.5. If, in the classical logic, B1, B2, ..., Bn ⊢ C∧¬C , then, in

the constructive logic, O(B1), O(B2), ..., O(Bn) ⊢ O(C)∧¬O (C) . I.e., if the

postulates B1, B2, ..., Bn are inconsistent in the classical logic, then the

postulates O(B1), O(B2), ..., O(Bn) are inconsistent in the constructive logic.

Or: if the postulates O(B1), O(B2), ..., O(Bn) are consistent in the constructive

logic, then the postulates B1, B2, ..., Bn are consistent in the classical logic.

Corollary 3.5.6. If, for some predicate language, the classical logic is
inconsistent, then so is the constructive logic. Or: if, for some predicate
language, the constructive logic is consistent, then so is the classical logic
(Gödel [1933], Gentzen [1936]).

Warning! Corollary 3.5.6 does not extend immediately to first order theories,
having their own specific non-logical axioms. It must be verified separately for
each theory! For example,

Exercise 3.5.2 (optional, for smart students). Verify that, if the constructive
first order arithmetic is consistent, then so is the classical first order arithmetic
(Gödel [1933], Gentzen [1936]). (Hint: verify that, a) atomic formulas of
arithmetic are stable – this is the hard part of the proof, b) if F is an axiom of
arithmetic, then so is O(F).)

Thus, the non-constructivity does not add contradictions (at least) to
arithmetic. If it would, then we could derive "constructive" arithmetical
contradictions as well.

K. Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse
eines mathematischen Kolloquiums, 1933, Vol. 4, pp. 34-38.

Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie.
Mathematische Annalen, 1936, Vol. 112, pp. 493-565.

About constructive embedding operations as a general notion see

Nikolai A.Shanin. Embedding the classical logical-arithmetical calculus into
the constructive logical-arithmetical calculus. Dokladi AN SSSR, 1954, vol. 94,
N2, pp.193-196 (in Russian).

http://logic.pdmi.ras.ru/~shanin/
http://www-history.mcs.st-and.ac.uk/Mathematicians/Gentzen.html
http://en.wikipedia.org/wiki/Peano_axioms

116

4. Completeness Theorems (Model Theory)

4.1. Interpretations and Models

In principle, to do the so-called pure mathematics, i.e. simply to prove
theorems, one needs only "syntax" – axioms and rules of inference. And, for
computers, this is the only way of doing mathematics!

But how about "semantics" – about our intended "vision” from which we
started designing of our predicate language and formulating axioms? First of
all, we must understand that there is no way of formulating (in the predicate
language and axioms) of all the features of our domain of interest.

For example, what information can be derived about the person Britney from
our “theory for people” of Section 1.3? All we can derive will be formulated in
terms of the following predicates:

Male(x) − means "x is a male";
Female(x) − means "x is a female";
Mother(x, y) − means "x is mother of y";
Father(x, y) − means "x is father of y";
Married(x, y) − means "x and y are married";
x=y.

Thus, there is no way of obtaining from such a theory of any information that
can't be formulated in these terms, for example, about the age, colour of eyes
etc.

And thus, by communicating our predicate language and our axioms (in this
language!) to a computer, we have communicated only a small part of all the
features of our domain of interest.

Hence, neither our predicate language, nor our axioms can specify our
initial “vision” completely. And, if so – in principle, one can imagine many
different “visions” behind our language and axioms!

It may seem that if, instead of our “people's domain” that is very rich in
details, we will consider, for example, natural numbers, then the situation will
become better, and we will be able to describe our informal “vision”
unambiguously?

For example, let us considered the language of first order arithmetic (language
primitives: x, y, ..., 0, 1 +, *, =), and the following non-usual "Boolean vision"
B behind it.

117

a) As the domain of B (the "target" set of objects), instead of the set of all
natural numbers, let us consider the set of "Boolean values" DB = {t, f}. Thus,

now, the variables x, y, ... can take only values t, f.

b) The interpretation mapping intB assigns: to the object constant 1 – the

object t, to the object constant 0 – the object t, thus: intB(0)=f, intB(1)=t.

c) To the function constant "+" we assign the well-known disjunction truth
table: intB(+)= '∨' , to the function constant "*" – the well-known

conjunction truth table: intB(*)= '∧' .

d) To the predicate constant "=" – the equality predicate for the set DB, i.e.

intB(=) = {(t, t) , (f, f)}.

Is this vision "worse" than the usual one involving “real” natural numbers? It
seems, it is worse, because the following axiom of arithmetic:

x+1=y+1 → x=y

is false under this vision. Indeed, set x=0 and y=1: 0+1=1+1 → 0=1. Here, the
premise is true: 0+ 1= f ∨t=t=1,1+ 1=t∨t=t=1 , but the conclusion is
not: 0=1 means f=t.

On the other hand, the following theorem of Boolean algebra:

x+x=x

is true under the above "Boolean vision" (t∨t=t , f ∨ f = f), but it is false
under the usual vision involving natural numbers.

Thus, if two theories share the same language (as do Boolean algebra and first
order arithmetic), then the "validity" of a vision may depend on the formulas
(axioms and theorems) that we expect to be true. If we consider only the
language, then many different and even strange interpretations-visions will be
possible. But if we consider a theory (i.e. a language plus some specific
axioms), then only a part of the interpretations-visions will be valid – only
those ones, under which the specific axioms of our theory will be true. Such
interpretations-visions are called models of the theory.

Another example: in our "language for people" we used names of people (JBritney, John,
Paris, Peter, ...) as object constants and the following predicate constants:

Male(x) − means "x is a male";
Female(x) − means "x is a female";
Mother(x, y) − means "x is mother of y";
Father(x, y) − means "x is father of y";
Married(x, y) − means "x and y are married";
x=y − means "x an y are the same person".

118

Now, let us fix the list of 4 names: Britney, John, Paris, Peter, and let us consider the
following interpretation J of the language - “small world”:

a) The domain – and the range of variables – is DJ = {br, jo, pa, pe} (4 character strings).

b) intJ(Britney)=br, intJ(John)=jo, intJ(Paris)=pa, intJ(Peter)=pe.

c) intJ(Male) = {jo, pe}; intJ(Female) = {br, pa}.

d) intJ(Mother) = {(pa, br), (pa, jo)}; intJ(Father) = {(pe, jo), (pe, br)}.

e) intJ(Married) = {(pa, pe), (pe, pa)}.

f) intJ(=) = {(br, br), (jo, jo), (pa, pa), (pe, pe)}.

An alternative way of specifying interpetations of predicate constants are truth tables, for
example:

x Male(x) Female(x)

br false true

pa false true

jo true false

pe true false

x y Father(x, y) Mother(x, y) Married(x, y) x=y

br br false false false true

br pa false false false false

...

pa br false true false false

...

pe pe false false false true

Under this interpretation (“in this small world”), it is true that, "mothers are females", and that
"all fathers are married people" (under this interpretation, not in the real world!). Thus, under
this interpretation, the corresponding formulas ∀x(Mother(x)→Female(x)) and
∀x(Father(x)→∃y Married(x, y)) qualify as true.

But, under this interpretation (“in this small world”), it not true that "each person possess a
mother". The corresponding formula x∀ ∃y Mother(y, x) qualifys as false.

Exercise 4.1.0. Build another interpretation (a “crazy” one!) of our “4 people language”,
under which the following formulas are true: “some people are both male and female”, “there
are sex-less people”, “a person may marry herself”, “a person may be mother of herself”.

By introducing specific non-logical axioms, i.e. by introducing “4 people theory” instead of

119

pure axiom-less “4 people language” we can disqualify your “crazy” interpretation. For
example, the following axioms are false under it:

∀x(Male(x)∨Female(x)) ;∀x ¬(Male(x)∧Female(x)).

Model Theory

Could the notion of “arbitrary vision” be defined precisely? For a particular
predicate language and particular axioms – is there only one “vision”
possible? Trying to answer these questions, we arrive at the so-called model
theory.

Model theory is a very specific approach to investigation of formal theories.
Model theory is using (up to) the full power of set theory. In model theory,
we investigate formal theories by using set theory as a meta-theory.

Paul Bernays, in 1958: "As Bernays remarks, syntax is a branch of number theory and
semantics the one of set theory." See p. 470 of

Hao Wang. EIGHTY YEARS OF FOUNDATIONAL STUDIES. Dialectica, Vol. 12, Issue 3-
4, pp. 466-497, December 1958 (available online at Blackwell Synergy).

In Sections 4.1-4.3 we will develop model theory for the classical logic, and
in Sections 4.4-4.5 – model theory for the constructive logic.

In the classical model theory, we will replace our vague "visions” by relatively
well-defined mathematical structures – the so-called interpretations. As we
will see, interpretations are allowed to be non-constructive.

Technically, an interpretation will be a relatively well-defined way of
assigning "precise meanings" to all formulas of a predicate language. Any
particular predicate language allows multiple ways of assigning "precise
meanings" to its formulas – multiple interpretations.

Interpretation of a language – the specific part

Let L be a predicate language containing object constants c1, ..., ck, ... ,

function constants f1, ..., fm, ..., and predicate constants p1, ..., pn, An

interpretation J of the language L consists of the following two entities:

a) A non-empty set DJ – the domain of interpretation (it will serve first of all

as the range of object variables). (Your favorite set theory comes in here.)

b) A mapping intJ that assigns:

- to each object constant ci – a member intJ(ci) of the domain DJ (thus, object

constants "denote" particular objects in DJ),

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1746-8361.1958.tb01476.x?cookieSet=1&journalCode=dltc
http://en.wikipedia.org/wiki/Hao_Wang
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bernays.html
http://en.wikipedia.org/wiki/Set_theory#Axiomatic_set_theory

120

- to each function constant fi – a function intJ(fi) from DJ x ... x DJ into DJ (of

course, intJ(fi) has the same number of arguments as fi),

- to each predicate constant pi – a predicate intJ(pi) on DJ, i.e. a subset of DJ
x ... x DJ (of course, intJ(pi) has the same number of arguments as pi).

Thus, in a sense, the mapping intJ assigns "meaning" to the language

primitives.

The most popular example – let us consider the so-called standard
interpretation S of first order (Peano) arithmetic PA:

a) The domain is DS = {0, 1, 2, ...} − the set of all natural numbers "as we

know it" (more precisely – as you define it in your favorite set theory).

b) The mapping intS assigns: to the object constant 0 – the number 0, to the

object constant 1 – the number 1, to the function constant "+" − the function
x+y (addition of natural numbers), to the function constant "*" − the function
x*y (multiplication of natural numbers), to the predicate constant "=" − the
predicate x=y (equality of natural numbers).

Yet another interpretation J1 of the same language:

a) The domain is DJ1 = {e, a, aa, aaa, ...} − the set of all strings built of the letter "a" (e is the

empty string).

b) The mapping intJ1 assigns: to the object constant 0 – the empty string e, to the object

constant 1 – the string "a", to the function constant "+" − the concatenation function of strings,
to the function constant "*" − y times concatenation of x, to the predicate constant "=" − the
string equality predicate.

Yet another interpretation J2 (there is no way to disqualify it as a formally correct
interpretation of the language):

a) The domain is DJ2 = {o} – a single object o.

b) The mapping intJ2 assigns: to the object constant 0 – the object o, to the object constant 1 –

the same object o, to the function constant "+" − the only possible function f(o,o)=o, to the
function constant "*" − the only possible function f(o,o)=o, to the predicate constant "=" − the
predicate {(o, o)}.

Some time later, we will use specific non-logical axioms to disqualify (at least
some of) such "inadequate" interpretations.

Having an interpretation J of the language L, we can define the notion of true
formulas (more precisely − the notion of formulas that are true under the
interpretation J).

As the first step, terms of the language L are interpreted as members of DJ or

functions over DJ. Indeed, terms are defined as object constants, or object

121

variables, or their combinations by means of function constants. The term ci is

interpreted as the member intJ(ci) of DJ. The variable xi is interpreted as the

function Xi(xi) = xi. And, if t = fi(t1, ..., tq), then intJ(t) is defined as the

function obtained by substituting of functions intJ(t1), ..., intJ(tq) into the

function intJ(fi).

For example (first order arithmetic), the standard interpretation of the term
(1+1)+1 is the number 3, the interpretation of (x+y+1)*(x+y+1) is the function
(x+y+1)2.

Important − non-constructivity! Note that, for an infinite domain DJ, the

interpretations of function constants may be non-computable functions. But,
if they are all computable, then we can compute the "value" of any term t for
any combination of values of variables appearing in t.

As the next step, the notion of true atomic formulas is defined. Of course, if
a formula contains variables (as, for example, the formula x+y=1), then its
"truth-value" must be defined for each combination of values of these
variables. Thus, to obtain the truth-value of the formula pi(t1, ..., tq) for some

fixed values of the variables contained in t1, .., tq, we must first "compute" the

values of these terms, and then substitute these values into the predicate
intJ(pi).

For example (first order arithmetic), under the standard interpretation S, the
formula x+y=1 will be true, if and only if either x takes the value 0, and y
takes the value 1, or x takes the value 1, and y takes the value 0. Otherwise,
the formula is false.

Important − non-constructivity! Note that, for an infinite domain DJ, the

interpretations of predicate constants may be non-computable predicates. But,
if they were all computable, then we could compute the "truth value" of any
atomic formula F for any combination of values of variables appearing in F.

Interpretations of languages − the standard common part

And finally, we define the notion of true compound formulas of the language
L under the interpretation J (of course, for a fixed combination of values of
their free variables):

a) Truth-values of the formulas ¬B, B∧C , B∨C and B→C must be
computed from the truth-values of B and C (by using the well-known classical
truth tables – see Section 4.2 below).

b) The formula xB is true under J, if and only if B(c) is true under J for all∀

122

members c of the domain DJ.

c) The formula ∃xB is true under J, if and only if there is a member c of the
domain DJ such that B(c) is true under J.

For example (first order arithmetic), the formula

∃ y ((x= y+ y)∨(x= y+ y+ 1))

says that "x is even or odd". Under the standard interpretation S, this formula
is true for all values of its free variable x. Similarly, x y(x+y=y+x) is a∀∀
closed formula that is true under S.

Important − non-constructivity! It may seem that, under an interpretation,
any closed formula is "either true or flase". However, note that, for an infinite
domain DJ, the notion of "true formulas under J" is extremely non-

constructive: to establish, for example, the truth-value of the formula xB, or∀
the formula x y(x+y=y+x), we must verify the truth of B(c) for infinitely∀∀
many values of c (or a+b=b+a for infinitely many values of a and b). Of,
course, this verification cannot be performed on a computer. It can only
(sometimes) be proved... in some other theory. The "degree of constructivity"
of the formulas like as x yC(x,y), x y zD(x,y,z) etc. is even less than∀∃ ∀ ∃ ∀
that...

Empty Domains?

Do you think, we should consider also empty domains of interpretation? According to the
axiom L13: (B→B)→ x(B→B), hence, x(B→B). In an empty domain, this formula would be∃ ∃

false. Thus, to cover the empty domain, we would be forced to re-consider the axioms and/or
re-consider the traditional meaning of x − see (c) above. Let us concentrate on non-empty∃
domains only.

Let us say that a formula of the language L is always true under the
interpretation J, if and only if this formula is true for all combinations of
values of its free variables.

Three Kinds of Formulas

If one explores some formula F of the language L in various interpretations,
then three situations are possible:

a) F is true in all interpretations of the language L. Formulas of this kind are
called logically valid formulas.

b) F is true in some interpretations of L, and false − in some other
interpretations of L.

c) F is false in all interpretations of L (then, of course, ¬F is true in all
interpretations). Formulas of this kind are called unsatisfiable formulas.

123

Formulas that are "not unsatisfiable" (i.e. formulas of kinds (a) and (b)) are
called, of course, satisfiable formulas.

Exercise 4.1.1. Verify that: a) F is satisfiable, if and only if ¬F is not
logically valid. b) F is logically valid, if and only if ¬F is unsatisfiable.

Logically Valid Formulas

Some formulas are always true under all interpretations, for example:

(B →C)∧(C → D)→(B → D) ,

F (x)→∃ xF (x) ,

∀xF (x)→ F (x) ,

∀x (F (x)→G (x))→(∀xF (x)→∀xG(x)) ,

∀x (F (x)→G (x))→(∃ xF (x)→∃ xG(x)) ,

∀x (G (x)∧H (x))→(∀xG (x)∧∀xH (x)) ,

∃ x (G(x)∨H (x))→(∃ xG(x)∨∃ xH (x)) .

How about the axioms L1-L15?

Such formulas are called logically valid. More precisely, in a predicate
language L, a formula is called logically valid, if and only if it is true in all
interpretations of the language L for all values of its free variables.

Thus, a logically valid formula is true independently of its "meaning" − the
interpretations of constants, functions and predicates used in it. But note that
here, the (classical!) interpretations of propositional connectives and
quantifiers remain fixed.

In a sense, logically valid formulas are “content-free”: they do not give us any
specific information about features of objects they are “speaking” about.

Important − non-constructivity! The notion of logically valid formulas is
doubly non-constructive in the sense that the universal quantifier "for all
interpretations" is added to the (already) non-constructive definition of a true
formula.

As we will see in, all the axioms of our classical logical axiom system [L1-L15,

MP, Gen] are logically valid formulas. And that inference rules MP and Gen
generate only logically valid formulas. I.e. we will prove that all the formulas
that can be proved in the classical logic [L1-L15, MP, Gen], are logically

valid.

As an example, let us verify that the axiom L12: xF(x)→F(t) is logically∀

124

valid. Let us assume the contrary, i.e. that, under some interpretation J, for
some values of its free variables, L12 is false. According to the classical truth

tables, this could be only, if and only if xF(x) were true, and F(t) were false∀
(under the interpretation J, for the same above-mentioned values of free
variables). Let us "compute" the value of the term t for these values of free
variables (since the substitution F(x/t) is admissible, t may contain only these
variables), and denote it by c. Thus, F(c) is false. But xF(x) is true, hence,∀
F(a) is true for all a in the domain DJ, i.e. F(c) also is true. Contradiction.

Hence, L12 is true under all interpretations for all combinations of its free

variables (if any).

Exercise 4.1.2. Verify that the remaining 6 of the above formulas are logically
valid. (Hint: follow the above example − assume that there is an interpretation
J such that the formula under question is false for some values of its free
variables, and derive a contradiction.)

Is our axiom system of logic powerful enough to prove ALL the logically
valid formulas? The answer is positive − see Gödel's Completeness Theorem
in Section 4.3: a formula is logically valid, if and only of it is provable in the
classical logic [L1-L11, L12-L15, MP, Gen].

But, of course, there are formulas that are not logically valid. For example,
negations of logically valid formulas are false in all interpretations, i.e. they
are not logically valid. Such formulas are called unsatisfiable formulas. But
there are formulas that are true in some interpretations, and false − in some
other ones. An example of such formulas: the axiom of arithmetic x+1=y+1 →
x=y considered above.

To conclude that some formula is not logically valid, we must build an
interpretation J such that the formula under question is false for some values of
its free variables.

As an example, let us verify that the formula

∀x (p(x)∨q(x))→∀x p(x)∨∀x q(x)

is not logically valid (p, q are predicate constants). Why it is not? Because the
truth-values of p(x) and q(x) may behave in such a way that p (x)∨q (x) is
always true, but neither x p(x), nor x q(x) is true. Indeed, let us take the∀ ∀
domain D = {a, b}, and set:

x p(x) q(x)

a true false

b false true

125

In this interpretation, p (a)∨q (a) = true, p (b)∨q(b) = true, i.e. the
premise ∀x (p(x)∨q(x)) is true. But the formulas x p(x), x q(x) both∀ ∀
are false. Hence, in this interpretation, the consequent ∀x p (x)∨∀x q (x) is
false, and thus, ∀x (p(x)∨q(x))→∀x p(x)∨∀x q(x) is false. We have
built an interpretation, making false the formula under question. Q.E.D.

On the other hand, this formula is satisfiable – there is an interpretation under
which it is true. Indeed, let us take D={a} as the domain of interpretation, and
let us set p(a)=q(a)=true. Then all the formulas

∀x (p(x)∨q(x)) ,∀x p (x) ,∀x q(x)

become true, and so is the entire formula under consideration. Q.E.D.

Exercise 4.1.3. Verify that the following formulas are satisfiable, but not
logically valid (p, q, r are predicate constants):

a) p (x , y)∧p (y , z)→ p(x , z) ,

b) q(x)→ x q(x),∀
c) (x q(x)→ x r(x))→ x(q(x)→r(x)),∀ ∀ ∀
c1) x(p(x)→B)→(x p(x)→B), where B does not contain x,∃ ∃

d) x y p(x, y)→ y x p(x, y),∀∃ ∃ ∀
e) ∃ x q(x)∧∃ x r (x)→∃ x (q(x)∧r (x)) ,

f) ∀x ¬ p(x , x)∧∀x∀y∀z (p(x , y)∧p(y , z)→ p (x , z)) →

∀x∀y (x= y∨p(x , y)∨p(y , x)) .

Hint. For the domain D={a, b}, use table form to define your interpretation of
a binary predicate letter r(x,y), for example,

x y r(x, y)

a a false

a b true

b a true

b b false

Exercise 4.1.4. Is the following formula logically valid, or not (p, q are
predicate constants):

 (x p(x)→ x q(x))→ x(p(x)→q(x)).∃ ∃ ∃

126

(Hint: follow the above example − use natural numbers or other objects trying
to build an interpretation J such that the formula under question is false.)

Satisfiability

We already know that, in a predicate language L, a formula F is called
satisfiable, if and only if there is an interpretation of the language L such
that F is true for some values of its free variables (we will say also that F is
satisfied under this interpretation). A set of formulas F1, ..., Fn, ... is called

satisfiable, if and only if there is an interpretation under which the formulas
F1, ..., Fn, ... are satisfied simultaneously.

Examples. a) Formula x p(x) is, of course, not logically valid, but it is∃
satisfiable, because it is true in the following interpretation J: DJ={b}, p(b) is

true.

b) Formulas x*0=0, x+y=y+x and x+(y+z)=(x+y)+z are not logically valid
(see Exercise 4.1.7 below), but they are satisfiable, because they are true under
the standard intepretation of arithmetic.

Exercise 4.1.5. a) Verify that the formula xy(p(x)→p(y)) is true in all one-∀
element interpretations (i.e. when the interpretation domain consists of a single
element), but is false in at least one two-element interpretation (p is a predicate
constant).

b) Verify that the formula

∀x∀y∀z [(p(x)↔ p(y))∨(q (y)↔q (z))∨(r (z)↔ r (x))]

is true in all one- and two-element interpretations, but is false in at least one
three-element interpretation (p, q, r are predicate constants).

c) Prove that the formula x y F(x,y) is logically valid, if and only if so is the∃ ∀
formula x F(x, g(x)), where g is a function constant that does not appear in F.∃
d) Prove that the formula x y z F(x,y,z) is satisfiable, if and only if so is the∀∀ ∃
formula x y F(x, y, h(x,y)), where h is a function constant that does not∀∀
appear in F.

Logical Consequences

"F implies G", or "the formula G follows from the formula F" − what should
this mean in general? If F is true, then G is true? Always, or under some
specific conditions? Let us specify all these "conditions" as formulas A1, ...,

An (the formula F included). Then, G follows from A1, ..., An unconditionally

127

("logically"), i.e. if A1, ..., An are all true, then G must be true without any

other conditions. Since the notion of "true" we have formalized as "true in
interpretation", we can formalize the notion of "logical consequence" as
follows:

G is a logical consequence of A1, ..., An, if and only if G is true under any

interpretation, under which A1, ..., An are all true.

Or, as follows:

G is a logical consequence of A1, ..., An, if and only if G is true in any model

of A1, ..., An.

Exercise 4.1.6. Verify that:

a) The formula G is a logical consequence of formulas A1, ..., An, if and only if

the formula

 A1∧...∧An →G

is logically valid.

b) If the set of formulas A1, ..., An is satisfiable, then the formulas B, ¬B

cannot both be logical consequences of A1, ..., An.

c) The formula G is a logical consequence of formulas A1, ..., An, if and only if

the set A1, ..., An, ¬G is unsatisfiable.

We will prove in Section 4.3 that G is a logical consequence of A1, ..., An, if

and only if

[L1-L11, L12-L15, MP, Gen]: A1∧...∧An G,⊢

i.e. if the formula A1∧...∧An →G is provable in the classical logic.

Theories and Their Models

If T is a first order theory, and J is an interpretation of its language, and if J
makes true the specific axioms of T, then (traditionally) J is called a model of
T.

For non-mathematical people, the term "model of a theory" may seem
somewhat strange: in "normal" branches of science, theories serve as a basis
for building models of natural phenomena, technical devices etc. But only the
term is strange ("upside down") here, the process is the same as in "normal"
branches of science: first order theories "generate" their models, and these
models can be used for modeling natural phenomena, technical devices etc.

128

Specific axioms of a first order theory T are not logically valid formulas!
They are not true in all interpretations, they are true only in the models of T.
Models of T − it is a proper subclass of all the possible interpretations. For
example, the "obvious" arithmetical axioms like as x+0=x (or, theorems like as
x+y=y+x) are not logically valid. If we would interpret 0 as the number "two",
then x+0 and x will be equal! Logically valid formulas must be true under all
interpretations!

Exercise 4.1.7. a) Verify that, if a theory has a model, then the set of its
specific axioms is satisfiable.

b)Verify that x=x, x*0=0, x+y=y+x and x+(y+z)=(x+y)+z are satisfiable, but
not logically valid formulas.

As we already noted above, in a sense, logically valid formulas "do not
contain information" (are “content-free”) − just because they are true in all
interpretations, i.e. they are true independently of the "meaning" of language
primitives. Indeed, let us consider the formulas x+0=x → x+0=x, and x+0=0
→ x+0=0. Both are logically valid, but do we get more information about zero
and addition after reading them? Another example: 2*2=5 → 2*2=5, or 2*2=4
→ 2*2=4, these formulas also are logically valid, but do they help in
computing the value of 2*2? The specific axioms of some theory T, on the
contrary, do "contain information" − they separate a proper subclass of all
interpretations − models of T.

Do the axioms of first order arithmetic “specify” the standard interpretation S,
i.e. are the axioms of first order arithmetic true in this interpretation only?
No, there are many non-standard interpretations making these axioms true!
More: Non-standard arithmetic in Wikipedia.

Transitive Predicates and Recursion

Let us return to the problem that we considered already in Section 1.2.

How about the predicate Ancestor(x, y) − "x is an ancestor of y"? Could it be
expressed as a formula of our "language for people"? The first idea − let us
"define" this predicate recursively:

∀x∀y (Father (x , y)∨Mother (x , y)→ Ancestor (x , y)) ;
∀x∀y∀z (Ancestor(x , y)∧Ancestor (y , z)→ Ancestor (x , z)) .

The second rule declares the transitivity property of the predicate. The above
two formulas are axioms, allowing to derive essential properties of the
predicate Ancestor(x, y). But how about a single formula F(x, y) in the
"language for people", expressing that "x is an ancestor of y"? Such a formula
should be a tricky combination of formulas Father(x, y), Mother(x, y) and x=y.
And such a formula is impossible! For the proof – see Carlos Areces. Ph.D.

http://www.loria.fr/~areces/content/papers/files/thesis.pdf
http://www.loria.fr/~areces/
http://en.wikipedia.org/wiki/Non-standard_arithmetic

129

Thesis, 2000, Theorem 1.2.

Exercise 4.1.8 (optional, for smart students). Explain the precise meaning of
the statement: in the "language for people", formula F(x, y) expresses that "x is
an ancestor of y".

4.2. Classical Propositional Logic − Truth Tables

Emil Leon Post (1897-1954). "... Post's Ph.D. thesis, in which he proved the
completeness and consistency of the propositional calculus described in the
Principia Mathematica by introducing the truth table method. He then
generalised his truth table method, which was based on the two values "true"
and "false", to a method which had an arbitrary finite number of truth-values...
In the 1920s Post proved results similar to those which Gödel, Church and
Turing discovered later, but he did not publish them. He reason he did not
publish was because he felt that a 'complete analysis' was necessary to gain
acceptance." (According to MacTutor History of Mathematics archive).

First, let us consider the classical propositional logic. Here, each formula is
built of some is built of some “atoms” B1, B2, ..., Bn by using propositional

connectives only (i.e. B∧C , B∨C , ¬ B , B →C). Our axioms for this logic
we represented as axiom schemas L1-L11, in which the letters B, C, D could be

replaced by any formulas.

Is our list L1-L11 of classical propositional axiom schemas “complete”? Aren't

some necessary axiom schemas missing there? If something necessary is
missing, we must add it to the list.

This problem was solved by Emil L. Post in 1920. He proved that if one
would add to L1-L11 as an axiom schema any formula that can't yet be

proved from these axioms, then one would obtain a system, in which all
formulas are provable, i.e. an inconsistent system. Thus, nothing is missing
in our list of classical propositional axioms.

Post proved his theorem by using the so-called classical truth tables (a
specific interpetation – in terms of the above Section 4.1). Each propositional
atom may take any of two truth-values – true and false. And, if we already
know the truth-values of the formulas B, C, then we can use truth tables to
compute the truth-values of the formulas B∧C , B∨C , ¬ B , B →C .

If B is false, and C is false, then B∧C is false.
If B is false, and C is true, then B∧C is false.
If B is true, and C is false, then B∧C is false.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www.loria.fr/~areces/content/papers/files/thesis.pdf

130

If B is true, and B is true, then B∧C is true.

B C B∧C

0 0 0

0 1 0

1 0 0

1 1 1

If B is false, and C is false, then B∨C is false.
If B is false, and C is true, then B∨C is true.
If B is true, and C is false, then B∨C is true.
If B is true, and C is true, then B∨C is true.

B C B∨C

0 0 0

0 1 1

1 0 1

1 1 1

If B is false, then ¬B is true.
If B is true, then ¬B is false.

B ¬B

0 1

1 0

No problems so far.

If B is false, and C is false, then B→C is what? True? False? But, why?
If B is false, and C is true, then B→C is what? True? False? But, why?
If B is true, and C is false, then B→C is false, of course.
If B is true, and C is true, then B→C is what? Perhaps, not false? Hence, true?

How to answer the 3 what's? If B is false, then B→C possesses no real
meaning. And, if we already know that B is true, and C is true, then B→C is
no more interesting. But, if a definite "truth-value" for B→C is mandatory in
all cases, then we can greatly simplify the situation by assuming that B→C is
always true, except, if B is true, and C is false. Thus:

If B is false, and C is false, then B→C is true.

131

If B is false, and C is true, then B→C is true.
If B is true, and C is false, then B→C is false.
If B is true, and C is true, then B→C is true.

B C B→C

0 0 1

0 1 1

1 0 0

1 1 1

This definition is equivalent to saying that

B→C is true, if and only if ¬(B∧¬ C) is true

or:

B→C is false, if and only if B is true, and C is false.

In this way, having any formula F and some assignment of truth-values to its
atoms, we can compute the truth-value of F.

But what would happen to some propositional formula F, if we would try all
the possible truth-values of all the propositional atoms occurring in F? There
are three possibilities:

F takes only true values;

F takes only false values;

F takes both of values.

Lemma 4.2.1. Under the classical truth tables, all the classical propositional
axioms L1-L11 take only true values.

Proof. First, let us verify L11 and L10:

B ¬B B∨¬ B

0 1 1

1 0 1

B C ¬B B→C ¬B→(B→C)

0 0 1 1 1

0 1 1 1 1

132

1 0 0 0 1

1 1 0 1 1

Exercise 4.2.1. Verify L1-L9.

See also:
"Truth Tables" from The Wolfram Demonstrations Project. Contributed by:
Hector Zenil.

Lemma 4.2.2. Under the classical truth tables, if the formulas B and B→C
take only true values, then so does C. I.e. from "always true" formulas, Modus
Ponens allows deriving only of "always true" formulas.

Proof. Let us assume that, in some situation, C takes a false value. In the same
situation, B and B→C take true values. If B is true, and C is false, then B→C
is false. Contradiction. Hence, C takes only true values. Q.E.D.

Note. In the proof of Lemma 4.2.2, only the third row of implication truth
table was significant: if B is true, and C is false, then B→C is false!

Theorem 4.2.3 (soundness of the classical propositional logic).

If [L1-L11, MP]: F, then, under the classical truth tables, F takes only true⊢

values. In particular: the classical propositional logic is consistent – in the
sense that one cannot prove [L1-L11, MP]: ⊢ G∧¬ G , for any formula G.

Proof. By induction, from Lemmas 4.2.1 and 4.2.2.

Completeness of Classical Propositional Logic

How about the converse statement of Theorem 4.2.3: if, under the classical
truth tables, formula F takes only true values, then [L1-L11, MP]: F? I.e.,⊢ are

our axioms powerful enough to prove any formula that is taking only true
values? The answer is "yes":

Theorem 4.2.4 (completeness of the classical propositional logic). Assume,
the formula F has been built of formulas B1, B2, ..., Bn by using propositional

connectives only. If, under the classical truth tables, for any truth-values of B1,

B2, ..., Bn, formula F takes only true values, then:

a) in the constructive logic,

 [L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn F,⊢

b) in the classical logic, [L1-L11, MP]: F.⊢

http://demonstrations.wolfram.com/author.html?author=Hector+Zenil
http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/TruthTables/

133

Corollary 4.2.4. The classical propositional axioms [L1-L11, MP] are

"complete" in the sense that if one would add any formula that can't yet be
proved from these axioms, then one would obtain a system, in which all
formulas are provable, i.e. an inconsistent system.

Of course, (b) follows from (a) immediately − all the premises
B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn are instances of the axiom L11.

The corollary also follows immediately. Indeed, if some formula F can't be
proved from [L1-L11, MP], then it takes false value for some combination of

truth-values of its atoms. Replace each true atom by the formula A→A, and
each false atom – by ¬(A→A). In this way we obtain a formula F' that takes
only false values, i.e. ¬F' takes only true values, and hence, can be proved
from [L1-L11, MP]. Thus, if we would add F to [L1-L11, MP] as an axiom

schema, then, in this system, the formulas F' and ¬F' will be provable, and by
L10 – any formula will be provable.

Note. Assume, the formula F is built of atoms B1, B2, ..., Bn by using

propositional connectives only. If, under the classical truth tables, for any
(possible and impossible) truth-values of B1, B2, ..., Bn, formula F takes only

true values, then F is called a tautology. Theorem 4.2.4 says that any
tautology can be proved in the classical propositional logic.

Completeness of the classical propositional logic was first proved by Emil L.
Post in his 1920 Ph.D. thesis, and published as

E. Post. Introduction to a general theory of elementary propositions. American
Journal of Mathematics, 1921, vol. 43, pp.163-185.

About the history, see also:

Richard Zach. Completeness before Post: Bernays, Hilbert, and the development of
propositional logic. The Bulletin of Symbolic Logic, 1999, vol. 5, N3, pp.331-366 (online copy
available).

Following an elegant later idea by Laszlo Kalmar we need two simple lemmas
before trying to prove this theorem.

L. Kalmar. Ueber Axiomatisiebarkeit des Aussagenkalkuels. Acta
scientiarium mathematicarum (Szeged). 1934-35. vol. 7, pp. 222-243.

Lemma 4.2.5. In the constructive logic, one can "compute" the classical truth-
values of ¬ B , B → C , B∧C , B∨C in the following sense:

Negation Implication Conjunction Disjunction

[]: [L10, MP]: [L1, L2, L3, L9, MP]: [L1-L9, MP]:

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www.ucalgary.ca/~rzach/papers/bernays.html
http://www.ucalgary.ca/~rzach/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html

134

 ¬B ¬B⊢ ¬B, ¬C B→C ⊢ ¬B, ¬C ⊢
¬(B∧C)

¬B,¬C ⊢
¬(B∨C)

[L1, L2, L9,

MP]:

 B ¬¬B⊢

[L10, MP]:

¬B, C B→C ⊢

[L1, L2, L3, L9, MP]:

 ¬B, C ⊢ ¬(B∧C)

[L7, MP]:

 ¬B, C ⊢ B∨C

[L1, L2, L9, MP]:

 B, ¬C ¬(B→C)⊢

[L1, L2, L4, L9, MP]:

 B, ¬C ⊢ ¬(B∧C)

[L6, MP]:

 B, ¬C ⊢ B∨C

[L1, MP]:

 B, C B→C ⊢

[L5, MP]:

 B, C ⊢ B∧C

[L6, MP]:

 B, C ⊢ B∨C

Note. Thus, to "compute" the classical truth-values, the axiom L11 is not

necessary!

Proof.

¬B ¬B⊢
Immediately, in any logic.

B ¬ ¬B⊢
By Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A.⊢

¬B, C B→C⊢
¬B, ¬C B→C⊢
By axiom L10: ¬B→(B→C) we obtain ¬B B→C. This covers both cases.⊢

B, ¬C ¬(B→C)⊢
This is exactly Theorem 2.4.1(c) [L1, L2, L9, MP].

B, C B→C⊢
By axiom L1: C→(B→C) we obtain C B→C.⊢

¬B, ¬C ⊢ ¬(B∧C)

¬B, C ⊢ ¬(B∧C)

By axiom L3: B∧C → B and the Contraposition Law (Theorem 2.4.2) [L1,

L2, L9, MP]: (A→B)→(¬B→¬A) we obtain ⊢ ⊢ ¬ B → ¬(B∧C) , and ¬B ⊢
¬(B∧C) . This covers both cases.

B, ¬C ⊢ ¬(B∧C)

135

By axiom L4: B∧C →C and the Contraposition Law (Theorem 2.4.2) [L1,

L2, L9, MP]: (A→B)→(¬B→¬A) we obtain ⊢ ⊢ ¬C →¬(B∧C) , an ¬C ⊢

¬(B∧C) .

B, C ⊢ B∧C

By axiom L5: B →(C → B∧C) we obtain B, C ⊢ B∧C .

¬B, ¬C ⊢ ¬(B∨C)

By Theorem 2.4.10(b).

¬B, C ⊢ B∨C

By axiom L7: C → BvC we obtain C ⊢ B∨C .

B, ¬C ⊢ B∨C

B, C ⊢ B∨C

By axiom L6: B → B∨C we obtain B ⊢ B∨C . This covers both cases.

Q.E.D.

As the next step, we will generalize Lemma 4.2.5 by showing how to
"compute" truth-values of arbitrary formula F, which is built of formulas B1,

B2, ..., Bn by using more than one propositional connective. For example, let

us take the formula B∨C → B∧C :

B C B∨C B∧C B∨C → B∧C

0 0 0 0 1

0 1 1 0 0

1 0 1 0 0

1 1 1 1 1

We will show that, in the constructive logic [L1-L10, MP]:

¬B, ¬C ⊢ B∨C → B∧C ,
¬B, C ⊢ ¬(B∨C → B∧C) ,

B, ¬C ⊢ ¬(B∨C → B∧C) ,

¬B, ¬C ⊢ B∨C → B∧C .

Lemma 4.2.6. Assume, the formula F has been built of formulas B1, B2, ..., Bn
by using propositional connectives only. Assume that, if the formulas B1,

B2, ..., Bn take the truth-values v1, v2, ..., vn respectively, then, for these

136

values, formula F takes the truth-value w. Then, in the constructive logic, we
can "compute" the truth-value of F in the following sense:

[L1-L10, MP]: v1B1, v2B2, ..., vnBn wF,⊢

where: wF denotes F, if w is true, and ¬F, if w is false, and viBi denotes Bi, if

vi is true, and ¬Bi, if vi is false.

Proof. By induction.

Induction base. F is one of the formulas Bi. Then w=vi, and, of course, in any

logic, viBi wF.⊢

Induction step.

Note that Lemma 4.2.5 represents the assertion of Lemma 4.2.6 for formulas
built of B1, B2, ..., Bn by using a single propositional connective.

1. F is ¬G. By the induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn w'G, ⊢

where w' represents the truth-value of G. By Lemma 4.2.5,

[L1-L10, MP]: w'G wF, hence, [L⊢ 1-L10, MP]: v1B1, v2B2, ..., vnBn wF.⊢

2. F is G o H, where o is implication, conjunction, or disjunction. By the
induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn w'G,⊢

where w' represents the truth-value of G, and

[L1-L10, MP]: v1B1, v2B2, ..., vnBn w''H,⊢

where w'' represents the truth-value of H. By Lemma 4.2.5,

[L1-L10, MP]: w'G, w''H wF,⊢

 hence, [L1-L10, MP]: v1B1, v2B2, ..., vnBn wF.⊢

Q.E.D.

Proof of Theorem 4.2.4(a). By Lemma 4.2.6:

[L1-L10, MP]: B1, v2B2, ..., vnBn F,⊢
[L1-L10, MP]: ¬B1, v2B2, ..., vnBn F,⊢

because F takes only true values. By [L1, L2, MP] Deduction Theorem 1,

[L1-L10, MP]: v2B2, ..., vnBn B⊢ 1→F,

137

[L1-L10, MP]: v2B2, ..., vnBn ¬B⊢ 1→F,

Let us merge these two proofs and append an instance of the axiom L8:

⊢ (B1 → F)→((¬ B1 → F)→(B1∨¬ B1 → F)) .

Hence, by MP:

[L1-L10, MP]: v2B2, ..., vnBn ⊢ B1∨¬ B1→ F ,

and

[L1-L10, MP]: B1v¬B1, v2B2, ..., vnBn F.⊢

By repeating this operation we obtain Theorem 4.2.4(a):

[L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn F.⊢

Q.E.D.

Computational Complexity of the Problem

From now on, we could forget our ability of proving formulas in the classical
propositional logic, learned in Section 2. Indeed, in order to verify, is a
formula provable in [L1-L11, MP], or not, we can simply check, under the

classical truth tables, takes this formula only true values, or not. Is this
checking really simpler than proving of formulas in [L1-L11, MP]?

If the formula contains n different atoms A, B, C, ..., then its truth table
contains 2n rows that must be checked one by one. Of course, if the formula
contains 2 atoms (like as (A → B)→¬ A∨B , or 3 atoms (like as the Axiom
L2), then its truth table consists of 4 or 8 rows − for most people this is a

feasible task. But the "truth table" for a formula containing 32 atoms contains
four billions of rows to check... So, let us try inventing a more efficient
algorithm?

It seems, we will never succeed − the problem of determining the classical
provability of propositional formulas belongs to the so-called complexity class
“co-NP-complete”, see Boolean satisfiability problem in Wikipedia. And the
problem of determining the constructive provability of propositional formulas
is even harder – it belongs to the complexity class “PSPACE-complete”, see:

Richard Statman. Intuitionistic propositional logic is polynomial-space complete, Theoretical
Computer Science 9 (1979), pp. 67–72 (online copy available).

http://deepblue.lib.umich.edu/bitstream/2027.42/23534/1/0000493.pdf
http://www.math.cmu.edu/math/faculty/statman.html
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

138

4.3. Classical Predicate Logic − Gödel's Completeness Theorem

Kurt Gödel (1906-1978) "He is best known for his proof of Gödel's
Incompleteness Theorems. In 1931 he published these results in Über formal
unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme Gödel's results were a landmark in 20th-century mathematics,
showing that mathematics is not a finished object, as had been believed. It also
implies that a computer can never be programmed to answer all mathematical
questions." (According to MacTutor History of Mathematics archive).

As David Hilbert and Wilhelm Ackermann published in

D.Hilbert, W.Ackermann. Grundzuege der theoretischen Logik. Berlin
(Springer), 1928

their, in a sense, "final" version of the axioms of classical logic, they observed:
"Whether the system of axioms is complete at least in the sense that all the
logical formulas which are correct for each domain of individuals can actually
be derived from them, is still an unsolved question."

(quoted after
S. C. Kleene. The Work of Kurt Gödel. "The Journal of Symbolic Logic", December 1976,
Vol.41, N4, pp.761-778
See also:
Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

Indeed, as we will verify below, a) all axioms of the classical logic (L1-L11,

L12-L15) are logically valid, b) the inference rules MP, Gen allow to prove

(from logically valid formulas) only logically valid formulas. Hence, in this
way only logically valid formulas can be proved. Still, is our list of logical
axioms complete in the sense that all logically valid formulas can be
proved? − the question asked by Hilbert and Ackermann in 1928. The answer
is "yes" − as Kurt Gödel established in 1929, in his doctoral dissertation
"Ueber die Vollständigkeit des Logikkalkuels"(visit Gödel's Archive in the
Princeton University Library). The corresponding paper appeared in 1930:

K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalkuels.
"Monatshefte fuer Mathematik und Physik", 1930, Vol.37, pp.349-360.

Gödel's Completeness Theorem. In any predicate language, a formula is
logically valid, if and only if it can be proved by using the classical logic [L1-

L11, L12-L15, MP, Gen].

In fact, a more general theorem can be proved:

Theorem 4.3.0 (Thanks to Sune Foldager for the idea.). If T is a first order
theory with classical logic, then some formula F is always true in all models of

http://libweb.princeton.edu/
http://libweb.princeton.edu/
http://libweb.princeton.edu/libraries/firestone/rbsc/aids/godel/godel3.html
http://www.math.uwaterloo.ca/~snburris/
http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Ackermann.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Godel.html

139

T, if and only if T proves F.

Gödel's Completeness Theorem follows from Theorem 4.3.0, if the set of
specific axioms of T is empty.

First, let us prove the easy part (sometimes called the soundness theorem) −
that all the formulas that can be proved by using the classical logic [L1-L11,

L12-L15, MP, Gen] are logically valid.

Lemma 4.3.1. All the axioms of the classical logic (L1-L11, L12-L15) are

logically valid.

Proof.

1) Under the classical truth tables, the propositional axioms L1-L11 take only

true values (Lemma 4.2.1). Hence, these axioms are true under all
interpretations.

2a) L12: xF(x)→F(t), where F is any formula, and t is a term such that the∀

substitution F(x/t) is admissible.

Let us assume that, under some interpretation J, for some values of its free
variables, L12 is false. According to the classical truth tables, this could be

only, if and only if xF(x) were true, and F(t) were false (under the∀
interpretation J, for the same above-mentioned values of free variables). Let us
"compute" the value of the term t for these values of free variables (since the
substitution F(x/t) is admissible, t may contain only these variables), and
denote it by c. Thus, F(c) is false. But xF(x) is true, hence, F(a) is true for all∀

a∈D J , i.e. F(c) also is true. Contradiction. Hence, L12 is true under all

interpretations for all combinations of its free variables.

2b) L13: F(t)→ xF(x), where F is any formula, and t is a term such that the∃

substitution F(x/t) is admissible.

Similarly, see Exercise 4.3.1.

2c) L14: x(G→F(x))→(G→ xF(x)), where F is any formula, and G is a∀ ∀

formula that does not contain x as a free variable.

Let us assume that, under some interpretation J, for some values of its free
variables, L14 is false. According to the classical truth tables, this could be

only, if and only if x(G→F(x)) were true, and G→ xF(x) were false (under∀ ∀
the interpretation J, for the same above-mentioned values of free variables)

If x(G→F(x)) is true, then G→F(c) is true for all∀ c∈D J . Since G does not
contain x, this means that if G is true, then F(c) is true for all c∈DJ .

140

From the orher side, if G→ xF(x) is false, then G is true, and xF(x) is false.∀ ∀
And finally, if xF(x) is false, then F(c) is false for some∀ c∈DJ . But, as we
established above, if G is true, then F(c) is true for all c∈DJ . Contradiction.
Hence, under all interpretations, L14 is true for all combinations of its free

variables.

2d) L15: x(F(x)→G)→(xF(x)→G), where F is any formula, and G is a∀ ∃

formula that does not contain x as a free variable.

Similarly, see Exercise 4.3.1.

Q.E.D.

Exercise 4.3.1. Verify that the axioms L13 and L15 are logically valid.

Lemma 4.3.2. From logically valid formulas, inference rules MP and Gen
allow deriving only of logically valid formulas..

Proof.

1. Modus Ponens. Assume, B and B→C are logically valid formulas. By MP,
we derive C. Assume, C is not logically valid, i.e., under some interpretation J,
for some values of its free variables, C is false. Under this interpretation J, for
these values of free variables of C, the formulas B and B→C are true. Then,
according to the classical truth tables, C also must be true. Contradiction.
Hence, C is logically valid.

2. Generalization. Assume, F(x) is logically valid, but xF(x) is not, i.e.,∀
under some interpretation J, for some values of its free variables, xF(x) is∀
false. Hence, under this interpretation J, for these values of free variables of

xF(x), there is∀ c∈DJ such that F(c) is false. But F(x) is logically valid, i.e.
F(c) is true. Contradiction. Hence, xF(x) is logically valid.∀
Q.E.D.

Corollary 4.3.3 (soundness of the classical predicate logic). All the formulas
that can be proved by using the classical logic [L1-L11, L12-L15, MP, Gen], are

logically valid.

Proof. Immediately, by Lemmas 4.3.1 and 4.3.2.

Exercise 4.3.1X. Verify that if, under an interpretation J, all specific axioms of
a theory T are true, then all theorems of T also are true under J. (Hint: each
theorem C is proved by using some finite set of specific axioms, let us denote
by B the conjunction of these axioms, consider the formula B→C, and use
Corollary 4.3.3.)

Of course, the above soundness theorem is the easy half of Gödel's
Completeness Theorem. To complete the proof, we must prove the converse: if

141

some formula is logically valid, then it can be proved by using the classical
logic [L1-L11, L12-L15, MP, Gen].

Model Existence Theorem

Gödel's initial proof was simplified in 1947, when Leon Henkin presented in
his Ph.D. thesis a new proof of the so-called Model Existence Theorem (see
below). The result was published in 1949:

L. Henkin. The completeness of the first-order functional calculus. "J. Symbolic Logic",
1949, vol.14, pp.159-166.

See also Henkin's later account of his discovery:

L. Henkin. The discovery of my completeness proofs. "The Bulletin of Symbolic Logic",
1996, vol.2, N2, pp.127-158.

An even simpler version Henkin's proof was found independently and almost
simultaneously by Gisbert Hasenjäger, however, when publishing, he
acknowledged Henkin's priority:

G. Hasenjäger. Eine Bemerkung zu Henkin's Beweis fuer die Vollständigkeit des
Prädikatenkalkuels der ersten Stufe. "J. Symbolic Logic", 1953, vol.18, pp.42-48.

If T is an inconsistent theory, then there are no models of T. Indeed, if T proves
a contradiction, i.e. a formula of the kind B∧¬B , then, in a model of T, the
formula B must be true and false simultaneously. This is imposssible.

Hence, if there is a model of T, then T is consistent.

The converse question: could it be possible that T is a consistent theory, but
there are no models of T? The answer is given in the

Model Existence Theorem. If a first order classical formal theory is
consistent (in the sense that, by using the classical logic, it does not prove
contradictions), then there is a finite or countable model of this theory (i.e. an
interpretation with a finite or countable domain, under which all axioms and
theorems of the theory are always true).

In the 1920s, some people insisted that mere consistency of a theory (in the
syntactic sense of the word − as the lack of contradictions) is not sufficient to
regard it as a meaningful theory − as a "theory of something". Model
Existence Theorem says the contrary − (syntactic!) consistency of a theory is
sufficient: if a theory does not contain contradictions, then it is a "theory
of something" − it describes at least some kind of "mathematical reality". For
example, you may think that Euclidean geometry is "meaningless" − because it
does not describe 100% correctly the spacial properties of the Universe. But
it's your problem, not Euclid's − use another theory, if necessary. Euclidean
geometry describes its own kind of "mathematical reality" – and 100%

http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Gisbert_Hasenjaeger
http://en.wikipedia.org/wiki/Leon_Henkin
http://math.berkeley.edu/people/faculty/leon-henkin

142

correctly!

Let us assume the Model Existence Theorem (we will prove it later in this
Section).

Proof of Theorem 4.3.0.

If T proves F, then F is always true in all models of T (Exercise 4.3.1X).

Now, let us assume that some formula F is always true in all models of theory
T, yet it cannot be proved in T. Let us consider the theory T' in the language of
T which contains (besides the axioms of T) an additional non-logical axiom −
the negation of F, i.e. the formula ¬ x∀ 1... x∀ nF, where x1, .., xn are exactly all

the free variables of F (if F contains free variables x1, .., xn, then, to negate its

assertion, we must add to F the quantifiers x∀ 1... x∀ n). Since F cannot be

derived from the axioms of T, T' is a consistent theory.

Indeed, if T' would be inconsistent, i.e. we could prove in T' some formula C
and its negation ¬C, then we had proofs of [T]: ¬ x∀ 1... x∀ nF C, and [T]:⊢

¬ x∀ 1... x∀ nF ¬C. Since ¬ x⊢ ∀ 1... x∀ nF is a closed formula, by Deduction

Theorem 2, [T]: ¬ x⊢ ∀ 1... x∀ nF →C, and [T]: ¬ x⊢ ∀ 1... x∀ nF →¬C. Now, by

axiom L9: (B→C)→(B→¬C)→¬B, we obtain that [T]: ¬¬ x⊢ ∀ 1... x∀ nF. By

the (classical) Double Negation Law, this implies [T]: x⊢∀ 1... x∀ nF, and by

axiom L12: xB(x)→B(x) − [T]: F. But, by our assumption, F cannot be∀ ⊢

proved in T. Hence, T' is a consistent theory.

Now, by the Model Existence Theorem, there is a model of T', i.e. an
interpretation J that makes all its axioms always true. Under this interpretation,
all axioms of T are always true, i.e. J is a model of T. And the formula
¬ x∀ 1... x∀ nF (as an axiom of T') also is true under J. On the other hand, since F

is always true in all models of T, it is always true also under the interpretation
J. Hence, formulas x∀ 1... x∀ nF and ¬ x∀ 1... x∀ nF both are always true under J.

This is impossible, hence, F must be provable in T. Q.E.D.

1. Such a simple proof seems almost impossible! We are proving that the
logical axioms and rules of inference are strong enough, but where come these
axioms in? They come in − in the proof of the Model Existence Theorem. This
theorem says that if some formal theory T does not have models, then the
logical axioms and rules of inference are strong enough to derive a
contradiction from the axioms of T. But the proof of the Model Existence
Theorem that we will consider below, is positive, not negative!

2. The above simple proof seems to be extremely non-constructive! "If F is

143

always true in all models of T, then it can be proved in T". How could we
obtain this proof? Still, how do we know that F is true in all models of T?
Only, if we had a constructive procedure that is verifying this, we could ask for
an algorithm converting such procedures into proofs in T!

Proof of the Model Existence Theorem

Exercise 4.3.3 (optional, for smart students). Prove the Model Existence
Theorem by using the following smart ideas due to L. Henkin and G.
Hasenjäger. Let T be a consistent theory. We must build a model of T. What
kind of "bricks" should we use for this "building"? Idea #1: let us use object
constants of the language! So, let us add to the language of T an infinite set of
new object constants d1, d2, d3, ... (and adopt the corresponding additional

instances of logical axioms). Prove that this extended theory T0 is consistent.

The model we are building must contain all "objects" whose existence can be
proved in T0. Idea #2: for each formula F of T0 having exactly one free

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃ i),

where the constant di is unique for each F. If T0 proves xF(x), then this∃

constant di will represent in our model the "object" x having the property F.

Prove that this extended theory T1 is consistent. Idea #3: prove the (non-

constructive) Lindenbaum's lemma: the axiom set of any consistent theory can
be extended in such a way, that the extended theory is consistent and complete
(the axiom set of the extended theory may be not algorithmically solvable).
After this, extend T1 to a consistent complete theory T2. Idea #4: let us take as

the domain of the interpretation M the set of all those terms of T0 that do not

contain variables. And let us interpret each function constant f as the "syntactic
constructor function" f', i.e. let us define the value f'(t1, ..., tn) simply as the

character string "f(t1, ..., tn)". Finally, let us interpret each predicate constant p

as the relation p' such that p'(t1, ..., tn) is true in M, if and only if T2 proves

p'(t1, ..., tn). To complete the proof, prove that an arbitrary formula G is always

true in M, if and only if T2 proves G. Hence, all theorems of the initial theory

T are always true in M.

Adolf Lindenbaum (1904-1941), his wife Janina Hosiasson-Lindenbaum (1899-1942).

Lindenbaum's Lemma. Any consistent first order theory can be extended to a
consistent complete theory. More precisely, if T is a consistent first order
theory, then, in the language of T, there is a set A of closed formulas such that
T+A is a consistent complete theory. (In general, T+A is not a formal theory in
the sense of Section 1.1, see below.)

http://en.wikipedia.org/wiki/Janina_Hosiasson-Lindenbaum
http://en.wikipedia.org/wiki/Adolf_Lindenbaum

144

Note. By T+A we denote the first order theory in the language of T, obtained
from T by adding the formulas of the set A as non-logical axioms.

Exercise 4.3.4. Verify that, in any predicate language L, only countably many
formulas can be generated. I.e. produce an algorithm for printing out a
sequence F0, F1, F2, ... containing all the formulas of L.

Proof of Lindenbaum's Lemma (Attention: non-constructive reasoning!)

Let us use the algorithm of the Exercise 4.3.4 printing out the sequence F0, F1,

F2, ... of all formulas in the language of T, and let us run through this

sequence, processing only those formulas Fi that are closed.

At the very beginning, the set of new axioms A0 is empty.

At the step i, we already have some set Ai-1 of new axioms. If the formula Fi is

not closed, let us ignore it, and set Ai=Ai-1. Now, let us suppose that Fi is a

closed formula. If T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, then we can ignore

this formula, and set Ai=Ai-1. If T+A does not prove neither Fi, nor ¬Fi, then

let us simply add Fi (or ¬Fi, if you like it better) to our set of new axioms, i.e.

set Ai=Ai−1∪{Fi} .

Etc., ad infinitum. As the result of this process we obtain a set of closed
formulas A=A0∪A1∪A2∪...∪Ai∪

Let us prove that T+A is a consistent complete theory.

Consistency. If T+A would be inconsistent, we would have a proof of [T+A] ⊢
C∧¬C for some formula C. If, in this proof, no axioms from the set A

would be used, we would have a proof of [T] ⊢ C∧¬C , i.e. T would be
inconsistent.

Otherwise, the proof of [T+A] ⊢ C∧¬C could contain a finite number of
axioms B1, ..., Bk from the set A. Let us arrange these axioms in the sequence,

as we added them to the set A. Thus we have a proof of [T]: B1, ..., Bk ⊢
C∧¬C . Let us remind Theorem 2.4.1(a):

If A1, A2, ..., An, B ⊢ C∧¬C , then A1, A2, ..., An ¬B. ⊢

Hence, we have a proof of [T]: B1, ..., Bk-1 ¬B⊢ k. But this is impossible − we

added Bk to the set A just because T+Ai-1 could not prove neither Bk, nor ¬Bk.

Q.E.D.

Completeness. We must verify that, for any closed formula F in the language
of T, either T+A F, or T+A ¬F. Let us assume, this is not the case for some⊢ ⊢

145

closed formula F. Of course, F appears in the above sequence F0, F1, F2, ... as

some Fi. If neither T+A F, nor T+A ¬F, then neither T+A⊢ ⊢ i-1 F⊢ i, nor T+Ai-

1 ¬F⊢ i. In such a situation we would add F to the set A, hence, we would have

T+A F. Q.E.D.⊢
This completes the proof of Lindenbaum's Lemma.

Attention: non-constructive reasoning! T+A is a somewhat strange theory,
because, in general, we do not have an algorithmical decision procedure for its
axiom set. Indeed, to decide, is some closed formula F an axiom of T+A, or
not, we must identify F in the sequence F0, F1, F2, ... as some Fi, and after this,

we must verify, whether T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, or none of

these. Thus, in general, T+A is not a formal theory in the sense of ion 1.1.

Proof of the Model Existence Theorem (Attention: non-constructive
reasoning!)

Inspired by the beautiful exposition in Mendelson [1997].

Step 1. We must build a model of T. What kind of "bricks" should we use for
this "building"? Idea #1: let us use object constants of the language! So, in
order to prepare enough "bricks", let us add to the language of T a countable
set of new object constants d1, d2, d3, ... (and extend the definitions of terms,

atomic formulas and formulas accordingly, and add new instances of logical
axioms accordingly). Let us prove that, if T is consistent, then this extended
theory T0 also is consistent.

If T0 would be inconsistent, then, for some formula C, we could obtain a proof

of [T0]: ⊢ C∧¬C . If, in this proof, object constants from the set {d1, d2, d3,

...} would not appear at all, then, in fact, we had a proof of [T]: ⊢ C∧¬C ,
i.e. we could conclude that T is inconsistent. But, if the new object constants
do appear in the proof of [T0]: ⊢ C∧¬C ? Then, let us replace these

constants by any variables of T that do not appear in this proof (this is
possible, since each predicate language contains a countable set of object
variables). After these substitutions, the proof becomes a valid proofs of T,
because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the object constants d1, d2,

d3, ..., i.e. they do not change.

c) Applications of inference rules MP and Gen remain valid.

Hence, [T]: ⊢ C ' ∧¬C ' , where the formula C' has been obtained from C by

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml.htm#Mendelson1997
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml1.htm#s11

146

the above substitutions. I.e., if T0 would be inconsistent, then T also would be

inconsistent.

Step 2. The model we are building must contain all "objects" whose existence
can be proved in T0. Idea #2: for each formula F of T0 having exactly one free

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃ i),

where the constant di is unique for each F. If T0 proves xF(x), then this d∃ i will

represent in our model the "object" x having the property F. Let us prove that,
if T is consistent, then this extended theory T1 also is consistent. Note that in

T1 the same language is used as in T0.

To implement the Idea #2 correctly, first let us use the algorithm of the
Exercise 4.3.4 printing out the sequence F0, F1, F2, ... of all formulas in the

language of T0, and let us run through this sequence, processing only those

formulas Fi that have exactly one free variable. Let us assign to each such

formula Fi a unique constant dc(i) in such a way that dc(i) does not appear

neither in the non-logical axioms of T, nor in Fi, nor in the axioms

yF∃ j(y)→Fj(dc(j)) for all formulas Fj preceding Fi in the sequence F0, F1,

F2, And, if x is the (only) free variable of Fi, let us adopt xF∃ i(x)→Fj(dc(i))

as an axiom of T1.

Now, let us assume that the extended theory T1 is inconsistent, i.e. that, for

some formula C of T0, we have a proof of [T1]: ⊢ C∧¬C . In these proofs,

only a finite number n of axioms xF(x)→F(d∃ c(F)) could be used. If n=0, then

we have [T0]: ⊢ C∧¬C , i.e. then T0 is inconsistent.

If n>0, then let us mark the axiom xF(x)→F(d∃ c(F)) with F having the largest

index in the sequence F0, F1, F2, And, in the proof of [T1]: ⊢ C∧¬C , let

us replace the constant c(F) by some variable y that does not appear in this
proof (this is possible, since each predicate language contains a countable set
of variables). After this substitution, the proof remain a valid proof of T1,

because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the constant c(F), i.e. they do
not change.

c) The axiom xF(x)→F(d∃ c(F)) becomes xF(x)→F(y). Since F does not∃

contain the constant c(F), the premise xF(x) does not change.∃

147

d) The remaining n-1 axioms yF∃ j(y)→Fj(dc(j)) of T1 do not contain the

constant c(F), i.e. they do not change.

e) Applications of inference rules MP and Gen remain valid.

Thus we have now another proof of a contradiction − [T1]: ⊢ C ' ∧¬C ' ,

where the formula C' has been obtained from C by substituting y for c(F). Let
us remind Theorem 2.4.1(a):

If A1, A2, ..., An, B ⊢ C∧¬C , then A1, A2, ..., An ¬B. ⊢

Let us take the formula xF(x)→F(y) for B, and C'- for C. Thus, there is a∃
proof of ¬(xF(x)→F(y)), where only logical axioms, non-logical axioms of T,∃
and the remaining n-1 axioms yF∃ j(y)→Fj(dc(j)) of T1 are used. Let us remind

the Exercise 2.6.3(b) [L1-L11, MP]: ⊢ ¬(A → B)↔ A∧¬ B . Thus,

¬(xF(x)→F(y)) is equivalent to∃ ∃ xF (x)∧¬ F (y) , and, in fact, we have a
proof of xF(x), and a proof of ¬F(y). By applying Gen to the second formula,∃
we obtain a proof of y¬F(y), which is equivalent to ¬ yF(y) (indeed, let us∀ ∃
remind Section 3.2, Table 3.2, Group IV, constructively, x¬B↔¬ xB). By⊢∀ ∃
Replacement Theorem 3, ¬ yF(y) is equivalent to ¬ xF(x). Thus, we have a∃ ∃
proof of a contradiction ∃ xF (x)∧¬∃ xF (x) , where only logical axioms,
non-logical axioms of T, and the remaining n-1 axioms yF∃ j(y)→Fj(dc(j)) of T1
are used.

Let us repeat the above chain of reasoning another n-1 times to eliminate all
occurrences of the axioms xF(x)→F(d∃ c(F)) from our proof of a contradiction.

In this way we obtain a proof of a contradiction in T0, which is impossible (see

Step 1). Hence, T1 is a consistent theory.

Step 3. Idea #3: let us use the (non-constructive!) Lindenbaum's lemma, and
extend T1 to a consistent complete theory T2. Note that in T2 the same

language is used as in T0.

Step 4. Let us define an interpretation M of the language of T0, in which all

theorems of T2 will be always true. Since all theorems of the initial theory T

are theorems of T2, this will complete our proof.

Idea #4: let us take as the domain DM of the interpretation M the (countable! −

verify!) set of all constant terms of T0, i.e. terms that do not contain variables

(this set of terms is not empty, it contains at least the countable set of object
constants added in Step 1). And let us define interpretations of object
constants, function constants and predicate constants as follows.

148

a) The interpretation of each object constant c is the constant c itself.

b) The interpretation of a function constant f is the "syntactic constructor
function" f', i.e., if f is an n-ary function constant, and t1, ..., tn are constant

terms, then the value f'(t1, ..., tn) is defined simply as the character string

"f(t1, ..., tn)" (quotation marks ignored).

c) The interpretation of a predicate constant p is the relation p' such, if p is an
n-ary predicate constant, and t1, ..., tn are constant terms, then p'(t1, ..., tn) is

defined as true in M, if and only if T2 proves p(t1, ..., tn) (note that T2 is a

consistent complete theory, i.e. it proves either p(t1, ..., tn), or ¬p(t1, ..., tn), but

not both!).

Step 5. To complete the proof, we must prove that, in the language of T0, an

arbitrary formula G is always true in M, if and only if T2 proves G (let us

denote this, as usual, by T2 G. This will be proved, if we will prove that, if⊢

x1, ..., xm is the set of at least all free variables contained in the formula G, and

t1, ..., tm are constant terms, then G(t1, ..., tm) is true in M, if and only if T2 ⊢

G(t1, ..., tm). The proof will be by induction.

Induction base: G is an atomic formula p(s1, ..., sn), where p is a predicate

constant, and the terms s1, ..., sn contain some of the variables x1, ..., xm. In

s1, ..., sn, let us substitute for x1, ..., xm the terms t1, ..., tm respectively. In this

way we obtain constant terms s'1, ..., s'n. Thus G(t1, ..., tm) is simply p(s'1, ...,

s'n). By definition (see Step 4), p(s'1, ..., s'n) is true, if and only if T2 p(s'⊢ 1, ...,

s'n), i.e., if and only if T2 G(t⊢ 1, ..., tm). Q.E.D.

Induction step.

Note. Since, T2 is a complete consistent theory, for any closed formula F, T2
proves either F, or ¬F (but not both). Hence, if we know that F is true in M, if
and only if T2 F, then we can conclude that F is false in M, if and only if T⊢ 2

 ¬F. Indeed, if F is false, then F is not true, i.e. T⊢ 2 does not prove F, i.e. T2 ⊢

¬F. And, if T2 ¬F, then T⊢ 2 does not prove F, i.e. F is not true, i.e. F is false.

And conversely: if we know that F is false in M, if and only if T2 ¬F, then⊢

we can conclude that F is true in M, if and only if T2 F. Indeed, if F is true,⊢

then ¬F is not true, i.e. T2 does not prove ¬F, i.e. T2 F. And, if T⊢ 2 F, then⊢

T2 does not prove ¬F, i.e. F is not false, i.e. F is true.

149

Case 1: G is ¬H. Then, according to the classical truth tables, G(t1, ..., tm) is

true in M, if and only if H(t1, ..., tm) is false in M. By the induction

assumption, H(t1, ..., tm) is true in M, if and only if T2 H(t⊢ 1, ..., tm). Then, by

the above note, since H(t1, ..., tm) is a closed formula, H(t1, ..., tm) is false in

M, if and only if T2 ¬H(t⊢ 1, ..., tm), i.e., if and only if T2 G(t⊢ 1, ..., tm).

Q.E.D.

Case 2: G is H→K. Then, according to the classical truth tables, G(t1, ..., tm)

is false in M, if and only if H(t1, ..., tm) is true in M, and K(t1, ..., tm) is false in

M. By the induction assumption, H(t1, ..., tm) is true in M, if and only if T2 ⊢

H(t1, ..., tm), and K(t1, ..., tm) is true in M, if and only if T2 K(t⊢ 1, ..., tm). By

the above note, K(t1, ..., tm) is false in M, if and only if T2 ¬K(t⊢ 1, ..., tm).

Hence,

G(t1, ..., tm) is false in M, if and only if

 T2 H(t⊢ 1, ..., tm), and T2 ¬K(t⊢ 1, ..., tm),

or,

G(t1, ..., tm) is true in M, if and only if

 not (T2 H(t⊢ 1, ..., tm), and T2 ¬K(t⊢ 1, ..., tm)).

Let us remind Theorem 2.2.1 and Exercise 2.6.3(a), [L1-L11, MP]: ⊢
(A → B)↔¬(A∧¬ B) . In T2, all the axioms of the classical logic are

adopted, hence (verify!),

G(t1, ..., tm) is true in M, if and only if T2 H(t⊢ 1, ..., tm)→K(t1, ..., tm),

or,

 G(t1, ..., tm) is true in M, if and only if T2 G(t⊢ 1, ..., tm).

Q.E.D.

Case 3: G is H ∧K . Then, according to the classical truth tables, G(t1, ...,

tm) is true in M, if and only if H(t1, ..., tm) is true in M, and K(t1, ..., tm) is true

in M. By the induction assumption, H(t1, ..., tm) is true in M, if and only if T2
 H(t⊢ 1, ..., tm), and K(t1, ..., tm) is true in M, if and only if T2 K(t⊢ 1, ..., tm).

Let us remind Theorem 2.2.1. In T2, all the axioms of the classical logic are

adopted, hence (verify!),

150

G(t1, ..., tm) is true in M, if and only if T2 ⊢ H (t 1 , ... , tm)∧K (t1 ,... ,tm) ,

or,

G(t1, ..., tm) is true in M, if and only if T2 G(t⊢ 1, ..., tm).

Q.E.D.

Case 4: G is H ∨K . Then, according to the classical truth tables, G(t1, ...,

tm) is false in M, if and only if H(t1, ..., tm) is false in M, and K(t1, ..., tm) is

false in M. By the induction assumption, and by the above note, H(t1, ..., tm) is

false in M, if and only if T2 ¬H(t⊢ 1, ..., tm), and K(t1, ..., tm) is false in M, if

and only if T2 ¬K(t⊢ 1, ..., tm). Let us remind Theorem 2.2.1 and Theorem

2.4.10(b): [L1-L10, MP] ⊢ ¬(A∨B)↔ ¬ A∧¬ B (the so-called Second de

Morgan Law). In T2, all the axioms of the classical logic are adopted, hence

(verify!),

G(t1, ..., tm) is false in M, if and only if T2 ⊢ ¬(H (t1 ,... , tm)∨K (t 1, ... , tm)) ,

or, G(t1, ..., tm) is false in M, if and only if T2 ¬G(t⊢ 1, ..., tm). Thus, by the

above note, G(t1, ..., tm) is true in M, if and only if T2 G(t⊢ 1, ..., tm). Q.E.D.

Case 5: G is xH. Then, by definition, G(t∃ 1, ..., tm) is true in M, if and only if

H(x, t1, ..., tm) is "true for some x", i.e., if and only if H(t, t1, ..., tm) is true in

M for some constant term t in M. By the induction assumption, H(t, t1, ..., tm)

is true in M, if and only if T2 H(t, t⊢ 1, ..., tm). Let us remind our above Step 2.

Since H(x, t1, ..., tm) is a formula containing exactly one free variable, in T2
we have an axiom xH(x, t∃ 1, ..., tm)→H(cH, t1, ..., tm), where cH is an object

constant.

First, let us assume that G(t1, ..., tm) is true in M. Then H(t, t1, ..., tm) is true in

M for some constant term t in M, hence, T2 H(t, t⊢ 1, ..., tm) for this particular

t. Let us remind the axiom L13: F(t)→ xF(x). Since t is a constant term, this∃

axiom is valid for t. We need the following instance of L13: H(t, t1, ...,

tm)→ xH(x, t∃ 1, ..., tm). In T2, all the axioms of the classical logic are adopted,

hence, T2 H(t, t⊢ 1, ..., tm)→ xH(x, t∃ 1, ..., tm), and, by MP, T2 xH(x, t⊢∃ 1, ...,

tm), i.e. T2 G(t⊢ 1, ..., tm). Q.E.D.

Now, let us assume that T2 G(t⊢ 1, ..., tm), i.e. T2 xH(x, t⊢∃ 1, ..., tm). By the

above-mentioned axiom, T2 xH(x, t⊢∃ 1, ..., tm)→H(cH, t1, ..., tm), where cH is

151

an object constant. Thus, by MP, T2 H(c⊢ H, t1, ..., tm). Since cH is a constant

term, by the induction assumption, if T2 H(c⊢ H, t1, ..., tm), then H(cH, t1, ...,

tm) is true in M. Hence, H(cH, t1, ..., tm) is true in M, i.e. H(x, t1, ..., tm) is true

"for some x", i.e. xH(x, t∃ 1, ..., tm) is true in M, i.e. G(t1, ..., tm) is true in M.

Q.E.D.

Case 6: G is xH. By definition, G(t∀ 1, ..., tm) is true in M, if and only if H(x,

t1, ..., tm) is "true for all x", i.e., if and only if H(t, t1, ..., tm) is true in M for all

constant terms t in M. By the induction assumption, H(t, t1, ..., tm) is true in M,

if and only if T2 H(t, t⊢ 1, ..., tm).

Let us prove that

 G(t1, ..., tm) is false in M, if and only if T2 x¬H(x, t⊢∃ 1, ..., tm).

First, let us assume that G(t1, ..., tm) is false in M. Then H(t, t1, ..., tm) is false

in M for some constant term t in M. By the induction assumption, and by the
above note, T2 ¬H(t, t⊢ 1, ..., tm). As in the Case 5, let us remind the axiom

L13: ¬H(t, t1, ..., tm)→ x¬H(x, t∃ 1, ..., tm). In T2, all the axioms of the classical

logic are adopted, hence, by MP, T2 x¬H(x, t⊢∃ 1, ..., tm).

Now, let us assume that T2 x¬H(x, t⊢∃ 1, ..., tm). As in the Case 5, let us

remind the axiom x¬H(x, t∃ 1, ..., tm)→¬H(c¬H, t1, ..., tm), where c¬H is an

object constant. Hence, by MP, T2 ¬H(c⊢ ¬H, t1, ..., tm), i.e. T2 does not prove

H(c¬H, t1, ..., tm). Then, by the induction assumption, H(c¬H, t1, ..., tm) is false

in M, i.e. xH(x, t∀ 1, ..., tm) is false in M, i.e G(t1, ..., tm) is false in M.

Thus, we know that G(t1, ..., tm) is true in M, if and only if T2 does not prove

x¬H(x, t∃ 1, ..., tm). Since T2 is a complete theory, G(t1, ..., tm) is true in M, if

and only if T2 ¬ x¬H(x, t⊢ ∃ 1, ..., tm). Now, let us remind from Section 3.2,

Table 3.2, Group I, [L1-L11, L12-L15, MP, Gen]: ¬ x¬B↔ xB. In T⊢ ∃ ∀ 2, all the

axioms of the classical logic are adopted, hence, T2 ¬ x¬H(x, t⊢ ∃ 1, ..., tm), if

and only if T2 xH(x, t⊢∀ 1, ..., tm), i.e. G(t1, ..., tm) is true in M, if and only if

T2 G(t⊢ 1, ..., tm). Q.E.D.

This completes the proof of the Model Existence Theorem. Q.E.D.

Attention: non-constructive reasoning! The above construction of the model
M seems to be "almost constructive". The domain DM consists of all constant

terms from the language of T0. The axiom set of T1 is algorithmically solvable

152

(verify!). The interpretations of function constants are computable functions
(verify!). But the interpretations of predicate constants? We interpreted each
predicate constant p as the relation p' such that p'(t1, ..., tn) is true, if and only

if T2 proves p(t1, ..., tn). This relation would be, in general, not algorithmically

solvable, even if the axiom set of T2 would be solvable! But, in general, the

axiom set of theory T2 (obtained by means of Lindenbaum's Lemma) is not

algorithmically solvable! Thus, our construction of the model M is essentially
non-constructive.

Exercise 4.3.5 (optional, for smart students). Verify that the "degree of non-
constructiveness" of the Model Existence Theorem is Δ2

0 in the so-called
arithmetical hierarchy. This became possible due to the improvements
introduced by G. Hasenjäger. Hint: verify that all the functions necessary for
the proof are "computable in the limit". A function f(x) is called computable in
the limit, if and only if there is a computable function g(x,y) such that, for all

x, f (x)=lim
y→∞

g (x , y)).

Consequences of Gödel's Completeness Theorem

Notion of Logical Consequence

As noted above (Exercise 4.1.6), some formula G is a "logical consequence"
of the formulas A1, ..., An, if and only if the formula A1, ..., An→G is logically

valid, hence, by Gödel's Completeness Theorem – if and only if, G can be
derived from A1, ..., An by using the axioms and rules of inference of the

classical logic. This completes the formalization of the somewhat mystical
notion of "logical consequence", and allows to consider reasoning as a process
that could be performed by using computers (see below).

Consistency and Satisfiability

A set of formulas F1, ..., Fn is called inconsistent, if and only if a contradiction

(i.e. a formula B∧¬ B) can be derived from it. For example, the set {B,
B→C, C→¬B} is inconsistent (verify).

The Model Existence Theorem allows to connect the notions of consistency
and satisfiability.

Exercise 4.3.6. Verify, that a set of formulas in a predicate language: a) is
consistent in the classical logic, if and only if it is satisfiable, b) is inconsistent
in the classical logic, if and only if it is unsatisfiable. (Hint: use the result of

http://en.wikipedia.org/wiki/Arithmetical_hierarchy

153

Exercise 4.1.1).

Computational Complexity of the Problem

Corollary 4.3.4. In any predicate language the set of all logically valid
formulas is algorithmically enumerable. I.e. given a language L, we can write
an algorithm that (working ad infinitum) prints out all the logically valid
formulas of L (and only these formulas).

Proof. Immediately from Exercise 1.1.4 and Gödel's Completeness Theorem.

This makes Gödel's Completeness Theorem very significant: it shows that the
"doubly non-constructive" notion of logically valid formula is at least 50%
constructive – semi-constructive! Semi-feasible for computers!

Still, unfortunately, this notion appears to be not 100% constructive. In 1936,
Alonzo Church proved that at least some predicate languages do not allow an
algorithm determining, is a given formula logically valid or not (i.e. an
algorithm solving the famous Entscheidungsproblem – the decision problem):

A. Church. A note on the Entscheidungsproblem. "Journal of Symb. Logic", 1936, vol.1,
pp.40-41

After this, Laszlo Kalmar in

L. Kalmar. Die Zurueckfuehrung des Entscheidungsproblems auf den Fall von Formeln mit
einer einzigen, binären Funktionsvariablen. "Compositio Math.", 1936, Vol.4, pp.137-144

improved Church's result:

Church-Kalmar Theorem. If a predicate language contains at least one
predicate constant that is at least binary, then this language does not allow
an algorithm determining, is a given formula of this language logically valid or
not.

Thus, none of serious predicate languages allows such an algorithm (languages
of PA and ZF included). For details, Mendelson [1997].

Sometimes, this fact (the 50% constructiveness of the notion of the logical
validity) is expressed a follows: the logical validity of predicate formulas is
semi-decidable.

Corollary 4.3.5. If a predicate language contains at least one predicate
constant that is at least binary, then this language does not allow an algorithm
determining, does some formula G of this language follow from some other
formulas A1, ..., An. In other words – the task of reasoning in such a

language is not algorithmically solvable.

Exercise 4.3.7. Verify, this.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml.htm#Mendelson1997
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Church.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Church.html
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml1.htm#e114

154

Church-Kalmar Theorem and Knowledge Bases

If we will build our knowledge base by using some predicate language, then,
in general, the situation will be as follows:

a) We will have some set of constants registered in the knowledge base: object
constants: c1, c2, ..., ck, function constants and predicate constants: p1,

p2, ..., pm (with argument numbers specified).

[The Closed World Assumption: in the world, there exist only objects
denoted by our constants c1, c2, ..., ck. In fact, this assumption should be

represented as an axiom x (x=c∀ 1 v x=c2 v ... v x=ck). The Open World

Assumption: in the world, there exist more objects than denoted by our object
constants.]

b) Facts, concepts and rules (“laws”) are stored in the knowledge base as a
set of formulas F1, F2, ..., Fn. Facts are represented as atomic formulas,

without or with negation, that do not contain variables: pi(cj1, cj2, ..., cjs), or

¬pi(cj1, cj2, ..., cjs). Facts build up a kind of “database tables”. Some of the

rules may serve as integrity conditions.

c) A query is simply another formula ?G. Answering of such a query means
that the query processor of the knowledge base must determine, does G (or,
maybe, ¬G) follow from the formulas F1, F2, ..., Fn, stored in the knowledge

base.

If G contains a free variable x, then the query ?G(x) means the following:
return all the object constants ci, for which the formula G(ci) follows from F1,

F2, ..., Fn.

Note. Two different strategies may be used when building a knowledge base.
The so-called Closed World Assumption is typical for the traditional
databases: the predicate pi(cj1, cj2, ..., cjs) is regarded as true, if and only if the

formula pi(cj1, cj2, ..., cjs) is stored in the knowledge base. If there is no such

formula in the knowledge base, then pi(cj1, cj2, ..., cjs) is regarded as false. For

example, if the knowledge base does not contain the formula Father(John,
Britney), then it is assumed that John is not father of Britney.

For knowledge bases more natural is the so-called Open World Assumption:
if neither the formula pi(cj1, cj2, ..., cjs), nor the formula ¬pi(cj1, cj2, ..., cjs) is

stored in the knowledge base, then the truth-value of the predicate pi(cj1,

cj2, ..., cjs) is regarded as unknown. However, a definite truth value of pi(cj1,

cj2, ..., cjs) may follow from other formulas stored in the knowledge base. For

155

example, if the knowledge base does not contain neither the formula
Father(John, Britney), nor ¬Father(John, Britney), then it is assumed that
John is not known to be (but may be) father of Britney, unless the answer
follows from other formulas stored in the database.

Thus, to build the query processor of our knowledge base, we must use some
algorithm allowing to determine (as fast as possible), given the formulas F1,

F2, ..., Fn, G, does G follow from F1, F2, ..., Fn, or not. Let's call this task the

reasoning task.

According to Gödel's Completeness Theorem, G follows from F1, F2, ..., Fn, if

and only if

 [L1-L15, MP, Gen]: F1, F2, ..., Fn G,⊢

i.e. if G can be derived fromF1, F2, ..., Fn in the classical predicate logic. This

makes the reasoning task at least semi-feasible for computers (in the sense of
Corollary 4.3.4). However,

Corollary (of the Church-Kalmar theorem, Corollary 4.3.5). If, when building
a knowledge base, we will use the full power of some predicate language
(containing at least one predicate constant that is at least binary), then the
reasoning task will not be algorithmically solvable, and – for such a
knowledge base – we will fail to build a universal query processor.

Thus, to build a really usable knowledge base, we must restrict somehow our
predicate language to make the reasoning task solvable. For a successful
attempt to do this see the so-called description logics.

Skolem's Paradox

Initially, the Model Existence Theorem was proved in a weaker form in 1915
(by Leopold Löwenheim) and 1919 (by Thoralf Skolem): if a first order theory
has a model, then it has a finite or countable model (the famous Löwenheim-
Skolem theorem). Proof (after 1949): if T has a model, then T is consistent,
i.e. T has a finite or countable model.

L. Löwenheim. Ueber Möglichkeiten im Relativkalkuel. "Mathematische Annalen", 1915,
Vol.76, pp.447-470.

Th. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen.
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

Löwenheim-Skolem theorem (and the Model Existence theorem) is steadily
provoking the so-called Skolem's Paradox, first noted by Skolem in his
address before the 5th Congress of Scandinavian Mathematicians (July 4-7,

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lowenheim.html
http://en.wikipedia.org/wiki/Description_logic

156

1922):

Th. Skolem. Einige Bemerkungen zur axiomatischen Begruendung der Mengenlehre.
Matematikerkongressen i Helsingfors den 4-7 Juli 1922, Den femte skandinaviska
matematikerkongressen, Redogörelse, Akademiska Bokhandeln, Helsinki, 1923, pp. 217-232.

Skolem called the effect "relativity of set-theoretic notions". In all formal set
theories (for example, in ZF) we can prove the existence of uncountable sets.
Still, according to the Model Existence theorem, if our formal set theory
consistent, then there is a countable model where all its axioms and theorems
are true. I.e. a theory proves the existence of uncountable sets, yet it has a
countable model! Is this possible? Does it mean that all formal set theories are
inconsistent? Platonists put it as follows: any consistent axiomatic set theory
has countable models, hence, no axiom system can represent our "intended"
set theory (i.e. the Platonist "world of sets") adequately.

For a formalist, Skolem's Paradox is not a paradox at all. I would rather call it
Skolem's Effect − like as the photo-effect, it is simply a striking
phenomenon. Indeed, let J be a countable model of our formal set theory. In
this theory, we can prove that the set r of all real numbers is uncountable, i.e.

¬ f (f is 1-1 function from r into w), ∃ (1)

where w is the set of all natural numbers. What is the meaning of this theorem
in the countable model J? Interpretations of r and w are subsets of the domain
DJ, i.e. they both are countable sets, i.e.

f (f is 1-1 function from r∃ J into wJ). (2)

Interpretation of (1) in J is

¬ f((∃ f ∈DJ) and (f is 1-1 function from rJ into wJ)).

Hence, the mapping f of (2) does exist, yet it exists outside the model J! Do
you think that f of (2) "must" be located in the model? Why? If you are living
(as an "internal observer") within the model J, the set rJ seems uncountable to

you (because you cannot find a 1-1 function from rJ into wJ in your world J).

Still, for me (an "external observer") your uncountable rJ is countable − in my

world I have a 1-1 function from rJ into wJ!

Hence, indeed, Skolem's Paradox represents simply a striking phenomenon. It
is worth of knowing, yet there is no danger in it.

Added February 9, 2007.

The inter-relationship of the Completeness Theorem and Model Existence Theorem can be
represented in the following very general way.

157

Let us replace:

- Predicate language L − by any set S of "formulas".

- First order theory T − by any "formula" of S (assume, T contains only a finite number of
axioms, and take the conjuction of them).

- The notion of interpretation − by any set M and a "predicate" T(m, F) (where m is
member of M, and F − a formula of S). If you wish, you may read T(m, F) as "m makes F
true", i.e. m is a "model" of F.

- The notion of provability in the classical logic − by a "predicate" P(F) (where F is a
formula of S). If you wish, you may read P(F) as "F is provable in the classical logic".

Assume, for a a set of "formulas" S, we have any set M and any two "predicates" T(m, F)
and P(F) (where m is a member of M, and F − a formula of S) such that only the following
simple principles hold:

a) For all F, F∈S →¬¬ F ∈S (i.e. S is closed under negation).

b) For all m∈M and F∈S , T(m, F) ↔¬T(m, ¬F).

c) For all F∈S , ¬¬P(¬¬F) → P (F).

"Completeness Theorem". For all F, m T(m, F) → P(F).∀
"Model Existence Theorem". For all F, ¬P(¬F) → m T(m, F).∃
Theorem. If a, b, c) hold, then the above "theorems" are equivalent.

Proof. 1) Assume m T(m, F) → P(F) for all F. Then ¬P(F) → ¬ m T(m, F), and by a)∀ ∀
also, ¬P(¬F) → ¬ m T(m, ¬F) → m¬T(m, ¬F) → m T(m, F) by b). Q.E.D.∀ ∃ ∃
2) Assume ¬P(¬F) → m T(m, F) for all F.Then ¬ m T(m, F) → ¬¬P(¬F), and by a) also∃ ∃
¬ m T(m, ¬F) → ¬¬P(¬¬F). By b), m T(m, F) → m ¬T(m, ¬F) → ¬ m T(m, ¬F) →∃ ∀ ∀ ∃
¬¬P(¬¬F) → P(F) by c). Q.E.D.

4.4. Constructive Propositional Logic – Kripke Semantics

Saul Aaron Kripke (born 1940).

"American logician and philosopher Saul Kripke is one of today's leading
thinkers on thought and its manifold relations to the world. His name is
attached to objects in several fields of logic from Kripke-Platek axioms in
higher recursion theory to the "Brouwer-Kripke scheme" in intuitionistic
mathematics. Kripke models for modal logic, a discovery he made in his teen-
age years, became part of the standard vocabulary of mathematical logicians
after his first article appeared in 1963, when he was just 23 years old. Kripke
models and the results that depend upon them are cited today not only in
philosophy and logic, but also in linguistics and computer science..." (The

http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html
http://en.wikipedia.org/wiki/Saul_Kripke

158

Gazette. The newspaper of the John Hopkins University, May 12, 1997,
Vol.26, N 34)

S. Kripke (1963). Semantical Considerations on Modal Logic, Acta
Philosophica Fennica 16: 83-94.

S. Kripke (1963). Semantical analysis of modal logic. I. Normal modal
propositional calculi. Z. Math. Logik Grundl. Math., 9:67-96, 1963.

S. Kripke (1965). Semantical analysis of intuitionistic logic. In: J. N.
Crossley, M. A. E. Dummet (eds.), Formal systems and recursive functions.
Amsterdam, North Holland, 1965, pp.92-129.

As usual, let us assume, the formula F has been built of "atomic" formulas B1,

B2, ..., Bn by using propositional connectives only. Instead of simply

computing truth values of F from truth values of B1, B2, ..., Bn, Kripke

proposed to consider the behavior of F when the truth values of B1, B2, ..., Bn
are changing gradually from false to true according to some "scenario".

Thus, Kripke proposed to replace the classical semantics (interpretation) of the
propositional connectives (defined by the classical truth tables) by a more
complicated "dynamic" semantics.

Instead of simply saying that ¬F is true, iff F is false, let us say that, at some
point in a scenario, ¬F is true, if and only if, at this point, F is false and
remains false, when truth values of B1, B2, ..., Bn are changing according to

the scenario.

Let o stand for implication, conjunction or disjunction. Instead of simply
saying that FoG is true, if and only if, FoG is true according to the classical
truth tables, let us say that, at some point in a scenario, FoG is true, if and only
if, at this point, it is true and remains true, when truth values of B1, B2, ..., Bn
are changing according to the scenario.

Example 4.4.1. Let us consider the behavior of the classical axiom L11:

B∨¬ B in the scenario, where, at first, B is false, and at the next step it
becomes true:

0 -------------- 1

At the starting point, B is false, ¬B also is false (here, for ¬B to be true, B
must remain false at the next step, but it doesn't). This means that, at the
starting point, B∨¬ B is false. At the next step: B is true, hence, ¬B is false,
but, of course, B∨¬ B is true. Thus, in Kripke scenarios, B∨¬ B is not
always true. Surprisingly, some time later (Lemma 4.4.3), we will derive from
this simple fact that Bv¬B cannot be proved in the constructive logic (we

http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html
http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html

159

already know this from Section 2.8).

Example 4.4.2. Let us consider the behavior of the (only) classically provable
half of the First de Morgan Law: ¬(A∧B)→ ¬ A∨¬ B in the scenario,
where, at first A and B are both false, and at the next step, two branches appear
in the scenario: in the first branch: A remains false, and B becomes true, in the
second branch: A becomes true, and B remains false:

--01⊢
00- ---------⊢

--10⊢
At the starting point: A is false, ¬A – also is false (for ¬A to be true, A must
remain false at the next step, but in the second branch it doesn't). Similarly, at
the starting point: B is false, ¬B – also false (for ¬B to be true, B must remain
false at the next step, but in the first branch it doesn't). This means that, at the
starting point, ¬(A∧B) is true (because A∧B is false, and it remains
false in both branches), and ¬ A∨¬ B is false, hence,

¬(A∧B)→ ¬ A∨¬ B is false. Thus, in Kripke scenarios,
¬(A∧B)→ ¬ A∨¬ B is not always true. Surprisingly, some time later

(Lemma 4.4.3), we will derive from this simple fact that the this half of the
First de Morgan Law cannot be proved in the constructive logic. We failed to
do this in Section 2.8!

Exercise 4.4.1. Investigate, in appropriate scenarios, the behavior of the
following (only) classically provable formulas:

¬¬(A∨B)→ ¬¬ A∨¬ ¬ B ,
(A→B)→((¬A→B)→B),

(A → B)∨(B → A) ,

and verify that, in Kripke scenarios, these formulas are not always true. Some
time later (Lemma 4.4.3), we will derive from this simple fact that these
formulas cannot be proved in the constructive logic. We failed to do this in
Section 2.8! (Hint: try the most simple scenarios first: 00--01, 00-10, 00-11,
etc.)

More precisely, the definition of the Kripke semantics for the propositional
logic is as follows. Assume, the formula F has been built of "atomic" formulas
B1, B2, ..., Bn by using propositional connectives only. Instead of considering

truth values of F for all the possible tuples of truth values of B1, B2, ..., Bn, let

us consider the behavior of F in all the possible Kripke scenarios, defined as
follows.

Definition of Kripke scenarios. Each scenario s is a triple (b, ≤, t) of the
following objects. First, b is a finite set of objects called nodes (or, states).

160

The second member ≤ is a partial ordering relationship between the nodes, i.e.
for all x , y , z∈b : x≤y → (y≤z → x≤z) (transitivity).

The third member t of the tripple is a function (t means "true"). It associates
with each node x a "growing" set t(x) of "atomic" formulas, i.e. a subset of
{B1, B2, ..., Bn} in such a way that for all x , y∈b : x≤ y → t(x)⊆t(y) .

Note. In some other textbooks, Kripke scenarios are called Kripke models, or
Kripke structures.

Let us say that Bi is true at the node x, if and only if Bi is in the set t(x). We

will denote this fact by x |= Bi ("at x, Bi is true", or "x forces Bi"). Since t is

monotonic, if x |= Bi , then y |= Bi for all y after x, i.e. for all y∈b such that

y≥x. I.e. if Bi is true at some node x, then Bi remains true at all nodes after x.

Let us define x |= F ("F is true at x", or "x forces F") for any formula F that has
been built of "atomic" formulas B1, B2, ..., Bn by using propositional

connectives only.

1. Negation. Suppose, the truth value of x |= F is already defined for all
x∈b . Then x |= ¬F is defined to be true, if and only if, for all y≥ x∈b , y

|= F is false (i.e. ¬(y |= F) is true according to the classical truth table of the
negation connective).

2. Implication, conjunction or disjunction. Suppose, the truth values of x |= F
and x |= G are already defined for all x∈b . Then x |= FoG is defined to be
true, if and only if, for all y≥ x∈b , (y |= F)o(y |= G) is true according to the
classical truth table of the implication, conjunction or disjunction connective
respectively.

Lemma 4.4.1. For any formula F, any Kripke scenario (b, ≤, t), and any node
x∈b : if x |= F, then y |= F for all y∈b such that y≥x. I.e. if, in a Kripke

scenario, a formula becomes true at some node, then it remains true forever
after this node.

Proof. By induction.

Induction base. See above: if x |= Bi , then y |= Bi for all y after x, i.e. for all

y∈b such that y≥x.

Induction step.

1. Negation. Assume, x |= ¬F, i.e., according to the classical truth table, not y |
= F for all y≥ x∈b . If y≥x, then is y |= ¬F true or false? By definition, y |=
¬F would be true, if and only if not z |= F for all z ≥ y∈b . By transitivity of
≤, if z≥y and y≥x, then z≥x. Thus, by our assumption, if z≥y, then not z |= F.
Hence, y |= ¬F. Q.E.D.

161

2. Implication, conjunction or disjunction. Assume, x |= FoG, i.e., according
to the corresponding classical truth table, (y |= F)o(y |= G) is true for all

y≥ x∈b . If y≥x, then is y |= FoG true or false? By definition, y |= FoG
would be true, if and only if (z |=F)o(z |= G) would be true for all z ≥ y∈b .
By transitivity of ≤, if z≥y and y≥x, then z≥x. Thus, by our assumption, if z≥x,
then (z |= F)o(z |= G) is true. Hence, y |= FoG. Q.E.D.

Exercise 4.4.2. Verify that if x is a maximal node in a scenario (b, ≤, t), then x
|= F, if and only if F is true at x according to the classical truth tables.

Kripke established that a formula is provable in the constructive
propositional logic, if and only if it is true at all nodes in all Kripke
scenarios.

Theorem 4.4.2 (S. Kripke, completeness of the constructive propositional
logic). A formula F is provable in the constructive propositional logic (i.e. [L1-

L10, MP] F), if and only if F is true at all nodes in all Kripke scenarios. ⊢

As usual, the hard part of the proof is establishing that "true is provable", i.e. if
F is true at all nodes in all Kripke scenarios, then [L1-L10, MP] F (see⊢

Corollary 4.4.7 below). The easy part of the proof is, as usual, the soundness
lemma:

Lemma 4.4.3. If [L1-L10, MP] F, then F is true at all nodes in all Kripke⊢

scenarios.

This lemma will follow from

Lemma 4.4.4. If F is any of the constructive axioms L1-L10, then, for any

Kripke scenario (b, ≤, t), and any node x∈b : x |= F. I.e. the constructive
axioms are true at all nodes in all Kripke scenarios.

and

Lemma 4.4.5. If, in a Kripke scenario (b, ≤, t), at the node x∈b : x |= F and
x |= F→G, then x |= G. Hence, if F and F→G are true at all nodes in all Kripke
scenarios, then so is G.

Proof of Lemma 4.4.3. Indeed, by Lemma 4.4.4, all the constructive axioms
L1-L10 are true at all nodes in all scenarios, and, by Lemma 4.4.5, the Modus

Ponens rule preserves the property of being "true at all nodes in all scenarios".
Q.E.D.

Note. Let us return to the above Example 4.4.2 and Exercise 4.4.1. We
established that formulas

¬(A∧B)→ ¬ A∨¬ B ;
¬¬(A∨B)→ ¬¬ A∨¬ ¬ B ;

162

(A→B)→((¬A→B)→B)

are not true at all nodes in all scenarios. Hence, by Lemma 4.4.3, these
formulas cannot be proved in the constructive logic [L1-L10, MP]. We failed to

prove this in Section 2.8!

Proof of Lemma 4.4.5. We know that x |= F→G means that (y |= F)→(y |= G)
is true (according to the classical truth table) for all y≥ x∈b . By Lemma
4.4.1, we know that y |= F for all y≥ x∈b . Hence, if y |= G would be false,
then (y |= F)→(y |= G) also would be false. Hence, x |= G. Q.E.D.

Proof of Lemma 4.4.4.

L1: B→(C→B)

x |= B→(C→B) is true, if and only if (y |= B)→(y |= C→B) is true for all y≥x.

x |= B→(C→B) is false, if and only if (y |= B)→(y |= C→B) is false for some
y≥x.

How could (y |= B)→(y |= C→B) be false for some y≥x? According to the
classical implication truth table, this could be only, if and only if y |= B is true,
and y |= C→B is false.

y |= C→B is true, if and only if (z |= C)→(z |= B) is true for all z≥y.

y |= C→B is false, if and only if (z |= C)→(z |= B) is false for some z≥y.

How could (z |= C)→(z |= B) be false for some z≥y? According to the classical
implication truth table, this could be, if and only if z |= C is true, and z |= B is
false.

Summary:

x |= B→(C→B) is false
if and only if

y≥x (∃ y |= B is true and y |= C→B is false)
if and only if

z≥y (z |= C is true and ∃ z |= B is false)

Hence, if x |= B→(C→B) is false, then there are y and z such that: x≤y≤z, y |=
B is true, z |= C is true, and z |= B is false. By Lemma 4.4.1, if y≤z and y |= B
is true, then z |= B is true. Contradiction with "z |= B is false". Thus, x |=
B→(C→B) is true.

L10: ¬B→(B→C)

x |= ¬B→(B→C) is false, if and only if (y |= ¬B)→(y |= B→C) is false for
some y≥x, i.e. if and only if y |= ¬B is true, and y |= B→C is false.

y |= ¬B is true, if and only if z |=B is false for all z≥y.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml2.htm#s28

163

y |= B→C is false, if and only if (z |= B)→(z |= C) is false for some z≥y, i.e. if
and only if z |= B is true, and z |= C is false.

Summary:

x |= ¬B→(B→C) is false
if and only if

y≥x (y |= ¬B is true and y |= B→C is false)∃
if and only if if and only if

z≥y (∀ z |=B is false) z≥y (∃ z |= B is true and z |= C is false)

Hence, if x |= ¬B→(B→C) is false, then there is y≥x such that: a) z≥y (∀ z |=B
is false), and b) z≥y (∃ z |= B is true). Contradiction. Thus, x |= ¬B→(B→C) is
true.

L3: B∧C → B

x |= B∧C → B is false
if and only if

y≥x (y |=∃ B∧C is true and y |= B is false)
if and only if

z≥y ∀ (z |=B is true and z |= C is true)

Hence, there is y such that x≤y and y |= B is false. From z≥y ∀ (z |=B is true)
we obtain that y |= B is true. Contradiction. Thus, x |= B∧C → C is true.

L4: B∧C →C

Similarly.

L5: B →(C → B∧C)

x |= B →(C → B∧C) is false
if and only if

y≥x (∃ y |=B is true and y |= C → B∧C is false)
if and only if

z≥y ∃ (z |=C is true and z |= B∧C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= C is true, and z |=
B∧C is false. Then, by Lemma 4.4.1, (u |= B is true)and(u |= C) for all

u≥z. I.e. z |= B∧C is true. Contradiction. Thus, x |= B →(C → B∧C) is
true.

L6: B → B∨C

x |= B → B∨C is false
if and only if

y≥x (∃ y |=B is true and y |= B∨C is false)
if and only if

164

z≥y (∃ z |= B is false and z |= C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= B is false. By
Lemma 4.4.1, this is a contradiction. Thus, x |= B → B∨C is true.

L7: C → B∨C

Similarly.

L8: (B → D)→((C → D)→(B∨C → D))

x |= (B → D)→ ((C → D)→(B∨C → D)) is false
if and only if

y≥x (∃ y |=B→D is true and y |= (C → D)→(B∨C → D) is false)
if and only if

z≥y (∃ z |= C→D is true and z |= B∨C → D is false)
if and only if

u≥z (u |=∃ B∨C is true and u |= D is false)

Hence, there are y, z, u such that x≤y≤z≤u, y |= B→D is true, z |= C→D is
true, and u |= D is false. By Lemma 4.4.1, u |= B→D is true, and u |= C→D is
true. Thus, if u |= B would be true, then u |= D also would be true. Hence, u |=
B is false. Similarly, u |= C also is false. Hence, u |= B∨C is false. But we
know that it is true. Contradiction. Thus, x |= L8 is true.

L2: (B→(C→D))→((B→C)→(B→D))

x |= (B→(C→D))→((B→C)→(B→D)) is false
if and only if

y≥x (y |= B→(C→D) is true and y |= (B→C)→(B→D) is false)∃
if and only if if and only if

z≥y ((z |= B)→(z |= C→D))∀
z≥y (z ∃ |= B→C is true and z |= B→D is false)

if and only if if and only if
u≥z ((u |= B)→(u |= C))∀ u≥z (u |= B is true and u |= D is false)∃

Hence, there are y, z, u such that x≤y≤z≤u, u |= B is true and u |= D is false.
From u≥z ((u |= B)→(u |= C)) we obtain that u |=C also is true, and from∀

z≥y ((z |= B)→(z |= C→D)) – that z |= C→D is true. Then, by ∀ Lemma 4.4.1,
u |= C→D also is true, i.e. v≥u ((v |= C)→(v |= D)), in particular, (u |=∀
C)→(u |= D). Hence, u|= D is true. Contradiction. Thus, x |= L2 is true.

L9: (B→C)→((B→¬C)→¬B)

x |= (B→C)→((B→¬C)→¬B) is false
if and only if

y≥x (y |= B→C is true and y |= (B→¬C)→¬B is false)∃

165

if and only if if and only if
z≥y ((z |= B)→(z |= C))∀ z≥y (z |= B→¬C is true and z |= ¬B is false)∃

if and only if if and only if
u≥z ((u |= B)→(u |= ¬C))∀ u≥z (∃ u |= B is true)

Hence, there are y, z, u such that x≤y≤z≤u , and u |= B is true. From z≥y ((z |∀
= B)→(z |= C)) we obtain that u |= C is true. From u≥z ((u |= B)→(u |= ¬C))∀
we obtain that u |= ¬C is true, i.e. v |= C is false for some v≥u. By Lemma
4.4.1, if u |= C is true, then v |= C is true. Contradiction with "v |= C is false".
Hence, x |= L9 is true.

Exercise 4.4.3. Verify that, in the above recursive definition of x |= F, the item

2. Implication, conjunction or disjunction: x |= FoG is defined to be true, if
and only if, according to the classical truth tables, (y |= F)o(y |= G) is true for
all y≥ x∈b .

could be replaced by

2a. Implication ("non-monotonic" connective): x |= F→G is defined to be true,
if and only if, according to the classical truth tables, (y |= F)→(y |= G) is true
for all y≥ x∈b .

2b. Conjunction or disjunction ("monotonic" connectives): x |= FoG is defined
to be true, if and only if, according to the classical truth tables, (x |= F)o(x |=
G) is true.

End of Exercise 4.4.3.

The Hard Part of the Proof

Now, let us try proving that, if F is true at all nodes in all Kripke scenarios,
then F is provable in the constructive propositional logic). We will follow the
paper by

Judith Underwood. A constructive Completeness Proof for Intuitionistic
Propositional Calculus. TR-90-1179, December 1990, Department of
Computer Science, Cornell University.

based on the contructions from

Melvin Fitting. Intuitionistic Logic, Model Theory and Forcing. North-
Holland, Amsterdam, 1969

The smart idea is to generalize the problem in the following way. Instead of
considering constructive provability of single formulas, let us consider the
constructive provability of D1, D2, ..., Dm ⊢ C1∨C2∨...∨Cn for arbitrary

formulas D1, D2, ..., Dm, C1, C2, ..., Cn, i.e. let us consider ordered pairs of

http://comet.lehman.cuny.edu/fitting
http://www.dcs.st-and.ac.uk/~ipg/

166

sets ({D1, D2, ..., Dm}, {C1, C2, ..., Cn}). Let us call such pairs sequents. If S1,

S2 are sets of formulas (S1 may be empty), let us call the sequent (S1, S2)

constructively provable, if and only if [L1-L10, MP]: S1 VS⊢ 2, where VS2
denotes the disjunction of formulas contained in S2. Moreover, let us consider

sets of sequents. This will allow to carry out a specific induction argument
(considering single formulas or single sequents does not allow such an
argument!).

Let us say that a Kripke scenario (b, ≤, t) contains a counterexample for the
sequent (S1, S2), if and only if the sequent is false at some node in the scenario

(or, more precisely, if and only if there is x∈b such that x |= F for all
formulas F∈S1 and not x |= G for all formulas G∈S 2).

Additionally, let us use Corollary 6.1.2(b) of Theorem 6.1.1 to replace all
negations ¬F by F→f, where f is an atomic formula, which is "always false",
i.e. which, in a sequent (S1, S2), never belongs to S1. Thus, formulas

mentioned in the proof of the following Theorem 4.4.6 do not contain
negations (but they may contain the specific atomic formula f).

Theorem 4.4.6. For any set S of sequents, either some sequent of S is
constructively provable, or there is a Kripke scenario (b, ≤, t), which contains
counterexamples for each sequent in S.

Proof. Let us start with a proof overview. We will consider the following
cases:

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬(A∈S1∧B∈S 1) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S1, i.e. by replacing (S1, S2) by (S 1∪{A ,B} , S2). Let us verify that if

Theorem is true for S', then it is true for S...

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{A}). b) S'' – obtained from S

by adding the formula B to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{B}).

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬(A∈S1∨B∈S 1) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S1, i.e. by replacing (S1, S2) by (S 1∪{A} , S2). b) S'' – obtained from S

by adding the formula B to S1, i.e. by replacing (S1, S2) by (S 1∪{B} , S2).

Let us verify that if Theorem is true for S' and S'', then it is true for S...

167

Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S2, i.e. by replacing (S1, S2) by (S1, S 2∪{A , B}). Let us verify that if

Theorem is true for S', then it is true for S...

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{A}). b) S'' – obtained from S

by adding the formula B to S1, i.e. by replacing (S1, S2) by (S 1∪{B} , S2).

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case 6. S contains (S1, S2) such that A → B∈S 2 and for every sequent

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) . Let us consider the set S'
obtained from S by adding the sequent (S 1∪{A} , B) to it. Let us verify that
if Theorem is true for S', then it is true for S...

Case 7. None of the above cases hold for S. Then, Theorem is true for S – easy
to verify...

The first six cases represent the induction argument: proving of Theorem for a
sequent set S is reduced to proving it for some other sets – S' and S". By
iterating this reduction, we always arrive happily to the Case 7, where
Theorem is easy to verify.

Indeed, let us denote by universe (S1, S2) the set of all formulas and sub-
formulas (of the formulas) contained in S 1∪S2 . Let us denote by

universe (S) the union of the universes of sequents from S.

Exercise 4.4.4. Verify that:

a) When, in the Cases 1-5, the sequent (S1, S2) is replaced by some other

sequent (T1, T2), then

universe (T 1, T 2)⊆universe (S 1, S 2) .

b) When, in the Case 6, because of the sequent (S1, S2), the sequent

(S1∪{A}, B) is added to S, then

universe (S1∪{A}, B)⊆universe(S 1, S 2) .

c) For a given universe (S) , there exist no more than N=2∣universe(S)∣+ 1

different sequents (S1, S2) such that universe (S1 , S2)≤ universe (S) . And, no

more than 2N different sets of sequents.

Thus, any chain of iterated Cases 1-6 cannot be longer than 2N+1 – either we
will arrive at a set of sequents already built at a previous step, or we will arrive

168

at the Case 7.

Now – the proof as it should be.

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬(A∈S1∧B∈S 1) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S1, i.e. by replacing (S1, S2) by (S1∪{A ,B }, S 2) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume, some sequent of S' is constructively provable, then it is
(S1∪{A ,B }, S 2) or some other sequent. If it is some other sequent, then it

belongs to S, i.e. some sequent of S is constructively provable. If
(S1∪{A ,B }, S 2) is constructively provable, then so is (S1, S2). Indeed, if

S 1∪{A ,B} VS⊢ 2 is constructively provable, how to prove S1 VS⊢ 2? Since

S1 contains A∧B , by axioms L3 and L3 we can derive A and B. After this,

we can apply the proof of S 1∪{A , B} VS⊢ 2. Hence, S1 VS⊢ 2 is

constructively provable.

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1∪{A ,B }, S 2) , i.e.

for some x∈b , x |= F for all formulas F∈S1∪{A , B} and not x |= G for
all formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1,

S2). Q.E.D.

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us

consider the following two sets:

a) S' – obtained from S by adding the formula A to S2, i.e. by replacing (S1,

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S2, i.e. by replacing (S1,

S2) by (S1 , S2∪{B}) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.

169

The sequent of S'' is (S1 , S2∪{B}) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.
So, let us consider the situation, when (S1 , S2∪{A}) and (S1 , S2∪{B})

both are constructively provable.

If S1 ⊢ A∨S 2 and S1 ⊢ B∨S 2 both are constructively provable, how to

prove S1 VS⊢ 2 (we know that S2 contains A∧B)?

By Theorem 2.3.1, conjunction is distributive to disjunction:

[L1-L8, MP]: ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) .

 Hence, [L1-L8, MP]: (A∨S 2)∧(B∨S2)→ (A∧B)∨S 2 . So, let us merge the

proofs of S1 ⊢ A∨S 2 and S1 ⊢ B∨S 2 , and let us append the proof of

Theorem 2.3.1. Thus, we have obtained a proof of S1 ⊢ (A∧B)∨S 2 .

From Section 2.3 we know that in [L1-L8, MP] disjunction is associative,

commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8, MP] A↔B ⊢ A∨C ↔ B∨C . Since S2 contains A∧B , these facts

allow, from a proof of S1 ⊢ (A∧B)∨S 2 , to derive a proof of S1 VS⊢ 2.

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e. for

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2).

Q.E.D.

If there is a Kripke scenario (b, ≤, t), which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬(A∈S1∨B∈S 1) . Let us

consider the following two sets:

a) S' – obtained from S by adding the formula A to S1, i.e. by replacing (S1,

S2) by (S1∪{A}, S 2) .

b) S'' – obtained from S by adding the formula B to S1, i.e. by replacing (S1,

S2) by (S1∪{B}, S2) .

170

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1∪{A}, S 2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.
So, let us consider the situation, when (S1∪{A}, S 2) and (S1∪{B}, S2)

both are constructively provable.

Let us remind Exercise 2.3.2 [L1, L2, L8, MP]: if A1, A2, ..., An, B D, and⊢

A1, A2, ..., An, C D, then A⊢ 1, A2, ..., An , B∨C D. Thus, if⊢ S 1∪{A} ⊢

VS2 and S 1∪{B} VS⊢ 2 both are constructively provable, then (since S1
contains A∨B) so is S1U{B} VS⊢ 2.

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it is contains counterexample for (S1∪{A}, S 2) , i.e. for

some x∈b , x |= F for all formulas F∈S1∪{A} and not x |= G for all
formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1,

S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t), which contains a counterexample for
each sequent in S'', then it is also contains counterexample for each sequents in
S. The argument is similar to the above.

Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S2, i.e. by replacing (S1, S2) by (S1 , S2∪{A , B}) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume, some sequent of S' is constructively provable, then it is
(S1 , S2∪{A , B}) or some other sequent. If it is some other sequent, then it

belongs to S, i.e. some sequent of S is constructively provable. If
(S1 , S2∪{A , B}) is constructively provable, then so is (S1, S2). Indeed, if

S1⊢ (A∨B)∨S 2 is constructively provable, how to prove S1 VS⊢ 2 (where

S2 contains A∨B)?

From Section 2.3 we know that in [L1-L8, MP] disjunction is associative,

171

commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8, MP] A↔B ⊢ A∨C ↔ B∨C . Since that S2 contains AvB, these facts

allow, from a proof of S1 ⊢ (A∨B)∨S 2 , to derive a proof of S1 VS⊢ 2.

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A , B}) , i.e.

for some x∈b , x |= F for all formulas F∈S1 and not x |= G for all
formulas G∈S 2∪{A , B} . Hence, (b, ≤, t) contains a counterexample also
for (S1, S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t), which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us

consider the following two sets:

a) S' – obtained from S by adding the formula A to S2, i.e. by replacing (S1,

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S1, i.e. by replacing (S1,

S2) by (S1∪{B}, S2) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e. some sequent of S is constructively provable.
So, let us consider the situation, when (S1 , S2∪{A}) and (S1∪{B}, S2)

both are constructively provable.

We have two proofs: S1 ⊢ A∨S 2 and S1, B VS⊢ 2, and we know that S1
contains A→B. How to derive a proof of S1 VS⊢ 2?

Since S1 contains A→B, we have a proof of S1, A B. Together with S⊢ 1, B ⊢

VS2 this yields a proof of S1, A VS⊢ 2. Of course, VS2 VS⊢ 2. Now, let us

172

remind Exercise 2.3.2 [L1, L2, L8, MP]:

If A1, A2, ..., An, B D, and A⊢ 1, A2, ..., An, C D, then A⊢ 1, A2, ..., An ,

B∨C D. Thus, S⊢ 1, A∨S 2 VS⊢ 2. Since we have a proof of S1 ⊢
A∨S 2 , we have also a proof of S1 ⊢ A∨S 2 .

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e. for

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2).

Q.E.D.

If there is a Kripke scenario (b, ≤, t), which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case 6. S contains (S1, S2) such that A → B∈S 2 and for every sequent

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) . Let us consider the set S'
obtained from S by adding the sequent (S1U A , B) to it.

Let us verify that if Theorem is true for S', then it is true for S.

Assume, some sequent of S' is constructively provable, then it is
(S1∪{A}, B) or some other sequent. If it is some other sequent, then it

belongs to S, i.e. some sequent of S is constructively provable. If
(S1∪{A}, B) is constructively provable, then so is (S1, S2). Indeed, if S1, A

 B is constructively provable, then, by Deduction Theorem 1, S⊢ 1 A→B, and⊢

S1 VS⊢ 2 (since S2 contains A→B).

On the other side, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then, since S is a subset of S', this
scenario contains also a counterexample for each sequent in S.

Case 7. None of the above cases hold for S. Hence, for every sequent
(S1 , S2)∈S the following holds:

1) If A∧B∈S 1 , then A∈S 1∧B∈S1 ,

2) If A∧B∈S 2 , then A∈S 2∨B∈S 2 ,

3) If A∨B∈S 1 , then A∈S 1∨B∈S1 ,

173

4) If A∨B∈S 2 , then A∈S 2∧B∈S 2 ,

5) If A → B∈S 1 , then A∈S 2∨B∈S1 ,

6) If A → B∈S 2 , then there is

(T1 ,T2)∈S such that S 1⊆T 1∧A∈T 2∧B∈T 2 .

For this kind of sequent sets we have a very simple situation:

a) If, in some sequent (S1 , S2)∈S the sets S1, S2 contain the same formula

A, then from L6: A → A∨B we can derive easily that [L1-L8, MP]: S1 ⊢

VS2.

b) If the sets S1, S2 are disjoint for all sequents (S1 , S2)∈S , then we must

(and will) build a scenario, containing a counterexample for each sequent in S.

So, let us suppose that the sets S1, S2 are disjoint for all sequents (S1, S 2)∈S

, and let us define the following Kripke scenario (b, ≤, t):

b = S,

x≤y must be defined for every two members x, y of b, i.e. for every two
sequents (S1, S2) and (T1, T2) in S. Let us define (S1, S2) ≤ (T1, T2), if and

only if S 1⊆T 1 . Of course, '⊆' is a partial ordering of b.

t must be a monotonic mapping from members of b to sets of atomic formulas.
Let us define t(S1, S2) as the set of all atomic formulas in S1. Of course, t is

monotonic for '⊆' . (And, of course, f – our atomic "false", never belongs to
t(S1, S2)).

Thus, (b, ≤, t) is a Kripke scenario. Let us prove that it contains a
counterexample for each sequent in S. In fact, we will prove that for each
sequent (S1 , S2)∈S , and each formula F:

If F∈S1 , then (S1, S2) |= F.

If F∈S2 , then not (S1, S2) |= F.

This will mean that, (S1, S2) represents a counterexample for (S1, S2).

Of course, our proof will be by induction along the structure of the formula F.

a) F is an atomic formula.

If F∈S1 , then F∈t (T 1, T 2) for every (T 1 , T 2)∈S such that (S1,

S2)≤(T1, T2). Hence, (S1, S2) |= F.

174

If F∈S2 , then, since S1 and S2 are disjoint sets, F∉S1 , and

F∉t (S1, S 2) , i.e. not (S1, S2) |= F.

b) F is A∧B .

If F∈S1 , then, by (1), A∈S 1∧B∈S1 . Hence, by induction assumption,
(S1, S2) |= A and (S1, S2) |= B, i.e., by Exercise 4.4.3, (S1, S2) |= A∧B .

If F∈S2 , then, by (2), A∈S 2∨B∈S 2 . If A∈S 2 , then, by induction
assumption, not (S1, S2) |= A, i.e., by Exercise 4.4.3, not (S1, S2) |= A∧B .

If B∈S 2 – the argument is similar.

c) F is A∨B .

If F∈S1 , then, by (3), A∈S 1∨B∈S1 . If A∈S 1 , then, by induction
assumption, (S1, S2) |= A, i.e., by Exercise 4.4.3, (S1, S2) |= A∨B . If

B∈S 1 – the argument is similar.

If F∈S2 , then, by (4), A∈S 2∧B∈S 2 . By induction assumption, not (S1,

S2) |= A and not (S1, S2) |= B, i.e., by Exercise 4.4.3, not (S1, S2) |= A∨B .

d) F is A→B.

d1) F∈S1 . We must prove that (S1, S2) |= A→B, i.e. that (T1, T2) |= A→B

for each (T 1 , T 2)∈S such that (S1, S2)≤(T1, T2). So, let us assume that not

(T1, T2) |= A→B, i.e. that (U1, U2) |= A and not (U1, U2) |= B for some

(U 1,U 2)∈S such that (T1, T2)≤ (U1, U2).

Since A → B∈S 1 , then also A → B∈U 1 , and, by (5), A∈U 2∨B∈U 1 .
By induction assumption, this means that not (U1, U2) |= A or (U1, U2) |= B.

Contradiction, hence, (S1, S2) |= A→B.

d2) F∈S2 . We must prove that not (S1, S2) |= A→B, i.e. that there is

(T 1, T 2)∈S such that (S1, S2)≤(T1, T2) and (T1, T2) |= A and not (T1, T2) |=

B.

Since A → B∈S 2 , by (6), there is (T 1, T 2)∈S such that (S1, S2)≤(T1, T2)

and A∈T 1 and B∈T 2 . By induction assumption, this means that

(T1, T2) |= A and not (T1, T2) |= B. Q.E.D.

This completes the proof of Theorem 4.4.6.

Note. The above proof contains an algorithm allowing to find, for each set S
of sequents, either a constructive proof of some sequent of S, or a Kripke

175

scenario containing counterexamples for each sequent of S.

Corollary 4.4.7. If a formula F is true at all nodes in all scenarios, then

[L1-L10, MP] F (i.e. F is provable in the constructive propositional logic).⊢

Indeed, let us consider the set of sequents {(0, {F})} consisting of a single
sequent (0, {F}), where 0 is empty set. By Theorem 4.4.6, either the sequent
(0, {F}) is constructively provable, or there is a Kripke scenario (b, ≤, t),
which contains a counterexample for (0, {F}). Since F is true at all nodes in all
Kripke scenarios, it cannot have counterexamples; hence, the sequent (0, {F})
(i.e. the formula F) is constructively provable.

Together with Lemma 4.4.3 this Corollary implies the above Theorem 4.4.2 –
Kripke's theorem on the completeness of the constructive propositional
logic: a formula F is true at all nodes in all Kripke scenarios, if and only if F is
provable in the constructive propositional logic.

Corollary 4.4.8 (decidability of the constructive propositional logic). There
is an algorithm allowing to determine for any formula F, is this formula
provable in the constructive propositional logic [L1-L10, MP], or not.

Gerhard Gentzen established this fact in 1934:

G. Gentzen. Untersuchungen über das logische Schliessen II. Mathematische
Zeitschrift, 1934, Vol. 39, pp. 405-431.

Corollary 4.4.9. If F∨G is true at all nodes in all scenarios, then F is true at
all nodes in all scenarios, or G is true at all nodes in all scenarios.

Proof. Assume, there is a scenario (b1, ≤1, t1) such that x1 |= F is false for

some x1∈b1 , and a scenario (b2, ≤2, t2) such that x2 |= G is false for some

x2∈b2 . We may assume that the (node) sets b1 and b2 do not intersect. Let

us merge these scenarios by adding a new common starting node x0, where all

Bi are false. Then, x0 |= F is false (Lemma 4.4.1), and x0 |= G is false

(similarly). Hence, according to the classical disjunction truth table, x0 |=

F∨G is false. But, x |= F∨G is always true. Hence, x |= F is always
true, or x |= G is always true. Q.E.D.

Theorem 4.4.10. (Gödel [1932]). If [L1-L10, MP]: ⊢ B∨C , then

[L1-L10, MP]: B or [L⊢ 1-L10, MP]: C. (I.e. if the disjunction⊢ B∨C is

constructively provable, then one of the formulas B, C also is constructively
provable.)

Proof. If [L1-L10, MP]: ⊢ B∨C , then, by Kripke's Completeness Theorem

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Gentzen.html

176

4.4.2, B∨C is true at all nodes in all scenarios. Then, by Corollary 4.4.9, so
is B or so is C. By Kripke's Completeness Theorem 4.4.2, this means that one
of the formulas B, C is constructively provable. Q.E.D.

Let us remind the constructive interpretation of disjunction from Section 1.3:

- To prove B∨C constructively, you must prove B, or prove C. To prove
B∨C classically, you may assume ¬(B∨C) as a hypothesis, and derive a

contradiction. Having only such a "negative" proof, you may be unable to
determine, which part of the disjunction B∨C is true – B, or C, or both.

According to Theorem 4.4.10, the constructive propositional logic [L1-L10,

MP] supports the constructive interpretation of disjunction.

K.Gödel established this fact in 1932:

K. Gödel. Zum intuitionistischen Aussagenkalkül. Akademie der
Wissenschaften in Wien, Mathematisch- naturwissenschaftliche Klasse,
Anzeiger, 1932, Vol.69, pp.65-66.

Exercise 4.4.5 (optional, for smart students). By adding the schema
(B → C)∨(C → B) to the axioms of the constructive logic, we obtain the

so-called Gödel-Dummett logic. Verify, that a propositional formula F is
provable in Gödel-Dummett logic, if and only if F is true at all nodes in all
linear Kripke scenarios (i.e. in the scenarious that do not allow branching).
See also Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia
of Philosophy, and Michael Dummett in Internet Encyclopedia of Philosophy.

http://www.iep.utm.edu/
http://www.iep.utm.edu/d/dummett.htm
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/

177

5. Normal Forms. Resolution Method

In this section, we will try to produce a practical method allowing to derive
consequences and prove theorems by using computers. In general, this task is
not feasible because of its enormous computational complexity (see Section
4.3). Still, for problems of a "practical size" (arising, for example, in deductive
databases and other artificial intelligence systems, or, trying to formalize real
mathematical proofs), such methods are possible and some of them are already
implemented successfully.

This field of research is called automated reasoning, or automated theorem-
proving.

Warning! The principal results of this Section are valid only for the classical
logic!

Main Ideas

If F1, ..., Fn is the set of our assumptions (facts, rules, axioms, hypotheses

etc.), does the assertion G follow from this set? One of the well known
approaches to proving theorems in mathematics – and especially convenient
for computers – are the so-called refutation proofs (reductio ad absurdum) –
proofs by deriving a contradiction: assume ¬G, and try deriving a
contradiction. I.e. try proving that F1, ..., Fn, ¬G is an inconsistent set of

assumptions.

Idea #1: let us derive consequences and prove theorems only in this way. Let
us try developing the best possible method of deriving contradictions from
inconsistent sets of assumptions. This (at first glance – trivial) decision is one
of the most important steps in the whole story – it will allow (see Section 5.2
below) conversion of the formulas F1, ..., Fn, ¬G into a form that does not

contain existential quantifiers. And after this, having universal quantifiers only,
we may simply drop them at all, and continue working with quantifier-free
formulas (see Section 5.4).

Idea #2: let us "normalize" our assumption formulas as far as possible.

The first step (idea #2a) is reducing to the so-called prenex normal form –
moving all the quantifiers to left. For example, the formula

[(xB(x) ∃ → xC(x)) → xD(x)] → xF(x)∃ ∃ ∃
is equivalent (in the classical logic!) to the following formula in prenex normal
form:

http://en.wikipedia.org/wiki/Automated_reasoning

178

x∀ 1 x∃ 2 x∀ 3 x∃ 4[[(B(x1) → C(x2)) →D(x3)] → F(x4)].

(When moving quantifiers to left, some of them must be changed from to ,∃ ∀
or from to , see ∀ ∃ Section 5.1 below.)

The second step (idea #2b, due to Thoralf Skolem) allows elimination of
existential quantifiers. Indeed, x∀ 1 x∃ 2 means that x2=f(x1), and x∀ 1 x∀ 3 x∃ 4
means that x4=g(x1, x3), where f and g are some functions (see Section 5.2). In

this way we obtain the so-called Skolem normal form, containing universal
quantifiers only:

x∀ 1 x∀ 3[[(B(x1) → C(f(x1))) →D(x3)] → F(g(x1, x3))].

Note that a formula and its Skolem normal form are not equivalent (even in
the classical logic!), they are only a kind of "semi-equivalent": a set of
formulas is inconsistent, if and only if so is the set of their Skolem normal
forms.

Now, since, our formulas contain universal quantifiers only, we may drop
these quantifiers (simply by assuming that all free variables are universally
quantified):

[(B(x1) → C(f(x1))) →D(x3)] → F(g(x1, x3)).

The third step (idea #2c) – reduction of quantifier-free formulas to the so-
called conjunctive normal form (a conjunction of disjunctions of atomic
formulas – with or without negations, see Section 5.3). For example, the above
formula can be reduced to the following form:

(¬ B (x1)∨C (f (x1))∨F (g (x1, x3)))∧(¬ D(x3)∨F (g (x1, x3))) .

By assuming that a set of formulas means their conjunction, we can drop the
conjunction(s) obtaining a set of the so-called clauses:

¬ B(x1)∨C (f (x1))∨F (g (x1, x3)) ;

¬ D(x3)∨F (g (x1, x3)) .

Each clause is a disjunctions of atomic formulas – with or without negations.
To separate clearly the meaning of each clause, we must rename some of the
variables – no two clauses are allowed to contain common variables:

¬ B (x1)∨C (f (x1))∨F (g (x1, x3)) ;

¬ D(x5)∨F (g (x4, x5)) .

In this way, instead of our initial set of assumptions F1, ..., Fn, ¬G, we obtain a

set of separate clauses (“large cloud of simple disjunctions”), which is
inconsistent, if and only if so is the initial set F1, ..., Fn, ¬G.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html

179

The last step – how to work with a set of clauses (“large cloud of simple
disjunctions”)?

Idea #3 (due to John Alan Robinson, see Section 5.5 and 5.7) – a set of clauses
is inconsistent, if and only if a contradiction can be derived from it by using
term substitution and the so-called Robinson's Resolution rule:

F∨C , ¬ C∨G
F∨G

.

Continue reading...

Alternative method: the so-called Method of Analytic Tableaux.

5.1. Prenex Normal Form

Warning! The principal results of this Section are valid only for the classical
logic!

Let us consider an interpretation J of some predicate language L, such that the
domain DJ contains an infinite set of "objects". Under such interpretation, the

"meaning" of formulas containing quantifiers may be more or less non-
constructive, or, at least, "constructively difficult".

For example, the formula xB(x) will be true, if B(x) will be true for all∀
"objects" x in the (infinite!) set DJ. Thus, it is impossible to verify directly (i.e.

"empirically"), is xB(x) true or not. Saying that x y(x+y=y+x) is true∀ ∀∀
under the standard interpretation of first order arithmetic, does not mean that
we have verified this fact empirically – by checking x+y=y+x for all pairs of
natural numbers x, y. Then, how do we know that x y(x+y=y+x) is true? Of∀∀
course, we either postulated this feature of natural numbers directly (i.e.
derived it from "empirical evidence"), or proved it by using some set of
axioms (i.e. derived it from other postulates). But, in general, formulas having
the form xB(x), are "constructively difficult".∀
The formula x yC(x, y) may be even more difficult: it will be true, if for∀∃
each x in DJ we will be able to find y in DJ such that C(x, y) is true. Thus,

thinking constructively, we could say that x yC(x, y) is true, only, if there is∀∃
an algorithm, which, for each x in DJ can find y in DJ such that C(x, y) is true.

For example, under the standard interpretation of first order arithmetic, the
formula

∀x∃ y (x< y∧prime (y))

http://en.wikipedia.org/wiki/John_Alan_Robinson

180

is true (i.e. "there are infinitely many prime numbers"). How do we know this?
This fact was proved in VI century BC. But the (similarly quantified) formula

∀x∃ y (x< y∧prime (y)∧ prime(y+ 2)) ,

i.e. the famous twin prime conjecture, is it true or not? Until now, nobody
knows the answer.

Exercise 5.1.1. Verify that the "meaning" of x y zD(x, y, z) and∀∃ ∀
x y z uF(x, y, z, u) may be even more non-constructive.∀∃ ∀∃

But how about the formula xG(x)→ yH(y)? Is it constructively more difficult∃ ∃
than x yC(x, y), or less? In general, we could prove that xG(x)→ yH(y) is∀∃ ∃ ∃
true, if we had an algorithm, which, for each x∈D J such that G(x) is true,
could find y∈DI such that G(y) is true, i.e. if x y(G(x)→H(y)) would be∀∃
true. We will establish below, that, in the classical logic, if G does not contain
y, and H does not contain x, then the formula xG(x)→ yH(y) is equivalent to∃ ∃

x y(G(x)→H(y)). Thus, in general, the formula xG(x)→ yH(y) is∀∃ ∃ ∃
constructively as difficult as is the formula x yC(x, y)!∀∃
To generalize this approach to comparing "constructive difficulty" of formulas,
the so-called prenex normal forms have been introduced:

a) If a formula does not contain quantifiers, then it is in the prenex normal
form.

b) If x is any variable, and the formula F is in the prenex normal form, then
xF and xF also are in the prenex normal form.∀ ∃

c) (If you wish so,) there are no other formulas in the prenex normal form.

I.e. a formula is in the prenex normal form, if and only if it has all its
quantifiers gathered in front of a formula that does not contain quantifiers. It
appears, that in the classical logic, each formula cane be "reduced" to an
appropriate equivalent formula in the prenex normal form. To obtain this
normal form, the following Lemmas 5.1.1-5.1.3 can be used.

Lemma 5.1.1. If the formula G does not contain x as a free variable, then:

a) [L1, L2, L5, L12, L14, MP, Gen]: (G→ xF(x)) ∀ ↔ x(G→F(x)).∀

b) [L1, L2, L5, L12-L15, MP, Gen]: (∃xF(x)→G) ↔ ∀x(F(x)→G). What does it

mean precisely?

c) [L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) ↔ x(G→F(x)). More precisely:∃ ∃

[L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) → x(G→F(x)). This formula ∃ ∃
cannot be proved constructively! Why? See Section 4.5. But the converse
formula can be proved constructively:

http://www.utm.edu/research/primes/lists/top20/twin.html

181

[L1, L2, L13-L15, MP, Gen]: x(G→F(x)) → (G→ xF(x)). ∃ ∃

d) [L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) ↔ ∃x(F(x)→G). What does it

mean precisely? More precisely:

[L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) → ∃x(F(x)→G). This formula

cannot be proved constructively! Why? See Section 4.5. But the converse
formula can be proved constructively:

[L1, L2, L13-L15, MP, Gen]: ∃x(F(x)→G) → (∀xF(x)→G).

Proof.

First, let us note that (a)← is an instance of the axiom L14:

x(G→F(x))→(G→ xF(x)), and that (b)← is an instance of the axiom L∀ ∀ 15.

Prove (a)→ and (b)→ as the Exercise 5.1.2 below.

Let us prove (c)←: x(G→F(x))→(G→ xF(x)).∃ ∃
(1) G→F(x) Hypothesis.

(2) G Hypothesis.

(3) F(x) By MP.

(4) xF(x)∃ By Axiom L13: F(x)→ xF(x).∃

(5) (G→F(x))→(G→ xF(x))∃ By Deduction Theorem 1.

(6) x((G→F(x))→(G→ xF(x)))∀ ∃ By Gen.

(7) x(G→F(x))→(G→ xF(x))∃ ∃
By Axiom L15:

x(F(x)→G)→(xF(x)→G), since ∀ ∃
G→ xF(x) does not contain x as a ∃
free variable.

Let us prove (d)←: ∃x(F(x)→G) →(∀xF(x)→G).

182

(1) F(x)→G Hypothesis.

(2) ∀xF(x) Hypothesis.

(3) F(x) By Axiom L12: xF(x)→F(x).∀

(4) G By MP.

(5) (F(x)→G)→(∀xF(x)→G) By Deduction Theorem 1.

(6) x((F(x)→G)→(∀ ∀xF(x)→G)) By Gen.

(7) ∃x(F(x)→G) →(∀xF(x)→G)

By Axiom L15:

x(F(x)→G)→(xF(x)→G), since ∀ ∃
xF(x)→G does not contain x as a ∀

free variable.

Now, let us prove (c)→: (G→ xF(x)) → x(G→F(x)) in the classical logic (a∃ ∃
constructive proof is impossible, see Section 4.5).

First, let us prove: ¬G → ((G→ xF(x))→ x(G→F(x)))∃ ∃

(1) ¬G→(G→F(x)) Axiom L10.

(2) (G→F(x))→ x(G→F(x))∃ Axiom L13: F(x)→ xF(x).∃

(3) ¬G→ x(G→F(x))∃ From (1) and (2).

(4)
¬G → ((G→ xF(x)) → ∃

x(G→F(x)))∃ By Axiom L1: B→(C→B).

Now, let us prove: G → ((G→ xF(x))→ x(G→F(x)))∃ ∃

(5) G Hypothesis.

(6) G→ xF(x)∃ Hypothesis.

(7) xF(x)∃ From (5) and (6).

(8) F(x)→(G→F(x)) Axiom L1: B→(C→B).

(9) x(F(x)→(G→F(x)))∀ By Gen.

(10) xF(x)→ x(G→F(x))∃ ∃ By Theorem 3.1.1(b), [L1, L2, L12-

183

L15, MP, Gen] ⊢
x(B→C)→(xB→ xC).∀ ∃ ∃

(11) x(G→F(x))∃ From (7) and (10).

(12)
G → ((G→ xF(x))→ ∃

x(G→F(x)))∃
By Deduction Theorem 2 (x is not a
free variable in G and G→ xF(x).∃

(13)
Gv¬G → ((G→ xF(x))→ ∃

x(G→F(x)))∃

From (4) and (12), by Axiom L8. The

total is [L1, L2, L8, L10, L12-L15, MP,

Gen]

(14) (G→ xF(x)→ x(G→F(x))∃ ∃ By Axiom L11: Gv¬G.

Finally, let us prove (d)→: (∀xF(x)→G) → ∃x(F(x)→G) in the classical
logic(a constructive proof is impossible, see Section 4.5). Let us denote this
formula by H.

First, let us prove: xF(x)∀ →H

(1) xF(x)∀ Hypothesis.

(2) xF(x)→G∀ Hypothesis.

(3) G From (1) and (2).

(4) F(x)→G By Axiom L1: B→(C→B).

(5) x(F(x)→G)∃ By Axiom L13: F(x)→ xF(x).∃

(6) xF(x) →H∀ By Deduction Theorem 2.

Now, let us prove: x¬F(x)∃ →H

(5) ¬F(x) Hypothesis.

(6) ¬F(x)→(F(x)→G) Axiom L10.

(7) F(x)→G From (5) and (6).

(8) x(F(x)→G)∃ By Axiom L13: F(x)→ xF(x).∃

(9) (xF(x)→G) → x(F(x)→G)∀ ∃ By Axiom L1: B→(C→B).

(10) ¬F(x)→H By Deduction Theorem 2.

184

(11) x¬F(x)∃ →H
By Gen and Axiom L15:

x(¬F(x)→H)→ (x¬F(x)→H).∀ ∃

(12) ¬ xF(x)∀ →H

By Section 3.2, III-4. [L1-L11,

L13, L14, MP, Gen]: ⊢
¬ xF(x)→ x¬F(x). ∀ ∃ Axiom L11

is used here!

(13) xF(x) v ¬ xF(x)∀ ∀ → H From (4) and (12), by Axiom L8.

(13) H
By Axiom

 L11: xF(x) v ¬ xF(x)∀ ∀

Q.E.D.

Exercise 5.1.2. a) Prove (a)→ of Lemma 5.1.1,

[L1, L2, L12, MP, Gen]: (G→ xF(x)) → x(G→F(x)).∀ ∀

b) Prove (b)→ of Lemma 5.1.1,

 [L1, L2, L13, MP, Gen]: (∃xF(x)→G) → ∀x(F(x)→G).

Lemma 5.1.2. If the formula G does not contain x as a free variable, then

a) [L1-L5, L12-L15, MP, Gen]: ∃ xF (x)∧G ↔∃ x (F (x)∧G) .

b) [L1-L5, L12, L14, MP, Gen]: ∀xF (x)∧G ↔∀x (F (x)∧G) .

c) [L1, L2, L5, L6-L8, L12-L15, MP, Gen]: ∃ xF (x)∨G ↔∃ x (F (x)∨G) .

d) [L1-L11, L12, L14, MP, Gen]: ∀xF (x)∨G ↔∀x (F (x)∨G) . More

precisely:

[L1, L2, L5, L6-L8, L12, L14, MP, Gen]: ∀xF (x)∨G →∀x (F (x)∨G) , i.e.

this part of the equivalence can be proved constructively. But,

[L1-L11, L12, L14, MP, Gen]: ∀x (F (x)∨G)→∀xF (x)∨G . This formula

cannot be proved constructively! Why? See Section 4.5.

Proof.

Prove (a, b, c) as the Exercise 5.1.3 below.

Let us prove (d)→: ∀xF (x)∨G →∀x (F (x)∨G) .

185

(1) F (x)→ F (x)∨G Axiom L6.

(2) ∀x (F (x)→ F (x)∨G) By Gen.

(3) x(B→C)→(xB→ xC)∀ ∀ ∀ Theorem 3.1.1(a) [L1, L2, L12, L14,

MP, Gen].

(4) ∀xF (x)→∀x(F (x)∨G) From (2) and (3).

(5) G → F (x)∨G Axiom L7.

(6) ∀x (G → F (x)∨G) By Gen.

(7) G →∀x (F (x)∨G) By Axiom L14.

(8) ∀xF (x)∨G →∀x (F (x)∨G) From (4) and (7), by Axiom L8.

Finally, let us prove (d)←: ∀x (F (x)∨G)→∀xF (x)∨G in the classical
logic (a constructive proof is impossible, see Section 4.5).

(1) ∀x (F (x)∨G) Hypothesis.

(2) F (x)∨G By Axiom L12.

(3) G∨F (x) From (2).

(4) ¬G Hypothesis.

(4) F(x)

By Theorem 2.5.1(b)
[L1, L2, L8, L10,

MP]: ⊢
A∨B →(¬ A→ B)

(5) xF(x)∀ By Gen.

(6) ∀xF (x)∨G By Axiom L6.

(7) ¬G →(∀x (F (x)∨G)→∀xF (x)∨G)

By Deduction
Theorem 2 (x is not
free variable in
∀x (F (x)∨G) .

(8) G →∀xF (x)∨G Axiom L7.

186

(9) G →(∀x(F (x)∨G)→∀xF (x)∨G)
By Axiom L1:

B→(C→B).

(10) G∨¬ G →(∀x(F (x)∨G)→∀xF (x)∨G)
From (7) and (9), by
Axiom L8.

(11) ∀x (F (x)∨G)→∀xF (x)∨G
By Axiom L11:

G∨¬ G .

Q.E.D

Exercise 5.1.3. Prove (a, b, c) of Lemma 5.1.2.

Lemma 5.1.3. a) [L1-L10, L12-L15, MP, Gen]: ¬∃xF(x) ↔ ∀x¬F(x).

b) [L1-L11, L12-L15, MP, Gen]: ¬∀xF(x) ↔ ∃x¬F(x). More precisely:

[L1-L11, L13, L14, MP, Gen]: ¬∀xF(x) → ∃x¬F(x). This formula cannot be

proved constructively! Why? See Section 4.5. But,

[L1-L10, L13, L14, MP, Gen]: ∃x¬F(x) → ¬∀xF(x).

Proof.

a) See Section 3.2, Group IV.

b)→. This is exactly Section 3.2, III-4.

b)←. See Section 3.2, Group III.

Q.E.D.

Let us remind that a formula is in the prenex normal form, if and only if it has
all its quantifiers gathered in front of a formula that does not contain
quantifiers.

Theorem 5.1.4. In the classical logic, each formula is equivalent to an
appropriate formula in the prenex normal form. More precisely, if F is a
formula, then, following a simple algorithm, a formula F' can be constructed
such that: a) F' is in a prenex normal form, b) F' has the same free variables as
F, c) [L1-L11, L12-L15, MP, Gen]: F↔F'.

Proof. Let us start by an example:

xG(x)→ yH(y).∃ ∃
If H did not contain x as a free variable, then, by Lemma 5.1.1(b): ∃xF(x)→G
↔ ∀x(F(x)→G), i.e. this formula would be equivalent to x(G(x)→ yH(y)).∀ ∃
Now, let us consider the sub-formula G(x)→ yH(y). If G did not contain y as∃
a free variable, then, by Lemma 5.1.1(c): G→ xF(x) ↔ x(G→F(x)), the sub-∃ ∃

187

formula would be equivalent to y(G(x)→H(y)). Hence, by Replacement∃
Theorem 2, x(G(x)→ yH(y)) would be equivalent to x y(G(x)→H(y)).∀ ∃ ∀∃
But, if H would contain x as a free variable, and/or G would contain y as a free
variable? Then our "shifting quantifiers up" would be wrong – the formula

x y(G(x)→H(y)) would ∀∃ not be equivalent to xG(x)→ yH(y).∃ ∃
To avoid this problem, let us use Replacement Theorem 3, which says that the
meaning of a formula does not depend on the names of bound variables used
in it. Thus, as the first step, in xG(x), let us replace x by another variable x∃ 1
that does not appear neither in G, nor in H. Then, by Replacement Theorem 3,

xG(x) is equivalent to x∃ ∃ 1G(x1), and by Replacement Theorem 2,

xG(x)→ yH(y) is equivalent to x∃ ∃ ∃ 1G(x1)→ yH(y). Now,∃

x∀ 1(G(x1)→ yH(y)) is really equivalent to x∃ ∃ 1G(x1)→ yH(y). As the next∃

step, in yH(y), let us replace y by another variable y∃ 1 that does not appear

neither in G, nor in H. Then, by Replacement Theorem 3, yH(y) is equivalent∃
to y∃ 1H(y1), and by Replacement Theorem 2, G(x1)→ y∃ 1H(y1) is equivalent

to y∃ 1(G(x1)→H(y1)). And, finally, xG(x)→ yH(y) is equivalent to∃ ∃

x∀ 1 y∃ 1(G(x1)→H(y1)).

Now, we can start the general proof. In a formula F, let us find the leftmost
quantifier having a propositional connective over it. If such a quantifier does
not exist, the formula is in the prenex normal form. If such a quantifier exists,
then F is in one of the following forms:

QqQq...Qq(...(¬QxG)...), or QqQq...Qq(...(QxGooH)...), or QqQq...Qq(...

(GooQxH)...),

where QqQq...Qq are the quantifiers "already in prefix", Q is the quantifier in

question, and oo is the propositional connective standing directly over Q.

In the first case, by Lemma 5.1.3, ¬QxG is equivalent to Q'x¬G, where Q' is
the quantifier opposite to Q. By Replacement Theorem 2, QqQq...Qq(...

(¬QxG)...) is then equivalent to QqQq...Qq(...(Q'x¬G)...), i.e. Q' has now one

propositional connective less over it ((than had Q).

In the second case, as the first step, in QxG, let us replace x by another
variable x1 that does not appear in the entire formula F at all. Then, by

Replacement Theorem 3, QxG is equivalent to Qx1G1, and by Replacement

Theorem 2, QqQq...Qq(...(QxGooH)...) is equivalent to QqQq...Qq(...

(Qx1G1ooH)...). Now, we can apply the appropriate case of Lemma 5.1.1 or

Lemma 5.1.2, obtaining that Qx1G1ooH is equivalent to Q'x1(G1ooH), where

188

Q' is the quantifier determined by the lemma applied. Then , by Replacement
Theorem 2, QqQq...Qq(...(Qx1G1ooH)...) is equivalent to QqQq...Qq(...

(Q'x1(G1ooH))...), i.e. Q' has now one propositional connective less over it

(than had Q).

In the third case, the argument is similar.

By iterating this operation a finite number of times, we arrive at a formula F'
which is in the prenex normal form, and which is (in the classical logic)
equivalent to F. Q.E.D.

Note. Most formulas admit many different prenex normal forms. For example,
the above formula xG(x)→ yH(y) is equivalent not only to∃ ∃

x∀ 1 y∃ 1(G(x1)→H(y1)), but also to y∃ 1 x∀ 1(G(x1)→H(y1)) (verify).

As an example, let us obtain a prenex normal form of the following formula:

∃ xB(x)∨∀xC (x)→∀xD(x)∧(¬∀xF (x)) .

First, assign unique names to bound variables:

∃ x1 B(x1)∨∀x2C (x2)→∀x3 D(x3)∧(¬∀x4 F (x4)) .

Process disjunction:

∃ x1∀x2(B(x1)∨C (x2))→∀x3 D(x3)∧(¬∀x4 F (x4)) .

Process negation (-):∀∃
∃ x1∀x2(B(x1)∨C (x2))→∀x3 D(x3)∧∃ x4¬ F (x4) .

Process conjunction:

∃ x1∀x2(B(x1)∨C (x2))→∀x3∃ x4(D(x3)∧¬ F (x4)) .

Process implication premise (- , -):∃∀∀∃
∀x1∃ x2(B(x1)∨C (x2)→∀x3∃ x4(D(x3)∧¬ F (x4))) .

Process implication consequent:

∀x1∃ x2∀x3∃ x4(B (x1)∨C (x2)→ D(x3)∧¬ F (x4)) .

The last two steps could be performed in the reverse order as well.

Exercise 5.1.4. Transform each of the following formulas into a prenex normal
form. Write down every single step of the process. (Hint: the algorithm is
explained in the proof of Theorem 5.1.4.)

a) ∃ xB(x)→(∃ xC (x)→∃ xD(x)) ,

b) ∀x∃ yB (x , y)∧∃ xC (x)→∀y∃ xD(x , y) ,

c) ∃ xB(x , y , z)→∀xC (x , y)∨∃ yD(y , z) ,

189

d) ∀xB (x)→(∀xC (x)→(∀xD (x)→∀xF (x))) ,

e) ((∃ xB (x)→∃ xC (x))→∃ xD(x))→∃ xF (x) .

Note. From a programmer's point of view, prenex normal forms are, in a sense,
a crazy invention. In computer programming, you always try to reduce loop
bodies, not to extend them as much as possible!

Exercise 5.1.5 (optional). We may use reduction to prenex normal forms in
proofs. More precisely, let us try extending the classical logic by introducing
of the following additional inference rule (let us call it PNF-rule): given a
formula F, replace it by some its prenex normal form F'. Verify, that, in fact,
this rule does not extend the classical logic, i.e. if there is a proof of F1, F2, ...,

Fn G in [L⊢ 1-L15, MP, Gen, PNF-rule], then there is a proof of the same in

[L1-L15, MP, Gen]. (In some other texts, such rules are called admissible

rules. Thus, the PNF-rule is an admissible rule in the classical logic.)

The notion of prenex normal forms and a version of Theorem 5.1.4 were known to Charles
S. Peirce in 1885:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American
Journal of Mathematics, 1885, vol.7, pp.180-202.

As noted by Alasdair Urquhart at http://www.cs.nyu.edu/pipermail/fom/2007-
July/011720.html: "On page 196 of that article, he gives a brief sketch of conversion to
prenex normal form, remarking that it "can evidently be done."".

5.2. Skolem Normal Form

This normal form was first introduced by Thoralf Skolem (1887-1963) in
1928:

Th.Skolem. Über die mathematische Logik. "Norsk matematisk tidsskrift", 1928, vol.10,
pp.125-142.

Warning! The principal results of this Section are valid only for the classical
logic!

The first very important idea was proposed by Skolem already in 1920:

Th. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen.
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

Namely, according to Skolem's idea, further "normalization" becomes
possible, if we drop the requirement that the "normal form" must be equivalent
to the initial formula, and replace it by the requirement: "normal form" must

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
http://www.cs.nyu.edu/pipermail/fom/2007-July/011720.html
http://www.cs.nyu.edu/pipermail/fom/2007-July/011720.html
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce

190

be logically valid; if and only if the initial formula is logically valid . It
appears, that in this way we can "reduce" any closed formula to a closed
formula containing only one kind of quantifiers:

x∃ 1 x∃ 2... x∃ nH(x1, x2, ..., xn),

where H does not contain quantifiers at all (see Theorem 5.2.4 below).

Still, in his original formulation, instead of logical validity, Skolem was
interested in a more technical notion – satisfiability. Let us remind that, in a
predicate language L, a formula F is called satisfiable, if and only if there is an
interpretation of the language L such that F is true for some values of its free
variables. For our current purpose – refutation proofs (to prove that F1, .., Fn

 G, we assume ¬G and try to derive a contradiction) satisfiability works as⊢
well as does logical validity. Indeed (verify, see Exercise 4.1.1), a set of
formulas is inconsistent, if and only if it is unsatisfiable. Thus, if, in a
refutation proof, we replace some formula H by an "equally satisfiable"
formula H' (i.e. H' is satisfiable, if and only if so is H), then the refutation
proof remains valid. I.e. if, this way, we derive a contradiction from F1, ..,

Fn,¬G, then this set of fomulas is, indeed, unsatisfiable, i.e. G logically follows

from F1, .., Fn (for a more precise version of this argument see Exercises

5.2.4).

Skolem's second main idea (proposed in his 1928 paper): allow introduction
of new object constants and function constants. It can be demonstrated on
the following example: how could we "simplify" the formula x y F(x, y)? It∀∃
asserts that for each x there is y such that F(x, y) is true. Thus, it asserts, that
there is a function g, which selects for each value of x a value of y such that
F(x, y) is true. Thus, in a sense, x y F(x, y) is "equivalent" to x F(x, g(x)).∀∃ ∀
In which sense? In the sense that

x y F(x, y) is satisfiable, if and only if x F(x, g(x)) is satisfiable.∀∃ ∀
Indeed,

1. If x y F(x, y) is satisfiable, then there is an interpretation J where it is true,∀∃
i.e. for each value of x there is a value of y such that F(x, y) is true. This
allows us to define the following interpretation of the function constant g: g(x)
is one of y-s such that F(x, y) is true in J. If we extend J by adding this
interpretation of the function constant g, we obtain an interpretation J', where

x F(x, g(x)) is true, i.e. this formula is satisfiable.∀
2. If x F(x, g(x)) is satisfiable, then there is an interpretation J where it is∀
true, i.e. for each value of x the formula F(x, g(x)) is true. Hence, in this
interpretation, for each value of x there is a value of y (namely, g(x)) such that
F(x, y) is true in J. Thus, x y F(x, y) is true in J, i.e. this formula is∀∃

191

satisfiable.

Note. In the first part of this proof, to define the function g, we need, in
general, the Axiom of Choice. Indeed, if there is a non-empty set Yx of y-s

such that F(x, y) is true, to define g(x), we must choose a single element of Yx.

If we know nothing else about the interpretation J, we are forced to use the
Axiom of Choice. But, if we know that the interpretation J has a countable
domain, then we can define g(x) as the "least" y from the set Yx. In this way

we can avoid the Axiom of Choice.

The third idea is even simpler: the formula x F(x) asserts that there is x such∃
that F(x) is true, so, let us denote by (an object constant) c one of these x-s,
thus obtaining F(c) as a "normal form" of x F(x). Of course (verify),∃

x F(x) is satisfiable, if and only if F(c) is satisfiable.∃
These two ideas allow "reducing" of any quantifier prefix Qx1Qx2...Qxn to a

sequence of universal quantifiers only:

Theorem 5.2.1 (Th. Skolem). Let L be a predicate language. There is an
algorithm allowing to construct, for each closed formula F of this language, a
closed formula F' (in a language L' obtained from L by adding a finite set of
new object constants and new function constants – depending on F) such that:

a) F' is satisfiable, if and only if F is satisfiable,

b) F' is in form x∀ 1 x∀ 2... x∀ nG, where n≥0, and G does not contain quantifiers.

If a formula is in form x∀ 1 x∀ 2... x∀ nG, where n≥0, and G does not contain

quantifiers, let us call it Skolem normal form. Thus, each closed formula can
be reduced to a Skolem normal form in the following sense: for each closed
formula F of a language L there is a Skolem normal form |F|Sk (in the language

L extended by a finite set of Skolem constants and Skolem functions), which is
satisfiable, if and only if so is F.

Note. In computer science slang, the reduction procedure leading to Skolem
normal form is called "skolemization".

Note. Theorem 5.2.1 does not assert that a formula and its Skolem normal
form are equivalent. It asserts only that the satisfiability problem of the first
formula is equivalent to the satisfiability problem of the second formula. As
already mentioned above, this is enough to allow using of Skolem reduction in
refutation proofs.

Thus, if we are interested in determining the satisfiability of formulas, then
reducing to Skolem normal forms is a promising method. Indeed, formulas

x∀ 1 x∀ 2... x∀ nG (where G does not contain quantifiers) are, perhaps, easier to

192

analyze than more complicated combinations of quantifiers.

Proof of Theorem 5.2.1 First, let us obtain a prenex normal form F1 of the

formula F (see Section 5.1). Indeed, by Theorem 5.1.4, there is a simple
algorithm, allowing to construct a closed formula F1 such that F1 is a prenex

normal form, and, in the classical logic, F↔F⊢ 1. Of course, F1 is satisfiable;

if and only if so is F.

If the quantifier prefix of F1 starts with a sequence of existential quantifiers

(... ...), we will need the following lemma to "reduce" these quantifiers:∃∃ ∃∀
Lemma 5.2.2 . A closed formula x∃ 1 x∃ 2... x∃ n H(x1, x2, ..., xn) is satisfiable, if

and only if H(c1, c2, ..., cn) is satisfiable, where c1, c2, ..., cn are new object

constants that do not appear in H.

After this operation, we have a closed prenex formula H(c1, c2, ..., cn) (in a

language obtained from L by adding a finite set of new object constants, called
Skolem constants), which is satisfiable, if and only if so is F1 (and F). The the

quantifier prefix of H(c1, c2, ..., cn) (if any) starts with a sequence of universal

quantifiers (... ...).∀∀ ∀∃
To proceed, we will need the following

Lemma 5.2.3. A closed formula x∀ 1 x∀ 2... x∀ n yK(x∃ 1, x2, ..., xn, y) is

satisfiable, if and only if x∀ 1 x∀ 2... x∀ nK(x1, x2, ..., xn, g(x1, x2, ..., xn)) is

satisfiable, where g is a new n-ary function constant (called Skolem function),
which does not appear in K.

By iterating this lemma, we can "reduce" the entire quantifier prefix of H(c1,

c2, ..., cn) to a sequence of universal quantifiers only (...).∀∀ ∀

For example, the formula t x y z u w F(t, x, y, z, u, w) is satisfiable, if and∃∀∀ ∃∀ ∃
only if so is

x y u w F(c, x, y, g(x, y), u, w)∀∀∀ ∃
(where c is a Skolem constant that does not appear in F), and, if and only if so
is

x y u w F(c, x, y, g(x, y), u, w),∀∀∀ ∃
and, if and only if so is the Skolem normal form:

x y u F(c, x, y, g(x, y), u, h(x, y, u)),∀∀∀
where g and h are Skolem functions that do not appear in F.

Exercise 5.2.1. a) Prove Lemma 5.2.2. b) Prove Lemma 5.2.3.

193

How many new object constants and new function constants (Skolem
constants and functions) do we need to obtain the final formula F'? The
number of new symbols is determined by the number of existential quantifiers
in the quantifier prefix of the prenex formula F1. Indeed, a) the number of new

object constants is determined by the number of existential quantifiers in front
of the prefix, and b) the number of new function constants is determined by
the number of existential quantifiers that follow after the universal ones.

This completes the proof of Theorem 5.2.1.

Exercise 5.2.2. Obtain Skolem normal forms of the formulas mentioned in
Exercise 5.1.4.

See also:
"Skolemization" from The Wolfram Demonstrations Project. Contributed by:
Hector Zenil.

Still, if we are interested in determining the logical validity of formulas, then
we should apply the result of Exercise 4.1.1 together with Theorem 5.2.1:

F is logically valid, if and only if ¬F is not satisfiable, if and only if a Skolem
normal form of ¬F is not satisfiable, if and only if x∀ 1 x∀ 2... x∀ nG (where n≥0,

and G does not contain quantifiers) is not satisfiable, if and only if
¬ x∀ 1 x∀ 2... x∀ nG is logically valid, if and only if x∃ 1 x∃ 2... x∃ n¬G is logically

valid.

Thus we have proved the following

Theorem 5.2.4. Let L be a first order language. There is an algorithm allowing
to construct, for each closed formula F of this language, a closed formula F' (in
a language L' obtained from L by adding a finite set of new object constants
and new function constants – depending on F) such that:

a) F' is logically valid (or, provable in the classical logic), if and only if F is
logically valid (or, provable in the classical logic),

b) F' is in form x∃ 1 x∃ 2... x∃ nG, where n≥0, and G does not contain quantifiers.

Skolem Normal Form of a Set of Formulas

Knowledge bases are, as a rule, large sets of closed formulas F1, F2, ..., Fn, i.e.,

in fact, large conjunctions F1∧F 2∧...∧F n of closed formulas. Could we
obtain a Skolem normal form of this conjunction simply by reducing to
Skolem normal form each formula separately?

Assume that during the entire process of reducing the formulas F1, F2, ..., Fn to

http://demonstrations.wolfram.com/author.html?author=Hector+Zenil
http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/Skolemization/

194

their Skolem normal forms F'1, F'2, ..., F'n , these formulas are “kept

separated”, i.e. the name of each new Skolem constant and new Skolem
function is chosen as “completely new” with respect to the entire process.

By examining carefully the proof of Theorem 5.2.1, one can see that this is
enough to guarantee that the conjunction F ' 1∧F ' 2∧...∧F ' n is satisfiable, if
and only if so is F1∧F 2∧...∧F n .

Exercise 5.2.3 (optional, for smart students). In his above-mentioned 1920
paper, for quantifier elimination, Skolem proposed introduction of new
predicate constants (to the idea that function constants will do better, he
arrived only in the 1928 paper). Do not read neither Skolem's papers, nor the
above-mentioned online comments, and prove yourself that by introduction of
new predicate constants, the satisfiability problem of any closed formula can
be reduced to the satisfiability problem of a formula having the form

x∀ 1 x∀ 2... x∀ m y∃ 1 y∃ 2... y∃ nG, where m, n≥0, and G does not contain

quantifiers. Thus, function constants "will do better" – see Theorem 5.2.1.

Exercise 5.2.4 (optional, compare with Exercise 5.1.5). Since, in general,
Skolem normal form is not equivalent to the initial formula, we cannot use
reduction to Skolem normal forms in the usual ("positive", or affirmative)
proofs. But we may use it in "negative" (or, refutation) proofs, i.e. in proofs
aimed at deriving a contradiction! More precisely, let us try extending the
classical logic by introducing of the following additional inference rule (let us
call it SNF-rule): given a formula F, replace it by some its Skolem normal
form F' (such that the newly introduced object constants and function
constants do not appear in the proof before F'). Verify, that, in fact, this rule
does not extend the classical logic for refutation proofs, i.e. if, from a set of
formulas F1, F2, ..., Fn, one can derive a contradiction by using [L1-L15, MP,

Gen, SNF-rule], then one can do the same by using [L1-L15, MP, Gen]. (Thus,

the SNF-rule is admissible for refutation proofs in the classical logic.)

5.3. Conjunctive and Disjunctive Normal Forms

Warning! The principal results of this Section are valid only for the classical
logic!

Let us continue the "normalization" process that we started in Section 5.1 by
reducing formulas to their prenex normal forms, where all quantifiers are
gathered in front of a formula that does not contain quantifiers. How could we

195

further "normalize" this "formula that does not contain quantifiers"?

Step 1: eliminate equivalence

First of all, we can eliminate all equivalence connectives because B↔C is only
a shortcut for (B →C)∧(C → B) . Why should we? Because, proving of
B↔C consists of proving of B→C and proving of C→B. Using the shortcut
simplifies the appearance of the formula, not its proof.

Step 2: eliminate implication

After this, our formula will contain only implication, conjunction, disjunction
and negation connectives. As the next step, we could try to eliminate one (or
two?) of these connectives. The classical logic allows to do that. For example,
by Theorem 2.6.4(b),

[L1-L11, MP]: ⊢ (A → B)↔ ¬ A∨B .

By using this equivalence, we can eliminate implication connectives. For
example, the formula B→(C→D) is equivalent (in the classical logic only!) to

¬ B∨(¬ C∨D) .

But, instead of implications, we could try eliminating disjunctions or
conjunctions as well. Indeed,

Exercise 5.3.1. In the classical logic [L1-L11, MP], prove the following:

a) ⊢ (A → B)↔ ¬(A∧¬ B) .

b) ⊢ (A∨B)↔(¬ A → B) .

c) ⊢ (A∨B)↔ ¬(¬ A∨¬ B) .

d) ⊢ (A∧B)↔ ¬(A →¬ B) .

e) ⊢ (A∧B)↔ ¬(¬ A∨¬ B) .

(For smart students) Determine, which parts of these equivalences can be
proved in the constructive logic [L1-L10, MP]. End of Exercise 5.3.1.

By using these results, we could eliminate from our formulas any one (or any
two) of the three connectives – implication, conjunction, or disjunction.

However, the best decision would be eliminating only implications. Why?
Because conjunction and disjunction are associative and commutative
operations – and very much like addition (disjunction) and multiplication
(conjunction)! For example, after reducing the formula B→(C→B) to

¬ B∨(¬ C∨B) , we can further transform it to ¬ B∨¬C∨B and
(¬ B∨B)∨C – and conclude that it is "true and provable" (no surprise, it is

Axiom L1).

196

Step 3: move negations down to atoms

Thus, after Step 2, our formula contains only conjunction, disjunction and
negation connectives. Now, let us remind the two de Morgan Laws:

Theorem 2.6.3, [L1-L11, MP]: ⊢ ¬(A∧B)↔ ¬ A∨¬ B .

Theorem 2.4.10(b), [L1-L9, MP] ⊢ ¬(A∨B)↔ ¬ A∧¬ B .

By using these equivalencies, we can shift negations down – until the atoms of
the formula. For example, let us transform the formula

((A→ B)→C)→ B∧C .

First, eliminate implications:

¬((A→ B)→C)∨(B∧C) ,
¬(¬(A → B)∨C)∨(B∧C) ,
¬(¬(¬ A∨B)∨C)∨(B∧C).

Apply de Morgan Laws:

(¬¬(¬ A∨B)∧¬ C)∨(B∧C) ,
(¬(¬¬ A∧¬ B)∧¬C)∨(B∧C) ,

((¬ ¬¬ A∨¬¬ B)∧¬C)∨(B∧C) .

Now, let us remind the Double Negation Law:

Theorem 2.6.1, [L1-L11, MP]: ¬¬A ↔ A.⊢

It allows dropping the excessive negations – we can replace ¬¬¬A by ¬A and
¬¬B – by B:

((¬ A∨B)∧¬C)∨(B∧C) .

Note. This form of formulas is called negation normal form. Namely, a
formula is in negation normal form, if it is built of atoms with or without
negations by using conjunctions and disjunctions only. I.e. a formula in
negation normal form contains only conjunctions, disjunctions and negations,
and negations are located at the atoms only. As we see, in the classical logic,
any propositional formula can be reduced (is equivalent) to some formula in
negation normal form.

Negation normal form is the starting point for an alternative (to the Resolution
method described in this Section 5) method of automated theorem-proving –
the so-called Method of Analytic Tableaux. One does not use skolemization
here, one simply obtains the negation normal form of the formula (with
quantifiers inside) and after this, applies a specific tree algorithm of the
Tableaux method. (My exposition for students, in Latvian: Tablo algoritms.)
End of Note.

http://podnieks.id.lv/slides/descrlog/dl3.htm
http://en.wikipedia.org/wiki/Method_of_analytic_tableaux

197

Step 4: algebra

After Step 3, our formula is built up by using:

a) atoms,

b) atoms preceded by a negation,

c) conjunction and disjunction connectives.

Conjunction and disjunction are associative and commutative operations. By
the behavior of "truth values", conjunction is a kind of multiplication:

0∧0=0,0∧1=1∧0=0,1∧1=1 ,

and disjunction – a kind of addition:

0∨0=0,0∨1=1∨0=1, 1∨1=1 .

However, for these operations two distributive laws are valid (Theorem 2.3.1)
– conjunction is distributive to disjunction, and disjunction is distributive to
conjunction:

[L1-L8, MP]: ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) ,

[L1-L8, MP]: ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) .

Thus, both of the two decisions could be justified:

1) (Our first "algebra") Let us treat conjunction as multiplication and
disjunction – as addition (+). Then the above formula

((¬ A∨B)∧¬C)∨(B∧C) takes the form ((A'+B)C')+BC (let us replace ¬A
by the "more algebraic" A'). After this, the usual algebraic transformations
yield the formula A'C'+BC'+BC.

2) (Our second "algebra") Let us treat conjunction as addition (+) and
disjunction – as multiplication. Then the above formula

((¬ A∨B)∧¬C)∨(B∧C) takes the form (A'B+C')(B+C). After this, the
usual algebraic transformations yield the formula A'BB+A'BC+C'B+C'C.

Additional rules can be applied in these "algebras".

First rule – conjunction and disjunction are idempotent operations:

[L1- L5, MP]: ⊢ A∧A ↔ A (see Section 2.2).

[L1, L2, L5, L6-L8, MP]: ⊢ A∨A ↔ A (Exercise 2.3.1(c)).

Thus, in both of our "algebras": A+A = AA = A.

Second rule – A∧¬ A (i.e. "false") is a kind of "zero" in the first "algebra",
and a kind of "one" – in the second "algebra":

198

[L1-L10, MP]: ⊢ B∨(A∧¬ A)↔ B (Exercise 2.5.1(a)),

[L1-L10, MP]: ⊢ ((A∧¬ A)∧B)∨C ↔C (Exercise 2.5.1(b)).

Indeed, in the first "algebra", these formulas mean B+AA' = B and AA'B+C =
C, i.e. we may think that AA'=0, B0=0, C+0=C. In the second "algebra", these
formulas mean B(A+A') = B and (A+A'+B)C = C, i.e. we may think that
A+A'=1, B1=B, C+1=1.

Third rule – A∨¬ A (i.e. "true") is a kind of "one" in the first "algebra", and
a kind of "zero" – in the second "algebra":

[L1-L11, MP]: ⊢ B∧(A∨¬ A)↔ B (Exercise 2.6.2(a)),

[L1-L11, MP]: ⊢ ((A∨¬ A)∨B)∧C ↔C (Exercise 2.6.2(b)).

Indeed, in the first "algebra", these formulas mean B(A+A') = B and
(A+A'+B)C = C, i.e. we may think that A+A'=1, B1=1, C+1=1. In the second
"algebra". these formulas mean B+AA' = B and AA'B+C = C, i.e. we may
think that AA'=0, B0=0, C+0=C.

Thus, in both algebras,

AA'=0, B0=0, C+0=C, A+A'=1, B1=B, C+1=1.

So, let us continue our example

1) (The first "algebra") The formula A'C'+BC'+BC is equivalent to
A'C'+B(C'+C) = A'C'+B, or, if we return to logic: (¬ A∧¬C)∨B . Such
disjunctions consisting of conjunctions are called disjunctive normal forms
(DNFs). In a DNF, each conjunction contains each atom no more than once –
either without negation, or with it. Indeed, if it contains some atom X twice,
then: a) replace XX by X, or b) replace X'X' by X', or c) replace XX' by 0 (in
the latter case – drop the entire conjunction from the expression). In this way,
for some formulas, we may obtain "zero", i.e. an empty DNF. Of course, such
formulas take only false values ("false" is "zero" in the first "algebra"). And
for some formulas, we may obtain "one", i.e. a kind of "full" DNF. Such
formulas take only true values ("true" is "one" in the first "algebra").

2) (The second "algebra") The formula A'BB+A'BC+C'B+C'C is equivalent to
A'B+A'BC+BC' = A'B(1+C)+BC' = A'B+BC', or, if we return to logic:
(¬ A∨B)∧(B∨¬ C) . Such conjunctions consisting of disjunctions are

called conjunctive normal forms (CNFs). In a CNF, each disjunction
contains each atom no more than once – either without negation, or with it.
Indeed, if it contains some atom X twice, then: a) replace XX by X, or b)
replace X'X' by X', or c) replace XX' by 0 (in the latter case – drop the entire
disjunction from the expression). In this way, for some formulas, we may
obtain "zero", i.e. an empty CNF. Of course, such formulas take only true
values ("true" is "zero" in the second "algebra"). And for some formulas, we

199

may obtain "one", i.e. a kind of "full" CNF. Such formulas take only false
values ("false" is "one" in the second "algebra").

Thus, we have proved the following

Theorem 5.3.1. In the classical logic, every propositional formula can be
reduced to DNF and to CNF. More precisely, assume, the formula F has been
built of formulas B1, B2, ..., Bn by using propositional connectives only. Then:

a) There is a formula F1, which is in a (possibly empty or full) disjunctive

normal form over B1, B2, ..., Bn such that [L1-L11, MP]: F ↔ F⊢ 1.

b) There is a formula F2, which is in a (possibly empty or full) conjunctive

normal form over B1, B2, ..., Bn such that [L1-L11, MP]: F ↔ F⊢ 2.

Exercise 5.3.2. a) Build DNFs and CNFs of the following formulas. (Hint: the
algorithm is explained in the above Steps 1-4.)

¬(A∧B → C) ,
(A → B)↔ (C → D) ,

A∨B ↔C∨D ,
A∧B ↔C∧D .

b) Build DNFs and CNFs of the following formulas:

¬(A∨¬ A) ,
((A→ B)→ A)→ A ,

(A → B)→ ((¬ A → B)→ B) .

The notion of disjunctive normal form was known in 1883 to Oscar Howard Mitchell (1851-
1889):

Oscar Howard Mitchell. On a New Algebra of Logic. In: Studies in Logic by Members of the
Johns Hopkins University, 1885, pp. 72-106.

5.4. Clause Form

Warning! The principal results of this Section are valid only for the classical
logic!

Clause Forms of Propositional Formulas

Which form is more "natural" – DNF, or CNF? Of course, CNF is more
natural. Indeed, a DNF D1∨D2∨...∨Dm asserts that one (or more) of the

http://www.cspeirce.com/menu/library/aboutcsp/nubiola/reyes.htm

200

formulas Di is true. This is a very complicated assertion – sometimes D1 is

true, sometimes D2 is true, etc. But, if we have a CNF instead –

C1∧C2∧...∧Cn ? It asserts that all the formulas Ci are true, i.e. we can

replace the long formula C1∧C2∧...∧Cn by a set of shorter formulas C1,

C2, ..., Cn. For human reading and for computer processing, a set of shorter

formulas is much more convenient than a single long formula.

Let us return to our example formula ((A→ B)→ C)→ B∧C of Section 5.3,
for which we obtained a DNF (¬ A∧¬C)∨B and a CNF:

(¬ A∨B)∧(B∨¬ C) .

Without a transformation, DNF may be hard for reading and understanding.
The CNF is more convenient – it says simply that ¬ A∨B is true and

B∨¬ C is true.

As another step, making the formulas easier to understand, we could apply the
following equivalences:

[L1-L11, MP]: ⊢ ¬ A∨B ↔ A → B ,

[L1-L11, MP]: ⊢ ¬ A∨¬ B∨C ↔ A∧B → C ,

[L1-L11, MP]: ⊢ ¬ A∨B∨C ↔ A→ B∨C ,

[L1-L11, MP]: ⊢ ¬ A∨¬ B∨C∨D ↔ A∧B →C∨D ,

etc.

Exercise 5.4.1. Verify these equivalences by proving that, generally (in the
classical logic),

[L1-L11, MP]: ⊢ ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ↔

(A1∧A2∧...∧Am → B1∨B2∨...∨Bn) .

Thus, we can replace our set of two formulas ¬ A∨B , B∨¬C by the set
A → B ,C → B . The conjunction of these two formulas is equivalent to the

initial formula ((A→ B)→C)→ B∧C .

Formulas having the form

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ,

where A1, A2, ... , Am, B1, B2, ... , Bn are atoms, are called clauses. Clauses are

201

well suited for computer processing. Indeed, in the computer memory, we can
represent the above formula simply as a pair of sets of atoms – the negative set
{A1, A2, ... , Am} and the positive set {B1, B2, ... , Bn}.

What, if one (or both) of these sets is (are) empty?

If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m = 0
and n > 0, then, of course, this formula asserts simply that B1∨B2∨...∨Bn ,
i.e. "converting" it into an implication with empty premise

→ B1∨B2∨...∨Bn

leads us to the following definition: the clause → B1∨B2∨...∨Bn means the
same as B1∨B2∨...∨Bn .

If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m > 0
and n = 0, then, of course, this formula asserts simply that

¬ A1∨¬ A2∨...∨¬ Am , i.e. "converting" it into an implication with empty
consequence

A1∧A2∧...∧Am →

leads us to the following definition: the clause A1∧A2∧...∧Am → means the
same as ¬(A1∧A2∧...∧Am) .

If m=n=0, then, as an empty disjunction, the clause must be qualified as false.

Note. Clauses are similar to sequents – pairs of sets of formulas (S1, S2), used

in the proof of Theorem 4.4.5 (completeness of the constructive propositional
logic) in Section 4.4. In a sequent (S1, S2), the sets S1, S2 could contain

arbitrary formulas, but, in a clause, S1, S2 are sets of atoms.

Sets (i.e. conjunctions) of clauses are called clause forms (in some texts –
clausal forms). By Theorem 5.3.1, every propositional formula can be reduced
to a (possibly empty, i.e. true) CNF. Since every conjuction member of a CNF
represents, in fact, a clause, we have established the following

Theorem 5.4.1. In the classical logic, every propositional formula can be
reduced to a clause form. More precisely, assume, the formula F is built of
formulas B1, B2, ..., Bn by using propositional connectives only. Then there is

a (possibly empty) clause form F' (i.e. a set of clauses) over B1, B2, ..., Bn such

that [L1-L11, MP]: F ↔ conj(F'), where conj(F') denotes the conjunction of the

clauses contained in the set F'.

For example, as we established above, the set ¬ A∨B , B∨¬C (or,
alternatively, A → B ,C → B) is a clause form of the formula
((A→ B)→C)→ B∧C .

202

Exercise 5.4.2. Obtain clause forms of the formulas mentioned in the Exercise
5.3.2.

Clause forms (in a sense, “clouds of simple disjunctions”) are well suited for
computer processing. In the computer memory, every clause

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn

can be represented as a pair of sets of atoms:

(−{A1, A2, ..., Am}, +{B1, B2, ..., Bn}),

and every clause form – as a set of such pairs – i.e. it means less character
string processing and less expression parsing!

Clause Form of a Set of Formulas

In the knowledge base, the set of formulas F1, F2, ..., Fk is asserting the

conjuction F1∧F 2∧...∧F k . Hence, the clause form of this set can be
obtained simply as the union of clause forms of separate formulas Fi.

Clause Forms of Predicate Formulas

Of course (unfortunately), if we would insist that the clause form must be
equivalent to the initial formula, then nothing comparable to clause forms
could be obtained for predicate formulas. Still, reducing of predicate formulas
to "clause forms" becomes possible, if we drop this requirement, and replace it
by the requirement that the "clause form" must be satisfiable, if and only if the
initial formula is satisfiable. And – if we allow Skolem style extending of the
language by adding new object constants and new function constants.

Then, by Skolem's Theorem (Theorem 5.2.1), for each closed formula F, we
can obtain a Skolem normal form x∀ 1 x∀ 2... x∀ k G, where k≥0, the formula G

does not contain quantifiers, and this form is satisfiable, if and only if so is F.

As the next step, by Theorem 5.3.1, let us convert G into a CNF, and then –
into a clause form G', i.e into a set of clauses (with atomic sub-formulas of G
playing the role of atoms B1, B2, ..., Bn). Since conj(G') is equivalent to G, the

formula x∀ 1 x∀ 2... x∀ kconj(G') is satisfiable, if and only if so is F.

One more step is necessary to separate clauses completely – renaming of
variables in such a way that no two clauses contain common variables. For
the set of clauses G' = {C1, C2, ..., Ck}, the formula x∀ 1 x∀ 2... x∀ nconj(G') is

203

equivalent to the formula

(∀x1∀x2 ...∀xn C1)∧(∀x1∀x2 ...∀xnC 2)∧...∧(∀x1∀x2 ...∀xn C k) .

According to the Replacement Theorem 3, we will obtain an equivalent
formula, if we will rename the variables xi in such a way that no two clauses
contain common variables.

After this separation of clauses via renaming of variables, we can simply drop
the quantifiers entirely, and the set G' is then called a clause form of the
formula F. For predicate formulas, clauses are built as disjunctions of atomic
formulas (without, or with negation), i.e. the formulas having the form

p (t 1,... , tm) , or ¬ p(t 1, ... , tm) , where p is a predicate constant, and t1, ...,

tm are terms (possibly, containing variables).

Thus, we have proved the following

Theorem 5.4.2. Let L be a predicate language. There is an algorithm allowing
to construct, for each closed formula F of this language, a clause form S, i.e. a
finite set of clauses (in a language L' obtained from L by adding a finite set of
new object constants and new function constants – depending on F, and no two
closes containing common variables) such that F is satisfiable, if and only if so
is the formula x∀ 1 x∀ 2... x∀ nconj(S), where conj(S) denotes the conjunction of

the clauses contained in S, and x1, x2, ..., xn are all the variables appearing in

these clauses.

Note. In most texts, the closed formula x∀ 1 x∀ 2... x∀ nconj(S) (i.e. where all the

variables appearing in conj(S) are universally quantified) is called the
universal closure of conj(S).

As an example, let us consider the formula asserting that there are infinitely
many prime numbers:

prime (x) : x> 1∧¬∃ y∃ z (y> 1∧z> 1∧x= y∗z) ,

∀u∃ x (x> u∧prime (x)) ,

∀u∃ x (x> u∧x> 1∧¬∃ y∃ z (y> 1∧ z> 1∧ x= y∗z)) (1)

Convert it into a prenex normal form:

∀u∃ x (x> u∧x> 1∧∀ y∀z¬(y> 1∧z> 1∧x= y∗z)) ,

∀u∃ x∀y∀z (x> u∧x> 1∧¬(y> 1∧z> 1∧x= y∗z)) .

Replace u x by u by introducing a Skolem function g:∀∃ ∀
∀u∀ y∀z (g (u)> u∧g (u)> 1∧¬(y> 1∧z> 1∧g (u)= y∗z)) .

In this Skolem normal form, convert the quantifier-free part into a conjunctive

204

normal form:

∀u∀ y∀z (g (u)> u∧g (u)> 1∧(¬(y> 1)∨¬(z> 1)∨¬(g (u)= y∗z))) .

This formula is satisfiable, if and only if so is the initial formula (1).

The last step: since the last formula is equivalent to the conjunction of three
formulas:

∀u∀ y∀z (g (u)> u) , ∀u∀ y∀z (g (u)> 1) ,

∀u∀ y∀z (¬(y> 1)∨¬(z> 1)∨¬(g (u)= y∗z)) ,

we can rename the variables in such a way that no two clauses contain
common variables:

∀u1(g (u1)> u1) , ∀u2(g (u2)> 1) ,

∀u3∀ y∀z (¬(y> 1)∨¬(z> 1)∨¬(g (u3)= y∗z)) .

Thus, we have obtained a set of 3 clauses:

g (u1)> u1 ,
g (u2)> 1 ,

¬(y> 1)∨¬(z> 1)∨¬(g (u3)= y∗z) .

or, alternatively,

→ g (u1)> u1 ,
→ g (u2)> 1 ,

y> 1, z> 1, g (u3)= y∗z → .

These sets of 3 formulas are clause forms of the formula (1).

Exercise 5.4.3. Obtain clause forms of the formulas mentioned in the Exercise
5.1.4 (assume that B, C, D, F are predicate constants).

Clause Form of a Set of Formulas

Knowledge bases are, as a rule, large sets of closed formulas F1, F2, ..., Fn, i.e.,

in fact, large conjunctions F1∧F 2∧...∧F n of closed formulas. The clause
form of this set can be obtained, simply as the union of clause forms of
separate formulas Fi. However, each formula must be “kept separated” during

the entire process:

a) when reducing to Skolem normal forms, the name of each new Skolem
constant and Skolem function must be chosen as “completely new” with
respect to the entire process (for details, see the end of Section 5.2);

b) when renaming clause variables, one must guarantee that no two clauses of

205

the entire process contain common variables.

Horn Clauses

Alfred Horn (1918-2001).

In, in a clause

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ,

we have n=1 or n=0, then it is called Horn clause. I.e.,

A1∧A2∧...∧Am → B ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B .

There are formulas that cannot be reduced to Horn clauses (verify).

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Horn+clause

The name "Horn Clause" comes from the logician Alfred Horn, who first pointed out the
significance of such clauses in 1951, in the article "On sentences which are true of direct
unions of algebras", Journal of Symbolic Logic, 16, 14-21.

http://www.cs.ucsd.edu/users/goguen/courses/230/s11.html

As a footnote, Alfred Horn, for whom Horn clauses are named, had nothing to do with logic
programming; he was a professor of logic at UCLA who in 1951 wrote paper using the
sentences that now bear his name for reasons having little to do with computer science. As a
second footnote, it seems to me rather misleading to call Prolog a "logic programming"
language, since it departs rather far from logic; I would rather have had it called a "relational
programming" language, because it is the use and manipulation of relations that is most
characteristic of its programming style.

http://www.cs.fit.edu/¬ryan/study/bibliography.html

Horn, Alfred. ``On sentences which are true of direct unions of algebras.'' Journal of Symbolic
Logic, volume 16, number 1, March 1951, pages 14-21.

This paper has very little to do with Horn clauses.

To be continued.

5.5. Resolution Method for Propositional Formulas

http://www.cs.fit.edu/~ryan/study/bibliography.html
http://www.cs.ucsd.edu/users/goguen/courses/230/s11.html
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Horn+clause
http://en.wikipedia.org/wiki/Horn_clause
http://en.wikipedia.org/wiki/Alfred_Horn

206

Warning! The principal results of this Section are valid only for the classical
logic!

Remember, that we are solving the problem of determining, does the formula
G follow from the formulas F1, F2, ..., Fn. If does so, if and only if the set of

formulas F1, F2, ..., Fn, ¬G is unsatisfiable. Assume, we have obtained a

clause form S of the formula F1∧F2∧...∧F n∧¬G . Then S is
unsatisfiable, if and only if so is the set F1, F2, ..., Fn, ¬G. How to determine,

is S unsatisfiable, or not? In a sense, S represents “a cloud of simple
disjunctions”. How to work with such a cloud effectively?

History

J. A. Robinson. Theorem-proving on the computer. "Jour. Assoc. Comput. Mach.", vol.10,
N2, 1963, pp.163-174

J. A. Robinson. A machine-oriented logic based on the resolution principle, "Jour. Assoc.
Comput. Mach.", vol.12, N1, January 1965, pp.23-41 (available online, Russian translation
available: "Kib. sbornik (novaya seriya)", 7, 1970, pp.194-218)

John Alan Robinson: "Born in Yorkshire in 1930, Robinson came to the United States in
1952 with a classics degree from Cambridge University. He studied philosophy at the
University of Oregon before moving to Princeton where he received his PhD in philosophy in
1956. Temporarily ``disillusioned with philosophy,`` he went to work as an operations
research analyst for Du Pont, where he learnt programming and taught himself mathematics.
Robinson moved to Rice University in 1961, spending his summers as a visiting researcher at
the Argonne National Laboratory's Applied Mathematics Division. Its then Director, William
F. Miller, pointed Robinson in the direction of theorem proving...

Miller showed Robinson a 1960 paper by Martin Davis and Hilary Putnam (coincidentally, the
latter had been Robinson's PhD supervisor) proposing a predicate-calculus proof procedure
that seemed potentially superior to Gilmore's, but which they had not yet turned into a
practical computer program. Miller suggested that Robinson use his programming skills to
implement Davis and Putnam's procedure on the Argonne IBM 704. Robinson quickly found
that their procedure remained very inefficient. However, while implementing a different
procedure also suggested in 1960 by Dag Prawitz, Robinson came to see how the two sets of
ideas could be combined into a new, far more efficient, automated proof procedure for first-
order predicate logic: "resolution"..." (According to Donald MacKenzie, The Automation of
Proof: A Historical and Sociological Exploration, "IEEE Annals of the History of Computing",
vol.17, N3, 1995, pp. 7-29).

"In retrospect, unification and resolution seem rather obvious ideas, which
arise inevitably when one asks what must be syntactically true of a set of
clauses which possesses the semantic property of having no Herbrand
models."

(J.A.Robinson, "Unification and Resolution in Retrospect", 1997, see at http://www.univ-
orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html).

Note. Almost at the same time when J.A.Robinson invented the resolution

http://www.univ-orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html
http://www.univ-orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html
http://www.computer.org/annals/
http://www.sps.ed.ac.uk/staff/mackenzie.html
http://en.wikipedia.org/wiki/John_Alan_Robinson
http://portal.acm.org/citation.cfm?doid=321250.321253

207

method, Sergei Maslov invented his inverse method, which has a similar
range of applications:

S. Yu. Maslov. An inverse method of establishing deducibilities in the classical predicate
calculus, "Soviet Mathematics, Doklady", 1964, N5, pp.1420-1423.

See also: Maslov S. Y. (1939-1982), human rights activist in ENCYCLOPAEDIA OF SAINT
PETERSBURG.

About the history of the problem see:

J. A. Robinson. Computational Logic: Memories of the Past and Challenges for the Future.
Computational Logic – CL 2000, First International Conference, London, UK, 24-28 July,
2000, Proceedings, Springer, Lecture Notes in Computer Science, 2000, Vol. 1861, pp. 1-24
(online copy).

M. Davis. The Early History of Automated Deduction.In: Handbook of Automated Reasoning,
ed. by A. Robinson and A. Voronkov, Elsevier Science, 2001, vol. I, pp. 3-15 (online
postscript)

The Method

Again, how to work with “a cloud of simple disjunctions” effectively?

Assume that, in a set of clauses, two clauses are contained such that an atom C
appears as a positive member in the first clause, and as a negative member in
the second one:

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn∨C , (1)

¬C∨¬ D1∨¬ D2∨...∨¬ D p∨E1∨E2∨...∨Eq , (2)

or, simply,

F∨C , (1a)

¬C∨G . (2a)

If C is false, then (1a) yields F, and, if C is true, then (2a) yields G. Thus, from
(1a) and (2a) we have derived F∨G . I.e. deriving of F∨G from

F∨C and ¬C∨G is "logically correct", and it is called Robinson's
Resolution rule (J.A.Robinson proposed it in the above 1963 paper):

F∨C ,¬C∨G
F∨G

.

Taking into account the rule (of the classical logic) ¬ A∨B ↔(A→ B) , we
can obtain an alternative form of the Resolution rule:

¬F →C ,C →G
¬F →G

.

In the classical logic, this form is equivalent to the Law of Syllogism

http://cs.nyu.edu/cs/faculty/davism/early.ps
http://www.voronkov.com/
http://en.wikipedia.org/wiki/Martin_Davis
http://www.computational-logic.org/iccl/downloads/Robinson-CL2000.pdf
http://www.encspb.ru/en/
http://www.encspb.ru/en/
http://www.encspb.ru/en/article.php?kod=2804023792
http://www.mathsoc.spb.ru/pers/maslov/

208

(transitivity of implication).

If F is empty, then this form derives G from C, C→G, i.e. Resolution rule
includes Modus Ponens as a special case.

If G is empty, then from ¬ F∨C ,¬ C (i.e. F→C, ¬C), the Resolution rule
derives ¬F, i.e. it includes Modus Tollens as a special case.

Exercise 5.5.1. Derive the Resolution rule in the constructive logic, i.e. prove
that [L1-L10, MP]: C∨F ,¬C∨G ⊢ F∨G . Verify that it cannot be

proved in the minimal logic [L1-L9, MP]. (Hint: in the positive part – use

Theorem 2.5.1(b) [L1, L2, L8, L10, MP]: F∨C ,¬C ⊢ F . In the negative

part – verify that in the minimal logic, the Resolution rule allows proving of
L10, see Section 2.5).

Thus, from the clauses (1) and (2), Robinson's Resolution rule allows deriving
of the following clause:

¬ A1∨¬ A2∨...∨¬ Am∨¬ D1∨¬ D2∨...∨¬ Dp∨B1∨B2∨...∨Bn∨E1∨E 2∨...∨Eq

At first glance, this approach leads to nothing, because this formula seems to
be much longer than (1), and than (2). Still, this is not 100% true, because,
additionally, we can reduce the repeating atoms, and, finally, the set of
different atoms, used in a clause form, is fixed! If, in our set of clauses, there
are N different atoms, then none of the clauses (initial, or generated by
resolution) will contain more than N atoms (each with or without negation).
And the total number of different clauses will never exceed 3N (missing,
without negation, with negation). Thus, repeated applications of the Resolution
rule will "rotate" within this restricted "search space".

The smart idea behind Robinson's Resolution rule is as follows: it is a
universal tool for deriving contradictions from inconsistent sets of clauses!
No other axioms and rules of inference are necessary! More precisely, it is
universal, if used together with the following trivial rules of inference:

F∨C∨D∨G
F∨D∨C∨G

(permutation),

F∨C∨C∨G
F∨C∨G

 (reduction).

The permutation rule allows arbitrary reordering of atoms in a clause (for
example, moving C to right, and moving ¬C to left). The reduction rule allows
reduction of repeating identical atoms.

Exercise 5.5.2. Derive these inference rules in the minimal logic [L1-L9, MP].

Theorem 5.5.1 (J. A. Robinson). In the classical propositional logic [L1-L11,

209

MP], a finite set of propositional clauses is inconsistent, if and only if
Robinson's Resolution rule (together with permutation and reduction rules)
allows for deriving of a contradiction from it.

Note. In some other texts, this fact is called "the refutation-completeness of
the Resolution rule" for the propositional logic.

Proof. 1. As you have proved in the Exercises 5.5.1 and 5.5.2, all the formulas,
derived from a set of formulas K1, K2, ... , Ks by using the Permutation,

Resolution and Reduction rules are consequences of K1, K2, ... , Ks. Hence, if

these rules allow deriving a contradiction from this set of formulas, then it (the
set) is inconsistent.

2. Now, let us assume that a set of propositional clauses K1, K2, ... , Ks is

inconsistent, i.e. a contradiction A∧¬ A can be derived from it:

[L1-L11, MP]: K1, K2, ... , Ks ⊢ A∧¬ A .

Then, under the classical truth tables, the conjunction K1∧K2∧...∧K s takes
only false values (verify!). Let us mark one of the atoms (the atom C) in it. Let
us denote:

- by C∨F i – the clauses containing C without negation,

- by ¬C∨G j – the clauses containing C with negation,

- by Hk – the clauses that do not contain C.

All the formulas Fi, Gj, Hk are disjunctions of atoms (with or without

negations) that do not contain the atom C.

Thus K 1∧K2∧...∧K s is equivalent to

conj(C∨F i)∧conj(¬ C∨G j)∧conj(H k) . (4)

Let us apply (the strange) one of the distribution rules (Theorem 2.3.1):

 [L1-L8, MP] ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) .

Hence, K1∧K2∧...∧K s is equivalent to

(C∨conj(F i))∧(¬C∨conj(G j))∧conj (H k) .

If C is false, then this formula is equivalent to conj(F i)∧conj (H k) , i.e.
conj(F i)∧conj (H k) takes only false values. If C is true, then it is

equivalent to conj (G j)∧conj (H k) , i.e. conj (G j)∧conj (H k) takes only
false values. Thus the disjunction

(conj (F i)∧conj(H k))∨(conj(G j)∧conj (H k)) (5)

210

also takes only false values. Now, let us, apply (the "normal") one of the
distribution rules (Theorem 2.3.1):

[L1-L8, MP] ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) ,

obtaining that (5) is equivalent to

(conj (F i)∨conj(G j))∧conj(H k) . (6)

I.e. this formula also takes only false values. And – important note! – it does
not contain the atom C.

Finally, by applying, again, (the strange) one of the distribution rules
(Theorem 2.3.1) we can conclude that (6) is equivalent to

conj (conj(F i∨G j))∧conj(H k) , i.e. to the set of clauses F i∨G j and Hk
(where i, j, k run over their initial ranges).

What does this achievement mean? If the set of propositional clauses K1,

K2, ... , Ks is inconsistent, then there is a set of clauses F i∨G j and Hk
(where i, j, k run over their initial ranges), which is inconsistent as well, but
which contains one atom less than K1, K2, ... , Ks.

Now, imagine, that, in the clause form (4), we have applied the Resolution rule
for the atom C in all the possible ways (before applying, apply the
permutation rule to reorder atoms moving C to right, and ¬C – to left):

F i∨C ,¬C∨G j

F i∨G j
.

After this, apply the permutation and reduction rules to reduce identical atoms.
In this way we have obtained exactly the above-mentioned inconsistent set of
clauses F i∨G j and Hk (where i, j, k run over their initial ranges).

Thus, if some set of propositional formulas K1, K2, ... , Ks is inconsistent, then

the Resolution rule (togeher with the permutation and reduction rules) allows
to derive from it another inconsistent set of propositional formulas, which
contains one atom less.

By iterating this process, at the end of it, we will have an inconsistent set of
propositional formulas built of a single atom B. In a clause form, there can be
only one such set – the set B, ¬B. This set represents a contradiction.

Q.E.D.

As an example, let us use Robinson's Resolution rule to prove that

B∨C , C → B , B → D ⊢ B∧D .

Let us add ¬(B∧D) to the premises B∨C ,C →B , B → D . We must

211

prove that this set of 4 formulas is inconsistent. First, let us obtain clause
forms:

B∨C in clause form is B∨C ,

C → B in clause form is ¬C∨B ,

B → D in clause form is ¬ B∨D ,

¬(B∧D) is equivalent to ¬ B∨¬ D .

Now, let us apply resolution to derive a contradiction from this set of 4
clauses: BvC, ¬CvB, ¬BvD, ¬Bv¬D:

From B∨C , ¬ C∨B we derive B, and have now 5 clauses:

B∨C ,¬C∨B ,¬ B∨D ,¬ B∨¬ D , B .

From ¬ B∨D ,¬ B∨¬ D we derive ¬B, and have now 6 clauses:

B∨C ,¬C∨B ,¬ B∨D , ¬ B∨¬ D , B ,¬ B .

We have derived a contradiction: B, ¬B. This proves that the formula B∧D
follows from B∨C , C → B , B → D . Q.E.D.

Exercise 5.5.3. Use the Resolution rule to prove the following:

a) A→B, ¬A→B B.⊢
b) (A→B)→A A (Peirce's Law).⊢
c) B→(C→D), B→C B→D (Axiom L⊢ 2).

d) B→D, C→D ⊢ B∨C → D . (Axiom L8).

e) A∨B∨C , B → A∨C , A→ C C.⊢

From a Programmer's Point of View

Of course, when implementing the Resolution rule in a computer program, we
do not need decorations like the permutation and reduction rules. In a program,
we will represent each clause ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn as a
pair of sets: negative atoms, N = {A1, A2, ... , Am}, and positive atoms, P =

{B1, B2, ... , Bn}. Of course, the sets N, P do not intersect (if they do, then this

clause contains ¬C∨C∨... , i.e. it can be dropped as "non-informative").

Resolution rule (non-refined version). If there are two clauses N1, P1 and

N2, P2 such that P1 and N2 (or N1 and P2) contain a common atom C, then we

can derive the clause N 1∪N 2−{C } ,P1∪P2−{C } .

Of course, the set union operation includes reduction of identical members
automatically.

212

The condition "P1 and N2 (or N1 and P2) contain a common atom C" can be

expressed as C∈(P1∩N 2)∪(P2∩N 1) .

If, in the resulting clause, the sets N 1∪N 2−{C }, P1∪P2−{C } intersect,
then we should ignore such result. Fortunately, this can be detected in advance.
Indeed,

(N 1∪N 2)∩(P1∪P2)
= (N 1∩P1)∪(N 1∩P2)∪(N 2∩P1)∪(N 2∩P2) =

(P1∩N 2)∪(P2∩N 1) ,

because N 1∩P1 , N 2∩P2 are empty sets. The set (P1∩N 2)∪(P2∩N 1) is
exactly the set of all atoms C allowing application of the Resolution rule to
clauses N1, P1 and N2, P2. Hence, the sets N 1∪N 2−{C }, P1∪P2−{C } will

not intersect, if and only if the set (P1∩N 2)∪(P2∩N 1) contains exactly
one atom C, i.e., if and only if there is exactly one atom allowing application
of the Resolution rule.

Resolution rule (refined version). If there are two clauses N1, P1 and N2, P2

such that the set (P1∩N 2)∪(P2∩N 1) contains exactly one atom C, then we
can derive the clause N 1∪N 2−{C }, P1∪P2−{C } .

Now, let us try to design a program implementing the last step of "proving by
resolution" – suppose, we have already the initial list of clauses, and we wish
to apply the Resolution rule trying to derive a contradiction.

The main data storage will be a growing list of clauses (the main list):

(N1, P1), (N2, P2), ..., (Nk, Pk), ...

It will start as the initial list, and each application of the Resolution rule will
append a new clause to it.

To guarantee a success, we must apply the Resolution rule in all the possible
ways, i.e. we must scan all pairs of clauses (Ni, Pi)(Nj, Pj), where i = 1, 2, ...; j

= i+1, i+2, ... To achieve this, let us use the following pair enumeration
process:

(N1, P1)(N2, P2) – first, scan all pairs (i, j) with j=2, i<j.

(N1, P1)(N3, P3), (N2, P2)(N3, P3) – after this, scan all pairs (i, j) with j=3, i<j.

(N1, P1)(N4, P4), (N2, P2)(N4, P4), (N3, P3)(N4, P4) – after this, scan all pairs

(i, j) with j=4, i<j.

Etc.

The process will stop, when we will arrive at the level j, and the main list will

213

contain less than j (in fact, j-1) clauses. For a set of n atoms, there are only 3n

different clauses. For example, for two atoms A, B, there are 9 different
clauses: ¬ A∨¬ B ,¬ A∨B , A∨¬ B , A∨B ,¬ A , A ,¬ B ,B , and the empty
clause (representing contradiction). I.e., if we will prohibit duplicate clauses in
the main list, then our process will always stop.

Thus, the following pseudo-code will do (no string processing, no expression
parsing necessary!):

function propositional resolution (initial list) { of clauses }
begin
if initial list contains contradiction then return TRUE { contradiction found }
main list = eliminate duplicates (initial list)
for j = 2 by 1
begin
- if count (main list) < j then return FALSE { no contradiction derived }
- else
- for i = 1 to j−1 by 1
-- { consider i-th and j-th clauses in the main list: (Ni, Pi), (Nj, Pj) }

-- if (N i∩P j)∪(P i∩N j) contains exactly one element C then
-- begin
--- {apply resolution}
--- if (N i∪N j−{C }, P i∪P j−{C }) not in main list then
--- begin
---- add it to main list
---- if main list contains contradiction then return TRUE { contradiction
derived }
-- end
--- end
end
end

Exercise 5.5.4 (optional). Develop a computer program implementing the
above pseudocode.

Note. See my version of such a program in C++: header file, implementation).

Warning!

Despite its beauty, resolution method cannot overcome the general complexity
problem, mentioned at the end of Section 4.2: in the classical propositional
logic, the task of reasoning is “co-NP-complete”. And a closer analysis shows
that, in the worst possible case, given a set of formulas of total length n, the
time required by resolution method will be exponentional – about 2Cn

seconds. But in many practical situations, experience shows that resolution
method solves its task, and – in acceptable time. In particular, Prolog

http://en.wikipedia.org/wiki/Prolog
http://podnieks.id.lv/mlog/kp_resolc.txt
http://podnieks.id.lv/mlog/kp_resolh.txt

214

interpreters are using resolution, and are solving many practical tasks in
acceptable time!

5.6. Herbrand's Theorem

Warning! The principal results of this Section are valid only for the classical
logic!

Jacques Herbrand (1908-1931) "... After leaving Göttingen, Herbrand decided
on a holiday in the Alps before his intended return to France. However he was
never to complete his plans for he died in a mountaineering accident in the
Alps only a few days after his holiday began. His death at the age of 23 in one
of the tragic losses to mathematics." (according to MacTutor History of
Mathematics archive).

Herbrand proved his famous theorem in 1929:

J.Herbrand. Recherches sur la théorie de la démonstration. Ph.D. Thesis,
University of Paris, 1930 (approved in April 1929).

Unlike the proof presented below, the original proof of Herbrand's Theorem
does not depend on Gödel's Completeness Theorem (or Model Existence
Theorem). Herbrand completed his Ph.D. thesis in 1929. In the same 1929
Gödel completed his doctoral dissertation about completeness (see Section
4.3). In fact, Herbrand's method allows proving of Gödel's Completeness
Theorem, but he (Herbrand) "did not notice it". Why? See

Samuel R. Buss. On Herbrand's Theorem. "Lecture Notes in Computer Science", Vol.960,
1995, Springer-Verlag, pp.195-209 (available online).

The flavour of this famous theorem can be best presented in its simplest
version. In this version, F(x) is a quantifier-free formula containing only one
variable x. Then, Herbrand's Theorem says:

The formula xF(x) is logically valid, if and only if there is a finite set of∃
constant terms t1, ..., tn such that the disjunction F (t1)∨...∨F (t n) is

logically valid.

Or, equivalently (via Gödel's Completeness Theorem),

The formula xF(x) is provable in the classical logic, if and only if there is a∃
finite set of constant terms t1, ..., tn such that the disjunction

F (t1)∨...∨F (t n) is provable in the classical logic.

As we will see in the proof, Herbrand's Theorem is "caused" by the simple

http://math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html

215

"fact" that in any proof of xF(x) only a finite set of terms could be used.∃
Now, more precisely.

Let L be a predicate language, containing at least one object constant, and let F
be a quantifier-free formula.

Idea #1 (author?). The formula p (c1)∧q(c2 , f (x)) is quantifie-free (c1, c2
are object constants, f – a function constant, p, q – predicate constants). In a
sense, any "closed" interpretation domain for this formula must contain objects
denoted by the terms c1, c2, f(c1), f(c2), f(f(c1)), f(f(c2)),...

So, let us define the so-called Herbrand's universe of the formula F (let us
denote it by HUF) as the minimum set of all constant terms such that:

a) If c is an object constant occurring in F, then c is in HUF.

b) If F does not contain object constants, then one of the constants of the
language L is in HUF.

c) If terms t1, ..., tk are in HUF, and f is a k-ary function constant occurring in

F, then the term f(t1, ..., tk) is in HUF.

Exercise 5.6.1. Verify that HUF is a non-empty finite or countable set (provide

an algorithm generating the members of HUF).

Theorem 5.6.1 (Herbrand's Theorem – the simplest case). Let L be a predicate
language, containing at least one object constant, and let F(x) be a quantifier-
free formula containing only one free variable x. Then the formula xF(x) is∃
logically valid (i.e. provable in the classical predicate logic), if and only if
there is a finite set of terms t1, ..., tn from HUF such that the disjunction

F (t1)∨...∨F (t n) is logically valid (i.e. provable in the classical
predicate logic).

Proof. Let us assume the contrary – that none of the disjunctions
F (t1)∨...∨F (t n) is logically valid (ti-s are terms from HUF). Idea #2 – then

the following theory T is consistent:

T = { ¬F(t) | t is a term from HUF}.

Indeed, if T would be inconsistent, then there would be a T-proof of some
formula B&¬B. In this proof, only a finite set of the axioms ¬F(t) would be
used, i.e. for some terms t1, ..., tn from HUF:

[L1-L15, MP, Gen]: ¬F(t1), ..., ¬F(tn) ⊢ B∧¬ B .

Hence, by Deduction Theorem 2 (it is applicable here, because F(x) contains

216

only one free variable, and ti-s are constant terms, i.e. every ¬F(ti) is a closed

formula):

[L1-L15, MP, Gen]: ⊢ ¬ F (t 1)∧...∧¬ F (t n) → B∧¬ B ,

[L1-L15, MP, Gen]: ⊢ ¬(F (t1)∨...∨F (t n)) → B∧¬ B ,

and thus,

[L1-L15, MP, Gen]: ⊢ F (t1)∨...∨F (t n) .

I.e., F (t1)∨...∨F (t n) is logically valid. This contradicts our assumption,
that none of the disjunctions F (t1)∨...∨F (t n) is logically valid. Hence, T is
a consistent theory.

Idea #3 – if T is consistent, then, by the Model Existence Theorem, there is a
model J of T. In this model, all the axioms of T are true, i.e. so are all the
formulas ¬F(t) with t from the set HUF.

Idea #4 – let us restrict the domain of the model J to those elements of it,
which are interpretations of terms from the set HUF, and let us restrict the

entire interpretation correspondingly. Let us denote this new interpretation by
J1. Then,

a) All the formulas ¬F(t) (with t from the set HUF) are true in J1. Indeed, ¬F(t)

contains only constant terms from HUF (idea #1 working!), and all of them

have the same interpretations in J1 that they had in J. Thus, if ¬F(t) was true in

J, it remains true in J1.

b) Hence, the formula x¬F(x) is true in J∀ 1 (because the domain of J1 consists

only of those elements, which are interpretations of terms from the set HUF).

c) Hence, the formula xF(x) is false in J∃ 1.

This contradicts the logical validity of xF(x).∃
Q.E.D.

Exercise 5.6.2. Repeat the above proof, proving a more general form of
Herbrand's Theorem:

Theorem 5.6.2 (Herbrand's Theorem – the simplest case). Let L be a predicate
language, containing at least one object constant, and let F(x1, ..., xm) be a

quantifier-free formula containing only m free variables x1, ..., xm. The

formula x∃ 1... x∃ mF(x1, ..., xm) is logically valid, if and only if there is a finite

217

set of m-tuples tt1, ..., ttn of terms from HUF such that the disjunction

F (tt1)∨...∨F (tt n) is logically valid.

As you verified it in the Exercise 4.1.1, any formula G is logically valid, if and
only if ¬G is unsatisfiable. Thus, x∃ 1... x∃ mF(x1, ..., xm) is logically valid, if

and only if x∀ 1... x∀ m¬F(x1, ..., xm) is unsatisfiable. On the other hand,

F (tt1)∨...∨F (tt n) is logically valid, if and only if
¬ F (tt1)∧...∧¬ F (ttn) is unsatisfiable. Now, let us replace F by ¬F, and we

have proved

Theorem 5.6.3 (Herbrand's Theorem – a more useful alternative form). Let L
be a predicate language, containing at least one object constant, and let
F(x1, ..., xm) be a quantifier-free formula containing only m free variables

x1, ..., xm. The formula x∀ 1... x∀ mF(x1, ..., xm) is unsatisfiable (i.e.

inconsistent in the classical logic), if and only if there is a finite set of m-
tuples tt1, ..., ttn of terms from HUF such that the conjunction

¬ F (tt1)∧...∧¬ F (ttn) is unsatisfiable (i.e. inconsistent in the classical
logic).

Note. As you verified it in the Exercise 4.3.6, a set of formulas is inconsistent
in the classical logic, if and only if it is unsatisfiable.

Why is this form "more useful"? Let us try applying this form of Herbrand's
Theorem to sets of formulas in clause form.

1) The "meaning"of any set of closed formulas F1, ... , Fk is represented by

their conjunction F1∧...∧F k .

2) A clause is any disjunction of atomic formulas or their negations. For
example, ¬ p(c1)∨p (c2)∨q (x , f (y)) , or p (x)∨¬ q(y , f (z)) . The
"meaning" of a set of clauses is represented by their universally quantified
conjunction. For example,

 ∀x∀y∀ z ([¬ p (c1)∨ p(c2)∨q(x , f (y))]∧[p(x)∨¬ q (y , f (z))]) .

3) As we know from the previous Section 5.4, the set F1, ... Fk can be reduced

to a clause from, i.e. there is a set of clauses S such that F1, ... , Fk is

unsatisfiable, if and only if S is unsatisfiable.

Now, let us apply the above form of Herbrand's Theorem (Theorem 5.6.3). If S
contains m variables (of course, all of them are universally quantified), then S
is unsatisfiable, if and only if there is a finite set of m-tuples tt1, ..., ttn of terms

from HUS such that the conjunction S (tt1)∧...∧S (ttn) is unsatisfiable.

218

If we take a clause from S, and substitute some terms from HUS for all its

variables, then we obtain a (so-called) ground clause of S. For example, if

S = { ¬ p(c1)∨p (c2)∨q(x , f (y)) ; p (x)∨¬ q(y , f (z)) },

then the substitution { c1 / x; c2 / y; f(c2) / z } yields the following two ground

clauses:

¬ p(c1)∨ p (c2)∨q (f (c1) , f (c2)) ,

p (c1)∨¬ q (c2, f (f (c2))) .

Of course, the conjunction S (tt1)∧...∧S (tt n) is a set of ground clauses.
Thus, if S is unsatisfiable, then there is an unsatisfiable finite set of ground
clauses of S. And conversely?

If there is an unsatisfiable finite set C = {C1, ..., Cn} of ground clauses of S,

then each Ci is generated by some substitution, which can be represented as an

m-tuple tti of terms from HUS. If {C1, ..., Cn} is unsatisfiable, then {S(tt1), ...,

S(ttn)} – as a super-set of the former, is unsatisfiable, too ("even more

unsatisfiable").

Now, if S would be satisfiable, then (because all the variables of S are meant
universally quantified) so would be the formula S (tt1)∧...∧S (tt n) .
Contradiction.

Thus, we have proved another form of Herbrand's Theorem.

Theorem 5.6.4 (Herbrand's Theorem – the most useful form. Author – Herbert
B.Enderton?). Let L be a predicate language, containing at least one object
constant, and let F1, ..., Fk be a set of closed formulas in L. Then this set is

unsatisfiable, if and only if its clause form allows an unsatisfiable finite set
of ground clauses.

Why is this form "the most useful"? Because (let us ignore performance
problems),

a) The clause form of F1, ..., Fk is a finite set S, generated by a simple (but a

very slow) algorithm (see Sections 5.1-5.4).

b) Herbrand's universe HUS is a finite or infinite set of constant terms,

generated by a simple algorithm (see Exercise 5.6.1).

c) Thus, all the possible finite sets of ground clauses of S can be generated by
a simple combination of the above two algorithms.

d) Unsatisfiability of each finite set of ground clauses can be detected by a
simple (but a very slow) algorithm (see Lemma 5.6.5 below).

http://en.wikipedia.org/wiki/Herbert_Enderton
http://en.wikipedia.org/wiki/Herbert_Enderton

219

Thus, we have here a simple algorithm (but a very slow one) for checking
provability in the classical predicate logic.

Lemma 5.6.5. A finite set of ground clauses is unsatisfiable, if and only if the
conjunction of these clauses is unsatisfiable under the classical truth tables.

Proof. In the above example of ground clauses:

¬ p(c1)∨p (c2)∨q(f (c1) , f (c2)) ,

p (c1)∨¬ q (c2, f (f (c2))) ,

we have 5 different atoms: p(c1), p(c2), q(f(c1), f(c2)), q(c2, f(f(c2))). Let us

denote these atoms by Q1, Q2, Q3, Q4. Thus we obtain the following

propositional formula

(¬Q1∨Q2∨Q3)∧(Q1∨¬ Q4) .

1. If this formula cannot be satisfied under the classical truth tables, then we
cannot assign truth values to predicates p, q in a way making all the
corresponding clauses true. I.e. then the corresponding set of ground clauses
also cannot be satisfied. Q.E.D.

2. If this formula can be satisfied under the classical truth tables, then we can
find a truth value assignement making it true, for example:

Q1=false (this makes the first disjunction true),

Q4=false (this makes the second disjunction true).

Now, we can define the following interpretation J making the corresponding
ground clauses true:

DJ = { c1, c2, f(c1), f(c2), f(f(c2) } (the set of all terms appearing in the clauses,

i.e. a subset of the Herbrand universe);

p(c1)=false, q(c2, f(f(c2))=false (these assignements make both ground clauses

true).

All the other truth values are irrelevant, so, we can define them, for example,
as follows:

p(c2)=true, p(f(c1))=true, p(f(c2))=true, p(f(f(c2))=true;

q(x, y)=true, if x is not c2, or y is not f(f(c2).

Q.E.D.

...

To be continued.

220

...

Further reading:

Michael Genesereth. Computational Logic (see at

http://logic.stanford.edu/classes/cs157/2005fall/cs157.html).

5.7. Resolution Method for Predicate Formulas

Warning! The principal results of this Section are valid only for the classical
logic!

If we are interested only in deriving contradictions from inconsistent sets of
formulas, then we can note that a set of closed predicate formulas is
inconsistent (i.e. allows deriving a contradiction in the classical logic), if and
only if the conjunction of these formulas is unsatisfiable (Exercise 4.3.6).
Thus, instead of the initial set, we can analyze the set of clause forms of these
formulas. Indeed, if we derive a contradiction from the set of clause forms,
then this set is unsatisfiable, i.e., by Theorem 5.4.2, so is the initial set, and
hence, the initial set is inconsistent. And conversely, if the initial set of
formulas is consistent, then it is satisfiable, i.e. so is the set of clause forms,
i.e. we will be not able to derive a contradiction from it.

The next step forward – in clause forms, we can drop all the universal
quantifiers. Indeed, if we derive a contradiction from a set universally
quantified clause forms, then we can derive it from the corresponding non-
quantified set (we can apply the Gen inference rule F(x) xF(x) to obtain the⊢∀
quantified forms from the non-quantified ones). And conversely, if we derive a
contradiction from a set of non-quantified clause forms, then we can derive it
from the corresponding universally quantified set (apply the Axiom L12:

xF(x) → F(x) to obtain non-quantified forms from the quantified ones).∀
After dropping quantifiers, sets of clause forms become simply sets of clauses
(conjunction of conjunctions is equivalent to a "joint" conjunction).

Thus, we can concentrate on sets of clauses that do not contain quantifiers, like
as the one obtained in Section 5.4:

→ g (u1)> u1 ,
→ g (u2)> 1 ,

y> 1, z> 1, g (u3)= y∗z → .

Note that clauses consist of atomic formulas only, and no two clauses

http://logic.stanford.edu/classes/cs157/2005fall/cs157.html

221

contain common variables. Thus, clauses are completely separated, and this
separation will greatly simplify processing of clauses by means of substitution
(see below).

Will the Robinson's Resolution rule remain a universal tool for deriving
contradictions also from inconsistent sets of predicate formulas (i.e. sets of
non-quantified clauses, consisting of atomic formulas)?

Let us imagine, we have derived the following two formulas (p is a unary
predicate constant, 0 – an object constant):

p (x1)∨F (x1 , y1) , ¬ p(0)∨G (x2 , y2) .

To apply the Robinson's Resolution rule, we must first, in p(x1), substitute 0

for x1:

p (0)∨F (0, y1) , ¬ p(0)∨G (x2 , y2) .

Now, we can apply the Resolution rule, obtaining the formula

F (0, y1)∨G(x2 , y2) .

Surprisingly, this simple idea of "unification by substitution" is sufficient to
make Robinson's Resolution rule a universal tool for deriving contradictions
also from inconsistent sets of predicate formulas! And, in general, the
necessary substitutions are not much more complicated than in the above
simplest example.

Note. In fact, unification is a very general phenomenon in human and computer reasoning – it
appears as one of the main components in deductive, inductive and analogical reasoning as
well. More – at the end of this Section.

The substitution rule allows, in some clause C, replacing of all occurrences of
some variable x by any term t.

Theorem 5.7.1 (J. A. Robinson). In the classical predicate logic [L1-L11, L12-

L15, MP, Gen], a set of predicate clauses is inconsistent, if and only if

Robinson's Resolution rule (together with permutation, reduction and
substitution rules) allows deriving a contradiction from it.

Note. In some other texts, this fact is called "the refutation-completeness of
the Resolution rule".

Proof. 1. All the formulas, derived from a set of clauses K1, K2, ... , Ks by

using permutation, reduction, substitution and Resolution rules, are
consequences of K1, K2, ... , Ks. Hence, if these rules allow deriving a

contradiction from this set of clauses, then it (the set) is inconsistent.

2. Now, let us assume that the set of clauses S = {K1, K2, ... , Ks} is

222

inconsistent. Then it is unsatisfiable (Exercise 4.3.6). And then, by Herbrand's
Theorem, it allows a finite unsatisfiable set of ground clauses C1, ..., Cn. Each

Ci of these ground clauses is obtained from some clause in S by means of

some substitution subi (of terms from the Herbrand universe HUS), i.e. by

applying the substitution rule.

By Lemma 5.6.5, the set C1, ..., Cn is unsatisfiable, if and only if the

conjunction C1∧...∧C n is unsatisfiable under the classical truth tables, i.e.,
if and only if the set C1, ..., Cn is inconsistent. And, by Theorem 5.5.1, a finite

set of propositional clauses is inconsistent; if and only if Robinson's
Resolution rule (together with permutation and reduction rules) allows
deriving a contradiction from it.

Q.E.D.

Refinements – Step 1 (First of the Two Smart Ideas)

Let us examine once more the part two of the proof of Theorem 5.7.1, where a
specific (hopeless!) "proof strategy" is used.

First, since two clauses Ki do not contain common variables, we can think that

each of the substitutions subj is applied to a single clause, i.e. we can think, in

fact, of a (finite) set of substitutions subij, where each subij is applied only to

the clause Ki. Let us denote by F.sub the result of application of the

substitution sub to the formula F.

Second, to derive a contradiction from {K1, K2, ... , Ks}, we may apply, first,

all the necessary substitutions (stage 1 – substitutions only!), and, after this,
all the necessary permutations, reductions and resolutions (stage 2 – no more
substitutions!). This is exactly the above-mentioned specific (hopeless!) "proof
strategy". Why hopeless? Because, before applying the substitutions subij, we

must find them among all the possible substitutions of terms from the
infinite set HUS. This is a performance problem that does not affect our above

theoretical considerations, but could make their result useless. The smart ideas
#1 and #2 introduced below, allow to restrict the substitution search space
considerably.

Imagine one of the resolutions of stage 2, where C1 is an atomic formula:

F1∨C1 ,¬C 1∨G1

F 1∨G1
.

If both premises F1∨C1 , ¬C1∨G1 are coming directly from stage 1, then
they have been obtained from some initial clauses F∨C , ¬ D∨G by two

223

substitutions sub1 and sub2 such that:

F1 is F.sub1, C1 is C.sub1, ¬C1 is ¬D.sub2, G1 is G.sub2.

We can call such pair of substitutions a unifier, because C.sub1 and D.sub2
represent the same atomic formula (compare the example before the text of
Theorem 5.7.1).

If one (or both) of the premises does not come directly from stage 1, then it is
either an initial clause, or the result of a previous resolution. By putting an
empty substitution (which does no change formulas) instead of sub1 or sub2
(or both) we can still think of the premises as obtained by a unification.

And, finally, if, to derive a contradiction B, ¬B from K1, K2, ... , Ks, we do not

need resolution at all, then we need, nevertheless, unifying substitutions,
converting two clauses B1 and ¬B2 into B and ¬B.

Thus (smart idea #1), to derive contradictions, we can do with one specific
kind of the substitution rule – the unification rule:

a) Take two clauses, mark a positive atom C in the first clause, and a negative
atom ¬D in the second one. Thus, we are considering two clauses: F∨C
and ¬ D∨G .

b) Try to find two substitutions sub1 and sub2 such that C.sub1 and D.sub2
represent the same atom C1. And you do not need to introduce variables of the

other clauses! If you succeed, you have obtained two clauses:
F1∨C1 ,¬C1∨G1 , where C1 is C.sub1 (=D.sub2), F1 is F.sub1 and G1 is

G.sub2. Since clauses do not contain common variables, the union

sub1∪sub2 is a substitution (a unifier of C and D).

c) Apply resolution, obtaining the clause F1∨G1 .

We have proved the following refined version of Theorem 5.7.1:

Theorem 5.7.2 (J.A.Robinson). In the classical predicate logic [L1-L11, L12-

L15, MP, Gen], a set of predicate clauses is inconsistent; if and only if

Robinson's Resolution rule (together with permutation, reduction and
unification rules) allows deriving a contradiction from it.

Why is this refinement important? Because now, instead of trying out all the
possible substitutions (of terms from HUS for clause variables), we can

concentrate on substitutions that unify two clauses. This allows to restrict the
substitution search space considerably.

Refinements – Step 2 (Second of the Two Smart Ideas)

224

Substitution "Algebra"

In general, each substitution involves a list of distinct variables x1, ..., xk and a

list of terms t1, ...,tk. All occurrences of the variable xi are replaced by the term

ti. Thus, this operation can be most naturally represented by the set of pairs { t1
/ x1, ..., tk / xk }. The order of pairs ti / xi is irrelevant because of the following

"anti-cascading" condition: the new occurrences of the variables x1, ..., xk
created by the substitution, are not replaced. The result of application of some
substitution sub to some expression (term or formula) F, is usually denoted by
F.sub.

For example, if F is p(x, f(y)) and sub = { f(z) / x, z / y }, then F.sub is p(f(z),
f(z)).

The empty set of pairs {} represents the so-called empty substitution. Of
course, F.{} = F, for any expression F.

If the variable sets of two substitutions sub1 and sub2 do not intersect, and the

terms of sub1 do not contain the variables of sub2, and the terms of sub2 do not

contain the variables of sub1, then the union sub1∪sub2 (of two sets of

pairs) defines a substitution.

Still, the most important operation on substitutions is composition. If sub1 and

sub2 are two substitutions, then sub1.sub2 denotes the composed substitution

"apply first sub1, and after this, apply sub2". For example, if sub1 = { f(z) / x, z

/ y } and sub2 = { f(w) / z }, then

sub1.sub2 = { f(f(w)) / x, f(w) / y, f(w) / z }.

Exercise 5.7.2. a) Verify that the substitution composition is associative and
non-commutative (provide a counter-example), and that the empty substitution
is the only "unit element" (i.e. {}.sub = sub.{} = sub for any substitution sub).
b) Is there any algebraic correlation between composition and union of
substitutions?

Most General Unifiers

How do behave unifiers in the substitution "algebra"? Assume, sub1 and sub2
are two different unifiers of the same pair of expressions F and G. I.e.

F.sub1 = G.sub1, F.sub2 = G.sub2.

If there would be a substitution sub such that sub2=sub1.sub, then we could

say that sub1 is a no less general unifier than sub2. For example, let us try to

225

unify the first members of the following two formulas:

p (x1)∨F (x1 , y1) , ¬ p(f (x2))∨G(x2, y2) .

It would be natural to use the substitution sub1 = { f(z) / x1, z / x2 }, obtaining

p (f (z))∨F (f (z) , y1) , ¬ p(f (z))∨G(z , y2) .

But, in principle, one could use also the substitution sub2 = { f(f(z)) / x1, f(z) /

x2 }, obtaining

p (f (f (z)))∨F (f (f (z)) , y1) , ¬ p(f (f (z)))∨G(f (z) , y2) .

Of course, sub1 is "better", because sub2 = sub1.{ f(z) / z }. Why? If our

purpose was unifying p(x1) with p(f(x2)), then sub1 performs this (as well as

sub2), but it "leaves more space" for subsequent substitutions (than sub2).

Indeed, to continue after sub1, instead of sub2 = sub1.{ f(z) / z }, we can

choose also sub3 = sub1.{ g(z) / z } etc. Thus, using a more general unifier is

preferable.

So, let us call a unifier sub of two expressions F and G a most general unifier
(mgu) of F and G, if and only if it is no less general than any other unifier of F
and G (i.e. if and only if, for any other unifier sub' of F and G, there is a
substitution sub'' such that sub' = sub.sub'').

Lemma 5.7.3. If two expressions lists FF and GG are unifiable, then there
exists an mgu of FF and GG.

Proof (long, but easy). Let us define the total length of an expression list as
follows: a) (atomic expressions) the total length of a constant or of a variable
is 1, b) the total length of the expression list e1, ..., en is the sum of the total

lengths of the members e1, ..., en, c) (composite expressions) the total length of

the expression f(t1, ..., tn) (where f is function constant or predicate constant),

is the total length of the expression list t1, ..., tn plus 1.

Let us prove our Lemma by induction using

 min(total_length(FF), total_length(GG))

 as the induction parameter.

1) Induction base. The total length of FF or GG is 1. Let us assume
total_length(FF)=1.

a) FF is a constant c. Then FF and GG are unifiable, if and only if GG is the
same constant c. Then, empty substitution is the only possible mgu (verify).

226

b) FF is a variable x. Then, FF and GG are not unifiable, if: b1) GG is a list of

more than one expression, or, b2) GG is a composite expression that contains x

(then any substitution of t for x makes GG longer than t). And, FF and GG are
unifiable, if and only if GG is a variable, or GG is a composite expression that
does not contain x.

If GG is the variable x, then the empty substitution is the only possible mgu
(verify).

If GG is a variable y (other than x), then all unifications of FF and GG have
the form { t / x, t / y, ... }, where t is any term. Among them, mgu-s are { z / x,
z / y }, where z is any variable (verify).

If GG is a composite expression that does not contain x, then all unifications
of FF and GG have the form { GG.sub / x, ... } U sub, where sub is any
substitution that does not substitute for x (verify). Among them, mgu-s are
{ GG.sub / x}U sub, where sub substitutes distinct variables for distinct
variables (verify).

This completes the induction base.

2) Induction step. Assume, min(total_length(FF), total_length(GG))=n, where
n>1. If FF and GG are unifiable, then, as lists, they contain the same number
of members.

2a) FF and GG contain are single expressions. Since min(total_length(FF),
total_length(GG))>1, both are composite expressions – suppose, FF is f(s1, ...,

sm) (where f is function constant or predicate constant, and s1, ..., sm are

terms), and GG is g(t1, ..., tn) (where g is function constant or predicate

constant, and t1, ..., tn are terms). FF and GG are unifiable, if and only if a) f

and g represent the same constant, and b) the lists s1, ..., sm and t1, ..., tn are

unifiable. Thus, the unifiers of FF and GG coincide with the unifiers of lists.
Since min(total_length(s1, ..., sm), total_length(t1, ..., tn))<n, by the induction

assumption, Lemma 5.7.3 holds for the lists, i.e. it holds also for FF and GG.

2b) FF and GG contain two or more members. If FF and GG are unifiable,
then so are their first members ("heads") F1 and G1. Let us denote by FF2 and

GG2 the rests of lists ("tails"). Since min(total_length(F1),

total_length(G1))<n, by the induction assumption, there exists at least one mgu

of F1 and G1. The same is true also for FF2 and GG2.

Let us denote by mgu1 an arbitrary mgu of F1 and G1

Now, let us consider an arbitrary unifier u of FF and GG. It must unify also F1

227

with G1, and FF2 with GG2. Hence, u = mgu1.sub1, where sub1 is some

substitution. We know that F1.mgu1 = G1.mgu1.

But what about FF2.mgu1 and GG2.mgu1? Let us apply sub1 to both:

FF2.mgu1.sub1 = FF2.u

GG2.mgu1.sub1 = GG2.u

Since u unifies FF2 with GG2,

FF2.mgu1.sub1 = GG2.mgu1.sub1,

i.e. sub1 unifies FF2.mgu1 with GG2.mgu1. Let us denote by mgu12 an

arbitrary mgu of FF2.mgu1 and GG2.mgu1. Then, sub1 = mgu12.sub12, where

sub12 is some substitution, and

mgu1.mgu12.sub12 = mgu1.sub1=u.

Thus, we have established that for an arbitrary unifier u of FF and GG there is
a substitution sub12 such that mgu1.mgu12.sub12 = u. Of course, the

composition mgu1.mgu12 unifies FF with GG (since it unifies F1 with G1, and

FF2 with GG2). Hence, mgu1.mgu12 is an mgu of FF and GG.

Q.E.D.

Unification Algorithm

How could we determine, can two atomic formulas C and D be unified, or not?
This problem can be solved by the following simple pseudo-code
GetMostGeneralUnifier, which follows the above proof of Lemma 5.7.3, and
where expression lists are defined in the LISP style:

1) Each variable, constant, function constant and predicate constant is an
expression list (consisting of a single member).

2) If s1, ..., sn are expression lists, then the list of s1, ..., sn is an expression list

(consisting of members s1, ..., sn). The first member s1 is called the head of the

list, and the list of s2, ..., sn – the tail of the list.

Thus, instead of, for example, f(t1, .., tn), we use simply the (LISP style) list f,

t1, .., tn. This simplifies the recursion interface.

This program detects, are two expression lists unifiable, or not, and, if they
are, it returns one of their most general unifiers.

228

function GetMostGeneralUnifier (expression_list1, expression_list2)
begin
if length(expression_list1) > 1 and length(expression_list2) > 1 then
begin
--- h1 = head(expression_list1);
--- h2 = head(expression_list2);
--- subH = GetMostGeneralUnifier(h1, h2);
--- if subH = false then return false; {unification impossible}
--- t1 = tail(expression_list1).subH;
--- t2 = tail(expression_list2).subH;
--- subT = GetMostGeneralUnifier(t1, t2);
--- if subT = false then return false; {unification impossible, note that subH is
a mgu!}
--- return subH.SubT; {this composition unifies expression_list1 and
expression_list2}
end
{now, expression_list1, or expression_list2 consists of a single member: m1 or
m2}
if length(expression_list1) = 1 and m1 is variable then
begin
--- if m1 = expression_list2 then return {}; {empty substitution}
--- if m1 occurs in expression_list2 then return false; {unification impossible
– verify!}
--- return {expression_list2 / m1}; {substitute expression_list2 for m1}
end
if length(expression_list2) = 1 and m2 is variable then
begin
--- if m2 = expression_list1 then return {}; {empty substitution}
--- if m2 occurs in expression_list1 then return false; {unification impossible
– verify!}
--- return {expression_list1 / m2}; {substitute expression_list1 for m2}
end
{now, expression_list1, or expression_list2 consists of a single member that is
not variable}
if expression_list1 = expression_list2 then return {}; {empty substitution}
return false; {unification impossible – verify!}
end

Exercise 5.7.3. Verify that this program detects, are two expression lists
unifiable, or not, and, if they are, it returns one of their mgu-s. (Hint: repeat the
proof of Lemma 5.7.3.)

Smart idea #2:

To derive contradictions, we can do with even more specific kind of the

229

unification rule – the mgu-rule:

a) Take two clauses, mark a positive atom C in the first clause, and a negative
atom ¬D in the second one. Thus, we are considering two clauses: FvC and
¬DvG.

b) Try to find any mgu of C and D. If you succeed, you have obtained two
clauses: F.mgu∨C1 ,¬ C1∨G.mgu , where C1 is C.mgu (=D.mgu).

c) Apply resolution, obtaining the clause F.mgu∨G.mgu .

Theorem 5.7.4 (J. A. Robinson). In the classical predicate logic [L1-L11, L12-

L15, MP, Gen], a set of predicate clauses is inconsistent; if and only if

Robinson's Resolution rule (together with permutation, reduction and mgu-
rules) allows deriving a contradiction from it.

Why is this (second!) refinement important? Because now, instead of trying
out all the possible unifications, we can concentrate on mgu-s that unify two
clauses. This allows to further restrict the substitution search space (when
compared with Theorem 5.7.2).

The hard part of the proof is inventing of the following

Lemma 5.7.5. Any proof K1, K2, ... , Ks K (all K-s are clauses), where only⊢

permutation, reduction, substitution and Resolution rules are used, can be
converted into a proof K1, K2, ... , Ks K' such that: a) in the proof, only⊢

permutation, reduction, mgu and Resolution rules are used; b) K can be
obtained from K' by a single (possibly empty) substitution, followed by a
chain of permutations and reductions.

Proof of Theorem 5.7.4. Assume, the set of clauses K1, K2, ... , Ks is

inconsistent. Then, by Theorem 5.7.1, there are two proofs K1, K2, ... , Ks B,⊢

K1, K2, ... , Ks ¬B, where where only permutation, reduction, ⊢ substitution

and Resolution rules are used. From clauses, these rules allow deriving only of
clauses. Hence, B is an atomic formula.

By Lemma 5.7.5, both proofs can be converted into proofs K1, K2, ... , Ks ⊢

B1, K1, K2, ... , Ks ¬B⊢ 2 such that: a) in the proofs, only permutation,

reduction, mgu and Resolution rules are used; b1) B can be obtained from B1
by a single (possibly empty) substitution (permutations and reductions do not
apply to atomic formulas), b2) B can be obtained from B2 by a single (possibly

empty) substitution.

Thus, B1 and B2 are unifiable. Let us take their mgu, and apply it. As the

230

result, we obtain a contradiction B', ¬B', where B' is B1.mgu (= B2.mgu). And

we have obtained this contradiction from the clauses K1, K2, ... , Ks by using

only permutation, reduction, mgu- and Resolution rules. Q.E.D.

Proof Lemma 5.7.5.. Induction by the "height of the resolution tree" (see
below).

1. Induction base – no resolutions applied in the proof K1, K2, ... , Ks K.⊢

Then K is obtained from some Ki by a chain of permutations, reductions and

substitutions. Add to this fact an "empty" proof K1, K2, ... , Ks K⊢ i. And let us

compose all the substitutions into a single substitution. Q.E.D.

2. Induction step. Assume, we have the proof K1, K2, ... , Ks K, containing at⊢

least one resolution. Imagine the last resolution in this proof (C is an atomic
formula):

F∨C ,¬C∨G
F∨G

.

Then K is obtained from the formula F∨G by a chain of permutations,
reductions and substitutions.

The proofs of the formulas F∨C , ¬C∨G possess a "height of the
resolution tree" less than the one of the proof K1, K2, ... , Ks K. Thus, by⊢

induction assumption, we can convert these proofs into permutation-reduction-
mgu-resolution proofs of some formulas F1∨C1∨F 2 , G1∨¬ C2∨G 2 such
that:

a) F∨C can be obtained from F1∨C1∨F 2 by a single (possibly empty)
substitution sub1, followed by a chain of permutations and reductions. Under

sub1, the atomic formula C1 is converted into C.

b) ¬C∨G can be obtained from G1∨¬ C2∨G 2 by a single (possibly
empty) substitution sub2, followed by a chain of permutations and reductions.

Under sub2, the atomic formula C2 is converted into C.

Since the clauses F1∨C1∨F 2 , G1∨¬ C2∨G 2 do not contain common
variables, the substitutions sub1 and sub2 do not intersect, hence, their union

sub1Usub2 is a substitution sub (a unifier of C1 and C2) such that:

a1) F can be obtained from (F 1∨F 2) .sub by a chain of permutations and

reductions.

b1) G can be obtained from (G1∨G2) . sub by a chain of permutations and

231

reductions.

As we know from the above, the atomic formulas C1 and C2 are unifiable. Let

us take their mgu, and apply it to the formulas F1∨C1∨F 2 , G1∨¬ C2∨G2 .
Let us denote by C' the formula C1.mgu (it is equal to C2.mgu). Thus, we have

two formulas F1.mgu v C' v F2.mgu and G1.mgu v ¬C' v G2.mgu, and, by

permutation and resolution, we can obtain the formula

(F 1∨F 2) . mgu∨(G1∨G2) . mgu .

Thus, for the formula (F 1∨F2). mgu∨(G 1∨G2). mgu , we have a
permutation-reduction-mgu-resolution proof. It remains to show that, from
this formula, F∨G can be obtained by a single substitution, followed by a
chain of permutations and reductions.

Since the substitution sub is a unifier of C1 and C2, then, by the definition of

mgu, sub=mgu.sub', where sub' is some substitution. Hence,

a2) F can be obtained from (F 1∨F 2) . mgu by the substitution sub', followed

by a chain of permutations and reductions.

b2) G can be obtained from (G1∨G 2) . mgu by the substitution sub', followed

by a chain of permutations and reductions.

Thus, F∨G can be obtained from (F 1∨F2). mgu∨(G 1∨G2). mgu by the
substitution sub', followed by a chain of permutations and reductions. Q.E.D.

Warning!

Despite its beauty, the resolution method cannot overcome the general
complexity problem, mentioned at the end of Section 4.3: by Church-Kalmar
Theorem, in the classical predicate logic, the task of reasoning is not
algorithmically solvable. And a closer analysis shows that all computer
programs implementing resolution method run into loop in many situations,
when the formula to be proved is, in fact, unprovable. But in many practical
situations, experience shows that resolution method solves its task, and – in
acceptable time. In particular, Prolog interpreters are using resolution, and are
solving many practical tasks in acceptable time!

Further reading:

Logic. Part 2 by Giorgio Ingargiola

Rajjan Shinghal. Formal Concepts in Artificial Intelligence. Fundamentals.
Chapman&Hall, 1992, 666 pp.

Handbook of Automated Reasoning, ed. by J. A. Robinson and A. Voronkov,

http://www.voronkov.com/
http://www.cis.temple.edu/~ingargio/
http://www.cis.temple.edu/~ingargio/cis587/readings/logic2.html
http://en.wikipedia.org/wiki/Prolog

232

Elsevier and MIT Press, 2001, vol. I, II.

Larry Wos's home page

About the ubiquity of the above-mentioned unification operation in human and
computer reasoning:

John F. Sowa, Arun K. Majumdar. Analogical Reasoning. In: Conceptual
Structures for Knowledge Creation and Communication, Proceedings of ICCS
2003, LNAI 2746, Springer-Verlag, Berlin, 2003, pp. 16-36. (available online).

http://www.jfsowa.com/pubs/analog.htm
http://www.jfsowa.com/pubs/index.htm
http://www-unix.mcs.anl.gov/~wos/

233

6. Miscellaneous

6.1. Negation as Contradiction or Absurdity

The idea behind this approach is as follows: let us define ¬B (i.e. "B is false")
as "B implies absurdity". So, let us add to our first order language a predicate
constant f (meaning "false", or "absurdity"), and let us replace all negation
expressions ¬F by F→f. Then, the three negation axioms will take the
following forms:

L9: (B→C)→((B→¬C)→¬B),

L9': (B→C)→((B→(C→f))→(B→f)),

L10: ¬B→(B→C),

L10': (B→f)→(B→C),

L11: B∨¬ B ,

L11': B∨(B → f) .

After this, surprisingly, the axiom L9' becomes derivable from L1-L2! Indeed,

(1) B→C Hypothesis.

(2) B→(C→f) Hypothesis.

(3) B Hypothesis.

(4) C→f By MP, from (2) and (3)

(5) C By MP, from (1) and (3)

(6) f By MP, from (4) and (5)

Hence, by Deduction Theorem 1,

 [L1, L2, MP] (B→C)→((B→(C→f))→(B→f)).⊢

Second observation. The axiom L10': (B→f)→(B→C) can be replaced simply

by f→C. Indeed, if we assume f→C, then L10' becomes derivable:

234

(1) B→f Hypothesis.

(2) B Hypothesis.

(3) f By MP, from (1) and (2)

(4) f→C f→C

(5) C By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, f→C, MP] (B→f)→(B→C).⊢

Third observation. As we know from Theorem 2.4.9: [L1, L2, L9, MP] ⊢

¬B→(B→¬C), in the minimal logic we can prove 50% of L10: "Contradiction

implies that all is wrong". After our replacing negations by B→f the formula
(B→f)→(B→(C→f) becomes derivable from L1-L2. Indeed,

(1) B→f Hypothesis.

(2) B Hypothesis.

(3) f By MP, from (1) and (2)

(4) f→(C→f) Axiom L1

(5) C→f By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, MP] (B→f)→(B→(C→f)).⊢

Thus, we see that L1 (and not L9!) is responsible for the provability of the 50%

"crazy" formula ¬B→(B→¬C). Is L1 50% as "crazy" as L10? Yes! Let us

compare:

L10: ¬B→(B→C) states that "Contradiction implies anything".

L1: B→(C→B) states that "If B is true, then B follows from anything".

Let us remind our "argument" in favour of L10 in Section 1.3: "...we do not

need to know, were C "true" or not, if ¬B and B were "true" simultaneously.
By assuming that "if ¬B and B were true simultaneously, then anything were
true" we greatly simplify our logical apparatus."

Now, similarly: if B is (unconditionally) true, then we do not need to know,
follows B from C or not. By assuming that "if B is true, then B follows from
anything" we greatly simplify our logical apparatus.

235

In a sense, the axiom L9 "defines" the negation of the minimal logic, the

axioms L9 and L10 "define" the negation of the constructive logic, and L9-L11
"define" the negation of the classical logic. Is our definition of ¬B as B→f
equivalent to these "definitions"? Yes!

Theorem 6.1.1. For any formula F, let us denote by F' the formula obtained
from F by replacing all sub-formulas ¬G by G→f. Then, for any formulas
B1, ..., Bn, C:

[L1-L9, MP]: B1, ..., Bn C, if and only if [L⊢ 1-L8, MP]: B'1, ..., B'n C'.⊢

Proof.

1) →.

Let us consider a proof of [L1-L9, MP]: B1, ..., Bn C. In this proof:⊢

− let us replace each formula G by its "translation" G',

− before each instance of L9, let us insert a proof of the corresponding instance

of L'9 in [L1, L2, MP] (see above).

In this way we obtain a proof of [L1-L8, MP]: B'1, ..., B'n C'. Indeed,⊢

a) If some formula B is an instance of L1-L8, then B' is an instance of the same

axiom (verify!).

b) (B→D)' is B'→D', hence, if the initial proof contains a conclusion by MP
from B and B→D to D, then, in the derived proof, it is converted into a
conclusion by MP from B' and B'→D' to D'.

c) If the initial proof contains an instance of L9, then the derived proof

contains the corresponding instance of L'9 preceded by its proof in [L1, L2,

MP].

Q.E.D.

2) ←.

Let us remind the above translation operation: for any formula F, we denoted
by F' the formula obtained from F by replacing all sub-formulas ¬G by G→f.
Now, let us introduce a kind of a converse operation – the re-translation
operation: for any formula F, let us denote by F" the formula obtained from F:
a) by replacing all sub-formulas G→f by ¬G, and after this, b) by replacing all
the remaining f's (f means "false"!) by ¬(a→a), where a is some closed
formula of the language considered.

Of course, for any formula F, (F')" is F (verify).

236

Note. Replacing f by a formula preceded by negation, is crucial – it will allow
applying of Theorem 2.4.9: [L1-L9, MP]: ¬B→(B→¬C) instead of the Axiom

L10: ¬B→(B→C).

Now, let us consider a proof of [L1-L8, MP]: B'1, ..., B'n C'. In this proof, let⊢

us replace each formula G by its re-translation G". Then C' becomes C, and
B'1, ..., B'n become B1, ..., Bn, but what about the remaining formulas

contained in the proof?

a) Instances of the axioms L1-L8.

L1: B→(C→B)

If B is not f, then (B→(C→B))" is B"→(C"→B"), i.e. re-translation yields
again an instance of L1.

If B is f, then (f→(C→f))" is ¬(a→a)→¬C". This formula is provable in [L1-

L9, MP]. Indeed,

(1) ¬(a→a) Hypothesis.

(2) ¬(a→a)→((a→a)→¬C")⊢ Theorem 2.4.9, [L1-L9, MP].

(3) a→a⊢ Theorem 1.4.1 [L1-L2, MP].

(4) ¬C" By MP, from (1), (2) and (3).

Thus, re-translation of any instance of L1 is provable in [L1-L9, MP].

L2: (B→(C→D))→((B→C)→(B→D))

If C and D are not f, then re-translation yields again an instance of L2.

If C is f, and D is not, then re-translation yields

 (B"→(¬(a→a)→D"))→(¬B"→(B"→D")).

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→(¬(a→a)→D") Hypothesis.

(2) ¬B" Hypothesis.

(3) B" Hypothesis.

(4) ¬(a→a)→D" By MP, from (1) and (3).

237

(5) ¬B"→(B"→¬(a→a))⊢ Theorem 2.4.9 [L1-L9, MP].

(6) ¬(a→a) By MP, from (2), (3) and (5).

(7) D" By MP, from (4) and (6).

Hence, by Deduction Theorem 1,

 [L1-L9, MP] (B"→(¬(a→a)→D"))→(¬B"→(B"→D")).⊢

If D is f, and C is not, then re-translation yields

 (B"→¬C")→((B"→C")→¬B").

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→¬C" Hypothesis.

(2) B"→C" Hypothesis.

(3) ¬B" By MP, from Axiom L9.

Hence, by Deduction Theorem 1,

 [L1-L9, MP] (B"→¬C")→((B"→C")→¬B").⊢

If C and D both are f, then re-translation yields

 (B"→¬¬(a→a))→(¬B"→¬B").

 This formula is provable in [L1-L9, MP]. Indeed,

(1) ¬B"→¬B"⊢ Theorem 1.4.1 [L1-L2, MP].

(2)
 ⊢

(¬B"→¬B")→(X→(¬B"→¬B"
))

Axiom L1, X is B"→¬¬(a→a).

(3) X→(¬B"→¬B")⊢ By MP, X is B"→¬¬(a→a).

Thus, re-translation of any instance of L2 is provable in [L1-L9, MP].

L3: B∧C → B

If B is not f, then re-translation yields again an instance of L3.

If B is f, then re-translation yields via ¬(f ∧C) the formula
¬(¬(a→ a)∧C) . This formula is provable in [L1-L9, MP]. Indeed,

238

(1) ¬(a →a)∧C →¬(a→ a) Axiom L3.

(2) ¬¬(a →a)→¬(¬(a→ a)∧C)
From (1), by the Contraposition
Law.

(3) (a→a)→¬¬(a→a)
Theorem 2.4.4: [L1, L2, L9, MP] ⊢
A→¬¬A

(4) a→a Theorem 1.4.1 [L1-L2, MP].

(5) ¬(¬(a→ a)∧C) By MP, from (3), (4) and (2).

Thus, re-translation of any instance of L3 is provable in [L1-L9, MP].

L4: B∧C →C

Similarly to L3 – re-translation of any instance of L4 is provable in [L1-L9,

MP].

L5: B →(C → B∧C)

Re-translation yields again an instance of L5.

L6: B → B∨C

Re-translation yields again an instance of L6.

L7: C → BvC

Re-translation yields again an instance of L7.

L8: (B → D)→ ((C → D)→ (B∨C → D))

If D is not f, then re-translation yields again an instance of L8.

If D is f, then re-translation yields ¬ B →(¬C →¬(B∨C)) . By Theorem
2.4.10(b), this formula is provable in [L1-L9, MP] .

Thus, re-translation of any instance of L8 is provable in [L1-L9, MP].

Hence, re-translations of all (i.e. L1-L8) axiom instances are provable in [L1-

L9, MP]. What about applications of MP in the initial proof? If the initial proof

contains a conclusion by MP from B and B→D to D, then the following
situations are possible:

a) If B and D are not f, then, in the derived proof, this conclusion is converted
into a conclusion by MP from B" and B"→D" to D".

239

b) If B is f, and D is not, then, in the derived proof, this conclusion is
converted into a conclusion by MP from ¬(a→a) and ¬(a→a)→D" to D".

c) If D is f, and B is not, then, in the derived proof, this conclusion is
converted into three formulas: B", ¬B", ¬(a→a). To derive ¬(a→a) from B"
and ¬B", we can use MP and Theorem 2.4.9:

 [L1-L9, MP] ¬B"→(B"→¬(a→a)).⊢

d) If B and D are both f, then, in the derived proof, this conclusion is
converted into three formulas: ¬(a→a), ¬¬(a→a), ¬(a→a). Simply drop the
third formula from the proof.

Thus, the re-translation operation, when applied to all formulas of a proof of
[L1-L8, MP]: B'1, ..., B'n C', yields a sequence of formulas that are provable⊢

in [L1-L9, MP] from hypotheses B1, ..., Bn. Hence, so is C.

Q.E.D.

This completes the proof of Theorem 6.1.1.

Corollary 6.1.2. a) A formula C is provable in the minimal propositional logic
[L1-L9, MP], if and only if [L1-L8, MP] C'.⊢

b) A formula C is provable in the constructive propositional logic [L1-L10,

MP], if and only if [L1-L8, f→B, MP] C'.⊢

c) A formula C is provable in the classical propositional logic [L1-L11, MP], if

and only if [L1-L8, f→B, L'11, MP] C'.⊢

Proof. a) Consider an empty set of hypotheses in Theorem 6.1.1.

b) If [L1-L10, MP] C, then [L⊢ 1-L9, MP]: B1, ..., Bn C, where hypotheses⊢

are instances of the axiom L10. By Theorem 6.1.1,

 [L1-L8, MP]: B'1, ..., B'n C'.⊢

 As established above, B'1, ..., B'n can be proved by using the axiom schema

f→B, i.e. [L1-L8, f→B, MP] C'. Q.E.D.⊢

Now, if [L1-L8, f→B, MP] C', then, ⊢

c) If [L1-L11, MP] C, then [L⊢ 1-L9, MP]: B1, ..., Bn C, where hypotheses⊢

are instances of the axioms L10 and L11. Return to case (b). Q.E.D.

Corollary 6.1.3. a) A formula C is provable in the minimal predicate logic
[L1-L9, L12-L15, MP, Gen], if and only if [L1-L8, L12-L15, MP, Gen] C'.⊢

240

b) A formula C is provable in the constructive predicate logic [L1-L10, L12-

L15, MP, Gen], if and only if [L1-L8, f→B, L12-L15, MP, Gen] C'.⊢

c) A formula C is provable in the classical predicate logic [L1-L11, L12-L15,

MP, Gen], if and only if [L1-L8, f→B, L11', L12-L15, MP, Gen] C'.⊢

Exercise 6.1.1. Prove the Corollary 6.1.3.

	References
	1. Introduction. What Is Logic, Really?
	1.1. Total Formalization is Possible!
	1.2. Predicate Languages
	1.3. Axioms of Logic: Minimal System, Constructive System and Classical System
	1.4. The Flavor of Proving Directly
	1.5. Deduction Theorems

	2. Propositional Logic
	2.1. Proving Formulas Containing Implication only
	2.2. Proving Formulas Containing Conjunction
	2.3. Proving Formulas Containing Disjunction
	2.4. Formulas Containing Negation – Minimal Logic
	2.5. Formulas Containing Negation – Constructive Logic
	2.6. Formulas Containing Negation – Classical Logic
	2.7. Constructive Embedding. Glivenko's Theorem
	2.8. Axiom Independence. Using Computers in Mathematical Proofs

	3. Predicate Logic
	3.1. Proving Formulas Containing Quantifiers and Implication only
	3.2. Formulas Containing Negations and a Single Quantifier
	3.3. Proving Formulas Containing Conjunction and Disjunction
	3.4. Replacement Theorems
	3.5. Constructive Embedding

	4. Completeness Theorems (Model Theory)
	4.1. Interpretations and Models
	4.2. Classical Propositional Logic − Truth Tables
	4.3. Classical Predicate Logic − Gödel's Completeness Theorem
	4.4. Constructive Propositional Logic – Kripke Semantics

	5. Normal Forms. Resolution Method
	5.1. Prenex Normal Form
	5.2. Skolem Normal Form
	5.3. Conjunctive and Disjunctive Normal Forms
	5.4. Clause Form
	5.5. Resolution Method for Propositional Formulas
	5.6. Herbrand's Theorem
	5.7. Resolution Method for Predicate Formulas

	6. Miscellaneous
	6.1. Negation as Contradiction or Absurdity

