
1

Version released: August 25, 2014

Introduction to Mathematical 
Logic

 
Hyper-textbook for students

by Vilnis Detlovs, Dr. math.,
and Karlis Podnieks, Dr. math.

University of Latvia

This  work  is  licensed  under  a  Creative  Commons  License and  is 
copyrighted © 2000-2014 by us, Vilnis Detlovs and Karlis Podnieks. 

Sections 1, 2, 3 of this book represent an extended translation of the corresponding 
chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of 
Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs.

Vilnis Detlovs. Memorial Page

In preparation – forever (however, since 2000, used successfully in a real logic course 
for computer science students).

This hyper-textbook contains links to:
Wikipedia, the free encyclopedia;

MacTutor History of Mathematics archive
of the University of St Andrews;

MathWorld of Wolfram Research.

http://foto.lu.lv/arhiivs/1999/i_septembris/slides/45_021.html
http://www.wolfram.com/
http://mathworld.wolfram.com/
http://www.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://en.wikipedia.org/
http://podnieks.id.lv/Detlovs/
http://foto.lu.lv/arhiivs/1999/i_septembris/slides/45_021.html
http://creativecommons.org/licenses/by-nc-sa/1.0
http://www.lu.lv/
http://podnieks.id.lv/
http://creativecommons.org/licenses/by-nc-sa/1.0


2

Table of Contents
References..........................................................................................................3
1. Introduction. What Is Logic, Really?.............................................................4

1.1. Total Formalization is Possible!..............................................................5
1.2. Predicate Languages.............................................................................10
1.3. Axioms of Logic: Minimal System, Constructive System and Classical 
System..........................................................................................................26
1.4. The Flavor of Proving Directly.............................................................38
1.5. Deduction Theorems.............................................................................41

2. Propositional Logic......................................................................................51
2.1. Proving Formulas Containing Implication only...................................51
2.2. Proving Formulas Containing Conjunction..........................................52
2.3. Proving Formulas Containing Disjunction...........................................55
2.4. Formulas Containing Negation – Minimal Logic.................................58
2.5. Formulas Containing Negation – Constructive Logic..........................64
2.6. Formulas Containing Negation – Classical Logic................................66
2.7. Constructive Embedding. Glivenko's Theorem....................................69
2.8. Axiom Independence. Using Computers in Mathematical Proofs........72

3. Predicate Logic.............................................................................................87
3.1. Proving Formulas Containing Quantifiers and Implication only..........87
3.2. Formulas Containing Negations and a Single Quantifier.....................89
3.3. Proving Formulas Containing Conjunction and Disjunction................99
3.4. Replacement Theorems.......................................................................101
3.5. Constructive Embedding.....................................................................107

4. Completeness Theorems (Model Theory)..................................................116
4.1. Interpretations and Models.................................................................116
4.2. Classical Propositional Logic − Truth Tables.....................................129
4.3. Classical Predicate Logic − Gödel's Completeness Theorem.............138
4.4. Constructive Propositional Logic – Kripke Semantics.......................157

5. Normal Forms. Resolution Method............................................................177
5.1. Prenex Normal Form..........................................................................179
5.2. Skolem Normal Form.........................................................................189
5.3. Conjunctive and Disjunctive Normal Forms......................................194
5.4. Clause Form........................................................................................199
5.5. Resolution Method for Propositional Formulas..................................205
5.6. Herbrand's Theorem............................................................................214
5.7. Resolution Method for Predicate Formulas........................................220

6. Miscellaneous.............................................................................................233
6.1. Negation as Contradiction or Absurdity.............................................233



3

References

Hilbert D., Bernays P. [1934] Grundlagen der Mathematik. Vol. I, Berlin, 
1934, 471 pp. (Russian translation available)

Kleene S.C. [1952] Introduction to Metamathematics. Van Nostrand, 1952 
(Russian translation available)

Kleene S.C. [1967] Mathematical Logic. John Wiley & Sons, 1967 (Russian 
translation available)

Mendelson E. [1997] Introduction to Mathematical Logic. Fourth Edition. 
International Thomson Publishing, 1997, 440 pp. (Russian translation 
available)

Podnieks K. [1997] What is Mathematics: Gödel's Theorem and Around. 
1997-2012 (available online, Russian version available). 

http://podnieks.id.lv/gt_rus/gram11.htm
http://podnieks.id.lv/gt.html
http://podnieks.id.lv/
http://en.wikipedia.org/wiki/Elliott_Mendelson
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kleene.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kleene.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bernays.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html


4

1. Introduction. What Is Logic, Really?

WARNING! In this book,

predicate language is used as a synonym of first order language,

formal theory – as  a synonym of formal system, deductive system, 

constructive logic – as a synonym of intuitionistic logic,

algorithmically solvable – as a synonym of recursively solvable,

algorithmically enumerable – as a synonym of recursively enumerable.

What is logic?

See also Factasia Logic by Roger Bishop Jones.

In a sense,  logic  represents the most  general  means of reasoning used by 
people and computers.

Why  are  means  of  reasoning  important?  Because  any  body  of  data  may 
contain not only facts visible directly. For example, assume the following data: 
the  date  of  birth  of  some  person  X  is  January  1,  2000,  and  yesterday, 
September 14, 2010 some person Y killed some person Z. Then, most likely, X 
did not kill Z. This conclusion is not represented in our data directly, but can 
be derived from it by using some means of reasoning – axioms (“background 
knowledge”) and rules of inference. For example, one may use the following 
statement as an axiom: “Most likely, a person of age 10 can´t kill anybody”.

There  may be means  of  reasoning of  different  levels  of  generality,  and of 
different  ranges  of  applicability.  The  above  “killer  axiom”  represents  the 
lowest level – it is a very specific statement. But one can use laws of physics 
to  derive  conclusions  from  his/her  data.  Theories  of  physics,  chemistry, 
biology etc. represent a more general level of means of reasoning. But can 
there be means of reasoning applicable in almost every situation? This – the 
most general – level of means of reasoning is usually regarded as logic.

Is logic absolute (i.e. unique, predestined) or relative (i.e. there is more than 
one  kind  of  logic)?  In  modern  times,  an  absolutist  position  is  somewhat 
inconvenient  –  you  must  defend  your  “absolute”  concept  of  logic  against 
heretics and dissidents, but very little can be done to exterminate these people. 
They may freely publish their concepts on the Internet.

So  let  us  better  adopt  the  relativist  position,  and  define  logic(s)  as  any 
common  framework  for  building  theories.  For  example,  the  so-called 

http://www.rbjones.com/
http://www.rbjones.com/rbjpub/logic/
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absolute geometry can be viewed as a common logic for both the Euclidean 
and  non-Euclidean  geometry.  Group  axioms serve  as  a  common  logic  for 
theories  investigating  mathematical  structures  that  are  subtypes  of  groups. 
And, if you decide to rebuild all mathematical theories on your favorite set 
theory, then you can view set theory as your logic.

Can there be a common logic for the entire mathematics? To avoid the absolutist approach let 
us appreciate all the existing concepts of mathematics – classical (traditional), constructivist 
(intuitionist),  New Foundations etc.  Of course,  enthusiasts of each of  these concepts must 
propose  some  specific  common  framework  for  building  mathematical  theories,  i.e.  some 
specific kind of logic. And they do.

Can set theory (for example, currently, the most popular version of it – Zermelo-Fraenkel's set 
theory) be viewed as a common logic for the classical (traditional) mathematics? You may 
think so, if you do not wish to distinguish between the first order notion of natural numbers 
(i.e. discrete mathematics) and the second order notion (i.e. "continuous" mathematics based 
on set theory or a subset of it). Or, if you do not wish to investigate in parallel the classical and 
the constructivist (intuitionist) versions of some theories.

1.1. Total Formalization is Possible!

Gottlob Frege (1848-1925)
Charles S. Peirce (1839-1914)
Bertrand Russell (1872-1970)
David Hilbert (1862-1943)

How far can we proceed with the mathematical rigor – with the axiomatization 
of some theory? Complete elimination of intuition, i.e.  full reduction of all 
proofs to a list of axioms and rules of inference, is this really possible? The 
work by Gottlob Frege, Charles S. Peirce, Bertrand Russell, David Hilbert and 
their  colleagues  showed  how  this  can  be  achieved  even  with  the  most 
complicated  mathematical  theories.  All  mathematical  theories  were  indeed 
reduced to systems of axioms and rules of inference without any admixture of 
sophisticated  human  skills,  intuitions  etc.  Today,  the  logical  techniques 
developed  by  these  brilliant  people  allow  ultimate  axiomatization  of  any 
theory that is based on a stable, self-consistent system of principles (i.e. of any 
mathematical theory).

What  do they look like  – such "100% rigorous" theories?  They are  called 
formal theories (the terms “formal systems” and “deductive systems” also are 
used) emphasizing that no step of reasoning can be done without a reference to 
an exactly formulated list  of axioms and rules of inference. Even the most 
"self-evident" logical principles (like, "if A implies B, and B implies C, then A 
implies C") must be either formulated in the list of axioms and rules explicitly, 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://math.boisestate.edu/~holmes/holmes/nf.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Development_group_theory.html
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or derived from it.

What  is,  in  fact,  a  mathematical  theory?  It  is  an  "engine"  generating 
theorems.  Then,  a formal  theory must  be an "engine" generating theorems 
without involving of human skills, intuitions etc., i.e. by means of a precisely 
defined algorithm, or a computer program.

The  first  distinctive  feature  of  a  formal  theory  is  a  precisely  defined 
("formal")  language used  to  express  its  propositions.  "Precisely  defined" 
means  here  that  there  is  an  algorithm  allowing  to  determine,  is  a  given 
character string a correct proposition, or not.

The  second  distinctive  feature  of  a  formal  theory  is  a  precisely  defined 
("formal") notion of proof. Each proof proves some proposition, that is called 
(after being proved) a theorem. Thus, theorems are a subset of propositions.

It  may  seem  surprising  to  a  mathematician,  but  the  most  general  exact 
definition of the "formal proof" involves neither axioms, nor inference rules. 
Neither "self-evident" axioms, nor "plausible" rules of inference are distinctive 
features of the "formality". Speaking strictly, "self-evident" is synonymous to 
"accepted without  argumentation".  Hence,  axioms and/or  rules  of  inference 
may be "good, or bad", "true, or false", and so may be the theorems obtained 
by means of them. The only definitely verifiable thing is here the fact that 
some theorem has been, indeed, proved by using some set of axioms, and by 
means of some set of inference rules.

Thus, the second distinctive feature of "formality" is the possibility to verify 
the  correctness  of  proofs mechanically,  i.e.  without  involving  of  human 
skills, intuitions etc. This can be best formulated by using the (since 1936 – 
precisely  defined)  notion  of  algorithm (a  "mechanically  applicable 
computation procedure"):

A theory T is called a formal theory, if and only if there is an algorithm 
allowing to verify, is a given text a correct proof via principles of T, or not. 
If somebody is going to publish a "mathematical text" calling it "proof of a 
theorem in theory T", then we must be able to verify it mechanically whether 
the  text  in  question  is  really a  correct  proof  according to  the standards  of 
proving  accepted  in  theory  T.  Thus,  in  a  formal  theory,  the  standards  of 
reasoning should be defined precisely enough to enable verification of proofs 
by means of a precisely defined algorithm, or a computer program. (Note that 
we are discussing here verification of ready proofs, and not the much more 
difficult problem – is some proposition provable in T or not, see Exercise 1.1.5 
below and the text after it).

Axioms and rules of inference represent only one (but the most popular!) of 
the possible techniques of formalization.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm
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As an unpractical  example of  a  formal  theory let  us consider  the  game of  
chess, let us call this "theory" CHESS. Let 's define as propositions of CHESS 
all  the  possible  positions  –  i.e.  allocations  of  some  of  the  pieces  (kings 
included)  on a  chessboard – plus the flag:  "whites  to move" or  "blacks to 
move". Thus, the set of all the possible positions represents the  language of 
CHESS.  The only  axiom of  CHESS is the initial position, and the  rules of 
inference – the rules of the game. Rules allow passing from some propositions 
of  CHESS to some other ones. Starting with the axiom and iterating moves 
allowed  by  the  rules  we  obtain  theorems of  CHESS.  Thus,  theorems  of 
CHESS are defined as all the possible positions (i.e. propositions of CHESS) 
that can be obtained from the initial position (the axiom of CHESS) by moving 
pieces according to the rules of the game (i.e. by using the inference rules of 
CHESS).

Exercise 1.1.1 (optional). Could you provide an unprovable proposition of 
CHESS?

Why  is  CHESS called  a  formal  theory?  When  somebody  offers  a 
"mathematical text" P as a proof of a theorem A in CHESS, this means that P is 
a  record  of  some  chess-game  stopped  in  the  position  A.  Checking  the 
correctness of such "proofs" is a boring, but an easy task. The rules of the 
game are formulated precisely enough – we could write a computer program 
that will execute the task.

Exercise 1.1.2 (optional). Try estimating  the size  of  this  program in some 
programming language.

Our second example of a formal  theory is  only a bit  more serious.  It  was 
proposed by Paul Lorenzen, so let us call this theory L. Propositions of L are 
all the possible "words" made of letters a, b, for example: a, b, aa, aba, baab. 
Thus, the set of all these "words" is the language of L. The only axiom of L is 
the word  a, and  L has two  rules of inference:  X  ⊢Xb, and  X  ⊢ aXa. This 
means  that  (in  L)  from  a  proposition  X we  can  infer  immediately  the 
propositions Xb and aXa. For example, the proposition aababb is a theorem of 
L:

a  ⊢ab  ⊢aaba  ⊢aabab  ⊢aababb
rule1   rule2    rule1      rule1

This fact is expressed usually as L  ⊢aababb ( "L proves aababb",  being a⊢  
"fallen T").

Exercise 1.1.3. a) Verify that L is a formal theory. (Hint: describe an algorithm 
allowing to determine, is a sequence of propositions of  L a correct proof, or 
not.)

b) (P. Lorenzen) Verify the following property of theorems of L: for any  X,

http://en.wikipedia.org/wiki/Paul_Lorenzen
http://www.conservativebookstore.com/chess/
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 if L  ⊢X, then L  ⊢aaX.

One  of  the  most  important  properties  of  formal  theories  is  given  in  the 
following

Exercise  1.1.4. Show that  the  set  of  all  theorems of  a  formal  theory  is 
algorithmically  enumerable,  i.e.  show  that,  for  any  formal  theory  T,  a 
algorithm AT can  be  defined that  prints  out  on  an  (endless)  paper  tape  all 

theorems of  this  theory (and nothing else).  (Hint:  we will  call  T a  formal 
theory, if and only if we can present an algorithm for checking texts as correct 
proofs via principles of reasoning of  T. Thus, assume, you have 4 functions: 
GenerateFirstText() –  returns  Text,  GenerateNextText() –  returns  Text, 
IsCorrectProof(Text) – returns  true or  false,  ExtractTheorem(Text) – returns 
Text, and you must implement the functions GenerateFirstTheorem() – returns 
Text, GenerateNextTheorem() – returns Text).

Unfortunately,  such algorithms and programs cannot solve  the problem 
that the mathematicians are mainly interested in: is a given proposition A 
provable  in  T or  not? When,  executing  the  algorithm  AT,  we  see  our 

proposition A printed out, this means that A is provable in T. Still, in general, 
until that moment we cannot know in advance whether  A will be printed out 
some time later or it will not be printed at all.

Note.  According to the official terminology,  algorithmically enumerable sets 
are called "recursively enumerable sets", in some texts – also "listable sets". 

Exercise 1.1.5. a) Describe an algorithm determining whether a proposition of 
L is a theorem or not.

b)   (optional)  Could you imagine such an algorithm for  CHESS? Of course, 
you can, yet... Thus you see that even, having a relatively simple algorithm for 
checking the correctness of proofs, the problem of  provability can be a very 
complicated one.

T is  called  a  solvable  theory  (more  precisely  –  algorithmically solvable 
theory), if and only if there is an algorithm allowing to check whether some 
proposition is  provable by using the principles of  T  or not. In the Exercise 
1.1.5a you proved that L is a solvable theory. Still, in the Exercise 1.1.5b you 
established that  it  is  hard to  state  whether  CHESS is  a  "feasibly solvable" 
theory or not. Determining the provability of propositions is a much more 
complicated task than checking the correctness of ready proofs. It can be 
proved that most mathematical theories are unsolvable, the elementary (first 
order) arithmetic of natural numbers and set theory included (see, for example, 
Mendelson [1997], or Podnieks [1997], Section 6.3). I.e. there is no algorithm 
allowing  to  determine,  is  some  arithmetical  proposition  provable  from the 
axioms of arithmetic, or not.
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Note.  According to the official terminology, algorithmically solvable sets are 
called "recursive sets".

Normally,  mathematical  theories  contain  the  negation  symbol  not.  In  such 
theories solving the problem stated in a proposition A means proving either A, 
or  proving  notA ("disproving  A",  "refuting  A").  We  can  try  to  solve  the 
problem by using the enumeration algorithm of the Exercise 1.1.4: let us wait 
until  A or  notA is printed. If  A and notA will be printed both, this will mean 
that T is an inconsistent theory (i.e. using principles of T one can prove some 
proposition and its negation). In general, we have here 4 possibilities:

a)  A will  be printed,  but  notA will  not  (then the problem  A  has a  positive 
solution),

b)  notA will  be printed, but  A will  not (then the problem  A has a negative 
solution),

c) A and notA will be printed both (then T is an inconsistent theory),

d) neither A, nor notA will be printed.

In the case d) we may be waiting forever, yet nothing interesting will happen: 
using the principles of T one can neither prove nor disprove the proposition A, 
and for this reason such a theory is called an incomplete theory. The famous 
incompleteness  theorem  proved  by  Kurt  Gödel in  1930  says  that  most 
mathematical  theories  are  either  inconsistent  or  incomplete (see 
Mendelson [1997] or Podnieks [1997], Section 6.1).

Exercise  1.1.6. Show  that  any  (simultaneously)  consistent  and  complete 
formal theory is solvable. (Hint: use the algorithm of the Exercise 1.1.4, i.e. 
assume that you have the functions  GenerateFirstTheorem() − returns  Text, 
GenerateNextTheorem() −  returns  Text,  and  implement  the  function 
IsProvable(Text) –  returns  true or  false).  Where  the  consistency  and 
completeness come in?

Exercise 1.1.7 (optional). a) Verify that "fully axiomatic theories" are formal 
theories in the sense of the above general definition. (Hint: assume, that you 
have  the  following  functions:  GenerateFirstText() −  returns  Text, 
GenerateNextText() − returns  Text,  IsPropositon(Text) − returns  true  or  false, 
IsAxiom(Proposition) − returns true or  false, there is a finite list of inference 
rule  names:  {R1,  ...,  Rn},  function  Apply(RuleName,  ListOfPropositions) − 

returns  Proposition or  false,  and  you  must  implement  the  functions 
IsCorrectProof(ListOfPropositions) −  returns  true or  false, 
ExtractTheorem(Proof) − returns Proposition).

b) (for smart students) What, if, instead of {R1, ..., Rn}, we would have an 

infinite  list  of  inference  rules,  i.e.  functions  GenerateFirstRule(), 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Godel.html
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GenerateNextRule() returning RuleName?

1.2. Predicate Languages

History

For a short overview of the history, see Quantification.

See also:

Aristotle (384-322 BC) – in a sense, the "first logician", "... was not primarily a mathematician 
but made important contributions by systematizing deductive logic." (according to MacTutor 
History of Mathematics archive).

Gottlob Frege (1848-1925) – "In 1879 Frege published his first major work  Begriffsschrift,  
eine  der  arithmetischen  nachgebildete  Formelsprache  des  reinen  Denkens (Conceptual 
notation, a formal language modelled on that of arithmetic, for pure thought). A.George and R 
Heck write:  ... In effect, it constitutes perhaps the greatest single contribution to logic ever  
made and it was, in any event, the most important advance since  Aristotle. ...  In this work 
Frege presented for the first time what we would recognise today as a logical system with 
negation,  implication,  universal  quantification,  essentially  the  idea  of  truth  tables  etc." 
(according to MacTutor History of Mathematics archive).

Charles Sanders Peirce (1839-1914): "... He was also interested in the Four Colour Problem 
and  problems of  knots  and  linkages...  He  then  extended  his  father's  work  on  associative 
algebras and worked on mathematical logic and set theory. Except for courses on logic he gave 
at  Johns  Hopkins  University,  between  1879  and  1884,  he  never  held  an  academic  post." 
(according to MacTutor History of Mathematics archive).

Hilary Putnam. Peirce the Logician.  Historia Mathematica,  Vol.  9,  1982,  pp.  290-301 (an 
online excerpt available, published by John F. Sowa).

Richard Beatty. Peirce's development of quantifiers and of predicate logic.  Notre Dame J.  
Formal Logic, Vol. 10, N 1 (1969), pp. 64-76.

Geraldine  Brady. From Peirce  to  Skolem.  A Neglected  Chapter  in  the  History  of  Logic. 
Elsevier  Science:  North-Holland,  2000,  2000,  625  pp.  (online  overview  at 
http://www.elsevier.com/wps/find/bookdescription.cws_home/621535/description#description
).

When trying to formalize some piece of our (until now – informal) knowledge, 
how  should  we  proceed?  We  have  an  informal  vision  of  some  domain 
consisting  of  “objects”.  When  speaking  about  it,  we  are  uttering  various 
propositions, and some of these propositions are regarded as “true” statements 
about the domain.

Thus, our first formalization task should be defining of some formal language, 
allowing to put all our propositions about the domain in a uniform and precise 

http://www.elsevier.com/wps/find/bookdescription.cws_home/621535/description#description
http://people.cs.uchicago.edu/~brady/
http://www.jfsowa.com/pubs/index.htm
http://www.jfsowa.com/peirce/putnam.htm
http://www.fas.harvard.edu/~phildept/putnam.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
http://en.wikipedia.org/wiki/Quantification


11

way.

After  this,  we  can  start  considering  propositions  that  we  are  regarding  as 
“true”  statements  about  the  domain.  There  may  be  an  infinity  of  such 
statements, hence, we can't put down all of them, so we must organize them 
somehow.  Some  minimum  of  the  statements  we  could  simply  declare  as 
axioms, the other ones we could try to derive from the axioms by using some 
rules of inference.

As the result, we could obtain a  formal theory (in the sense of the previous 
Section).

In  mathematics  and  computer  science,  the  most  common  approach  to 
formalization  is  by  using  of  the  so-called predicate  languages,  first 
introduced by G. Frege and C. S. Peirce.

(In  many textbooks,  they are  called  first  order languages,  see  below the  warning about 
second order languages.)

Usually, linguists analyze the sentence "John loves Britney" as follows: John – 
subject,  loves –  predicate,  Britney –  object.  The  main  idea  of  predicate 
languages  is  as  follows:  instead,  let  us  write  loves(John,  Britney),  where 
loves(x, y) is a two-argument predicate, and John, and Britney both are objects. 
Following this way, we could write  =(x, y) instead of  x=y. This approach – 
reducing of the human language sentences to variables, constants, functions, 
predicates and quantifiers (see below), appears to be flexible enough, and it is 
much more uniform when compared to the variety of constructs used in the 
natural  human  languages.  A unified  approach  is  much  easier  to  use  for 
communication with computers.

Another example: "Britney works for BMI as a programmer". In a predicate language, we 
must introduce a 3-argument predicate "x works for y as z", or works(x, y, z). Then, we may 
put the above fact as: works(Britney, BMI, Programmer).

Language Primitives

Thus, the informal vision behind the notion of predicate languages is centered 
on  the  so-called  "domain"  –  a  (non-empty?)  collection  of  "objects",  their 
"properties" and the "relations" between them, that we wish to "describe" (or 
"define"?) by using the language. This vision serves as a guide in defining the 
language precisely, and further – when selecting axioms and rules of inference.

Object Variables

Thus, the first kind of language elements we will need are  object variables 
(sometimes called also individual variables, or simply, variables). We need an 
unlimited number of them):
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x, y, z, x1, y1, z1, ...

The above-mentioned "domain" is the intended "range" of all these variables. 

Examples. 1) Building a language that should describe the "domain of people", we must start 
by introducing "variables for people": x denotes an arbitrary person.

2) Building the language of the so-called first order arithmetic, we are thinking about "all 
natural numbers" as the range of variables: 0, 1, 2, 3, 4, ... (x denotes an arbitrary natural 
number).

3) Building the language of set theory, we think about "all sets" as the range of variables: x 
denotes an arbitrary set.

“Domain of people” represented as UML class diagram

Note. Since our screens and printers allow only a limited number of pixels per 
inch, in principle, we should generate variable names by using a finite set of 
characters, for example, by using a single letter x:

x, xx, xxx, xxxx, xxxxx, ...

Object Constants

The next possibility we may wish to have in our language are the so-called 
object constants (sometimes called individual constants, constant letters, or 
simply, constants) – names or symbols denoting some specific "objects" of our 
"domain".

Examples. 1) In our "language for people" we may introduce constants denoting particular 
people: John, Britney etc.

2) In the language of first order arithmetic, we may wish to introduce two constants – 0 and 1 
to denote "zero" and "one" – two natural numbers having specific properties.

http://en.wikipedia.org/wiki/Class_diagram
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3) In the language of set theory, we could introduce a constant denoting the empty set, but 
there is a way to do without it as well (for details, Podnieks [1997], Section 2.3).

Function Constants

In  some  languages  we  may  need  also  the  so-called  function  constants 
(sometimes  called  function  letters)  –  names  or  symbols  denoting  specific 
functions, i.e. mappings between "objects" of our "domain", or operations on 
these objects.

Examples. 1) In our "language for people" we will not use function constants.

2) In the language of first order arithmetic, we will introduce only two function constants "+" 
and  "*"  denoting  the  usual  addition  and  multiplication  of  natural  numbers,  i.e.  the  two-
argument functions x+y and x*y.

3)  In  the  language  of  set  theory,  we  could  introduce  function  constants  denoting  set  
intersections x∩ y , unions x∪ y , set differences x–y, power sets P(x) etc., but there is 
a way to do without these symbols as well (for details, Podnieks [1997], Section 2.3).

In mathematics, normally,  we are writing  f(x, y) to denote the value of the 
function f for the argument values x, y. This (the so-called "prefix" notation) is 
a uniform way suitable for functions having any number of arguments:  f(x),  
g(x, y), h(x, y, z) etc. In our everyday mathematical practice some of the two-
argument functions  (in  fact,  operations)  are  represented by using the more 
convenient "infix" notation (x+y, x*y instead of the uniform +(x, y), *(x, y), 
etc.).

Note. In a sense, object constants can be viewed as a special case of function 
constants – an object constant is a “zero-argument function”.

Predicate Constants 

The last (but the most important!) kind of primitives we need in our language 
are the so-called  predicate constants (sometimes called predicate letters) – 
names  or  symbols  denoting  specific  properties (of)  or  relations between 
"objects" of our "domain".

Note. Using "predicate" as the unifying term for "property" and "relation" may 
seem somewhat unusual. But some kind of such unifying term is necessary. 
Properties are, in fact, unary (i.e. one-argument) "predicates", for example, "x 
is red". Relations are, two- or more-argument "predicates", for example, "x is 
better than y", or "x sends y to z".

Examples. 1) In our "language for people" we will use the following predicate constants (see 
the class diagram above):

Male(x) − means "x is a male";

Female(x) − means "x is a female";

Mother(x, y) − means "x is mother of y";
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Father(x, y) − means "x is father of y";

Married(x, y) − means "x and y are married, y being wife";

x=y − means "x an y are the same person".

The first two constants represent, in fact, "properties" (or, "classes") of our objects. The other 
4 constans represents "relations" between our objects. The term "predicate" is used to include 
both versions. We do not introduce Person(x) as a predicate because our domains consists of 
persons only.

2) It may seem strange to non-mathematicians, yet the most popular relation of objects used in 
most  mathematical  theories,  is  equality (or  identity).  Still,  this  is  not  strange  for 
mathematicians.  We  can  select  an  object  x  in  our  "domain"  by  using  a  very  specific 
combination of properties and relations of it, and then – select another object y – by using a 
different combination. And after this (sometimes it may take many years to do) we prove that 
x=y, i.e. that these two different combinations of properties and relations are possessed by a  
single object. Many of discoveries in mathematics could be reduced to this form.

In the language of first order arithmetic, equality "=" is the only necessary predicate constant. 
Other"basic" relations must be reduced to equality. For example, the relation x<y for natural 
numbers  x,  y  can  be reduced  to  equality by using the  addition  function  and  the  formula 

z(x+z+1=y).∃
3) In the language of set theory a specific predicate constant "in" denotes the set membership 
relation: "x in y" means "x is a member of y". The equality predicate x=y also will be used – it  
means "the sets x an y possess the same members".

The uniform way of representation suitable for predicates having any number 
of arguments is again the "prefix" notation:  p(x), q(x, y), r(x, y, z) etc. In the 
real  mathematical  practice,  some  of  the  two-argument  predicates  are 
represented  by using  the  "infix"  notation  (for  example,  x=y instead  of  the 
uniform =(x, y), etc.).

Zero-argument predicate constants? In an interpretation, each such predicate must become 
either "true", or "false". Hence, paradoxically, zero-argument predicate constants behave like 
"propositional variables" – they represent assertions that do not possess a meaning, but possess 
a "truth value".

Summary of Language Primitives

Thus,  the  specification  of  a  predicate  language  includes  the  following 
primitives:

1) A countable set of object variable names (you may generate these names, 
for example, by using a single letter "x": x, xx, xxx, xxxx, ...).

2) An empty, finite, or countable set of object constants. 

3) An empty, finite, or countable set of function constants. To each function 
constant a fixed argument number must be assigned.

4) A finite, or countable set of predicate constants. To each predicate constant a 
fixed argument number must be assigned.
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Different sets of primitives yield different predicate languages.

Examples. 1) Our "language for people" is based on: a) object variables x, y, z, ...; b) object 
constants:  John,  Britney,  ...;  c)  function  constants:  none;  d)  predicate  constants:  Male(x),  
Female(x), Mother(x, y), Father(x, y), Married(x, y), x=y.

2) The language of first order arithmetic is based on: a) object variables x, y, z, ...; b) object  
constants: 0, 1; c) function constants: x+y, x*y; d) predicate constant: x=y.

3) The language of set theory is based on: a) object variables x, y, z, ...; b) object constants: 
none; c) function constants: none; d) predicate constants: x in y, x=y.

The remaining part  of  the  language definition is  common for  all  predicate 
languages.

Terms and formulas

By using the language primitives, we can build terms, atomic formulas and 
(compound) formulas.

Terms are expressions used to denote objects and functions:

a) Object variables and object constants (if any), are terms.

b) If f is a k-argument function constant, and t1, ..., tk are terms, then the string 

f(t1, ..., tk) is a term.

c) There are no other terms.

Examples.  1) In our "language for people" only variables x, y,  z, ...,  and object constants  
John, Britney, ... are terms.

2) In the language of first order arithmetic, for addition and multiplication the "infix" notation 
is used: if t1, t2 are terms, then (t1+t2) and (t1*t2) are terms. Of course, the object constants 0, 1 

and variables x, y, z, ... are terms. Examples of more complicated terms: (x+y), ((1+1)*(1+1)), 
(((1+1)*x)+1).

3) In the language of set theory, variables x, y, z, ... are the only kind of terms.

If a term does not contain variable names, then it denotes an "object" of our 
"domain"  (for  example,  ((1+1)+1) denotes  a  specific  natural  number  – the 
number  3).  If  a  term  contains  variables,  then  it  denotes  a  function.  For 
example,  (((x*x)+(y*y))+1) denotes  the function x2+y2+1. (Warning! Note 
that the language of first order arithmetic does not contain a function constant 
denoting the exponentiation xy, thus, for example, we must write x*x instead 
of x2.)

Of  course,  the  key  element  of  our  efforts  in  describing  "objects",  their 
properties and relations, will be assertions, for example, the commutative law 
in  arithmetic:  ((x+y)=(y+x)).  In  predicate  languages,  assertions  are  called 
formulas (or, sometimes, well formed formulas – wff-s, or sentences).

Atomic  formulas (in  some  other  textbooks:  elementary  formulas,  prime 
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formulas) are defined as follows:

a) If p is a k-argument predicate constant, and t1, ..., tk are terms, then the 

string p(t1, ..., tk) is an atomic formula.

b) There are no other atomic formulas.

For the equality symbol, the "infix" notation is used: if t1, t2 are terms, then 

(t1=t2) is an atomic formula. 

Examples. 1) In our "language for people", the following are examples of atomic formulas: 
Male(x),  Female(Britney),  Male(Britney) (not  all  formulas  that  are  well  formed,  must  be 
true!), Father(x, Britney), Mother(Britney, John), Married(x, y).

2) Summary of the atomic formulas of the language of first order arithmetic: a) constants 0  
and 1, and all variables are terms; b) if t1 and t2 are terms, then (t1+t2) and (t1*t2) also are 

terms; c) atomic formulas are built only as (t1=t2), where t1 and t2 are terms.

3) In the language of set theory, there are only two kinds of atomic formulas: x∈ y , and 
x=y (where x and y are arbitrary variables).

In the language of  first  order  arithmetic,  even by using the only available 
predicate constant "=" atomic formulas can express a lot of clever things:

((x+0)=x); ((x+y)=(y+x)); ((x+(y+z))=((x+y)+z));
((x*0)=0); ((x*1)=x); ((x*y)=(y*x)); ((x*(y*z))=((x*y)*z));

(((x+y)*z)=((x*z)+(y*z))).

Exercise 1.2.1. As the next step, translate the following assertions into the 
language of first order arithmetic (do not use abbreviations!): 2*2=4, 2*2=5, 
(x+y)2 = x2+2xy+y2.

(Compound) Formulas

The  following  definition  is  common  for  all  predicate  languages.  Each 
language is specific only by its set of language primitives.

To write more complicated assertions, we will need compound formulas, built 
of  atomic  formulas  by using a  fixed set  of  propositional connectives  and 
quantifiers (an invention due to G. Frege and C. S. Peirce). In this book, we 
will use the following set: 

Implication symbol:  B→C means  "if  B,  then  C",  or  "B implies  C",  or  "C 
follows from B".

Conjunction symbol, B∧C means "B and C".

Disjunction symbol, B∨C means "B, or C, or both", i.e. the so-called non-
exclusive "or".

Negation symbol, ¬B means "not B.
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Universal quantifier, ∀x B means "for all x: B".

Existential quantifier, ∃ x B means "there is x such that B".

The widely used equivalence connective ↔ can be derived in the following 
way: B↔C stands for (( B →C )∧(C → B)) . If you like using the so-called 
exclusive  "or"  (“B,  or  C,  but  not  both”),  you  could  define  B  xor  C  as
¬(B ↔C) .

Warning! For  programmers,  conjunction,  disjunction  and  negation  are 
familiar  "logical  operations"  –  unlike  the  implication  that  is  not  used  in 
"normal"  programming  languages.  In  programming,  the  so-called  IF-
statements, when compared to logic, mean a different thing: in the statement 
IF  x=y  THEN  z:=17,  the  condition,  x=y  is,  indeed,  a  formula,  but  the 
"consequence" z:=17 is not a formula – it is an executable statement. In logic, 
in B→C ("if B, then C"), B and C both are formulas.

We define the notion of formula of our predicate language as follows:

a) Atomic formulas are formulas.

b)  If  B and C are formulas,  then (B → C ) ,(B∧C ) ,(B∨C ) ,  and (¬B)  
also are formulas (B and C are called sub-formulas).

c) If B is a formula, and x is an object variable, then ( xB) and ( xB) also are∀ ∃  
formulas (B is called a sub-formula).

d) (If you like so,) there are no other formulas.

See also:

Notes on Logic Notation on the Web by Peter Suber.

Knowledge Representation by Means of Predicate Languages

Examples.  1)  In  our  "language  for  people",  the  following  are  examples  of  compound 
formulas: 

((Father (x , y))∨(Mother (x , y))) "x is a parent of y" 

(∀x(∀y ((Father (x , y))→ (Male (x)))))
"fathers are males" – could serve as an 
axiom!

(∀x(∀y ((Mother (x , y))→(¬ Male (x)))))
"mothers are not males" – could be 
derived from the axioms!

(∀x(∃ y (Mother ( y , x))))
"each x has some y as a mother" – could 
serve as an axiom!

(∀x(Male (x)∨Female(x)))
What does it mean? It could serve as an 
axiom!

http://www.earlham.edu/~peters/hometoc.htm
http://www.earlham.edu/~peters/writing/logicsym.htm


18

∀x(∀y (∀z((Mother (x , z)∧Mother ( y , z ))→(x= y))))

∀x(∀y (∀z((Father (x , z )∧Father ( y , z ))→(x=y))))

What does it mean? It could serve as an axiom!

2) Some simple examples of compound formulas in the language of first order arithmetic:

Warning! Speaking strictly, predicate symbols "<", ">", "≤", "≥", "≠" etc. do not belong to 
the language of first order arithmetic.

( u(x=(u+u))) ∃ "x is an even number" 

( u(((x+u)+1)=y))∃ "x is less than y", or, x<y

(0< y∧∃ u(x=(y∗u)))
"x is divisible by y", speaking strictly, 
x<y must be replaced by u(((x+u)∃
+1)=y)).

((1< x)∧(¬(∃ y(∃ z (((y< x)∧(z< x))∧( x=( y∗z)))))))

formula prime(x), "x is a prime number", speaking strictly, the 3 subformulas of the kind 
x<y should be replaced by their full version of the kind u(((x+u)+1)=y)).∃

(∀w(∃ x ((w< x )∧( prime(x )))))

"There are infinitely many prime 
numbers" (one of the first mathematical 
theorems, VI century BC), speaking 
strictly, w<x must be replaced by 

u(((w+u)+1)=x)), and ∃ prime(x) must be 
replaced by the above formula.

∀ x∀ y(0< y →∃ z∃ u(u< y∧x=y∗z+ u)) What does it mean?

3) Some simple examples of compound formulas in the language of set theory:

(∃ y (y∈x)) "x is a non-empty set" 

(∀ z ((z∈x)→(z∈y))) "x is a subset of y", or x≤y

((∀ z (( z∈x)↔ (z∈ y)))→(x=y))
What does it mean? Will serve as an 
axiom!

(∀ y (∀ z ((y ∈x)∧(z∈x))→ y=z )) "x contains zero or one member"

(∀ u((u∈x)↔((u∈y)∨(u∈ z)))) "x is union of y and z", or x=yUz

Of course, having a predicate language is not enough for expressing all of 
our knowledge formally, i.e. for communicating it to computers. Computers do 
not know in advance, for example, how to handle sexes. We must tell them 
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how  to  handle  these  notions  by  introducing  axioms.  Thus,  the  above-
mentioned formulas like as

(∀x (Male (x )∨Female (x))) , or 
(∀ x (∀ y ((Father ( x , y))→(Male (x )))))

will be absolutely necessary as axioms. As we will see later,

 language + axioms + logic = theory,

i.e.  in fact,  to formulate all  of  our knowledge formally,  we must create 
theories. 

Exercise  1.2.2.  Translate  the  following  assertions  into  our  "language  for 
people":

"x is child of y";
"x is grand-father of y"; 

"x is brother of x”; “x is sister of y";
“x is cousin of y”; “x is nephew of y”; “x is uncle of y”.

Exercise 1.2.3. Translate the following assertions into the language of first 
order arithmetic:

"x and y do not have common divisors" (note: 1 is not a divisor!);
" √2 is not a rational number".

(Warning! ¬∃ p∃ q(√2=
p
q

) , and ∃ x(x∗x=2) are not correct solutions. Why?)

Exercise 1.2.3A. Imagine an alternative language of arithmetic that does not 
contain  function constants + and *, but contains predicates  sum(x, y, z) and 
prod(x, y, z) instead (meaning x+y=z and x*y=z correspondingly). Translate 
the following assertions into this language:

x+0=x ; x+ y= y+x ; x+( y+1)=(x+ y)+1 ; (x+ y)∗z=(x∗z )+( y∗z ) .

Warning! Some typical errors!

1a) Trying to say “for all x>2, F(x)”, do not write ∀ x( x>2∧F ( x)) . This 
formula would imply that ∀ x( x>2) – a silly conclusion! Indeed, how about 
x=1? The correct version: ∀ x( x>2→F (x )) .

1b)  Trying  to  say  “there  is  x>2,  such  that  F(x)”,  do  not  write
∃ x (x>2→F ( x)) . The formula under the quantifier is true for x=1, hence, 

the entire formula cannot guarantee that “there is x>2, such that F(x)”. The 
correct version: ∃(x>2∧F (x )) . 

2) Some computer programmers do not like using the implication connective 
→, trying to write formulas as conditions of IF- or WHILE-statements, i.e. by 
using conjunction, disjunction and negation only. This "approach" makes most 
logical tasks much harder than they really are! More than that − some people 

http://en.wikipedia.org/wiki/Uncle
http://en.wikipedia.org/wiki/Nephew_and_niece
http://en.wikipedia.org/wiki/Cousin
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try  saying,  for  example,  "Persons  are  not  Departments",  as  follows:
∀x (Person(x )∧¬ Department( x)) − instead of the correct version:

∀x (Person(x )→¬Department (x)) .

3) Do not use abbreviations at this early stage of your studies. For example, do 
not write ( x>2) yF(x, y)∀ ∃  to say that "for all x that are >2, there is y such that 
F(x, y)". Instead, you should write  x(x>2→ yF(x, y))∀ ∃ . Similarly, instead of 
( a>2) bG(a, b)∃ ∃ , you should write ∃ a(a> 2∧∃ b G(a , b)) .

To say "there is one and only one x such that F(x)", you shouldn't write  !x∃  
F(x) (at this stage of your studies), you should write, instead,

((∃ xF (x))∧(∀ x1(∀ x2 ((F (x1)∧F (x2))→(x1=x2))))) .

4) Predicates cannot be substituted for object variables. For example, having 3 
predicate constants working(x, y), Person(x), Department(y), do not try writing 
working(Person(x), Department(y)) to say that "only persons are working, and 
only in departments". The correct verssion:

 ∀ x∀ y (working ( x , y)→ Person( x)∧Department ( y)) .

5) Trying to say “each person is working in some department”, do not write

∀x∃ y ( Person( x)∧Department( y )→ working( x , y)) .

 The correct version:

 ∀x (Person(x )→∃ y (Department ( y)∧working (x , y ))) .

What is the difference?

Exercise 1.2.4. Try inventing your own predicate language. Prepare and do 
your own Exercise 1.2.2 for it.

Exercise 1.2.5 (optional). In computer science, currently, one the most popular 
means of knowledge representation are the so-called  UML class diagrams 
and  OCL (UML −  Unified Modeling  Language,  OCL −  Object  Constraint 
Language).  The  above diagram representing  our  “domain  of  people”  is  an 
example.  In  our  “language  of  people”,  put  down  as  many  axioms of  the 
domain you can notice in the diagram. For example, “every person is either 
male,  or  female”,  “all  fathers  are  males”,  “every  person  has  exactly  one 
mother”, “a person can marry no more than one person” etc. 

Many-sorted Languages

Maybe, you have to describe two or more kinds of "objects" that you do not wish to reduce to 
"sub-kinds" of one kind of "objects" (for example,  integer numbers and character strings).  
Then you may need introducing for each of your "domains" a separate kind ("sort") of object 
variables. In this way you arrive to the so-called many-sorted predicate languages. In such 
languages:  a)  each  object  constant  must  be  assigned  to  some  sort;  b)  for  each  function 
constant, each argument must be assigned to some some sort, and function values must be  

http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
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assigned to a (single) sort; c) for each predicate constant, each argument must be assigned to  
some sort. In many-sorted predicate languages, the term and atomic formula definitons are 
somewhat more complicated: building of the term f(t1, ..., tk) or the formula p(t1, ..., tk) is 

allowed only, if the sort of the term ti values coincides with the sort of the i-th argument of f or 

p respectively. And the "meaning" of quantifiers depends on the sort of the variable used with  
them. For example, x means "for all values of x from the domain of the sort of x".∀
Theoretically, many-sorted languages can be reduced to one-sorted languages by introduding 
the  corresponding  predicates  Sorti(x)  ("the  value  of  x  belongs  to  the  sort  i").  Still,  in 

applications of logic (for example, in computer science) the many-sorted approach is usually 
more natural and more convenient. (See Chapter 10. Many-Sorted First Order Logic, by Jean 
Gallier.)

Warning about second order languages!

In our definition of predicate languages only the following kinds of primitives were used:  
object variables, object constants, function constants and predicate constants. You may ask: 
how about function variables and predicate variables? For, you may wish to denote by r "an 
arbitrary property" of your "objects". Then, r(x) would mean "x possess the property r", and 
you  would  be  able  to  say  something  about  "all  properties",  for  example, 

r x y(x=y→(r(x)∀∀∀ ↔r(y)). In this way you would have arrived at a second order language! 
In such languages, function and predicate variables are allowed. But properties lead to sets of 
objects, for example, {x | r(x)} would mean the set of all objects that possess the property r.  
But, why should we stop at the properties of objects? How about "properties of sets of objects" 
etc.? As it was detected long ago, all kinds of sets can be fully treated only in  set theory! 
Thus, instead of building your own second order language, you should better try applying your 
favorite ("first order") set theory. An unpleasant consequence: the existence of the (much less 
significant) notion of second order languages forces many people to call predicate languages 
"first order languages"  − to emphasize that, in these languages, the only kind of variables 
allowed are object variables.

On the other hand, when trying to implement realistic formal reasoning software, then using 
of some second order constructs is, as a rule, more efficient than implementing of a pure first 
order reasoning. See, for example, Notices of the AMS, Special Issue on Formal Proof, Vol. 55, 
N 11, 2008 (available online).

For  details,  see:  Second-order-logic.  About  second  order  arithmetic see  Reverse 
Mathematics. About an almost (but not 100%) successful attempt to create a set theory "as 
simple as logic" (by Georg Cantor and Gottlob Frege) – see Podnieks [1997], Section 2.2.

Omitting Parentheses

Our formal definitions of terms and formulas lead to expressions containing 
many parentheses. Let us remind, for example, our formula expressing that "x 
is a prime number":

((1< x)∧(¬(∃ y (∃ z ((( y< x)∧(z< x))∧( x=( y∗z ))))))) .

Such formulas are an easy reading for computers, yet inconvenient for human 
reading (and even more  inconvenient  –  for  putting  them correctly).  In  the 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Cantor.html
http://en.wikipedia.org/wiki/Reverse_Mathematics
http://en.wikipedia.org/wiki/Reverse_Mathematics
http://en.wikipedia.org/wiki/Second-order-logic
http://www.ams.org/notices/200811
http://www.cis.upenn.edu/~jean/home.html
http://www.cis.upenn.edu/~jean/home.html
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usual mathematical practice (and in programming languages) we are allowed 
to improve the look of our formulas by omitting some of the parentheses − 
according to (some of) the following rules:

a) Omit the outermost parentheses,  for example,  we may write A→(B→C) 
instead of the formally correct (A→(B→C)). In this way we may improve the 
final look of our formulas. Still, if we wish to use such formulas as parts of 
more complicated formulas, we must restore the outermost parentheses, for 
example: (A→(B→C))→D.

b) We may write, for example, simply:

x+ y+ z+ u , x∗y∗z∗u , A∧B∧C∧D , A∨B∨C∨D ,∃ x∀ y∃ z∀ u F

instead of the more formal

((x+y)+z)+u, ((x*y)*z)*u, (( A∧B)∧C )∧D ,((A∨B)∨C)∨D , 
x( y( z( u(F)))).∃ ∀ ∃ ∀

In this way we can simplify the above expression "x is a prime number" as 
follows:

(1< x)∧(¬(∃ y∃ z (( y< x)∧(z< x )∧( x=( y∗z ))))) .

c) We can apply the so-called priority rules. For example, the priority rank of 
multiplications is supposed to be higher than the priority rank of additions. 
This rule allows writing x+y*z instead of the more formal x+(y*z) − because 
of its higher priority rank, multiplication must be "performed first". The most 
popular priority rules are the following:

c1) The priority rank of function constants is higher than the priority rank of 
predicate constants. This allows, for example, writing x*y = y*x instead of 
(x*y)=(y*x), or x∈ y∪z − instead of x∈( y∪ z) .

c2) The priority rank of predicate constants is higher than the priority rank of 
propositional connectives and quantifiers. This allows, for example, writing 

y< x∧z< x instead of ( y< x )∧( z< x) .

c3)  The  priority  rank  of  quantifiers is  higher  than  the  priority  rank  of 
propositional  connectives.  This  allows,  for  example,  writing 
∃ x F∧∀ yG instead  of (∃ x ( F ))∧(∀ y (G)) ,  or  writing  ¬∃ x F  

instead of ¬(∃ x (F )) .

c4)  The  priority  rank  of  negations is  higher  than  the  priority  rank  of 
conjunctions  and  disjunctions.  This  allows,  for  example,  writing 
¬A∧¬B  instead of (¬ A)∧(¬ B) .

c5)  The priority rank of  conjunctions and disjunctions is  higher  than the 
priority rank of implications. This allows, for example, writing A → A∨B  
instead of A →( A∨B) .
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In the usual mathematical practice some additional priority rules are used, but 
some of them are not allowed in the common programming languages.  To 
avoid confusions do not use too many priority rules simultaneously!

According to the above priority rules, we can simplify the above expression "x 
is a prime number" obtaining a form that is much easier for human reading 
(but is somewhat complicated for computers to process it):

1< x∧¬∃ y∃ z ( y< x∧z< x∧x= y∗z ) .

As you see, all the above rules are mere abbreviations. In principle, you could 
use  any  other  set  of  abbreviation  rules  accepted  by  your  audience.  If 
computers would do logic themselves, they would not need such rules at all 
(except, maybe, for displaying some of their results to humans, but why?).

Exercise  1.2.6.  "Translate"  the  following assertions  into  our  "language for 
people":

"x and y are siblings";
"x and y are brothers"; “x and y are sisters”;

“x is cousin of y”;
“parents of x and y are married”;

construct formulas expressing as much well-known relationships between 
people as you can.

But how about the predicate Ancestor(x, y) − "x is an ancestor of y"? Could it 
be expressed as a formula of our "language for people"? The first idea − let us 
"define" this predicate recursively:

∀ x∀ y (Father (x , y )∨Mother (x , y )→ Ancestor( x , y)) ;
∀ x∀ y∀ z (Ancestor ( x , y)∧Ancestor ( y , z )→ Ancestor (x , z )) . 

The second rule declares the transitivity property of the predicate. The above 
two formulas are  axioms,  allowing to derive the essential  properties of the 
predicate  Ancestor(x,  y).  But  how  about  a  single  formula  F(x,  y)  in  the 
"language for people", expressing that "x is an ancestor of y"? Such a formula 
should be a tricky combination of formulas Father(x, y), Mother(x, y) and x=y. 
And such a formula is impossible! See Carlos Areces. Ph.D. Thesis, 2000, (a 
non-trivial!) Theorem 1.2.

Exercise 1.2.7. "Translate" the following assertions into the language of first 
order arithmetic:

"x and y are twin primes" (examples of twin pairs: 3,5; 5,7; 11,13; 17,19;...),
"There are infinitely many pairs of twin primes" (the famous Twin Prime 

Conjecture), 
"x is a power of 2" (Warning! n(x=2∃ n) is not a correct solution. Why? 
Because exponentiation does not belong to the language of first order 

http://www.utm.edu/research/primes/glossary/TwinPrimeConjecture.html
http://www.utm.edu/research/primes/glossary/TwinPrimeConjecture.html
http://www.utm.edu/research/primes/lists/top20/twin.html
http://www.loria.fr/~areces/content/papers/files/thesis.pdf
http://www.loria.fr/~areces/
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arithmetic.),
"Each positive even integer ≥4 can be expressed as a sum of two primes"

(the famous Goldbach Conjecture).

Free Variables and Bound Variables

The above expression "x is a prime number":

1< x∧¬∃ y∃ z ( y< x∧z< x∧x= y∗z )

contains 3 variables: x − occurs 4 times in terms, y − 2 times in terms and 1 
time in quantifiers, z − occurs 2 times in terms and 1 time in quantifiers. Of 
course, x is here a "free" variable – in the sense that the "truth value" of the 
formula depends on particular "values" taken by x. On the contrary, the "truth 
value" of the formula does not depend on the particular "values" taken by the 
two "bound" variables y and z − the quantifiers y, z force these variables to∃ ∃  
"run across their entire range".

More precisely, first, we will count only the occurrences of variables in terms, 
not in quantifiers. And second, we will define a particular occurrence ox of a 

variable  x  in  (a  term of)  a  formula  F  as  a  free  occurrence  or  a  bound 
occurrence according to the following rules:

a) If F does not contain quantifiers x, x, then o∃ ∀ x is free in F.

b) If F is xG or xG, then o∃ ∀ x is bound in F.

c1) If F is G∧H ,G∨H , or G→H, and ox is free in G (or in H), then ox is 

free in F.

c2) If F is ¬G, yG, or yG, where y ∃ ∀ is not x, and ox is free in G, then ox is 

free in F.

d1) If F is G∧H ,G∨H , or G→H, and ox is bound in G (or in H), then ox is 

bound in F.

d2) If F is ¬G, yG, or yG (where y is any variable, x included), and o∃ ∀ x is 

bound in G, then ox is bound in F.

Thus, the above formula 1< x∧¬∃ y∃ z ( y< x∧z< x∧x= y∗z ) contains 4 
free occurrences of x, 2 bound occurrences of y, and 2 bound occurrences of z.

Exercise 1.2.8. Verify that an occurrence of x in F cannot be free and bound 
simultaneously. (Hint: assume that it is not the case, and consider the sequence 
of all sub-formulas of F containing this particular occurrence of x.)

Formally,  we can use formulas containing free and bound occurrences of a 

http://www.utm.edu/research/primes/glossary/GoldbachConjecture.html
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single variable simultaneously, for example, x> 1→∃ x ( x> 1) . Or, many 
bound occurrences of a single variable, for example,

(∀ xF (x)∧∃ xG (x ))∨∀ xH ( x)

means the same as

(∀ xF (x)∧∃ yG( y))∨∀ zH (z ) .

Still, we do not recommend using a single variable in many different roles in a 
single formula. Such formulas do not cause problems for computers, but they 
may become inconvenient for human reading.

Let us say, that x is a free variable of the formula F, if and only if F contains 
at least one free occurrence of x, or F does not contain occurrences of x at all.

If  a  formula  contains  free  variables,  i.e.  variables  that  are  not  bound  by 
quantifiers  (for  example: x=0∨ x=1 ),  then  the  "truth  value"  of  such 
formulas  may  depend  on  particular  values  assigned  to  free  variables.  For 
example, the latter formula is "true" for x=1, yet it is "false" for x=2. Formulas 
that do not contain free occurrences of variables, are called closed formulas, 
for example:

∀ w∃ x(w< x∧ prime (x)) .

Closed formulas represent "definite assertions about objects of theory", they 
are expected to be (but not always really are) either "true", or "false". 

Term Substitution

To say that x is a free variable of the formula F, we may wish to write F(x) 
instead of simply F. Replacing all free occurrences of x by a term t yields an 
"instance" of the formula F. It would be natural to denote this "instance" by 
F(t).

For example, if F(x) is y(y+y=x) and t is z*z+z, then F(t), or F(z*z+z) will∃  
denote y(y+y=z*z+z).∃
However,  if  t  would  be  y*y+y,  then  F(t),  or  F(y*y+y)  would  be 

y(y+y=y*y+y). Is this really F(y*y+y)?∃
Thus, sometimes, substitutions can lead to crazy results. Another example: in 
our expression "x is a prime number", let us replace x by y. Will the resulting 
formula mean "y is a prime number"? Let's see:

1< y∧¬∃ y∃ z ( y< y∧ z< y∧ y= y∗z ) .

Since y<y is always false, the second part ¬ y z(...) is true, hence, the latter∃ ∃  
formula  means  simply  that  "1  is  less  than  y",  and  not  that  "y is  a  prime 
number".
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Of course, we failed because we replaced a free variable x by a variable y in 
such a way that some free occurrence of x became bound by a quantifiers for 
y ( y). In this way we ∃ deformed the initial meaning of our formula.

The following simple rule allows to avoid such situations. Suppose, x is a free 
variable of the formula F. We will say that the  substitution F(x/t) (i.e. the 
substitution of the term t for x in the formula F) is admissible, if and only if 
no free occurrences of x in F are located under quantifiers that bind variables 
contained in t. If the substitution F(x/t) is admissible, then, by replacing all 
free occurrences of x in F by t, of course, we do not change the initial meaning 
of  the  formula  F(x),  and  hence,  we  may  safely  denote  the  result  of  this 
substitution by F(t). 

Exercise 1.2.9. Is x/y an admissible substitution in the following formulas? 
Why?

x=0∨∃ y ( y> z ) ;
x=0∨∃ y( y> x ) .

Exercise 1.2.10 (optional). a) Mathematicians: think over the analogy between 
bound variables in logic and bound variables in sum expressions and integrals.
b) Programmers: think over the analogy between bound variables in logic and 
loop counters in programs.

1.3. Axioms of Logic: Minimal System, Constructive System 
and Classical System

The Problem of Reasoning

Now we go on to the second phase of formalization: after having defined a 
formal language (predicate language) allowing to put down propositions about 
our domain of interest,  and having formulated some of the propositions as 
axioms, and must introduce some means of reasoning allowing to derive other 
statements that are “true” of our domain.

Indeed, having formulated some fragment of our knowledge as a set of axioms 
A1,  ...,  An in  some predicate  language L,  we do not  think  that  A1,  ...,  An 
represent  all  statements  that  are  “true”  of  the  objects  we  are  trying  to 
investigate.  Many  other  statements  will  follow from  A1,  ...,  An as 

consequences.

Example. Assume, we have formulated the following axioms in our "language 
for  people": ¬∃ x (Male( x)∧Female (x )) ; ∀ x (Male( x)∨Female (x )) , 
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and  the  following  facts: Male(John) ; Female (Britney) .  Then we do not 
need  to  formulate ¬ Female (John) ;¬ Male (Britney) as  separate  facts. 
These facts can be derived from the already registered facts.

The problem of reasoning: "formula F follows from A1, ..., An", what does it 

mean? The answer must be absolutely precise, if we wish to teach reasoning 
to computers. 

Solution of the Problem

First of all, let us notice that there are axioms and rules of inference that are 
applicable to any predicate languages, independently of the specific features of 
their domains. Such axioms and rules could be called “generally valid”.

For example, assume, some formula F has the following form:

(B → D)→ ((C → D)→ (B∨C → D)) ,

where  B,  C,  D are  some formulas.  Then  F  is  “true”  independently of  the 
specific facts represented in the formulas B, C, D.

Similarly, the following rule of inference MP is applicable independently of 
the facts represented in the formulas B, C:

Having derived the formulas B, B→C, derive the formula C.

If we have B→D and B→D already derived, then – by applying the rule MP to 
the above formula F – we derive that B∨C → D .

Now, we will try formulating a complete set of "generally valid" principles 
(axioms and rules of inference) of "logically correct reasoning". "Generally 
valid" means that these principles will be applicable to any predicate language. 
I.e. for any fixed predicate language L, we wish to formulate a uniform list of 
logical  axioms  and  inference  rules that  would  allow  formalization  of 
principles of reasoning that are "valid” for all languages. Such principles are 
called  sometimes  "pure  logical"  principles.  The  existence  of  such  general 
principles (and even, in a sense, a complete system of them) is the result of a 
2500 year long history of great discoveries (or inventions? − see below).

Aristotle (384-322 BC),

Gottlob Frege (1848-1925),

Charles Sanders Peirce (1839-1914).

Bertrand Russell (1872-1970) − "The Principia Mathematica is a three-volume work 
on the foundations of mathematics, written by Bertrand Russell and Alfred North Whitehead 
and published in 1910-1913. It is an attempt to derive all mathematical truths from a well-
defined  set  of  axioms  and  inference  rules  in  symbolic  logic.  The  main  inspiration  and 
motivation  for  the  Principia  was  Frege's  earlier  work  on  logic,  which  had  led  to  some 

http://www.wikipedia.org/wiki/Frege
http://www.wikipedia.org/wiki/Symbolic_logic
http://www.wikipedia.org/wiki/Alfred_North_Whitehead
http://www.wikipedia.org/wiki/Bertrand_Russell
http://www.wikipedia.org/wiki/Mathematics
http://www.wikipedia.org/wiki/Principia_Mathematica
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
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contradictions discovered by Russell." (according to Wikipedia).

David Hilbert (1862-1943), 

Wilhelm Ackermann (1896-1962).

D.Hilbert, W.Ackermann. Grundzüge der theoretischen Logik. Berlin (Springer), 1928 (see 
also: Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

The first version of logical axioms was introduced in 1879 by G. Frege in his 
above-mentioned Begriffsschrift. The next important version was proposed in 
1910-1913 by B. Russell and A. Whitehead in their famous book  Principia  
Mathematica. And finally, in 1928 D. Hilbert and W. Ackermann published in 
their above-mentioned book, in a sense, the final version of logical axioms. 
Modifications of this version are now used in all textbooks of mathematical 
logic.

In our version, the axioms will be represented by means of the so-called axiom 
schemas (programmers might call them  templates). Each schema (template) 
represents an infinite, yet easily recognizable collection of single axioms. For 
example,  schema  L3: B∧C → B may  represent  the  following  axioms 

("instances of the schema") in the language of first order arithmetic:

x= y∧x=x → x= y ,

1∗1=1∧1+ 1=1+ 1→1∗1=1 ,

and many other axioms: take any formulas B, C, and you will obtain an axiom
B∧C → B . 

We will not specify properties of the  equivalence connective in axioms. We 
will  regard  this  connective  as  a  derived  one:  B↔C  will  be  used  as  an 
abbreviation of (B →C)∧(C → B) .

Axioms of Logic

Suppose,  we  have  specified  some  predicate  language  L.  We  adopt  the 
following 15 axiom schemas as the logical axioms for the language L.

In the axiom schemas  L1-L11 below,  B,  C and D are  any formulas  in  the 

language L.

The  first  two  axiom  schemas  L1,  L2 represent  the  "definition"  of  the 

implication connective:

L1: B →(C → B)  (what does it mean?),

L2: (B →(C → D))→((B →C )→( B → D))  (what does it mean?).

http://www.math.uwaterloo.ca/~snburris/
http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Ackermann.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html


29

The following axiom schemas L3–L5  represent the "definition" of the AND-

connective (conjunction):

L3: B∧C → B  (what does it mean?),

L4: B∧C → C  (what does it mean?),

L5: B →(C → B∧C)  (what does it mean?).

The following axiom schemas L6–L8 represent the "definition" of the (non-

exclusive) OR-connective (disjunction):

L6: B → B∨C  (what does it mean?),

L7: C → B∨C  (what does it mean?),

L8: (B → D)→ ((C → D)→ (B∨C → D))  (what does it mean?).

The next xiom schema L9 represents the "definition" of the NO-connective. In 

fact, it is a formal version of a proof method well-known in mathematics − 
refutation by deriving a contradiction (Reductio ad absurdum):

L9: (B →C)→((B →¬C )→¬B)  (what does it mean?). 

The next axiom schema L10 represents the famous principle "Contradiction 

Implies Anything" (Ex contradictione sequitur quodlibet, or Ex falso sequitur  
quodlibet):

L10: ¬B →( B →C)  (what does it mean?).

The following axiom schema L11 represents the famous  Law of  Excluded 

Middle (Tertium non datur):

L11: B∨¬B  (what does it mean?).

The above 11 schemas (plus the Modus Ponens rule of inference, see below) 
represent the classical propositional logic in the language L.

Now, the "definitions" of the universal and existential quantifiers follow.

In the following axiom schemas L12, L13, F is any formula, and t is a term 

such that the substitution F(x/t) is admissible (in particular, t may be x itself):

L12:  ∀x F (x )→ F (t)  (in  particular, ∀x F (x )→ F (x ) ,  what  does  it 

mean?),

L13:  F (t)→∃ x F ( x)  (in  particular, F (x)→∃ x F (x ) ,  what  does  it 

mean?).



30

In the following schemas L14, L15, F is any formula, and G is a formula that 

does not contain x as a free variable:

L14: ∀x(G → F ( x))→(G →∀x F (x )) (what does it mean?),

L15: ∀x( F ( x)→ G)→(∃ x F ( x)→ G) (what does it mean?).

Rules of Inference

In the following rules of inference, B, C and F are any formulas.

Modus Ponens: B→C; B  C (what does it mean?).⊢
Generalization: F(x) ⊢ ∀x F (x ) (what does it mean?).

This  list  of  logical  axioms  and  rules  of  inference  represents  the  so-called 
classical  predicate  logic in  the  predicate  language  L  (or,  simply  −  the 
classical logic in the language L).

Some of the logical axioms are "wrong, but useful"!

The axioms L1, L2 represent the (currently) most popular version of "defining" 

the implication connective. About other (equivalent) versions − containing 3 or 
4 axioms − see Hilbert, Bernays [1934] (Chapter III) and Exercise 1.5.2.

The axiom L9 represents the (currently) most popular version of "defining" the 

negation connective. About other (equivalent) versions − see Hilbert, Bernays 
[1934] (Chapter III), Exercise 2.4.2.

Three of the above axiom schemas seem to be (at least partly) problematic.

For example, how do you find the funny axiom L10: ¬B →( B →C) ? If ¬B 

and B were true simultaneously, then anything were true?  Ex contradictione 
sequitur quodlibet? Is this a really "true" axiom? Of course, it is not. Still, this 
does not matter: we do not need to know, were C "true" or not, if ¬B and B 
were  "true"  simultaneously.  By  assuming  that  "if  ¬B  and  B  were  true 
simultaneously,  then  anything  were  true"  we greatly  simplify  our logical 
apparatus. For example, we will prove in  Section 2.6 that, in the classical 
logic, ¬¬B→B. This simple formula can't be proved without the "crazy" axiom 
L10 (see Section 2.8).

In fact, the first axiom L1: B→(C→B) also is funny. If B is (unconditionally) 

true,  then  B  follows  from C,  even  if  C  has  nothing  in  common  with  B? 
Moreover,  in  Exercise  1.4.2(d) we  will  see  that  the  axioms  L1,  L9 allow 

proving that  ¬B,  B  ¬C, i.e.  if  ¬B and B were true simultaneously,  then⊢  
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anything were false (thus, in a sense, L1 contains already 50% of L10!). After 

this, could we think of L1 as a really "true" axiom? Of course, we can't. Still, 

this does not matter: if B is (unconditionally) true, then we do not need to 
know, follows B from C or not. By assuming that "if B is true, then B follows 
from anything" we greatly simplify our logical apparatus.

The above two phenomena are called paradoxes of the material implication, 
see  Paradoxes  of  Material  Implication by  Peter  Suber,  and  Falsity  Implies 
Anything by Alexander Bogomolny.

May our decision to "greatly simplify" the logical apparatus have also some 
undesirable  consequences?  Let  us  consider  the  following  formula  F(x): 

y(child(x,  y)→Female(y)).  It  seems,  F(x)  is  intended  to  mean:  "All  the∀  
children of x are female". However, in our system of logic, F(x) is regarded as 
true also, if x does not have children at all! If you do not have children at all,  
then all your children are female! Or male? Or smart? Etc. Seems funny, but 
is, in fact, harmless...

Constructive Logic

Still, the most serious problem is caused by the axiom L11: Bv¬B − the Law of 

Excluded Middle. How can we think of L11 as a "true" axiom, if (according to 

Gödel's  Incompleteness Theorem) each sufficiently strong consistent theory 
contains undecidable propositions? I.e. we postulate that either B, or ¬B "must 
be true", yet for some B we cannot prove neither B, nor ¬B! Knowing that 
Bv¬B is  "true" may inspire us to work on the problem, but it  may appear 
useless, if we do not succeed... Should we retain L11 as an axiom after this?

Some  other  strange  consequences of  L11 also  should  be  mentioned  (see 

Exercise 2.6.4):

B∨(B →C ) ,
(B → C )∨(C → B) ,
(( B →C )→ B)→ B  (the so-called Peirce's Law).

For these (and some other) reasons some people reject L11 as a "valid" logical 

axiom.

The above list of 15 axiom schemas as it stands is called the classical logic.

By excluding L11 from the list the so-called constructive (historically, and in 

most  textbooks  −  intuitionistic)  logic is  obtained.  As  a  concept,  it  was 
introduced by Luitzen Egbertus Jan Brouwer in 1908:

L. E.  J.  Brouwer. De onbetrouwbaarheid der  logische principes  (The unreliability of  the 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Brouwer.html
http://www.cut-the-knot.com/
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.earlham.edu/~peters/hometoc.htm
http://www.earlham.edu/~peters/courses/log/mat-imp.htm
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logical principles), Tijdschrift voor Wijsbegeerte, 2 (1908), pp.152-158.

Brouwer's  main  objection  was  against  non-constructive  proofs  which  are 
enabled mainly by "improper" use of the Law of Excluded Middle. 

For  elegant  examples  of  non-constructive  proofs  see  Constructive 
Mathematics by Douglas Bridges in Stanford Encyclopedia of Philosophy.

Note. A similar kind of non-constructive reasoning is represented by the so-
called Double Negation Law: ¬¬B→B, see Section 2.6.

As a formal system, the intuitionistic logic was formulated by Arend Heyting 
in 1930:

A. Heyting. Die formalen  Regeln der  intuitionistischen  Mathematik.  Sitzungsberichte  der  
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930, pp.42-
56.

The constructive concept of logic differs from the classical one mainly in its 
interpretation of disjunction and existence assertions:

− To prove BvC  constructively,  you must  prove B, or  prove C. To prove 
B∨C by using the classical logic, you are allowed to assume ¬(B∨C )  

as  a  hypothesis  to  derive  a  contradiction.  Then,  by  the  Law  of  Excluded 
Middle (BvC )∨¬(BvC ) you obtain B∨C . Having only such a "negative" 
proof, you may be unable to determine, which part of the disjunction BvC is 
true − B, or C, or both. Knowing that B∨C is "true" may inspire you to 
work on the problem, but it may appear useless, if you do not succeed...

− To prove xB(x)  ∃ constructively, you must provide a particular value of x 
such that B(x) is true. To prove xB(x) by using the classical logic, you are∃  
allowed to assume x¬B(x) as a hypothesis to derive a contradiction. Then, by∀  
the  Law  of  Excluded  Middle ∃ xB (x )∨¬∃ xB( x) you  obtain  xB(x).∃  
Having only such a "negative" proof, you may be unable to find a particular x 
for which B(x) is true. Knowing that xB(x) is "true" may inspire you to work∃  
on the problem, but it may appear useless, if you do not succeed...

Note. Informally, we may regard existence assertions as "huge disjunctions". 
For  example,  in  the  language  of  first  order  arithmetic,  xB(x)  could  be∃  
"thought" as B(0)∨B(1)∨B (2)∨... , i.e. as an infinite "formula". Thus, the 
above two theses are, in a sense, "equivalent".

The  constructive  (intuitionist)  logic  is  one  of  the  great  discoveries  in 
mathematical logic − surprisingly, a complete system of constructive reasoning 
(as we will see later, in  Section 4.4) can be obtained simply by dropping the 
Law of Excluded Middle from the list of valid logical principles.

See also Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia of Philosophy.

Luitzen Egbertus Jan Brouwer (1881-1966): "He rejected in mathematical proofs the Principle 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Brouwer.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/s44
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Heyting.html
http://plato.stanford.edu/contents.html
http://www.math.canterbury.ac.nz/~mathdsb/
http://plato.stanford.edu/entries/mathematics-constructive/#1
http://plato.stanford.edu/entries/mathematics-constructive/#1
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of the Excluded Middle, which states that any mathematical statement is either true or false. In  
1918 he published a set theory, in 1919 a measure theory and in 1923 a theory of functions all 
developed  without  using  the  Principle  of  the  Excluded  Middle."  (according  to  MacTutor 
History of Mathematics archive). "Como Heinrich Scholz solia decir en sus cursos: no son ni 
Heidegger ni Sartre los verdaderos renovadores de la filosofia, sino Brouwer porque sólo él ha 
atacado el bastión dos veces milenario del platonismo: la concepción de los entes matematicos 
como cosas en si." (quoted after Andrés R. Raggio, Escritos Completos,  Prometeo Libros, 
2002).

Minimal Logic

By excluding both L10 and L11 the so-called minimal logic is obtained. It was 

introduced by Ingebrigt Johansson in 1936:

I.Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus.  Compositio 
Mathematica, 1936, Vol. 4, N1, pp.119-136.

As a separate  concept,  the minimal  logic  is  much less  significant  than the 
constructive logic. Indeed, since it allows proving of ¬B, B  ¬C (in a sense,⊢  
50% of L10!), dropping of L10 is not a very big step.

First Order Theories

Having defined our predicate language L, and having formulated for L all the 
logical axioms and rules of inference, do we need more?

To complete the formalization of our informal vision of our domain of interest, 
we  must  formulate  at  least  some  specific  axioms  describing  the  specific  
features of the domain. Logical axioms and rules of inference are valid for any 
domains, i.e. they are “content-free” in the sense that, by using them only, one 
cannot derive specific information about the domain.

For example, one cannot derive from (any) logic, that

∀ x (Male( x)∨Female ( x)) .

To communicate this fact to the computer, we must formulate it as a specific  
axiom.

And,  as  we  will  prove  in  Section  4.3,  we  will  never  need  introducing  of 
specific rules of inference. All we need are the two logical rules of inference – 
Modus Ponens and Generalization.

Thus, as the result of the formalization process, we will obtain the so-called 
first order theories.

Each first order theory T includes:

a) a specific predicate language L(T);

http://en.wikipedia.org/wiki/Ingebrigt_Johansson
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
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b)  logical  axioms and  rules  of  inference  for  this  language  (classical  or 
constructive version may be adopted, see below);

c) a set of specific (non-logical) axioms of T.

As the first example, let's use our "language for people" to build a “theory for people”.

Examples of instances of logical axioms for the “language for people”:

L1: ∀ x(Male( x)→(Female (x)→ Male (x))) ;

L6: ∀ x∀ y(Mother (x , y)→ Mother (x , y)∨Father ( x , y )) ;

L11: Male (John)∨¬Male (John) ;

L12: ∀x(Female( x))→Female (Britney) ;

etc.

And let's introduce the following non-logical axioms:

∀ x(Male( x)∨Female(x)) ;
¬∃ x(Male (x)∧Female(x)) ;
∀ x∀ y(Father (x , y)→ Male( x)) ;
∀ x(∀ y (∀ z ((Father (x , z )∧Father ( y , z ))→(x=y ))))  ...

Exercise 1.3.1. Extend this list of axioms as far as you can. Is your list complete? What do 
you mean by “complete”?

Another example of a first order theory − the so-called first order arithmetic PA (also called 
Peano arithmetic): 

The language of PA:

a) The constants 0 and 1, and all variables are terms.

b) If t1 and t2 are terms, then (t1+t2) and (t1*t2) also are terms.

c) Atomic formulas are built as (t1=t2), where t1 and t2 are terms.

Since  we  can  use,  for  example,  the  expression  2x2-3y2-1=0  as  a  shortcut  for 
(1+1)*x*x=(1+1+1)*y*y+1, we can say simply that, in first order arithmetic, atomic formulas 
of are arbitrary Diophantine equations. 

Instances  of  logical  axioms  for  the  language  of  first  order  arithmetic:
L1: x=0 →( y=1→ x=0) ;

L6: x=y → x=y∨z=1 ;

L11: 0=1∨¬(0=1) ;

L12: ∀x(x=1)→ x=1 ;

etc.

The specific (non-logical) axioms of first order arithmetic:

x=x,
x=y→y=x,
x=y→(y=z→x=z),
x=y→x+1=y+1,

http://en.wikipedia.org/wiki/Diophantine_equation
http://en.wikipedia.org/wiki/Peano_axioms
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¬(0=x+1),
x+1=y+1→x=y,
x+0=x,
x+(y+1)=(x+y)+1,
x*0=0,
x*(y+1)=(x*y)+x,

B(0 )∧∀x(B(x)→ B(x+ 1))→∀xB (x) , where B is any formula.

The axioms 7-10 represent recursive definitions of addition and multiplication. As the last the 
so-called induction schema is listed.

For the most popular axiom system of set theory – see Zermelo-Fraenkel's set theory.

Proofs and Theorems

In general, any sequence of formulas F1, F2, ..., Fm  could be regarded as a 

(correct or incorrect) formal proof (or simply, a proof) of its last formula Fm. 

In a correct proof, formulas can play only the following roles:

a) Axioms. Some formulas may be instances of logical or non-logical axioms.

b) Consequences of earlier formulas, obtained by using rules of inference. For 
example, if F25 is A, and F34 is A→B, and F51 is B, then we can say that F51 
has been obtained from F25 and F34 by using the Modus Ponens rule. Or, if F62 
is C(x), and F63 is xC(x), then we can say that F∀ 63 has been obtained from 

F62 by using the Generalization rule.

c)  Hypotheses. Some formulas may appear in the proof without any formal 
justification, simply by assuming that they are "true". 

Thus, the following notation can describe the actual status of a formal proof:

[T]: A1, A2, ..., An  B,⊢

where T is a first order theory (it determines which formulas are axioms and 
which are not), A1, A2, ..., An are all the hypotheses used in the proof, and B is 

the formula proved by the proof. Each formula in such a proof must be either 
an axiom, or a hypothesis from the set A1, A2, ..., An, or it must be obtained 

from earlier formulas (in this proof) by using a rule of inference. You may read 
the  above  notation  as  "in  theory  T,  by  using  formulas  A1,  A2,  ...,  An as 

hypotheses, the formula B is proved".

As the first example, let us consider the following proof:

 [L5, MP]: B ,C ⊢ B∧C . 

http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
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(1) B Hypothesis.

(2) C Hypothesis.

(3) B→(C →B∧C ) It's the axiom schema L5.

(4) C→B∧C It follows from (1) and (3) by 
Modus Ponens.

(5) B∧C It follows from (2) and (4) by 
Modus Ponens.

For more serious examples of formal proofs see the next Section 1.4 (Theorem 
1.4.1 and Theorem 1.4.2).

In the real mathematical practice, when proving [T]: A1, A2, ..., An  B, we⊢  

may apply some theorem Q that already has been proved earlier. If we would 
simply insert Q into our formal proof, then, formally, this would yield only a 
proof of [T]: A1, A2, ..., An, Q  B, i.e. Q would be qualified as a hypothesis.⊢  

To obtain the desired formal proof of [T]: A1, A2, ..., An  B, we must insert⊢  

not  only  Q  itself,  but  the  entire  proof of  Q!  In  this  way we  obtain  the 
following

Theorem 1.3.1. If there is a proof [T]: A1, A2, ..., An, Q  B, and a proof [T]:⊢  

A1, A2, ..., An  Q, then there is a proof of [T]: A⊢ 1, A2, ..., An  B.⊢

Proof. The proof of [T]: A1, A2, ..., An, Q  B is a sequence of formulas F⊢ 1, 

F2, ..., Q, ..., Fm, B, and the proof of [T]: A1, A2, ..., An  Q is some sequence⊢  

of formulas G1, G2, ..., Gp, Q. Let us replace Q by G1, G2, ..., Gp, Q:

F1, F2, ..., G1, G2, ..., Gp, Q, ..., Fm, B,

and eliminate  the  duplicate  formulas.  This  sequence  is  a  proof  of  [T]:  A1, 

A2, ..., An  B. Q.E.D.⊢

If, in some proof, hypotheses are not used at all, then we may write simply [T]: 
 B, or even T  B, and say that B is a  ⊢ ⊢ theorem of theory T. Of course, by 

using  axioms  directly  one  almost  never  can  prove  really  complicated 
theorems. Still,  we can retain our simple formal definition of the notion of 
theorem because of the following

Corollary 1.3.1. If there is a proof of [T]: A1, A2, ..., An  B, and proofs of⊢  

[T]:  A⊢ 1, [T]:  A⊢ 2, ..., [T]:  A⊢ n, then there is a proof of [T]:  B.⊢
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Proof. Immediately, by Theorem 1.3.1.

Consistency

Sometimes,  a  seemingly  plausible  set  of  axioms  allows  deriving  of 
contradictions (the most striking example −  Russell's paradox in the "naive" 
set theory). A formula F is called a contradiction in the theory T, if and only if 
[T]:   F  and  [T]:   ¬F,  i.e.  if  T  proves  and  disproves  F  simultaneously.⊢ ⊢  
Theories  allowinf  to  derive contradictions are  called  inconsistent  theories. 
Thus, T is called a consistent theory; if and only if T does not allow deriving 
of contradictions.

Normally,  for  a  first  order  theory,  the  set  of  all  theorems  is  infinite,  and, 
therefore, consistency cannot be verified empirically. We may only hope to 
establish  this  desirable  property  by means  of  some  theoretical  proof (see 
Podnieks [1997], Section 5.4 for a more detailed discussion of this problem).

For theories adopting the above logical axioms, inconsistency is, in a sense, 
"the worst possible property".  Indeed, the axiom L10: ¬B →( B →C) says 

that if a theory allows deriving a contradiction, then, in this theory, anything is 
provable.  In  Section  2.4 we  will  −  without  L10 −  prove  50%  of  it: 

¬B →( B →¬C) . Thus, even without L10 (but with L1): if a theory allows 

deriving a contradiction, then, in this theory, anything is disprovable.

Is consistency enough for a theory to be "perfect"? In  Section 4.3 we will 
prove  the  so-called  Model  Existence  Theorem:  if  a  first  order  theory  is 
consistent, then there is a "model" (a kind of a "mathematical reality") where 
all its axioms and theorems are "true".

Completeness

If  a  formula  contains  free  variables,  i.e.  variables  that  are  not  bound  by 
quantifiers  (for  example: x=0∨x=1 ),  then  the  "truth  value"  of  such 
formulas  may  depend  on  particular  values  assigned  to  free  variables.  For 
example, the latter formula is "true" for x=1, yet it is "false" for x=2. Formulas 
that do not contain free occurrences of variables, are called closed formulas, 
for example:

∀ w∃ x(w< x∧ prime (x)) .

Closed formulas represent "definite assertions about the objects of our theory", 
and they are expected to be either "true", or "false". Or, in a first order theory, 
they are expected to be either provable, or disprovable (refutable). The above 
closed  formula  (stating  that  "there  are  infinitely many prime numbers")  is 

http://en.wikipedia.org/wiki/Russell's_paradox
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provable − if our theory is first order arithmetic. 

T is called a complete theory, if and only if for each closed formula F in the 
language of T: [T]:  F or [T]:  ¬F, i.e. if and only if T proves or disproves⊢ ⊢  
any closed formula of its  language.  In other  words:  a complete  theory can 
solve any problem from the domain of its competence.

In an incomplete theory, some closed formulas ("definite assertions about the 
objects of theory") can be neither proved, not disproved. Thus, an incomplete 
theory can't solve some of the problems from the domain of its competence.

Formally,  according  to  this  definition,  an  inconsistent  theory  is  complete. 
Indeed, the axiom L10:  ¬B→(B→C) says that if a theory allows deriving a 

contradiction, then, in this theory, anything is provable, i.e. it is a complete 
theory.

Of course, if T would be both consistent and complete, then we could call it 
"absolutely perfect". Unfortunately, Gödel's incompleteness theorem says thata 
all  fundamental  mathematical  theories  are  either  inconsistent  or 
incomplete, i.e. none of them is "absolutely perfect" (see Mendelson [1997] or 
Podnieks [1997], Section 6.1). 

Exercise 1.3.2 (optional). Re-formulate the above axiom system for a many-
sorted  predicate  language (or,  see  Chapter  10.  Many-Sorted  First  Order 
Logic, by Jean Gallier.)

1.4. The Flavor of Proving Directly

Theorem 1.4.1. [L1, L2, MP]:  A→A for any formula A. What does it mean?⊢  

It's the so-called reflexivity property of implication.

The following sequence of formulas represents a proof of the formula A→A:

(1)
(A→((C→A)→A))→((A→(C→A))→
(A→A))

It's  the  axiom  schema  L2: 

(B→(C→D))→((B→C)→(B
→D)), with B = A, C = C→A, 
D = A.

(2) A→((C→A)→A)
It's  the  axiom  schema  L1: 

B→(C→B), with B = A, C = 
C→A.

http://www.cis.upenn.edu/~jean/home.html
http://www.cis.upenn.edu/~cis511/chap10.pdf
http://www.cis.upenn.edu/~cis511/chap10.pdf
http://en.wikipedia.org/wiki/Peano_axioms
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(3) (A→(C→A))→(A→A)
It follows from (1) and (2) by 
Modus Ponens.

(4) A→(C→A)
It's  the  axiom  schema  L1: 

B→(C→B), with B = A, C = 
C.

(5) A→A
It follows from (3) and (4) by 
Modus Ponens.

As you can see, the proof is easy to verify, but it could be hard to build it from 
scratch. "Why" should we take "the axiom L2 with B = A, C = C→A, D = A" 

for (1)?

How could one invent a proof like the above one? One of the versions could be as follows. 
First, let's try to find an axiom, from which we could get A→A as a consequence. By trying 
L1, i.e. B→(C→B), and setting B=C=A, we could obtain A→(A→A), a dead end, perhaps. 

So,  let's  try  L2,  i.e.  (B→(C→D))→((B→C)→(B→D)).  By  setting  B=D=A  we  obtain 

(A→(C→A))→((A→C)→(A→A)). It seems to be a good decision − because the first premise 
A→(C→A) is, in fact, L1. Hence, by applying the MP rule, we obtain (A→C)→(A→A). Now, 

how to make A→C "provable"? Since C is, in fact, an arbitrary formula, we can replace C by 
C→A, obtaining (A→(C→A))→(A→A). The premise is here, again, L1, hence, by applying 

the  MP rule,  we  obtain  A→A.  Q.E.D.  By  performing  all  our  replacements  at  the  very 
beginning,  we obtain the above proof  of  the formula  A→A. [BTW, the  above two smart 
"operations" − obtaining A→A within L2, and making L1 of A→C, are applications of the so-

called  unification, a very general and very important method used in intellectual computer 
programs, for details, see Section 5.7.]

Theorem 1.4.2. [L1, L2, MP]: A→B, B→C  A→C, for any formulas A, B, C.⊢  

What does it mean? It's the so-called Law of Syllogism (by Aristotle), or the 
transitivity property of implication.

The following sequence of formulas represents a proof of the formula A→C 
from the hypotheses A→B and B→C:

(1) A→B Hypothesis.

(2) B→C Hypothesis.

(3)
(A→(B→C))→((A→B)→(A
→C))

It's  the  axiom  schema  L2: 

(B→(C→D))→((B→C)→(B→D)), 
with B = A, C = B, D = C.

(4) (B→C)→(A→(B→C))
It's the axiom schema L1: B→(C→B), 

with B = B→C, C = A.

http://s57/
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(5) A→(B→C)
It follows from (2) and (4) by Modus 
Ponens.

(6) (A→B)→(A→C)
It follows from (3) and (5) by Modus 
Ponens.

(7) A→C
It follows from (1) and (6) by Modus 
Ponens.

Note. Only axiom schemas L1 and L2 , and inference rule Modus Ponens are 

used for proving the Theorems 1.4.1 and 1.4.2. Hence,  these theorems will 
remain valid for any logical system containing L1, L2 and Modus Ponens.

Exercise 1.4.1. Build sequences of formulas representing the following proofs 
(only the axiom schemas L1 and L2 and Modus Ponens are necessary):

a) [L1, MP]: A  B→A (a sequence of 3 formulas). What does it mean? ⊢

b) [L2,  MP]: A→B, A→(B→C)  A→C (a sequence of 5 formulas). What⊢  

does it mean?

c) [L1, L2, MP]: A→(B→C)  B→(A→C) (a sequence of 9 formulas − thanks⊢  

to Pavel Andreyev for the idea). What does it mean? It's the so-called Premise 
Permutation Law.

d)  [L1,  L2,  MP]:  A→(A→B)   A→B  (easy  solution  -  a  sequence  of  9⊢  

formulas,  smart  solution by Arnold Ostrovsky – 8 formulas).  What  does it 
mean?

Theorem 1.4.3. [L14, MP, Gen] If F is any formula, and G is any formula that 

does not contain x as a free variable, then 

G→F(x)  G→ xF(x).⊢ ∀
The  following  sequence  of  formulas  represents  a  proof  of  the  formula 
G→ xF(x) from the hypothesis G→F(x):∀

(1) G→F(x) Hypothesis.

(2) x(G→F(x))∀ It  follows  from  (1)  by 
Generalization.

(3) x(G→F(x))→(G→ xF(x))∀ ∀ It's  the axiom schema  L14 (G does 

not contain x as a free variable).
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(4) G→ xF(x)∀ It follows from (2) and (3) by Modus 
Ponens.

Exercise 1.4.2. Build sequences of formulas representing the following proofs 
(F  is  any formula,  and  G  is  a  formula  that  does  not  contain  x  as  a  free 
variable): 

a) [L15, MP, Gen]: F(x)→G  xF(x)→G (a sequence of 4 formulas). What⊢∃  

does it mean?

b) [L3-L5, MP]: A∧B ⊢ B∧A (a sequence of 8 formulas). What does it 

mean?

c) [L6-L8, MP]: ⊢ A∨B → B∨A (a sequence of 5 formulas). What does it 

mean?

d) [L1, L9, MP]: B, ¬B  ¬C (a sequence of 9 formulas). What does it mean?⊢  

It's 50% of the axiom L10!

e) [L3, L4, L9, MP]: ⊢ ¬(A∧¬A) (a sequence of 5 formulas). What does it 

mean? It's the so-called Law of Non-Contradiction.

f) [L1, L8, L10, MP]: ⊢ ¬A∨B →( A→ B) (a sequence of 5 formulas). What 

does it mean?

g) [L8, L11, MP]: A→B, ¬A→B  B (a sequence of 7 formulas). What does it⊢  

mean?

h)  [L1-L8,  MP]: A → B ⊢ A∨C → B∨C (a  sequence  of  11  formulas). 

What does it mean?

i) [L1-L11, MP]: ⊢ A∨( A→ B) (a sequence of 15 formulas). What does it 

mean? Does it mean anything at all?

Exercise  1.4.3  (optional,  for  smart  students).  Could  you  build  shorter 
sequences proving the formulas of Exercise 1.4.1 c, d) and Exercise 1.4.2 b, 
d)? Evgeny Vihrov verified in 2011 that any proof of the formula of Exercise 
1.4.1 d) will be longer than 5 formulas.

1.5. Deduction Theorems

If, by assuming B as a hypothesis, we have proved C, then we have proved 
that B implies C. This natural way of reasoning is formalized in the so-called 
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deduction theorems (introduced by Jacques Herbrand and Alfred Tarski):

J. Herbrand. Recherches sur la théorie de la démonstration. PhD Thesis, University of Paris, 
1930 (approved in April 1929).

A. Tarski. Ueber einige fundamentale Begriffe der Metamathematik. "Comptes Rendus de 
Séances de la Société des Sciences et des Lettres de Varsovie, Classe III", 1930, Vol.23, pp. 
22-29.

We will prove two such theorems – Deduction Theorem 1 (for propositional 
logic) and Deduction Theorem 2 (for predicate logic). 

Theorem 1.5.1 (Deduction Theorem 1). If T is a first order theory, and there 
is a proof of

[T, MP]: A1, A2, ..., An, B  C,⊢

 then there is a proof of

[L1, L2, T, MP]: A1, A2, ..., An  B→C.⊢

I.e. having a Modus Ponens proof of C from the hypotheses A1, A2, ..., An, B, 

we can build a Modus Ponens proof of B→C from the hypotheses A1, A2, ..., 

An.

It appears that, usually, proving of [T, MP]: ... B  C is easier (technically⊢  
simpler) than proving of [T, MP]: ...  B→C.⊢
Exercise 1.5.1 (optional, for smart students). Do not read the proof below. Try 
proving yourself.

Proof  (thanks  to  Sergey  Kozlovich  for  the  idea,  see  also  Kleene  [1967], 
Exercise 10C). We must define a procedure allowing to convert any proof of 
[T, MP]: A1, A2, ..., An, B  C into a proof of [L⊢ 1, L2, T, MP]: A1, A2, ..., An ⊢ 

B→C.

The  easy  way  to  do  this  would  be  using  an  induction  by  the  number  of 
formulas in the proof of [T, MP]: A1, A2, ..., An, B  C. But we will use a more⊢  

elegant idea. Any proof of [T, MP]: A1, A2, ..., An, B  C is a sequence of⊢  

formulas F1, F2, ...Fm. We will replace each formula Fi by 3 or 5 formulas, the 

last of these being the formula B→Fi, retaining our sequence as a valid proof.

We must consider the following cases:

1) F is an axiom (i.e. an instance of a logical axiom or a non-logical axiom of 
T). Replace F by 3 formulas: F, F→(B→F), B→F. The second formula is an 
instance of L1, the third formula is obtained from the first two ones by using 

Modus Ponens.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1967
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Tarski.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html
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2) F is  one of the hypotheses Ai.  Replace F by 3 formulas:  F,  F→(B→F), 

B→F. The second formula is an instance of L1, the third formula is obtained 

from the first two ones by using Modus Ponens.

3) F is B. Replace F by the 5 formulas from the proof of Theorem 1.4.1, where 
D can be any formula:

(B→((D→B)→B))→((B→(D→B))→(B→B)) (an instance of L2),

B→((D→B)→B) (an instance of L1),

B→(D→B))→(B→B) (by Modus Ponens),

B→(D→B) (an instance of L1),

B→B (by Modus Ponens).

The last formula is here, of course, B→F.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi 
having the form Fj→F (i.e. Fj→F and Fj yield F by Modus Ponens). Then, the 

formulas
B→Fj,

B→(Fj→F)

are  already  present  in  the  converted  proof  (they  appeared  during  the 
replacement operations applied to the formulas Fj and Fj→F). So, replace F by 

3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, MP] that is using the 

hypotheses A1, A2, ..., An, but not B! The last formula of this proof is B→C 

(because C is the last formula of our initial proof of [L1, L2, MP]: A1, A2, ..., 

An, B  C). Thus, we have a proof of [L⊢ 1, L2, MP]: A1, A2, ..., An  B→C.⊢  

Q.E.D.

The  above  proof  of  Deduction  Theorem 1  includes,  in  fact,  an  algorithm 
allowing to obtain a proof of [L1, L2, MP]: A1, A2, ..., An  B→C from a given⊢  

proof of [L1, L2, MP]: A1, A2, ..., An, B  C. The resulting proof is longer than⊢  

the given one: if the given proof consists of  m formulas, then the resulting 
proof consists of 3m or 3m+2 formulas).
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Corollaries 1.5.1. 1) If there is a proof of

[T, MP]: A1, A2, ..., An, B1, B2, ..., Bk  C,⊢

then there is a proof of

[L1, L2, T, MP]: A1, A2, ..., An  (B⊢ 1→(B2→(...→(Bk→C)...))).

2) If T includes (or proves) schemas L1, L2, then, if there is a proof of [T, MP]: 

A1, A2, ..., An, B  C then there is a proof of [T, MP]: A⊢ 1, A2, ..., An  B→C . ⊢

In particular, if [T, MP ]: B  C, then [T, MP]:  B→C. ⊢ ⊢
And, if [T, MP ]: B, C  D, then [T, MP]:  B→(C→D). ⊢ ⊢
Proof. 1) By iterating Deduction Theorem 1.

2) If T is a theory which includes or proves the schemas L1, L2, then [L1, L2, 

T, MP] is equivalent to [T, MP]. Q.E.D.

Exercise  1.5.2 (optional,  for  smart  students). In  earlier  versions  of  logical 
axioms, instead of the axiom L2, in some texts, the following 3 axioms were in 

use:

L21: (A→(A→B))→(A→B),

L22: (A→(B→C))→(B→(A→C)) (i.e. the Premise Permutation Law),

L23:  (A→B)→((B→C)→(A→C)) (the Law of Syllogism, or the transitivity 

property of implication).

Verify that both versions, i.e. [L1, L2, MP] and [L1, L21, L23, L23, MP] are 

equivalent. (Hint: a) See  Section 2.1 to verify that [L1, L2, MP] proves L21, 

L23, L23. b) Verify that [L1, L21, L23, L23, MP] proves L2 either directly, or by 

proving the Deduction Theorem 1 for [L1, L21, L23, L23, MP].)

Exercise 1.5.3 (optional, thanks to Sergey Kozlovich for the idea).

a) Prove the following "generalization" of the Modus Ponens rule:

[L1,  L2,  MP]:  (D1→(D2→...(Dk→B)...),  (D1→(D2→...(Dk→(B→C))...)  ⊢ 

(D1→(D2→...(Dk→C)...).

b) Prove the following "generalization" of the axiom L14 (formulas D1, D2, ..., 

Dk do not contain x as a free variable): 

[L1,  L2,  L14,  MP]:   x(D⊢ ∀ 1→(D2→...(Dk→F(x))...)  →  (D1→(D2→...

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/s21
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(Dk→ xF(x))...).∀

Exercise 1.5.4 (optional, for smart students). Investigate the size (the number 
of formulas) of the proof of [L1, L2, MP]: A1, A2, ..., An,  B→C as a function⊢  

f(m) of the size m of the proof of [L1, L2, MP]: A1, A2, ..., An, B  C. You may⊢  

wish  to  report  your  result.  We will  publish  your  report  on  the  web as  an 
appendix to this book. The current record holder is  Sergey Kozlovich, 2004: 
f(m) ≤ 3m+2. Improve this result, or prove that it is the best one possible.

Exercise 1.5.5 (optional, for smart students). Investigate the size (the number 
of instances of atomic formulas) of the proof of [L1, L2, MP]: A1, A2, ..., An, ⊢ 

B→C as a function g(m) of the size m of the proof of [L1, L2, MP]: A1, A2, ..., 

An, B  C. You may wish to ⊢ report your result. We will publish your report on 

the  web  as  an  appendix  to  this  book.  The  current  record  holder  is  Kirils 
Solovjovs, 2008: g(m, n) ≤ 7m+24n−2, where n is the number of instances of 
atomic formulas in the formula B. Improve this result, or prove that it is the 
best one possible.

Warning! Generalization involved...

Now, what, if in the proof of A1, A2, ..., An, B  C not only ⊢ Modus Ponens, yet 

also Generalization is used?

We must be careful, because, trying "simply" to apply Deduction Theorem 1, 
we can obtain crazy results. Indeed, having a formula F(x), by Generalization, 
we obtain the formula xF(x). Thus, F(x)  xF(x). If Deduction Theorem 1∀ ⊢∀  
could be extended to Gen without any restrictions, then we could conclude that 

 F(x)→ xF(x).  If  this  is  true for any x,  it  is  true also for x=2, hence,  ⊢ ∀ ⊢ 
F(2)→ xF(x). Thus, if the number 2 is prime, then all numbers are prime?∀
So, let us try deriving a restricted formulation of the Deduction Theorem − it 
seems, we should prohibit application of Gen to the free variables of B − 
the hypothesis "to be moved".

Theorem 1.5.2 (Deduction Theorem 2). If T is a first order theory, and there 
is a proof of

[T, MP, Gen]: A1, A2, ..., An, B  C,⊢

where Generalization is not applied to the free variables of B, then there is a 
proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An  B→C. ⊢

Proof. We must  extend the  above proof  of  the  Deduction  Theorem 1 that 
consisted of 4 cases. First, we must extend the first case:

http://podnieks.id.lv/mlog/155_Solovjovs.pdf
http://podnieks.id.lv/mlog/155_Solovjovs.pdf
mailto:Karlis.Podnieks@lu.lv
http://podnieks.id.lv/mlog/152_Kozlovich.doc
mailto:Karlis.Podnieks@lu.lv
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1') F is an axiom (i.e. an instance of a logical axiom or a non-logical axiom of 
T). Replace F by 3 formulas: F, F→(B→F), B→F. The second formula is an 
instance of L1, the third formula is obtained from the first two ones by using 

Modus Ponens.

And we must add the following case:

5)  F is  derived from some previous  formula  Fi by  Generalization,  thus,  F 

having the form xF∀ i, where x is not free in the formula B. Replace F by the 

following 3 formulas:

x(B→F∀ i)→(B→ xF∀ i),

x(B→F∀ i),

B→ xF∀ i.

Since x is not free in B, the first formula is an instance of L14. The second 

formula is obtained by Generalization from the formula B→Fi that is already 

present in the converted proof (it appeared during the replacement operation 
applied to the formula Fi). The third formula is obtained from the first two 

ones by using Modus Ponens.

Thus, what we have now, is a correct proof in [L1, L2, L14, MP, Gen] that is 

using the hypotheses A1, A2, ..., An, but not B! The last formula of this proof is 

B→C (because C is the last  formula our initial  proof of [L1,  L2,  L14,  MP, 

Gen]: A1, A2, ..., An, B  C). Thus, we have a proof of [L⊢ 1, L2, L14, MP, Gen]: 

A1, A2, ..., An  B→C. Q.E.D.⊢

Corollary 1.5.2. 1) If there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B1, B2, ..., Bk  C,⊢

where  Generalization is not applied to the the free variables of the formulas 
B1, B2, ..., Bk, then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An  (B⊢ 1→(B2→(...→(Bk→C)...))).

2) If B is a closed formula, and there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B  C,⊢

then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An  B→C. ⊢

3) If T is a theory whose axioms include schemas L1, L2, L14, then, if there is a 
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proof of

[T, MP, Gen]: A1, A2, ..., An, B  C, ⊢

where Generalization is not applied to the the free variables of B, then there is 
a proof of

 [T, MP, Gen]: A1, A2, ..., An  B→C.⊢

In particular, if [T, MP, Gen]: B  C, where ⊢ Generalization is not applied to 
the free variables of B, then [T, MP, Gen]:  B→C.⊢
Proof. Similar to the proof of the above Corollaries of Deduction Theorem 1.

Warning! Previously proved theorems involved...

In the real mathematical practice, when proving [T, MP, Gen]: A1, A2, ..., An ⊢ 

C, we may wish to apply some theorem Q that we have already proved earlier.  
If we would simply insert Q into our formal proof, then, formally, this would 
yield only that [T, MP, Gen]: A1, A2,  ..., An,  Q  C. To obtain the desired⊢  

formal proof of [T, MP, Gen]: A1, A2, ..., An  C, we must insert not only Q⊢  

itself, but the entire proof of Q! 

Still,  with  the  Deduction  Theorem  2  this  may  be  problematic.  If  we  are 
proving  [T,  MP,  Gen]:  A1,  A2,  ...,  An,  B   C  with  the  intention  to  apply⊢  

Deduction Theorem 2 (to obtain [T, MP, Gen]: A1, A2, ..., An  B→C), then,⊢  

before  inserting  the  proof  of  Q,  we  must  ensure  that,  in  this  proof, 
Generalization is not applied to the free variables of B. But, of course, the 
original proof of Q could contain such Generalizations! To solve this problem, 
we could try, in the proof of Q, before inserting it, rename simultaneously all 
the variables to which Generalization is applied and which are free variables 
in B. But this simultaneous renaming may affect the bound variables of Q, and 
thus − destroy the intended use of Q.

The problem is solved completely by the following extension of the Deduction 
Theorem 2:

Theorem 1.5.3 (Deduction Theorem 2A). If there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B  C,⊢

where, after B appears in the proof, Generalization is not applied to the free 
variables of B, then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An  B→C.⊢

Indeed, having such a theorem, we obtain the necessary
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Corollary 1.5.3. If there is a proof of

 [T, MP, Gen]: A1, A2, ..., An, B, Q  C, ⊢

where, after B appears in the proof,  Generalization is not applied to the free 
variables of B, and there is a proof of

[T, MP, Gen]: A1, A2, ..., An  Q,⊢

then there is a proof of

[T, MP, Gen]: A1, A2, ..., An  B→C.⊢

Proof of the Corollary. In the proof of [T, MP, Gen]: A1, A2, ..., An, B, Q  C,⊢  

first,  move  all  the  hypotheses  A1,  A2,  ...,  An to  the  beginning.  Then, 

immediately after them, insert the proof of [T, MP, Gen]: A1, A2, ..., An  Q.⊢  

Now we have a proof of [T, MP, Gen]: A1, A2, ..., An, B  C, where, after B⊢  

appears in the proof,  Generalization is not applied to the free variables of B. 
By Deduction Theorem 2A, then there is a proof of [T, MP, Gen]: A1, A2, ..., 

An  B→C. Q.E.D.⊢

Proof of the Deduction Theorem 2A. Let us modify the above proof of the 
Deduction Theorem 2. 

We must define a procedure allowing to convert any allowed proof of [T, MP, 
Gen]: A1, A2, ..., An, B  C into a proof of [L⊢ 1, L2, T, MP, Gen]: A1, A2, ..., An 

 B→C.⊢
Unlike the above proof, let us leave unchanged all the formulas of the proof of 
[T, MP]: A1, A2, ..., An, B  C  ⊢ before B appears in the proof. After this, 

starting with B, we will replace each formula F by 3 or 5 formulas, one of 
them being the formula B→F.

We must consider the following cases:

1), 2), 3) − as in the proof of the Deduction Theorem 1.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi 
having the form Fj→F (i.e. Fj→F and Fj yield F by Modus Ponens). Then, 4 

subcases are possible.

4a)  Fj and Fj→F both appear  before  B,  i.e.  they remain  unchanged in the 

converted proof. Let us replace F by the following 3 formulas: F, F→(B→F), 
B→F. The second formula is an instance of L1, the third formula is obtained 

by using Modus Ponens from the first two ones.
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4b) Fj appears before B, and Fj→F is B or appears after B. Then, the formulas 

Fj and B→(Fj→F) are already present in the converted proof. Let us replace F 

by the following 5 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

Fj→(B→Fj) (an instance of L1),

B→Fj (by Modus Ponens),

B→F (by Modus Ponens).

4c) Fj is B or appears after B, and Fj→F appears before B. Then, the formulas 

B→Fj and Fj→F are already present in the converted proof. Let us replace F 

by the following 5 formulas from the proof of Theorem 1.4.2:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(Fj→F)→(B→(Fj→F)) (an instance of L1),

B→(Fj→F) (by Modus Ponens),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

4d) Fj and Fj→F both are B or appear after B. Then, the formulas B→Fj and 

B→(Fj→F) are already present in the converted proof (they appeared during 

the  replacement  operations  applied  to  the  formulas  Fj and  Fj→F).  Let  us 

replace F by the following 3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

5) F is derived from some previous formula Fi by Generalization, thus, F is in 

the form xF∀ i. Then, 2 subcases are possible.

5a)  Fi appears before B. Then x is  not free in B. Let us replace F by the 

following 3 formulas:

F (by Generalization, x is not free in B),

F→(B→F) (an instance of L1),
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B→F

5b) Fi is B or appears after B. Then x is not free in B, and the formula B→F i 
that  is  already  present  in  the  converted  proof  (it  appeared  during  the 
replacement  operation  applied  to  the  formula  Fi).  Let  us  replace  F  by the 

following 3 formulas:

x(B→F∀ i) (by Generalization, x is not free in B),

x(B→F∀ i)→(B→ xF∀ i) (an instance of L14, since x is not free in B),

B→ xF∀ i (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, L14, T, MP, Gen] that is 

using the hypotheses A1, A2, ..., An, but not B! The last formula of this proof is 

B→C (because C is the last formula our initial proof of [T, MP, Gen]: A1, 

A2, ..., An, B  C). Thus, we have a proof of [L⊢ 1, L2, L14, T, MP, Gen]: A1, A2, 

..., An  B→C. Q.E.D.⊢

Exercise  1.5.6 (optional,  for  smart  students). In  some  other  textbooks,  a 
somewhat different system of logical axioms is used: instead of the axioms 
L14, L15 and the Generalization rule the following two rules of inference are 

used:

G→F(x)  G→ xF(x) ( -Introduction);⊢ ∀ ∀
F(x)→G  xF(x)→G ( -Elimination).⊢∃ ∃
Of course,  here,  G is  a formula that does not contain x as a free variable.  
Verify  that  both  systems  are  equivalent  in  all  of  their  versions  (minimal, 
constructive, and classical).
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2. Propositional Logic

George Boole (1815-1864): "In 1854 he published An Investigation into the Laws of Thought,  
on  Which  are  founded  the  Mathematical  Theories  of  Logic  and  Probabilities. Boole 
approached  logic  in  a  new way reducing  it  to  a  simple  algebra,  incorporating  logic  into 
mathematics. He pointed out the analogy between algebraic symbols and those that represent 
logical  forms.  It  began  the  algebra  of  logic  called  Boolean  algebra  which  now  finds 
application in computer construction, switching circuits etc." (according to MacTutor History 
of Mathematics archive).

See also:

G.Boole. The Calculus of Logic.  The Cambridge and Dublin Mathematical Journal, vol. 3 
(1848)  (available  online  at  http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/, 
published by David R. Wilkins).

2.1. Proving Formulas Containing Implication only

Let us return to the Exercise 1.4.1(d), where you produced a sequence of 9 
formulas proving the following:

d) [L1, L2, MP]: A→(A→B)  A→B.⊢

Did you try the next step – proving of

d') [L1, L2, MP]:  (A→(A→B))→(A→B)?⊢

For proving directly – almost an impossible task!

Now, having deduction theorems, we can simplify the task of proving d), and 
make the task of proving d') feasible.  More precisely – the task of proving 
that d) and d') are provable. Indeed,

(1) A→(A→B) Hypothesis.

(2) A Hypothesis.

(3) A→B By MP, from (1), (2).

(4) B By MP, from (2), (3).

Thus,  we  have  established  that  A→(A→B),  A  B.  Now,  by  Deduction⊢  
Theorem 1,

[L1, L2, MP]: A→(A→B)  A→B.⊢

http://www.maths.tcd.ie/~dwilkins/
http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Boole.html
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And let us apply this theorem once more,

[L1, L2, MP]:  (A→(A→B))→(A→B).⊢

Note. In fact, we proved here only A→(A→B), A  B, but ⊢ we did not prove 
d)  and  d'),  i.e.  we  did  not  produce  the  corresponding  sequences  of 
formulas. We just proved that these sequences do exist!  To produce them 
really,  we  must  apply  the  algorithm  described  in  the  proof  of  Deduction 
Theorem 1.

Exercise  2.1.1. Imagine  applying  the  algorithm described  in  the  proof  of 
Deduction  Theorem 1:  a)  to  the  above 4  formula  sequence  –  producing a 
sequence of 44 formulas proving [L1, L2, MP]:  (A→(A→B))→(A→B); b)⊢  

to your 9 formula proof of (d) – producing a sequence of 29 formulas proving 
the same.

Warning! Always  be  careful  when  selecting  hypotheses. For 
example,  to  prove  the  strange  formula  (the  so-called  Peirce's  Law)  ⊢ 
((A→B)→A)→A (it is provable in the classical logic, not in the constructive 
logic!), you can try proving that (A→B)→A  A, but not A→B, A  A. Why?⊢ ⊢  
Because, by Deduction Theorem 1, from A→B, A  A it follows that A→B ⊢ ⊢ 
A→A and  (A→B)→(A→A), or A  (A→B)→A and  A→((A→B)→A).⊢ ⊢ ⊢  
Where do you see  ((A→B)→A)→A here?⊢
Exercise 2.1.2. Prove the following [L1, L2, MP]:

a)  ((A→B)→(A→C))→(A→(B→C)). What does this formula mean?⊢
b)  (A→B)→((B→C)→(A→C)). What does this formula mean? It's another⊢  
version of the so-called Law of Syllogism (by Aristotle), or the  transitivity 
property  of  implication.  Explain  the  difference  between  this  formula  and 
Theorem 1.4.2: A→B, B→C  A→C.⊢
c)  (A→(B→C))→(B→(A→C)). What does this formula mean? It's another⊢  
version of the so-called  Premise Permutation Law.  Explain the difference 
between this formula and Exercise 1.4.1(c): A→(B→C)  B→(A→C).⊢

2.2. Proving Formulas Containing Conjunction

Theorem 2.2.1. a) [L5, MP] A, B ⊢ A∧B .

b) [L3, L4, MP]: A∧B  A,⊢ A∧B  B.⊢

Let us prove (a).
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(1) A Hypothesis.

(2) B Hypothesis.

(3) A →(B → A∧B)
Axiom L5: B →(C → B∧C ) with 

B = A, C = B.

(4) B → A∧B By MP, from (1) and (3).

(5) A∧B By MP, from (2) and (4).

Now, let us prove (b).

(1) A∧B Hypothesis.

(2) A∧B → A
Axiom L3: B∧C → B with B = A, 

C = B.

(3) A By MP, from (1) and (2).

Thus, A∧B  A.⊢
(1) A∧B Hypothesis.

(2) A∧B → B
Axiom L4: B∧C → C with B = A, 

C = B.

(3) B By MP, from (1) and (2).

Thus, A∧B  B.⊢
Theorem 2.2.1 allows easy proving of equivalences. Let us remind that B↔C 
is defined as a shortcut for (B →C)∧(C → B) . Of course, we will call B 
and C equivalent formulas, if and only if  B↔C. For example, by Theorem ⊢
1.4.1, [L1, L2, MP]  A→A, hence, [L⊢ 1, L2, L5, MP] ⊢ (A → A)∧( A→ A) , 

i.e.

[L1, L2, L5, MP]  A↔A.⊢

Of course, (a) of the Exercise 2.1.2 is the reverse formula of the axiom L2. 

Hence, by Theorem 2.2.1:

[L1, L2, L5, MP]  (A→(B→C)) ↔ ((A→B)→(A→C)).⊢

By (c) of the Exercise 2.1.2, and Theorem 2.2.1:

[L1, L2, L5, MP]  (A→(B→C))↔(B→(A→C))⊢
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Now, let us prove another form of the Law of Syllogism, or Theorem 1.4.2 
[L1, L2, MP]: A→B, B→C  A→C:⊢

[L1-L4, MP] ⊢ (A → B)∧( B →C )→( A→ C) .

(1) (A → B)∧( B →C ) Hypothesis.

(2) (A → B)∧( B →C )→( A→ B)
Axiom L3: B∧C → B with B = 

A→B, C = B→C.

(3) (A → B)∧( B →C )→(B →C )
Axiom L4: B∧C →C with B = 

A→B, C = B→C.

(4) A→B By MP, from (1) and (2).

(5) B→C By MP, from (1) and (3).

(6) A→C
By by the transitivity property of 
implication (Theorem 1.4.2).

Thus, we have established that [L1-L4, MP]: (A → B)∧( B →C )  A→C. By⊢  

Deduction Theorem 1, [L1-L4, MP] ⊢ (( A→ B)∧(B →C ))→( A→C) .

Exercise 2.2.1. Prove the following [L1- L5, MP]:

a) A→B, A→C ⊢ A → B∧C . What does it mean? 

b) ⊢ (A → B)∧( A →C )→(A → B∧C ) . What does it mean? 

c) A → B∧C  A→B. What does it mean? ⊢
d) A → B∧C  A→C. What does it mean? ⊢
e) ⊢ (A → B∧C )→( A→ B)∧( A →C ) . What does it mean?

Hence,

[L1- L5, MP]: ⊢ (A → B∧C )↔( A→ B)∧( A →C ) .

Exercise 2.2.2. Prove the following, [L1- L5, MP]:

a) ⊢ A∧B ↔ B∧A . What does it mean? That conjunction is commutative.

b)  ⊢ A∧(B∧C)↔(A∧B)∧C .  What  does  it  mean? That  conjunction is 
associative.

c) ⊢ A∧A↔ A . What does it mean? That conjunction is idempotent.

Exercise 2.2.3. Prove the following, [L1- L5, MP]:
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a) ⊢ (A →(B →C ))↔(A∧B →C) . What does it mean?

b) ⊢ (A → B)→ (A∧C → B∧C) . What does it mean? The converse formula 
(A∧C → B∧C)→( A→ B) cannot be true. Explain, why.

c) A ⊢ B ↔ B∧A . What does it mean?

Exercise 2.2.4. Let us remind that the equivalence connective A↔B is defined 
as a shortcut for (A → B)∧( B → A) . Prove the following properties of this 
connective [L1- L5, MP]:

(a)  A↔A (reflexivity),⊢
(b)  (A↔B)→(B↔A) (symmetricity),⊢
(c) ⊢ (A ↔ B)∧( B ↔C )→( A↔C) (transitivity).

2.3. Proving Formulas Containing Disjunction

Exercise 2.3.1. Prove the following [L1, L2, L6-L8, MP]:

a) [L8, MP]: A→C, B→C ⊢ A∨B →C . What does it mean?

b) [ L5, L6-L8, MP]: ⊢ A∨B ↔ B∨A . What does it mean? That disjunction 

is commutative.

c)  [L1,  L2,  L5,  L6-L8,  MP]:  ⊢ A∨A ↔ A .  What  does  it  mean?  That 

disjunction is idempotent. 

Theorem 2.3.0. [L1, L2, L8, MP]: If there is a proof of

 A1, A2, ..., An, B  D,⊢

and a proof of

 A1, A2, ..., An, C  D,⊢

then there is a proof of

A1 , A2 , ... , An , B∨C  D. ⊢
Exercise 2.3.2. Prove Theorem 2.3.0.

By using Theorem 2.3.0, we can prove that disjunction is associative:

[L1, L2, L5, L6-L8, MP]: ⊢ A∨(B∨C)↔( A∨B)∨C .

Indeed, to prove, for example,
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⊢ A∨(B∨C)→( A∨B)∨C  (*)

we can first prove ⊢ A →( A∨B)∨C and ⊢ B∨C →( A∨B)∨C , and after 
that – apply Theorem 2.3.0. Proving of the second formula can be reduced in 
the same way. Thus, (*) would be proved, if we could prove that 

 ⊢ A →( A∨B)∨C ,  ⊢ B →( A∨B)∨C ,  ⊢ C →( A∨B)∨C .

(1) C →( A∨B)∨C Axiom L7.

Now, let us prove that

 ⊢ B →( A∨B)∨C .

(2) B → A∨B Axiom L7.

(3) A∨B →(A∨B)∨C Axiom L6.

(4) B →( A∨B)∨C From (2) and (3), by the transitivity property of 
implication (Theorem 1.4.2).

Now, let us prove that

  ⊢ A →( A∨B)∨C .

(5) A → A∨B Axiom L6.

(6) A∨B →(A∨B)∨C Axiom L6.

(7) A →( A∨B)∨C From (5) and (6), by the transitivity property of 
implication (Theorem 1.4.2).

Exercise 2.3.3. a) Prove the converse:
 [L1, L2, L6-L8, MP]: ⊢ (A∨B)∨C → A∨( B∨C ) .

b)  Prove  (use  Deduction  Theorem  1)  that  [L1,  L2,  L6-L8,  MP]:  ⊢
(A → B)→ (A∨C → B∨C) .  What  does  it  mean?  The  converse  formula
(A∨C → B∨C )→( A → B) cannot be true. Explain, why.

c) Prove that [L1, L2, L6-L8, MP]:  A→B, C→D ⊢ ⊢ A∨C → B∨D . What 

does it mean?

The following theorem corresponds to the well-known distributive property 
of (number) addition to multiplication: (a+b)c = ac+bc. Of course, the "dual" 
distributive property (i.e.  – of multiplication to  addition)  does not hold for 
numbers:  ab+c=(a+c)(b+c)  would  imply  ab+c=ab+ac+bc+cc,  c=ac+bc+cc, 
and, if c<>0, then 1=a+b+c. Still, surprisingly, in logic,



57

Theorem 2.3.1. Conjunction is distributive to disjunction, and disjunction 
is distributive to conjunction:

[L1-L8, MP]: ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) .

[L1-L8, MP]: ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) .

First, let us prove that ⊢ (A∧B)∨C →(A∨C)∧(B∨C) .

(1) Prove ⊢ A∧B →(A∨C )∧(B∨C )

(2) Prove ⊢ C →(A∨C )∧(B∨C)

(3) ⊢ (A∧B)∨C →(A∨C )∧(B∨C )
From (1) and (2), by Exercise 
2.3.1(a).

Exercise 2.3.4. a) Prove (1) and (2). b) (optional) Do not read the following 
proof. Try proving yourself.

Now, let us prove the converse: ⊢ (A∨C)∧(B∨C)→( A∧B)∨C .

Note. The  proof  below  starts  with  C  as  a  hypothesis.  Why  not  with 
(A∨C )∧(B∨C) ? Because, we will use Deduction Theorem 1 to prove the 

intermediate formula (6) C →(B∨C → (A∧B)∨C ) , not the final result!

(1) C Hypothesis.

(2) B→C From (1).

(3) C →(A∧B)∨C Axiom L7.

(4) B →( A∧B)∨C From (2) and (3).

(5) B∨C →( A∧B)∨C From (4) and (3).

(6) C →(B∨C → (A∧B)∨C )
From (1)-(5), by Deduction 
Theorem 1.

(7) (B → A∧B)→( B∨C →(A∧B)∨C ) Exercise 2.3.3(b).

(8) A →(B → A∧B) Axiom L3.

(9) A →(B∨C →(A∧B)∨C) From (8) and (7).

(10) A∨C →( B∨C →( A∧B)∨C ) From (9) and (6). 

(11) (A∨C )∧(B∨C)→( A∧B)∨C From (10), by Exercise 
2.2.3(a).
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Now, we must prove that  ⊢ (A∨B)∧C →(A∧C)∨(B∧C) .

(1) Prove  ⊢ A →(C →( A∧C)∨(B∧C ))

(2) Prove  ⊢ B →(C →( A∧C )∨(B∧C ))

(3)
Prove ⊢ 
(A∨B)∧C →(A∧C )∨(B∧C )

Exercise 2.3.5. Prove the above (1), (2) and (3).

Finally, we must prove that ⊢ (A∧C)∨(B∧C)→( A∨B)∧C .

Exercise 2.3.6. Prove that.

2.4. Formulas Containing Negation – Minimal Logic

Theorem 2.4.1. a) If

[L1, L2, L9, MP]: A1, A2, ..., An, B  C,⊢

and

 [L1, L2, L9, MP]: A1, A2, ..., An, B  ¬C,⊢

 then

 [L1, L2, L9, MP]: A1, A2, ..., An  ¬B.⊢

What does this mean?

b) [L3,  L4,  L9,  MP]: ⊢ ¬(A∧¬A) .  What does it  mean? It's the so-called 

Law of Non-Contradiction.

Proof. a) By Deduction Theorem 1, A1, A2, ..., An  B→C, and A⊢ 1, A2, ..., An 
 B→¬C.  Let  us  continue  this  proof  by  adding  the  axiom  ⊢ L9: 

(B→C)→((B→¬C)→¬B) as the next step. After this, by applying MP twice 
we obtain ¬B. Q.E.D.

b) See Exercise 1.4.2 (e).

Exercise 2.4.1. a) (optional, for smart students) Investigate the size (the 
number of formulas) of the proof of [L1, L2, L9, MP]: A1, A2, ..., An,  ¬B as a⊢  

function f(k, m) of the sizes k, m of the proofs of [L1, L2, L9, MP]: A1, A2, ..., 

An, B  C and ⊢ 1, A2, ..., An, B  ¬C. You may wish to ⊢ report your result. We 

will publish your report on the web as an appendix to this book. The current 

mailto:Karlis.Podnieks@mii.lu.lv
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#e142


59

record holder is Aiga Romane, 2008: f(k, m) ≤ 3(k+m)+7. Improve this result, 
or prove that it is the best possible one.
b)  [L1,  L2,  L9,  MP]:  A,  ¬B   ¬(A→B).  Or,  [L⊢ 1-L4,  L9,  MP]:  ⊢

A∧¬B →¬( A → B) . What does it mean?

c)  [L⊢ 1, L2, L9, MP]: (A→¬A)→¬A. What does it mean?

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the 
classical  logic  [L1-L11,  MP]  to  prove  the  converse  formula  of  (c):

¬(A → B)→ A∧¬ B ,  i.e.  the  equivalence ¬(A → B)↔ A∧¬ B .  This 
formula cannot be proved in the constructive logic [L1-L10, MP] (see Section 

2.8).

Theorem 2.4.2. [L1, L2, L9, MP]:  (A→B)→(¬B→¬A).⊢

What does it mean? It's the so-called Contraposition Law.

Note. The following form of Theorem 2.4.2 is called Modus Tollens:

[L1, L2, L9, MP]:  A→B, ¬B  ¬A.⊢ ⊢

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the 
classical  logic  [L1-L11,  MP]  to  prove  the  converse  formula 

(¬B→¬A)→(A→B),  i.e.  the  equivalence  (A→B)↔(¬B→¬A).  We will  see 
also that these formulas cannot be proved in the constructive logic [L1-L10, 

MP] (see Section 2.8).

Exercise 2.4.2. a) Prove Theorem 2.4.2.

b) (optional) Verify that, in our axiom system, the Law of Non-Contradiction 
and the Contraposition Law could be used instead of the axiom L9. More 

precisely: prove L9 in the logic [L1-L5, Law of Non-Contradiction, 

Contraposition Law, MP]. Be careful: do not use theorems depending on the 
axiom L9.

Theorem 2.4.3. [L1-L9, MP]:  (A→¬B)↔(B→¬A). What does it mean?⊢

First we prove that  (A→¬B)→(B→¬A).⊢
(1) A→¬B Hypothesis.

(2) B Hypothesis.

(3) (A→B)→((A→¬B)→¬A)
Axiom L9: 

(B→C)→((B→¬C)→¬B) with B = 
A, C = B.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/241_Romane.doc


60

(4) A→B From (2) by Axiom L1 and MP.

(5) (A→¬B)→¬A From (3) and (4).

(6) ¬A From (1) and (5).

Thus, by Deduction Theorem 1,  (A→¬B)→(B→¬A). By swapping A and B⊢  
we obtain the converse formula:  (B→¬A)→(A→¬B). Q.E.D.⊢
Attention:  non-constructive  reasoning!  Warning! The  (very  similar  to 
Theorem  2.4.3)  formula  (¬A→B)↔(¬B→A)  can  be  proved  only  in  the 
classical logic!

Theorem 2.4.4. [L1, L2, L9, MP]:  A→¬¬A. What does it mean? ⊢

(1) A Hypothesis.

(2) (¬A→A)→((¬A→¬A)→¬¬A) Axiom L9.

(3) A→(¬A→A) Axiom L1.

(4) ¬A→A From (1) and (3) by MP.

(5) (¬A→¬A)→¬¬A From (2) and (4) by MP.

(6) ¬¬A From (5) and Theorem 1.4.1 by MP.

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the 
classical logic [L1-L11, MP] to prove the converse formula  ¬¬A→A, i.e. the⊢  

equivalence  ¬¬A↔A (the so-called  ⊢ Double Negation Law). We will see 
also (Section 2.8) that these formulas cannot be proved in the constructive 
logic [L1-L10, MP].

Still, in the minimal logic we can prove (Brouwer, 1923?):

Theorem 2.4.5. [L1, L2, L9, MP]:  ¬¬¬A↔¬A. What does it mean?⊢

Indeed,  by  Theorem  2.4.4,   ¬A→¬¬¬A.  By  the  Contraposition  Law⊢  
(Theorem 2.4.2),   (A→¬¬A)→(¬¬¬A→¬A). Hence,  by Theorem 2.4.4,  ⊢ ⊢ 
¬¬¬A→¬A. Q.E.D.

Theorem 2.4.5 (and some of the following formulas in this and in the next 
section  containing  double  negations)  may  seem  uninteresting  to  people 
believing  unconditionally  in  the  equivalence  ¬¬A↔A.  Still,  it  seems 
interesting (at least – for a mathematician) to obtain a general characterization 
of logical formulas that do not depend on the Law of Excluded Middle. In 
Section 2.7 we will use these formulas to prove the elegant and non-trivial 
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Glivenko's theorem: a) A is provable in the classical propositional logic (i.e. in 
[L1-L11, MP]), if and only if ¬¬A is provable in the constructive propositional 

logic (i.e. in [L1-L10, MP]), b) ¬A is provable in the classical propositional 

logic, if and only if ¬A is provable in the constructive propositional logic.

Theorem 2.4.6. a) [L1, L2, L9, MP]:  (¬A→A)→¬¬A. What does it mean?⊢

b) [L1, L2, L6, L7, L9, MP]:  ¬¬(Av¬A). What does it mean?⊢

In  this  weak  form,  the  Law  of  Excluded  Middle  can  be  "proved 
constructively". The formula ¬¬( A∨¬ A) can be proved in the constructive 
logic, but A∨¬ A can't – as we will see in Section 2.8.

Exercise 2.4.3. Prove (a) and (b) of Theorem 2.4.6. The axiom L11 can't be 

used in these proofs! (Hint for (b): derive a contradiction from ¬(Av¬A).)

Theorem  2.4.7. [L1-L9,  MP]:  a)   (A→B)→(¬¬A→¬¬B).  What  does  it⊢  

mean?

b)  ¬¬(A→B)→(¬¬A→¬¬B). What does it mean?⊢
c)  (A→(B→C))→(¬¬A→(¬¬B→¬¬C)). What does it mean?⊢
d) ¬¬(A→B), ¬¬(B→C)  ¬¬(A→C). What does it mean?⊢
e) ¬¬A, ¬¬(A→B)  ¬¬B. What does it mean?⊢
The  converse  of  (a):  (¬¬A→¬¬B)→(A→B)  cannot  be  proved  in  the 
constructive logic (see Section 2.8).

To  prove  (a),  we  must  simply  apply  twice  the  Contraposition  Law: 
(A→B)→(¬B→¬A)→(¬¬A→¬¬B).  And,  of  course,  (e)  is  an  easy 
consequence of (b).

Now, let us prove (b).

(1) ¬¬(A→B) Hypothesis.

(2) ¬¬A Hypothesis.

(3)  ¬¬A→((A→B)→¬¬B)

From (a), by 
transposing A→B and 
¬¬A, by the Premise 
Permutation Law.

(4) (A→B)→¬¬B From (2) and (3).

(5)  ((A→B)→¬¬B)→(¬¬¬B→¬(A→B))
By the Contraposition 
Law.



62

(6) ¬¬¬B→¬(A→B) From (4) and (5).

(7)  (¬¬¬B→¬(A→B))→(¬¬(A→B)→¬¬¬¬B)
By the Contraposition 
Law.

(8) ¬¬(A→B)→¬¬¬¬B From (6) and (7).

(9) ¬¬¬¬B From (1) and (8).

(10) ¬¬¬¬B→¬¬B By Theorem 2.4.5.

(11) ¬¬B From (9) and (10).

Thus, by Deduction Theorem 1,  ¬¬(A→B)→(¬¬A→¬¬B).⊢
Let us prove (c).

(1) A→(B→C) Hypothesis.

(2) ¬¬A Hypothesis.

(3) ¬¬B Hypothesis.

(4) ¬¬A→¬¬(B→C) From (1), by (a).

(5) ¬¬(B→C) From (2) and (4).

(6) ¬¬B→¬¬C From (5), by (b).

(7) ¬¬C From (3) and (6).

Thus, by Deduction Theorem 1,  (A→(B→C))→(¬¬A→(¬¬B→¬¬C)).⊢
Now we can prove (d). First, let us take (c) with A = A→B, B = B→C, C = 
A→C:

(1)  ((A→B)→((B→C)→(A→C)))→(¬¬(A→B)→(¬¬(B→C)→¬¬(A→C))).⊢

(2)  (A→B)→((B→C)→(A→C)⊢ By transitivity of implication and 
Deduction Theorem 1.

(3) ¬¬(A→B) Hypothesis.

(4) ¬¬(B→C) Hypothesis.

(5) ¬¬(A→C) From (1), (3) and (4).

Theorem 2.4.8. [L1-L9, MP]: a) ⊢ ¬¬( A∧B)↔(¬¬ A∧¬¬ B) . What does 

it mean?
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b) ⊢ ¬¬ A∨¬¬ B → ¬¬( A∨B) . What does it mean?

Attention:  non-constructive  reasoning!  The  converse  of  (b): 
¬¬( A∨B)→ ¬¬ A∨¬ ¬ B  cannot be proved in the constructive logic (see 

Section  2.8).  What  does  it  mean?  If  we  simply  succeed  in  deriving  a 
contradiction  from ¬(A∨B) ,  then,  perhaps,  we  do  not  have  a  method 
allowing to decide, which part of ¬¬ A∨¬¬ B  is true – ¬¬A, or ¬¬B?

Exercise 2.4.4. Prove Theorem 2.4.8. (Hint: use the result of Exercise 2.2.3(a), 
if needed.)

Theorem 2.4.9. [L1,  L2,  L9,  MP]  ¬A→(A→¬B) (compare with  ⊢ Exercise 

1.4.2(d)). What does it mean?

It's a weak form of the "crazy" axiom  L10: ¬A→(A→B). This axiom says: 

"Contradiction implies anything". In the minimal logic we can prove 50% of 
L10: "Contradiction implies that all is wrong". Of course, this 50%-provability 

of L10 decreases the significance of the minimal logic accordingly.

Proof. See Exercise 2.4.5.

Theorem 2.4.10. [L1-L9, MP]:

a)  ⊢ ¬ A∨¬ B → ¬( A∧B) .  It's  a  half  of the so-called  First  de Morgan 
Law. What does it mean?

b)  ⊢ ¬(A∨B)↔ ¬ A∧¬ B .  It's  the  so-called  Second  de  Morgan  Law. 
What does it mean?

Attention: non-constructive reasoning! The second half of (a) – the converse 
implication, i.e. the equivalence ¬(A∧B)↔ ¬ A∨¬ B can be proved in the 
classical  logic,  yet  not in  the constructive logic (see  Section 2.8).  Explain, 
why.

Augustus de Morgan (1806-1871): "He recognised the purely symbolic nature of algebra and 
he  was  aware of  the  existence of  algebras  other  than ordinary algebra.  He introduced  de 
Morgan's  laws  and  his  greatest  contribution  is  as  a  reformer  of  mathematical  logic." 
(according to MacTutor History of Mathematics archive).

Use Contraposition Law to prove (a) and (b→) in Exercise 2.4.5.

Let us prove (b←).

(0) ¬ A∧¬ B Hypothesis.

(1) ¬A From (0), by Axiom L3.

(2) ¬B From (0), by Axiom L4.

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/De_Morgan.html


64

(3) A→¬C
From (1), by Theorem 2.4.9: ¬A→(A→¬C). C is 
any formula.

(4) B→¬C
From (2), by Theorem 2.4.9: ¬B→(B→¬C). C is 
any formula.

(5) A∨B →¬ C
From (3) and (4), by Axiom L8: 

(A →¬C )→ ((B → ¬C )→( A∨B →¬C )) .

(6) A∨B →¬ ¬C Repeat (3)-(5) with ¬¬C instead of ¬C.

(7) ¬(A∨B)
From (5) and (6), by Axiom L9:

(A∨B →¬ C )→(( A∨B →¬¬C )→¬( A∨B))

Thus, by [L1, L2] Deduction Theorem 1,

 [L1-L9, MP]  ⊢ ¬ A∧¬ B → ¬( A∨B) .

Exercise 2.4.5. Prove:

a) Theorem 2.4.9.

b) (a) and (b→) of Theorem 2.4.10. (Hint: use Contraposition Law).

c)  [L1-L9,  MP]:  ⊢ (A → B)→ ¬( A∧¬ B) .  What  does  it  mean?  Compare 

with Exercise 2.4.1.

d) [L1-L8, MP]: ⊢ A∨B →(( A → B)→ B) . What does it mean?

Attention:  non-constructive  reasoning!  The  converse  implication  of  (a),
¬(A∧¬ B)→( A → B) cannot  be  proved  in  the  constructive  logic  (see 

Section 2.8). Explain, why. Still, we will prove this formula in the classical 
logic. 

The  converse  of  (b): (( A→ B)→ B)→ A∨B cannot  be  proved  in  the 
constructive logic (see  Section 2.8).  Explain,  why.  Still,  we will  prove this 
formula in the classical logic.

2.5. Formulas Containing Negation – Constructive Logic

In this book, constructive logic is used as a synonym of intuitionistic logic!

Constructive logic includes the "crazy" axiom L10: ¬B→(B→C), but rejects 

the Law of Excluded Middle L11: Bv¬B as a general logical principle.
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Theorem 2.5.1. a) [L10, MP]: A, ¬A  B. What does it mean? ⊢

b) [L1, L2, L8, L10, MP]:  ⊢ A∨B →(¬ A→ B) . What does it mean?

c) [L1, L8, L10, MP]: ⊢ ¬ A∨B →( A→ B) . What does it mean?

Of course, (a) follows directly from L10, by MP.

Exercise 2.5.1.  Prove (b) and (c) of Theorem 2.5.1. Note: when proving (c), 
you cannot use Deduction Theorem 1 (because of the missing axiom L2). So, 

simply build a sequence of 5 formulas representing the proof of (c).

Attention:  non-constructive  reasoning!  The  converse  of  (b),  i.e. 
(¬ A→ B)→ A∨B cannot be proved in the constructive logic (see Section 

2.8).  Explain,  why. The converse of (c),  i.e. (A → B)→ ¬ A∨B cannot be 
proved in constructive logic (see Section 2.8). Explain, why.

Surprisingly, (b), i.e. the rule A∨B ,¬ A  B seems to be a quite a "natural"⊢  
logical principle, yet it cannot be proved without the "crazy" axiom L10! Why 

not? Because it implies L10! Indeed,

(1) A∨B →(¬ A→ B) Hypothesis.

(2) ¬A Hypothesis.

(3) A Hypothesis.

(4) A → A∨B Axiom L6.

(5) A∨B By MP, from (3) and (4).

(6) B By MP, from (1), (5) and (2).

Hence,  by Deduction Theorem 1,  [L1,  L2,  L6,  MP]: A∨B →(¬ A→ B) ⊢ 

¬A→(A→B).

In Section 2.8 we will prove that L10 cannot be derived from L1-L9, hence, (b) 

also cannot be derived from L1-L9 (i.e. without L10).

Theorem 2.5.2. [L1-L10, MP]:

a)  (¬¬A→¬¬B)→¬¬(A→B). It's the converse of Theorem 2.4.7(b). Hence,⊢  
[L1-L10, MP]:  ¬¬(A→B)↔(¬¬A→¬¬B).⊢

b)  ¬¬A→(¬A→A). It's the converse of Theorem 2.4.6(a). Hence,⊢
[L1-L10, MP]:  ¬¬A↔(¬A→A).⊢
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c)  ⊢ A∨¬ A →(¬ ¬ A → A) . What does it mean?

d)  ¬¬(¬¬A→A). What does it mean?⊢
Of course, (b) is an instance of the axiom L10.

To prove (a), let us prove that [L1-L10, MP]: ¬¬A→¬¬B, ¬(A→B)  ¬B, ¬¬B.⊢  

Then, by Theorem 2.4.1, (a)  (¬¬A→¬¬B)→¬¬(A→B).⊢
Exercise 2.5.2. a) Prove that [L1-L10, MP]: ¬¬A→¬¬B, ¬(A→B)  ¬B, ¬¬B.⊢

b) Prove (c) and (d) of Theorem 2.5.2.

Exercise 2.5.3. Prove that in [L1-L10, MP]:

a) A ⊢ B ↔ B∨¬ A . What does it mean?

b) ⊢ B∨( A∧¬ A)↔ B . What does it mean?

c) ⊢ (( A∧¬ A)∧B)∨C ↔C . What does it mean?

2.6. Formulas Containing Negation – Classical Logic

If you agree to adopt the formula B∨¬ B , i.e. the Law of Excluded Middle 
(Axiom L11 in the list of Section 1.3), you can prove, first of all, the so called 

Double Negation Law:

Theorem 2.6.1. [L1-L11, MP]:  ¬¬A → A. Hence, [L⊢ 1-L11, MP]:  ¬¬A ↔⊢  

A.

Indeed, by Theorem 2.5.2, [L1-L10, MP]: ⊢ A∨¬ A →(¬ ¬ A → A) , hence, 

[L1-L11, MP]:  ¬¬A→A. Q.E.D. ⊢

In the minimal logic we proved Theorem 2.4.4: [L1, L2, L9, MP]:  A→¬¬A.⊢  

Hence, [L1-L11, MP]:  ¬¬A ↔ A.⊢

Attention:  non-constructive  reasoning!  The  formula  ¬¬A→A cannot  be 
proved in the constructive logic, see Section 2.8. Why? Because it represents a 
kind of non-constructive reasoning. Indeed, imagine, you wish to prove that 
∃xB(x). Assume the contrary, ¬∃xB(x), and derive a contradiction. Thus you 
have proved... the negation of ¬∃xB(x), i.e. ¬ ¬∃xB(x). To conclude  ∃xB(x) 
from ¬ ¬∃xB(x), you need the Double Negation Law. Hence, by adopting this 
law as a logical principle, you would allow non-constructive existence proofs 
– if you prove ∃xB(x) by assuming ¬∃xB(x), and deriving a contradiction, then 
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you may not obtain a method allowing to find a particular x satisfying B(x).

Exercise  2.6.1. Prove  that  [L8,  L11,  MP]:  A→B,  ¬A→B   B.  Or,  by⊢  

Deduction Theorem 1, [L1, L2, L8, L11, MP]: (A→B)→((¬A→B)→B). What 

does it mean? This formula cannot be proved in the constructive logic (see 
Section 2.8). Explain, why.

In the classical logic, you can prove also the full form of the Contraposition 
Law:

Theorem 2.6.2. [L1-L11, MP]:  (A→B) ↔ (¬B→¬A).⊢

We proved a half of this Law in the minimal logic as Theorem 2.4.2: [L1, L2, 

L9,  MP]:   (A→B)→(¬B→¬A). Let  us prove the remaining half:  [L⊢ 1-L11, 

MP]  (¬B→¬A) → (A→B).⊢
(1) ¬B→¬A Hypothesis.

(2) A Hypothesis.

(3) ¬¬A→¬¬B From (1), by the first half.

(4) A→¬¬A Double Negation Law.

(5) ¬¬B→B Double Negation Law.

(6) B From (4), (3) ans (5).

By Deduction Theorem 1, [L1-L11, MP]  (¬B→¬A) → (A→B).⊢

Attention: non-constructive reasoning!  The formula (¬B→¬A) → (A→B) 
cannot be proved in the constructive logic, see Section 2.8. Explain, why.

Exercise 2.6.1A. Prove that in [L1-L11, MP]:

a)  (¬A→B)↔(¬B→A) (compare with Theorem 2.4.3).⊢
b)  (A→B)→((¬A→¬B)→(B↔A)).⊢
Attention:  non-constructive  reasoning!  These  two  formulas  cannot  be 
proved in the constructive logic, see Section 2.8.

Theorem  2.6.3. [L1-L11,  MP]:  ⊢ ¬(A∧B)↔¬A∨¬B .  It's  the  so-called 

First de Morgan Law.

A half of this Law we proved in the minimal logic as Theorem 2.4.10(a): [L1-

L9, MP] ⊢ ¬ A∨¬ B →¬(A∧B) . Let us prove the remaining half: [L1-L11, 

MP] ⊢ ¬(A∧B)→¬ A∨¬ B .
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Attention: non-constructive reasoning! This formula cannot be proved in the 
constructive logic, see Section 2.8. Explain, why.

Let us start by proving ¬(¬ A∨¬ B)→ A∧B .

(1) ¬(¬ A∨¬ B) Hypothesis.

(2) ¬(¬ Av ¬ B)→¬¬ A∧¬¬ B By the Second de Morgan Law 
-Theorem 2.4.10(b).

(3) ¬¬ A∧¬¬ B →¬¬( A∧B) Theorem 2.4.8(a). [L1-L9, MP]!

(4) ¬¬( A∧B) From (1), (2) and (3).

Thus, by Deduction Theorem 1, [L1-L9, MP] ⊢ ¬(¬ A∨¬ B)→¬ ¬(A∧B) . 

By applying the first half of the Contraposition Law (provable in the minimal 
logic):  [L1-L9,  MP] ⊢ ¬¬¬( A∧B)→¬ ¬(¬ A∨¬ B) .  By Theorem 2.4.5: 

[L1-L9, MP] ⊢ ¬(A∧B)→ ¬¬¬( A∧B) , hence,

[L1-L9, MP]  ⊢ ¬(A∧B)→ ¬¬(¬ A∨¬ B) . Now, by the Double Negation 

Law, [L1-L11, MP] ⊢ ¬¬(¬ A∨¬ B)→ ¬ A∨¬ B , hence,

 [L1-L11, MP]  ⊢ ¬(A∧B)→ ¬ A∨¬ B . Q.E.D.

In the classical logic, we can express implication by negation and disjunction. 
Indeed,  we  already  know  that  [L1-L10,  MP]:  ⊢ ¬ A∨B →( A→ B)  

(Theorem 2.5.1(c)).

Theorem 2.6.4. a) [L1-L8, MP]: A∨C ⊢ (A → B)→ B∨C . Hence, [L1-

L8, MP]: A∨¬ A  ⊢ (A → B)→ ¬ A∨B .

b) [L1-L11, MP]: ⊢ (A → B)↔ ¬ A∨B .

Of course, (b) follows from (a) and Theorem 2.5.1(c). Let us prove (a).

(1) A, A→B  B⊢

(2) A, A→B  ⊢ B∨C By Axiom L6.

(3) A  ⊢ (A → B)→ B∨C By Deduction Theorem 1.

(4) C, A→B  C⊢

(5) C, A→B  ⊢ B∨C By Axiom L7.
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(6) C  ⊢ (A → B)→ B∨C By Deduction Theorem 1.

(7) AvC  ⊢ (A → B)→ B∨C By Axiom L8.

Exercise 2.6.2. Prove that in [L1-L11, MP]:

a) ⊢ B∧( A∨¬ A)↔ B . What does it mean?

b) ⊢ (( A∨¬ A)∨B)∧C ↔C . What does it mean?

c)  ⊢ (( A→ B)→ B)→ A∨B .  What  does  it  mean?  Hence,  by Exercise 
2.4.5(d), [L1-L11, MP]: ⊢ (( A→ B)→ B)↔ A∨B .

Exercise 2.6.3. Prove that in [L1-L11, MP]:

a) ⊢ (A → B)↔¬( A∧¬ B) . What does it mean?

b) ⊢ ¬(A → B)↔ A∧¬ B . What does it mean?

c) ⊢ A∨B ↔(¬ A→ B) . What does it mean?

d) ⊢ A∧B ↔¬( A→¬ B) . What does it mean?

e) (optional, for smart students) Try detecting, which parts of these 
equivalences are provable: 1) in the minimal logic, 2) in the constructive logic.

Strange formulas

Exercise 2.6.4. Prove in [L1-L11, MP] the following strange formulas:

a) ⊢ A∨( A→ B) . What does it mean? Does it mean anything at all?

b) ⊢ (A → B)∨( B → A) . What does it mean? Does it mean anything at all? 
The most crazy theorem of the classical propositional logic?

c) ⊢ (( A→ B)→ A)→ A . What does it mean? Does it mean anything at all? 
It is the so-called Peirce's Law from:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American 
Journal of Mathematics, 1885, vol.7, pp.180-202.

2.7. Constructive Embedding. Glivenko's Theorem

Let  us  remind  some of  the  results  of  previous  sections  concerning  double 
negations:

Theorem 2.4.4. [L1, L2, L9, MP]:  A→¬¬A.⊢

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce
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Theorem 2.4.5. [L1-L9, MP]:  ¬¬¬A↔¬A.⊢

Theorem 2.4.6(b). [L1-L9,  MP]:  ⊢ ¬¬( A∨¬ A) .  In this  weak form, the 

Law of Excluded Middle can be "proved constructively". 

Theorem 2.4.7. [L1-L9, MP]: a)  (A→B)→(¬¬A→¬¬B).⊢

b)  ¬¬(A→B)→(¬¬A→¬¬B).⊢
c)  (A→(B→C))→(¬¬A→(¬¬B→¬¬C)).⊢
d) ¬¬(A→B), ¬¬(B→C)  ¬¬(A→C).⊢
e) ¬¬A, ¬¬(A→B)  ¬¬B.⊢
Theorem 2.4.8. [L1-L9, MP]: a) ⊢ ¬¬( A∧B)↔ (¬¬ A∧¬¬ B) .

b)  ⊢ ¬¬ A∨¬¬ B →¬¬( A∨B) .

Theorem  2.5.2. [L1-L10,  MP]:  a)   (¬¬A→¬¬B)→¬¬(A→B).  It's  the⊢  

converse of Theorem 2.4.7(b).

d)  ¬¬(¬¬A→A). ⊢
Theorem 2.6.1. [L1-L11, MP]:  ¬¬A ↔ A.⊢

Does it mean that for any formula A: if [L1-L11, MP]:  A, then [L⊢ 1-L10, MP]: 

 ¬¬A? (The converse is obvious: if [L⊢ 1-L10, MP]:  ¬¬A, then [L⊢ 1-L11, MP]: 

 A by Theorem 2.6.1.)⊢
Imagine, we have a proof of [L1-L11, MP]:  A. It is a sequence of formulas⊢  

R1, R2, ..., Rn, where Rn = A. If this sequence does not contain instances of the 

axiom L11, then it is a proof of [L1-L10, MP]:  A as well. Hence, according to⊢  

Theorem 2.4.4, [L1-L10, MP]:  ¬¬A⊢

If the sequence R1, R2, ..., Rn  contains some instances of L11, i.e. formulas 

having the form B∨¬ B , then, according to Theorem 2.4.6(b), we could try 
replacing  each  such  formula  by  a  sequence  proving  that  [L1-L9,  MP]:  ⊢ 

¬¬(B∨¬ B) . It appears that each of the formulas ¬¬R1, ¬¬R2, ..., ¬¬Rn is 

provable in [L1-L10, MP].

a)  If  Rk is  an  instance  of  the  axioms L1-L10,  then  [L1-L10,  MP]:   ¬¬R⊢ k 
(Theorem 2.4.4).

b) If Rk is an instance of the axiom L11, then [L1-L10, MP]:  ¬¬R⊢ k (Theorem 

2.4.6(b)).
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c) Now, let us assume that i, j < k, and Ri, Rj  R⊢ k directly by MP, i.e. Rj is 

Ri→Rk.  We know already that [L1-L10,  MP]:  ¬¬R⊢ i and [L1-L10,  MP]: ⊢ 

¬¬(Ri→Rk).  By  Theorem  2.4.7(b),  [L1-L9,  MP]:  ⊢ 

¬¬(Ri→Rk)→(¬¬Ri→¬¬Rk). Hence, [L1-L10, MP]:  ¬¬R⊢ k. 

Because A = Rn,  we have proved the remarkable Glivenko's  theorem from 

1929:

V.Glivenko. Sur quelques points de la logique de M. Brouwer. Academie Royale de Belgique,  
Bulletins de la classe des sciences, 1929, ser.5, vol.15, pp.183-188.

Valery Ivanovich  Glivenko (1896-1940,  see  http://www.math.ru/history/people/glivenko,  in 
Russian) is best known by the so-called Glivenko-Cantelli theorem in probability theory. 

Glivenko's Theorem. [L1-L11, MP]:  A, if and only if [L⊢ 1-L10, MP]:  ¬¬A.⊢  

Or: a formula A is provable in the classical propositional logic, if and only if 
its double negation ¬¬A is provable in the constructive propositional logic.

This theorem provides a kind of a "constructive embedding" for the classical 
propositional logic: any classically provable formula can be "proved" in the 
constructive logic, if you simply put two negations before it.

Corollary.  [L1-L11,  MP]:   ¬A, if  and only if  [L⊢ 1-L10,  MP]:   ¬A. Or:  a⊢  

"negative" formula ¬A is provable in the classical propositional logic, if and 
only if it is provable in the constructive propositional logic.

Indeed, if [L1-L11, MP]:  ¬A, then by Glivenko's theorem, [L⊢ 1-L10, MP]: ⊢ 

¬¬¬A, and by Theorem 2.4.5, [L1-L10, MP]:  ¬A. Q.E.D.⊢

Exercise 2.7.1. Prove the following version of Glivenko's theorem (see Kleene 
[1952]):

a) If [L1-L11, MP]: A1, A2, ..., An  C, then⊢

[L1-L10, MP]: ¬¬A1, ¬¬A2, ..., ¬¬An  ¬¬C.⊢

b) If [L1-L11, MP]: ¬A1, ¬A2, ..., ¬An, B1, B2, ..., Bp  ¬C, then⊢

[L1-L10, MP]: ¬A1, ¬A2, ..., ¬An , ¬¬B1, ¬¬B2, ..., ¬¬Bp  ¬C.⊢

http://www.math.ru/history/people/glivenko
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2.8. Axiom Independence. Using Computers in Mathematical 
Proofs

If one of our axioms Li could be proved by using the remaining n-1 axioms, 

then we could simplify our  logical  system by dropping Li as  an axiom. A 

striking example:

Theorem 2.8.1. The axiom  L9:  (A→B)→((A→¬B)→¬A) can be proved in 

[L1, L2, L8, L10, L11, MP].

This fact was established by Augusts Kurmitis (on the web, also: A. A. Kurmit):

A. A. Kurmitis. On independence of a certain axiom system of the propositional calculus. 
Proc. Latvian State University, 1958, Vol. 20, N3, pp. 21-25 (in Russian).

The following proof of L9 in [L1, L2, L8, L10, L11, MP] is due to Janis Sedols 

(1939-2011).

First, let us establish that the formula (A→¬A)→¬A can be proved in [L1, L2, 

L8, L10, L11, MP] (in Exercise 2.4.1 we established that [L1, L2, L9, MP]: ⊢ 

(A→¬A)→¬A):

(1) (A →¬ A)→((¬ A →¬ A)→( A∨¬ A)→¬ A) Axiom L8.

(2) A→¬A Hypothesis.

(3) ¬A→¬A
This is provable in [L1, L2, 

MP] (Theorem 1.4.1).

(4) Av ¬ A Axiom L11.

(4) ¬A
From (1), (2), (3) and (4), 
by MP.

(6) (A→¬A)→¬A

By Deduction Theorem 1 
(which is valid for any 
logical system containing 
[L1, L2, MP]).

Now let us establish that in [L1, L2, L10, MP]: A→B, A→¬B  A→¬A.⊢

http://jonins.mii.lu.lv/J_Sedols/JS.htm
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(7) A→B Hypothesis.

(8) A→¬B Hypothesis.

(9) A Hypothesis.

(9) B From (7), (9), by MP.

(10) ¬B From (8), (9), by MP.

(11) ¬B→(B→¬A) Axiom L10.

(12) ¬A From (9), (10) and (11) by MP.

(13) A→B, A→¬B  A→¬A⊢
By Deduction Theorem 1 (which is 
valid for any propositional system 
containing [L1, L2, MP]).

Finally, let us merge the proofs of (6) and (13), then by MP we obtain ¬A, i.e. 

[L1, L2, L8, L10, L11, MP]: A→B, A→¬B  ¬A.⊢

Now, by Deduction Theorem 1 (which is valid for any propositional system 
containing [L1, L2, MP]) we obtain the axiom L9:

[L1, L2, L8, L10, L11, MP]: (A→B)→((A→¬B)→¬A).

Q.E.D.

What should we do after establishing that one of our axioms is "dependent"?

Do you think, we should drop L9 as an axiom of our logical system?

First, let's note that we have proved L9 by using three problematic axioms: 

L1, L10, L11. But L9 itself is not problematic!

Secondly,  L9 cannot  be  proved  in  [L1-L8,  L10,  MP]  (see  Theorem  2.8.2 

below). Hence, if we would drop L9, then, instead of a simple definition

classical logic = constructive logic + L11,

we would have a more complicated one:

constructive logic = classical logic – L11 + L9.

Now, the question of questions:

Is the Law of Excluded Middle an independent logical principle?
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I.e., could we prove the Law of Excluded Middle (the axiom L11: B∨¬ B ) 

by using the other axioms (i.e. [L1-L10, MP]) as we proved L9 in [L1, L2, L8, 

L10, L11, MP]? If not, how could we demonstrate that this is impossible at all? 

How could we demonstrate that some logical principle is  independent,  i.e. 
that it cannot be derived from other principles?

Let us assume, we have an algorithm q computing for each formula A some its 
"property" q(A) such that:

a) q(L1) is true, q(L2) is true, ..., q(L10) is true (i.e. the axioms L1-L10 possess 

property q).

b) If q(A) is true and q(A→B) is true, then q(B) is true (i.e. MP "preserves" 
property q). Hence, q(F) is true for all the formulas F that are provable in [L1-

L10, MP].

c) q(L11) is false (L11 does not possess property q).

If we could obtain such a property q, then, of course, this would demonstrate 
that L11 cannot be proved in [L1-L10,  MP], i.e.  that the  Law of Excluded 

Middle is an independent logical principle.

The most popular way of introducing such properties of formulas are the so-
called  "multi-valued  logics"  or  "many-valued  logics",  introduced  by  Jan 
Lukasiewicz and Emil Post:

J.Lukasiewicz. O logice trojwartosciowej. Ruch Filozoficzny (Lwow), 1920, vol. 5, pp. 169-
171

E.Post. Introduction to a general theory of elementary propositions. Amer. journ. math., 1921, 
vol. 21, pp.163-195

Read  more:  Many-Valued  Logic by  Siegfried  Gottwald in  Stanford  Encyclopedia  of 
Philosophy.

For example, let us consider a kind of "three-valued logic", where 0 means 
"false",  1 – "unknown" (or NULL – in terms of SQL), 2 – "true".  Then it 
would be natural to define conjunction and disjunction as

A∧B  = min(A,B)
A∨B  = max(A,B).

But how should we define implication and negation?

A B A∧B  A∨B  A→B 

0 0 0 0 i1

http://plato.stanford.edu/
http://plato.stanford.edu/
http://www.uni-leipzig.de/~logik/gottwald/
http://plato.stanford.edu/entries/logic-manyvalued/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html
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0 1 0 1 i2

0 2 0 2 i3

1 0 0 1 i4

1 1 1 1 i5

1 2 1 2 i6

2 0 0 2 i7

2 1 1 2 i8

2 2 2 2 i9

 

A ¬A

0 i10

1 i11

2 i12

Thus,  theoretically,  we  have  here  to  explore:  39 =  19683  variants  of 
implication definitions and 33 = 27 negation definitions.

Do you think, it would be natural to set the values of ¬A as follows?

A ¬A

0 2

1 1 

2 0

Yes,  if  we would try building a  "natural"  three-valued logic,  in  which "1" 
would mean, indeed, "unknown". To fill in the “natural” table of three-valued 
implication,  we  could  use,  for  example,  the  classical  equivalence 
(A→B)↔¬AvB. In this way we could obtain the “natural” three-valued logic 
used, for example, for handling of NULL-values in SQL.

However, our aim is here, in a sense, just the opposite of “natural”. We will 

http://en.wikipedia.org/wiki/Null_(SQL)
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consider

"under the above truth tables, formula A always takes "true" values"

as a kind of the above-mentioned "property" q(A). Hence, we will try to define 
the tables for implication and negation in such a way that:

a) the axioms L1, L2, ..., L10 always take "true" values (i.e. 2),

b) Modus Ponens "preserves" taking always "true" values (i.e. if the formulas 
A and A→B are always 2, then B also is always 2),

c) the axiom L11 sometimes takes the values 0 or 1.

Because of "violating" L11, the definitions of implication and negation, having 

these properties, cannot be 100% natural. So, we must explore (at least some 
of) the "unnatural" versions as well.

Exercise 2.8.1 (optional). Develop a simple (recursive) computer program 
receiving as input:
a) Any such "truth tables".

b) Any formula F consisting of letters A, B, C, and propositional connectives.

and  printing  out  "truth  values"  of  the  formula  F,  for  example,  if  F  = 
B→(A→B):

A B B→(A→B) 

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 2

2 1 2

2 2 2

In this example the axiom L1 always takes "true" values. Perhaps, we should 

be interested only in those variants of our "truth tables" that "satisfy" at least 
the axioms L1, L2, ..., L8 forcing them always to take "true" values. 
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Note. See my version of the program in C++: header file, implementation.

Thus, we consider

"under the above truth tables, formula A always takes "true" values"

as a kind of the "property" q(A).

Will Modus Ponens preserve this property? If A is "true", and A→B is "true", 
how could B be not? Let us consider the relevant part of the above truth tables 
(i.e. the part where A is "true"):

A B A→B 

2 0 i7

2 1 i8

2 2 i9

If we would consider only those variants of our "truth tables" where i7 = 0 or 

1, i8 = 0 or 1, and i9 = 2, then, if B would not be 2 for some values of its 

arguments, then A→B also would not be 2 for the same values of arguments.

Hence, if we restrict ourselves to "truth tables" with i7 = 0 or 1, i8 = 0 or 1, and 

i9 = 2,  then  MP preserves  the  property of  "being true".  I.e.,  from "true" 

formulas MP can derive only "true" formulas.

The next idea: if  we wish the axiom L6:  A→AvB always taking the value 

"true" (i.e. the value 2), then, if A≤B, then A→B must be 2. 

Thus, of all the 39 = 19683 possible implication definition variants only the 
following 3*2*2 = 12 variants are worth of exploring:

A B A→B 

0 0 2

0 1 2

0 2 2

1 0 i4=0,1,2

1 1 2

1 2 2

http://podnieks.id.lv/mlog/kp_logc.txt
http://podnieks.id.lv/mlog/kp_logh.txt
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2 0 i7=0,1

2 1 i8=0,1

2 2 2

Exercise 2.8.2. a) Verify that under any of these 12 implication definitions the 
axioms L3, L4, L6, L7 always take the value 2, i.e. you do not need testing 

these axioms any more. 

b)  For  each  of  the  axioms,  L1,  L2,  L5 and  L8,  determine  all  the  possible 

combinations of the values of i4, i7, i8 forcing it to take always the value 2.

Note. The "intersection" of b) consists of 5 combinations (see the results file 
#00).

Exercise 2.8.3 (optional) Extend your previous computer program by adding 6 
nested loops: for i4=0 to 2, for i7=0 to 1, for i8=0 to1, for iaa=0 to 2, for ib=0 to 

2, for ic=0 to 2. Let the program print out only those variants of "truth tables" 

that make "true" all the axioms L1-L8. (My program yields 135 such variants, 

see the results file #00).
Thus,  now we have 135 variants of  "truth tables" that  make "true" all  the 
axioms L1-L8. Let us search among them for the variants that allow proving of 

axiom independency results we are interested in.

Axiom L9

In Theorem 2.8.1 we established that the axiom L9: (A→B)→((A→¬B)→¬A) 

can be proved in [L1-L8, L10, L11, MP]. Still,

Theorem 2.8.2. The axiom L9 cannot be proved in [L1-L8, L10, MP].

Proof. Let your program print out only those variants of "truth tables" that 
make "true" all the axioms L1-L8, and make: L9 – not "true", and L10 – "true". 

My program yields 66 such variants, see the results file #01. I like especially 
the (most natural?) variant #33:

Implication variant #3:
2 2 2 2 2 2 0 1 2 L1-L8 true. 
Variant #33. Negation: 2 1 0 L9 not true. L10 true. L11 not true.

A B A→B 

0 0 2

http://podnieks.id.lv/mlog/kp_log01.txt
http://podnieks.id.lv/mlog/kp_log00.txt
http://podnieks.id.lv/mlog/kp_log00.txt
http://podnieks.id.lv/mlog/kp_log00.txt
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0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 0

2 1 1

2 2 2

 

A ¬A

0 2

1 1

2 0

See the extended results file #1 for this variant.

Under this variant the axioms L1-L8 and L10 are "true". As we know, under 

this variant, by MP, from "true" formulas only "true" formulas can be derived. 
The axiom L9 is not "true" under this variant:

A B (A→B)→((A→¬B)→¬A) 

0 0 2

0 1 2

0 2 2

1 0 1

1 1 1

1 2 1

2 0 2

2 1 2

http://podnieks.id.lv/mlog/kp_log1.txt


80

2 2 2

Hence, L9 cannot be proved in [L1-L8, L10, MP]. Q.E.D.

In a similar way, we can obtain other independence results.

Axiom L10

Theorem 2.8.3. The "crazy" axiom L10: ¬B→(B→C) cannot be proved in the 

minimal logic [L1-L9, MP], and even not in [L1-L9, L11, MP].

Proof. Let your program print out only those variants of "truth tables" that 
make "true" all the axioms L1-L8, and make: L9 – "true", L10 – not "true", and 

L11 – "true". My program yields 6 such variants, see the results file #02. I like 

especially the (somewhat natural?) variant #1:

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.

See the extended results file #2 for this variant.

Under this variant the axioms L1-L9 and L11 are "true". As we know, under 

this variant, by MP, from "true" formulas only "true" formulas can be derived. 
The axiom L10 is not "true" under this variant:

A B ¬A→(A→B) 

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 0

2 1 1

2 2 2

Hence, L10 cannot be proved in [L1-L9, L11, MP]. Q.E.D.

http://podnieks.id.lv/mlog/kp_log2.txt
http://podnieks.id.lv/mlog/kp_log02.txt
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Axiom L11

Now, let us prove the main result of this section:

Theorem  2.8.4. The  Law  of  Excluded  Middle  L11: B∨¬ B cannot  be 

proved in the constructive propositional logic [L1-L10, MP]. I.e. the  Law of 

Excluded Middle is an independent logical principle.

Proof. Let your program print out only those variants of "truth tables" that 
make "true" all the axioms L1-L8, and make: L9 – "true", L10 – "true", L11 – 

not "true". My program yields only one such variant, see the results file #03:

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 0 0 L9 true. L10 true. L11 not true.

See the extended results file #3 for this variant.

Under  this  variant  the  axioms  L1-L10 are  "true".  As  we  know,  under  this 

variant, by MP, from "true" formulas only "true" formulas can be derived. The 
axiom L11 is not "true" under this variant:

B ¬B B∨¬ B  

0 2 2

1 0 1

2 0 2

Hence, L11 cannot be proved in [L1-L10, MP]. Q.E.D.

The results file #03 proves also the following

Theorem 2.8.5 (thanks to Pavels Mihailovs for a correction). The following 
(classically  provable)  formulas  cannot  be  proved  in  the  constructive 
propositional logic [L1-L10, MP]:

¬¬A → A
(¬B → ¬A) → (A→B)
(¬A→B)→(¬B→A)

(¬¬A → ¬¬B) → (A→B)
(A → B)→¬ A∨B

(( A→ B)→ B)→ A∨B
((A→B)→A)→A

¬(A∧¬ B)→( A → B)
¬(A → B)→ A∧¬ B

http://podnieks.id.lv/mlog/kp_log03.txt
http://podnieks.id.lv/mlog/kp_log3.txt
http://podnieks.id.lv/mlog/kp_log03.txt
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A∨(A → B)
(A→B)→((¬A→¬B)→(B→A))

Indeed, all these formulas take non-"true" values under the "truth tables" from 
the proof of Theorem 2.8.4.

The  following  three  formulas  also  cannot  be  proved  in  the  constructive 
propositional  logic,  yet,  unfortunately,  the "truth tables"  from our  proof  of 
Theorem 2.8.4 do not allow proving this: 

¬(A∧B)→¬ A∨¬ B
¬¬( A∨B)→¬¬ A∨¬ ¬ B

(A → B)∨( B → A)

Indeed,  under  the  above  "truth  tables",  these  formulas  always  take  "true" 
values (see results file #03). Another interesting conclusion: add these three 
formulas as additional axioms to [L1-L10, MP] – and L11 will remain still 

unprovable! 

Thus, we did not succeed in building a three-valued logic that would allow 
showing that the latter three formulas cannot be proved in the constructive 
propositional logic. Is it possible at all to build a multi-valued logic that would 
separate  constructively  provable  propositional  formulas  from  unprovable 
ones? Kurt Gödel showed in 1932 that this is impossible: none of the finitely-
valued logics "matches" exactly the constructive propositional logic:

K. Gödel.  Zum intuitionistischen  Aussagenkalkül,  Anzeiger  Akademie  der  Wissenschaften  
Wien, Math.-naturwiss. Klasse, 1932, Vol. 69, pp.65-66. 

Exercise 2.8.4. a) (optional, for smart students) Verify that the latter three 
formulas cannot be proved in the constructive propositional logic [L1-L10, 

MP]. Or, see Section 4.4.
b)  Verify  that  any  of  the  following  formulas  could  be  used  –  instead  of 

B∨¬ B  –  as  the  axiom  L11 of  the  classical  propositional  logic:  i) 

(A → B)→¬ A∨B ,  ii)  ¬¬B→B, iii)  ¬(A→B)→A (Hint:  since  all  these 
formulas are provable in [L1-L11,  MP], it  remains to prove L11 in [L1-L10, 

MP] + (i), in [L1-L10, MP] + (ii), and in [L1-L10, MP] + (iii)).

c)  Verify that with ¬¬B→B instead of L11 the "crazy" axiom L10  becomes 

100% derivable from the other axioms. Perhaps, this is why many textbooks 
prefer the combination L1-L9 + ¬¬B→B as the axiom list  for the classical 

propositional  logic.  But,  then,  we  are  forced  to  define  the  constructive 
propositional logic not as a subset of the classical one,  but as the classical 
logic  with  the  axiom  ¬¬B→B  replaced  by  the  "crazy"  axiom  L10: 

¬B→(B→C)!

http://podnieks.id.lv/mlog/kp_log03.txt
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Axiom L10 again...

Finally, let us check which of the main results of  Sections 2.5 (constructive 
logic)  and  2.6 (classical  logic)  depend  on  the  "crazy"  axiom  L10: 

¬A→(A→B). Let your program print out only those variants of "truth tables" 
that make "true" all the axioms L1-L8, and make: L9 – "true", L10 – not "true". 

My program yields 6 such variants, see the results file #04. Surprisingly, in all 
these variants L11 also is "true" (thus, the results file #04 equals the results file 

#02). As the most productive appears

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.
Constructively provable formulas
Not true: (A∨B)→((¬ A)→ B)
Not true: ((¬ A)∨B)→(A → B)
Not true: ((¬¬A)→(¬¬B))→(¬¬(A→B))
Not true: (¬¬A)→((¬A)→A)
Not true: (A∨(¬ A))→ ((¬ ¬ A)→ A)
Not true: ¬¬((¬¬A)→A)

Classically provable formulas
True: (¬¬( A∨B))→((¬¬ A)∨(¬ ¬ B))
True: (¬(A∧B))→((¬ A)∨(¬ B))
Not true: (¬¬A)→A
Not true: ((¬B)→(¬A))→(A→B)
Not true: ((¬A)→B)→((¬B)→A)
Not true: ((¬¬A)→(¬¬B))→(A→B)
True: (A → B)→ ((¬ A)∨B)
Not true: (( A→ B)→ B)→ (A∨B)
Not true: ((A→B)→A)→A
Not true: (¬(A∧(¬ B)))→( A→ B)
True: (A→B)→(((¬A)→B)→B)
Not true: (¬(A → B))→( A∧(¬ B))
Not true: A∨(A → B)
True: (A → B)∨( B → A)
Not true: (A→B)→(((¬A)→(¬B))→(B→A))

Thus, the following constructively provable formulas cannot be proved in the 
minimal logic [L1-L9, MP] (and even in [L1-L9, L11, MP]), i.e. they cannot be 

proved without the "crazy" axiom L10:

(A∨B)→(¬ A → B)

http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log04.txt
http://podnieks.id.lv/mlog/kp_log04.txt


84

¬ A∨B →(A→ B)
(¬¬A→¬¬B) → ¬¬(A→B)

¬¬A → (¬A→A)
A∨¬ A →(¬¬ A → A)

¬¬(¬¬A→A)

And the following classically provable formulas cannot be proved without the 
"crazy" axiom L10 (thanks to Pavels Mihailovs for a correction):

¬¬A→A
(¬B→¬A)→(A→B)
(¬A→B)→(¬B→A)

(¬¬A→¬¬B)→(A→B)
(( A→ B)→ B)→ A∨B

((A→B)→A)→A
¬(A∧¬ B)→( A → B)
¬(A → B)→ A∧¬ B

A∨(A → B)
(A→B)→((¬A→¬B)→(B→A))

Exercise 2.8.5 (thanks to Stanislav Golubcov for the idea). But how about the 
remaining four (classically provable) formulas: 

a) (A → B)→ ¬ A∨B ,
b) ¬(A∧B)→¬ A∨¬ B ,
c) ¬¬( A∨B)→ ¬¬ A∨¬ ¬ B ,
c1) (A→B)→((¬A→B)→B),

d) (A → B)∨( B → A) ?

Show that the formulas (a, b, c) can be proved without the "crazy" axiom L10, 

i.e prove them in [L1-L9, L11, MP]. (Hint: use Theorem 2.6.4 (a) [L1-L8, MP]:

A∨¬ A ⊢ (A → B)→¬ A∨B. ).  For  smart  students:  how  about  the 
remaining formulas (c1, d)?

Using computers in mathematical proofs

Do you trust the above proofs? Personally, I trust much more my ability to write (relatively) 
error-free computer programs than my ability to carry out error-free mathematical proofs. But 
how about you? Of course, you do not need trusting my (or your own) program generating the 
results files #00, #01, #02, #03 and #04. We used these files only to select the "truth table"  
variants allowing to prove our independence results. The critical points to be trusted are (see 
my implementation file) : a) the recursive program

int MyFormula::ValueAt(int A, int B, int C)

and b) the character string analyzer 

int MyFormula::Analyze(int *pOperation, AnsiString *pSubFormula1, AnsiString 
*pSubFormula2)

http://podnieks.id.lv/mlog/kp_logc.txt
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You may wish to remove your worries by verifying directly that under all the 3 truth table 
variants used above: a) the axioms L1-L8 are true, and b) the axioms L9, L10, L11 and other 

formulas are true or not true according to the goal of each particular proof. Before you have 
performed this 100%, you can feel the flavor of using computers in mathematical proofs (I 
trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not  
trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I  
do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I trust this  
proof, I do not trust it, I trust this proof, I do not trust it, I trust this proof, I do not trust it, I  
trust this proof, I do not trust it,...)

Unfortunately, in more complicated cases the situation does not allow the above simple exit  
(i.e. manual verification of the solution found by a computer):

"The Four Colour Theorem was the first major theorem to be proved using a computer, having 
a proof that  could not be verified directly by other mathematicians.  Despite some worries 
about this initially,  independent verification soon convinced everyone that the Four Colour 
Theorem had finally been proved. Details of the proof appeared in two articles in 1977. Recent 
work has led to improvements in the algorithm." (According to the article:  The Four Colour 
Theorem in MacTutor History of Mathematics archive).

The  proof  of  the  Four  Colour  Theorem  was  completed  in  1976  by  Kenneth  Appel and 
Wolfgang  Haken,  see  their  photographs  published  in  European  Mathematical  Society, 
Newsletter No. 46, December 2002, pp. 15-19.

"The best-known, and most debated, instance is the use of computer  analysis by Kenneth 
Appel and Wolfgang Haken of the University of Illinois in their 1976 proof of the four-colour 
conjecture (that four colours suffice to colour in any map drawn upon a plane in such a way 
that countries which share a border are given different colours). First put forward in 1852, the 
conjecture had become perhaps the most famous unsolved problem in mathematics, resisting a 
multitude of efforts at proof for over a century. Appel and Haken's demonstration rested upon 
computerized analysis, occupying 1,200 hours of computer time, of over 1,400 graphs. The 
analysis of even one of those graphs typically went beyond what an unaided human being 
could plausibly do: the ensemble of their demonstration certainly could not be checked in 
detail by human beings. In consequence, whether that demonstration constituted "proof" was 
deeply controversial..." (according to

Donald MacKenzie. Computers and the Sociology of Mathematical Proof. In:  Trends in the  
History  and Philosophy of  Mathematics,  Odense:  University of  Southern  Denmark,  2004, 
pp.67-86).

See also

Ken Appel on the 4CT proof, December 1998

Robin  Wilson.  Four  Colours  Suffice.  European  Mathematical  Society,  Newsletter  No.  46, 
December 2002, pp. 15-19 (online copy).

The Four Color Theorem, November 13, 1995, by Robin Thomas.

A computer-checked proof of the Four Colour Theorem, 2004, by Georges Gonthier.

Doron Zeilberger. Opinion 54: It is Important to Keep Looking for Non-Computer Proofs of 
the  Four-Color  Theorem,  But  Not  For  the  "Usual"  Reasons  (available  online  at 
http://www.math.rutgers.edu/¬zeilberg/Opinion54.html).

Two other famous computer assisted mathematical proofs:

http://www.math.rutgers.edu/~zeilberg/Opinion54.html
http://www.math.rutgers.edu/~zeilberg/
http://research.microsoft.com/~gonthier/4colproof.pdf
http://www.math.gatech.edu/~thomas
http://emis.kaist.ac.kr/newsletter/newsletter46.pdf
http://emis.kaist.ac.kr/newsletter/index.html
http://www.mathematics.open.ac.uk/People/r.j.wilson
http://cs.nyu.edu/pipermail/fom/1998-December/002476.html
http://www.sps.ed.ac.uk/staff/mackenzie.html
http://emis.kaist.ac.kr/newsletter/index.html
http://en.wikipedia.org/wiki/Wolfgang_Haken
http://en.wikipedia.org/wiki/Kenneth_Appel
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/HistTopics/The_four_colour_theorem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/The_four_colour_theorem.html
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- In 1989, by using Cray super-computers,  Clement W. H. Lam finished his proof that finite 
projective plane of order 10 is impossible (for details see Projective plane in Wikipedia).

-  In  1998,  Thomas  C.  Hales finished  his  proof  of  Kepler  conjecture  about  the  densest 
arrangement  of  spheres  in  space  (Johannes  Kepler conjectured  it  in  1611,  for  details  see 
Kepler conjecture in Wikipedia).

See   logical software links   selected by Peter Suber.

Visit the Mizar Project.

http://mizar.uwb.edu.pl/project/
http://bit.ly/petersuber
http://www.earlham.edu/~peters/courses/logsys/lslinks.htm
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Kepler_conjecture
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kepler.html
http://www.math.pitt.edu/~thales/
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Projective_plane
http://www.cecm.sfu.ca/organics/authors/lam/
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3. Predicate Logic

3.1. Proving Formulas Containing Quantifiers and Implication 
only

Theorem  3.1.0.  [L1,  L2,  L12,  L13,  MP]   xB(x)→ xB(x).  What  does  it⊢ ∀ ∃  

mean? It prohibits "empty domains".

Indeed,

(1) xB(x)∀ Hypothesis.

(2) xB(x)→B(x)∀ Axiom L12.

(3) B(x) By MP.

(4) B(x)→ xB(x)∃ Axiom L13.

(5) xB(x)∃ By MP.

Thus, by [L1, L2, MP] Deduction Theorem 1, there is a proof of [L1, L2, L12, 

L13, MP]  xB(x)→ xB(x).⊢∀ ∃

Theorem 3.1.1. a) [L1, L2, L12, L14, MP, Gen]  x(B→C)→( xB→ xC).⊢∀ ∀ ∀  

What does it mean?

b) [L1, L2, L12-L15, MP, Gen]  x(B→C)→( xB→ xC). What does it mean?⊢∀ ∃ ∃

Let us prove (a).

(1) x(B→C)∀ Hypothesis.

(2) xB∀ Hypothesis.

(3) x(B→C)→(B→C)∀ Axiom L12: xF(x)→F(x).∀

(4) B→C From (1) and (3), by MP.

(5) xB→B∀ Axiom L12: xF(x)→F(x).∀

(6) B From (2) and (5), by MP.
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(7) C From (4) and (6), by MP.

(8) xC∀ From (7), by Gen.

In  this  proof,  Gen  is  applied  only  to  x,  which  is  not  a  free  variable  in 
x(B→C) and xB. Thus, by [L∀ ∀ 1, L2, L14, MP, Gen] Deduction Theorem 2, 

there is a proof of [L1, L2, L12, L14, MP, Gen]  x(B→C) → ( xB→ xC).⊢∀ ∀ ∀

Let us prove (b).

(1) x(B→C)∀ Hypothesis.

(2) x(B→C)→(B→C)∀ Axiom L12: xF(x)→F(x).∀

(3) B→C From (1) and (2), by MP.

(4) C→ xC∃ Axiom L13: F(x)→ xF(x).∃

(5) B→ xC∃ From (3) and (4), by transitivity of 
implication [L1, L2, MP].

(6) x(B→ xC)∀ ∃ From (5), by Gen.

(7) x(B→ xC)→( xB→ xC)∀ ∃ ∃ ∃
Axiom L15: 

x(F(x)→G)→( xF(x)→G) ( xC ∀ ∃ ∃
does not contain x as a free variable).

(8) xB→ xC∃ ∃ From (6) and (7), by MP.

In  this  proof,  Gen  is  applied  only  to  x,  which  is  not  a  free  variable  in 
x(B→C). Thus, by [L∀ 1, L2, L14, MP, Gen] Deduction Theorem 2, there is a 

proof of [L1, L2, L12-L15, MP, Gen]  x(B→C) → ( xB→ xC).⊢∀ ∃ ∃

Q. .D.∃
Theorem 3.1.2. a) [L1, L2, L5, L12, L14, MP, Gen]  x yB(x, y)↔ y xB(x,⊢∀∀ ∀ ∀  

y). What does it mean?

b) [L1, L2, L5, L13, L15, MP, Gen]  x yB(x, y)↔ y xB(x, y). What does it⊢∃ ∃ ∃ ∃  

mean?

c)  [L1,  L2,  L12-L15,  MP, Gen]  x yB(x, y)→ y xB(x, y).  What does it⊢∃ ∀ ∀ ∃  

mean? The converse implication x yB(x, y)→ y xB(x, y) cannot be true.∀∃ ∃ ∀  
Explain, why.

Let us prove (b).
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(1) B(x, y)→ xB(x, y)∃ Axiom L13 with F(x) = B(x, y).

(2) xB(x, y)→ y xB(x, y)∃ ∃ ∃ Axiom L13 with F(y) = xB(x, y).∃

(3) B(x, y)→ y xB(x, y)∃ ∃ From (1) and (2), by transitivity of 
implication [L1, L2, MP].

(4) F(x)→G  xF(x)→G⊢∃ Exercise 1.4.3(a): [L15, MP, Gen], x 

not free in G.

(5) yB(x, y)→ y xB(x, y)∃ ∃ ∃ From (3), by (4), with F(y) = B(x, y), 
G = x yB(x, y).∃ ∃

(6) x yB(x, y)→ y xB(x, y)∃ ∃ ∃ ∃ From (5), by (4), with F(x) = yB(x, ∃
y), G = x yB(x, y).∃ ∃

The proof of the converse implication [L1, L2, L13, L15, MP, Gen]  y xB(x,⊢∃ ∃  

y)→ x yB(x, y) is identical.∃ ∃
Now, by Axiom L5 we obtain the equivalence (b). Q.E.D.

Exercise 3.1.1. Prove (a) and (c) of Theorem 3.1.2.

Exercise 3.1.2. Prove in the constructive logic,

[L1-L10, L12-L15, MP, Gen]  x(B(x)→C(x)) → ( xB(x)→ xC(x)).⊢∃ ∀ ∃

3.2. Formulas Containing Negations and a Single Quantifier

Attention:  non-constructive  reasoning! ¬ xB →  x¬B.  This  formula  is∀ ∃  
accepted in the classical logic: if no x can possess the property B, then there is 
an x that does not possess B. It represents non-constructive reasoning in its 
ultimate form: let us assume, all x-s possess the property B, if we succeed in 
deriving a contradiction from this assumption, then – what? Is this a proof that 
there is a particular x that does not possess the property B? Does our proof 
contain a method allowing to build at least one such x? If not, do we have a 
"real" proof of x¬B?∃
How many formulas can be built of the formula B by using negations and a 
single quantifier?

¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∀
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¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∃
Let us remind Theorem 2.4.5 [L1-L9, MP]:  ¬¬¬A↔¬A. I.e., any number of⊢  

negations can be reduced to zero, one, or two, and thus we obtain 3*2*3 = 18 
formulas to be investigated. The following table represents the results of this 
investigation from

A.Heyting. On weakened quantification.  Journal  of  Symbolic  Logic,  1936, 
vol.11, pp.119-121 (see also Kleene [1952], Section 3.5).

Table 3.2

I

xB∀
--------------------------------------------

¬¬ xB∀
==========================

x¬¬B∀
¬¬ x¬¬B∀

¬ x¬B∃

III

x¬B∃
---------------------------------------------

¬¬ x¬B∃
¬ x¬¬B∀

==========================
¬ xB∀

II

xB∃
--------------------------------------------

x¬¬B∃
--------------------------------------------

¬¬ xB∃
¬¬ x¬¬B∃
¬ x¬B∀

IV

x¬B∀
¬¬ x¬B∀
¬ x¬¬B∃

¬ xB∃

Legend. a) In the classical logic, within each of the 4 groups all formulas are 
equivalent, for example, in group III: ¬ xB↔ x¬B. Of course, formulas of∀ ∃  
different groups cannot be equivalent (explain, why).

b) Two formulas within a group are constructively equivalent, if and only if 
they  have  no  separating  lines  between  them.  For  example,  in  group  II: 
constructively, ¬ x¬B↔¬¬ xB, but not ¬ x¬B↔ xB (explain, why). All the∀ ∃ ∀ ∃  
formulas of the group IV are constructively equivalent.

c) If two formulas F1, F2 within a group (F1 – above, F2 – below) are separated 

by a single line, then: constructively, F1→F2, and ¬¬(F2→F1), but not F2→F1. 

For  example,  in  group  II:  constructively,  xB→¬ x¬B,  and∃ ∀  
¬¬(¬ x¬B→ xB), but not ¬ x¬B→ xB (explain, why).∀ ∃ ∀ ∃

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952
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d)  If  two  formulas  F1,  F2 within  a  group  (F1 –  above,  F2 –  below)  are 

separated by a double line, then: constructively, F1→F2, but not F2→F1, and 

even not ¬¬(F2→F1). For example, in group III: constructively, x¬B→¬ xB,∃ ∀  

but not ¬ xB→ x¬B, and even not ¬¬(¬ xB→ x¬B) (try to explain, why).∀ ∃ ∀ ∃  
Thus,  the  implication  ¬ xB→ x¬B  could  be  qualified  as  ∀ ∃ super-non-
constructive.

Now, let us prove the implications necessary for the positive part of the above 
legend to be true.

Group I

I-1. Constructively, [L1, L2, L9, MP]:  xB→¬¬ xB ⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]:  A→¬¬A.⊢

I-2. Constructively, [L1-L9, L12, L14, MP, Gen]:  ¬¬ xB→ x¬¬B⊢ ∀ ∀

(1) xB→B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬ xB→¬¬B∀ From (1), by Theorem 2.4.7(a) [L1-L9, 

MP]:  (A→B)→(¬¬A→¬¬B).⊢

(3) x(¬¬ xB→¬¬B)∀ ∀ From (2), by Gen.

(4) ¬¬ xB→ x¬¬B∀ ∀ From (3), by Axiom L14: 

x(G→F(x))→(G→ xF(x)).∀ ∀
I-3. Constructively, [L1, L2, L9, MP]:  x¬¬B→¬¬ x¬¬B⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]:  A→¬¬A.⊢

I-4. Constructively, [L1, L2, L9, L12, L15, MP, Gen]  ¬¬ x¬¬B→¬ x¬B⊢ ∀ ∃

(1) x¬¬B→¬¬B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬¬B→¬ x¬¬B∀
From (1), by the Contraposition Law 
– Theorem 2.4.2. [L1, L2, L9, MP]: ⊢ 

(A→B)→(¬B→¬A).

(3) ¬B→¬¬¬B
By Theorem 2.4.4 [L1, L2, L9, MP]: 

 A→¬¬A.⊢
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(4) ¬B→¬∀x¬¬B
From (2) and (3), by transitivity of 
implication – Theorem 1.4.2 [L1, L2, 

MP].

(5) x(¬B→¬ x¬¬B)∀ ∀ From (4), by Gen.

(6) x¬B→¬ x¬¬B∃ ∀ From (5), by Axiom L15: 

x(F(x)→G)→( xF(x)→G).∀ ∃

(7) ¬¬ x¬¬B→¬ x¬B∀ ∃ From (6), by the Contraposition Law 
[L1, L2, L9, MP].

I-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]:  ¬ x¬B→ xB⊢ ∃ ∀

(1) ¬B→ x¬B∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ x¬B→¬¬B∃
From (1), by the Contraposition Law [L1, 

L2, L9, MP].

(3) ¬¬B→B
Classical logic, Theorem 2.6.1 [L1-L11, 

MP]:  ¬¬A → A⊢

(4) ¬ x¬B→B∃ From (2) and (3), by transitivity of 
implication [L1, L2, MP].

(5) x(¬ x¬B→B)∀ ∃ From (4), By Gen.

(6) ¬ x¬B→ xB∃ ∀ From (5), by Axiom L14: 

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group I, constructively, F1→F2→F3→F4→F5, 

and, in the classical logic, F5→F1. I.e. we have proved that in Group I: a) in 

the classical logic, all the formulas are equivalent, and b) constructively, upper 
formulas imply lower formulas.

I-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen]:  ¬ x¬B→ x¬¬B⊢ ∃ ∀

(1) ¬B→ x¬B∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ x¬B→¬¬B∃
From (1), by the Contraposition Law [L1, 

L2, L9, MP].



93

(3) x(¬ x¬B→¬¬B)∀ ∃ From (2), by Gen.

(4) ¬ x¬B→ x¬¬B∃ ∀ From (3), by Axiom L14: 

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group I, constructively, [L1, L2, L9, L12 -L15, 

MP, Gen]: F3→F4→F5→F3,  i.e.  that formulas F3,  F4,  F5  are constructively 

equivalent.

For Group I, it remains to prove 

I-7. Constructively, [L1-L10, MP]  ¬¬(¬¬ xB→ xB)⊢ ∀ ∀

Immediately, by Theorem 2.5.2(d) [L1-L10, MP]  ¬¬(¬¬A→A).⊢

Group II

II-1. Constructively, [L1, L2, L9, L12-L15, MP, Gen]  xB→ x¬¬B⊢∃ ∃

(1) B→¬¬B
By Theorem 2.4.4 [L1, L2, L9, MP]:  ⊢
A→¬¬A.

(2) x(B→¬¬B)∀ From (1), by Gen.

(3) xB→ x¬¬B∃ ∃
From (2), by Theorem 3.1.1(b) [L1, L2, 

L12-L15, MP, Gen]

II-2. Constructively, [L1-L9, L12-L15, MP, Gen] x¬¬B→¬¬ xB⊢∃ ∃

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬¬B→¬¬ xB∃ From (1), by Theorem 2.4.7(a) [L1-L9, 

MP]:  (A→B)→(¬¬A→¬¬B).⊢

(3) x(¬¬B→¬¬ xB)∀ ∃ From (2), by Gen.

(4) x¬¬B→¬¬ xB∃ ∃
From (3), by Theorem 3.1.1(b) [L1, L2, 

L12-L15, MP, Gen]

II-3. Constructively, [L1-L9, L12-L15, MP, Gen]  ¬¬ xB→¬¬ x¬¬B⊢ ∃ ∃

Immediately from II-1,  by From (1),  by Theorem 2.4.7(a)  [L1-L9,  MP]:  ⊢ 

(A→B)→(¬¬A→¬¬B).

II-4. Constructively, [L1-L9, L12, L15, MP, Gen]  ¬¬ x¬¬B→¬ x¬B⊢ ∃ ∀
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(1) x¬B→¬B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬B→¬ x¬B∀
From (1), by the Contraposition Law – 
Theorem 2.4.2. [L1, L2, L9, MP]:  ⊢
(A→B)→(¬B→¬A).

(3) x(¬¬B→¬ x¬B)∀ ∀ From (2), by Gen.

(4) x¬¬B→¬ x¬B∃ ∀ From (3), by Axiom L15: 

x(F(x)→G)→( xF(x)→G).∀ ∃

(5) ¬¬ x¬¬B→¬¬¬ x¬B∃ ∀ From (4), by Theorem 2.4.7(a) [L1-L9, 

MP]:  (A→B)→(¬¬A→¬¬B).⊢

(6) ¬¬¬ x¬B→¬ x¬B∀ ∀ Theorem 2.4.5 [L1-L9, MP]:  ⊢
¬¬¬A↔¬A

(7) ¬¬ x¬¬B→¬ x¬B∃ ∀ From (5) and (6), by transitivity of 
implication [L1, L2, MP].

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]:  ¬ x¬B→ xB⊢ ∀ ∃

(1) ¬ x¬B→¬¬ xB∀ ∃ II-6 [L1, L2, L9, L13, L14, MP, Gen], see 

below.

(2) ¬¬ xB→ xB∃ ∃ Classical logic, Theorem 2.6.1 [L1-L11, 

MP]:  ¬¬A → A⊢

(3) ¬ x¬B→ xB∀ ∃ From (1) and (2), by transitivity of 
implication [L1, L2, MP].

Thus, we have proved that in Group II, constructively, F1→F2→F3→F4→F5, 

and, in the classical logic, F5→F1. I.e. we have proved that in Group II: a) in 

the classical logic, all the formulas are equivalent, and b) constructively, upper 
formulas imply lower formulas.

II-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen]  ¬ x¬B→¬¬ xB⊢ ∀ ∃

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃
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(2) ¬ xB→¬B∃
From (1), by the Contraposition Law – 
Theorem 2.4.2. [L1, L2, L9, MP]:  ⊢
(A→B)→(¬B→¬A).

(3) x(¬ xB→¬B)∀ ∃ From (2), by Gen.

(4) ¬ xB→ x¬B∃ ∀ From (3), by Axiom L14: 

x(G→F(x))→(G→ xF(x)).∀ ∀

(5) ¬ x¬B→¬¬ xB∀ ∃
From (4), by the Contraposition Law – 
Theorem 2.4.2. [L1, L2, L9, MP]:  ⊢
(A→B)→(¬B→¬A).

Thus, we have proved that in Group II, constructively, [L1-L9, L12-L15, MP, 

Gen]:  F3→F4→F5→F3,  i.e.  that  formulas  F3,  F4,  F5  are  constructively 

equivalent.

II-7. Constructively, [L1-L10, MP]:  ¬¬(¬¬ xB→ xB)⊢ ∃ ∃

Immediately, by Theorem 2.5.2 [L1-L10, MP]:  ¬¬(¬¬A→A).⊢

Thus,  constructively,  ¬¬(F3→F1),  and  F1→F2→F3→F4→F5→F3.  By 

Theorem 2.4.7(d), [L1-L9, MP] ¬¬(A→B), ¬¬(B→C)  ¬¬(A→C). Thus, in⊢  

fact, we have proved that in Group II, for all i, j, constructively, ¬¬(F i→Fj) (a 

kind of "weak equivalence").

Group III

III-1. Constructively, [L1, L2, L9, MP]:  x¬B→¬¬ x¬B⊢∃ ∃

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]:  A→¬¬A.⊢

III-2. Constructively, [L1, L2, L9, L12, L15, MP, Gen]:  ¬¬ x¬B→¬ x¬¬B⊢ ∃ ∀

(1) x¬¬B→¬¬ x¬¬B∀ ∀ I-3 [L1, L2, L9, MP], see above.

(2) ¬¬ x¬¬B→¬ x¬B∀ ∃ I-4 [L1, L2, L9, L12, L15, MP, Gen], see 

above. 

(3) x¬¬B→¬ x¬B∀ ∃ From (1) and (2), by transitivity of 
implication [L1, L2, MP].
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(4) ¬¬ x¬B→¬ x¬¬B∃ ∀
From (3), by the Contraposition Law [L1, L2, 

L9, MP].

III-3. Constructively, [L1-L9, L12, L14, MP, Gen]:  ¬ x¬¬B→¬ xB⊢ ∀ ∀

(1) xB→¬¬ xB ∀ ∀ I-1 [L1, L2, L9, MP], see above.

(2) ¬¬ xB→ x¬¬B∀ ∀ I-2 [L1-L9, L12, L14, MP, Gen]

(3) xB→ x¬¬B∀ ∀ From (1) and (2), by transitivity of 
implication [L1, L2, MP].

(4) ¬ x¬¬B→¬ xB∀ ∀
From (3), by the Contraposition Law [L1, L2, 

L9, MP].

III-4. In the classical logic, [L1-L11, L13, L14, MP, Gen]:  ¬ xB→ x¬B⊢ ∀ ∃

(1) ¬ x¬B→ xB∃ ∀ I-5: in the classical logic, [L1-L11, L13, L14, 

MP, Gen]

(2) ¬ xB→¬¬ x¬B∀ ∃
From (1), by the Contraposition Law [L1, 

L2, L9, MP].

(3) ¬¬ x¬B→ x¬B∃ ∃ Classical logic, Theorem 2.6.1 [L1-L11, 

MP]:  ¬¬A → A⊢

(4) ¬ xB→ x¬B∀ ∃ From (2) and (3), by transitivity of 
implication [L1, L2, MP].

Thus, we have proved that in Group III, constructively, F1→F2→F3→F4, and, 

in the classical logic, F4→F1. I.e. we have proved that in Group III: a) in the 

classical logic, all the formulas are equivalent,  and b) constructively,  upper 
formulas imply lower formulas.

III-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]:  ¬ x¬¬B→¬¬ x¬B⊢ ∀ ∃

(1) ¬ x¬B→ x¬¬B∃ ∀ I-6 [L1, L2, L9, L13, L14, MP, Gen]

(2) ¬ x¬¬B→¬¬ x¬B∀ ∃
From (1), by the Contraposition Law [L1, L2, 

L9, MP].

Thus, we have proved that in Group III, constructively, F2→F3→F2, i.e. that 
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formulas F2, F3 are constructively equivalent.

III-5. Constructively, [L1-L10, MP]:  ¬¬(¬¬ x¬B→ x¬B)⊢ ∃ ∃

Immediately, by Theorem 2.5.2 [L1-L10, MP]:  ¬¬(¬¬A→A).⊢

Group IV

IV-1. Constructively, [L1, L2, L9, MP]:  x¬B→¬¬ x¬B⊢∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]:  A→¬¬A.⊢

IV-2. Constructively, [L1-L9, L12-L15, MP, Gen]:  ¬¬ x¬B→¬ x¬¬B⊢ ∀ ∃

(1) x¬¬B→¬ x¬B∃ ∀
From II-2, II-3, II-4 [L1-L9, L12-L15, MP, 

Gen], by transitivity of implication [L1, L2, 

MP].

(2) ¬¬ x¬B→¬ x¬¬B∀ ∃
From (1), by the Contraposition Law [L1, L2, 

L9, MP].

IV-3. Constructively, [L1, L2, L9, L12-L15, MP, Gen]:  ¬ x¬¬B→¬ xB⊢ ∃ ∃

(1) xB→ x¬¬B∃ ∃ II-1 [L1, L2, L9, L12-L15, MP, Gen]

(2) ¬ x¬¬B→¬ xB∃ ∃
From (1), by the Contraposition Law [L1, L2, 

L9, MP].

IV-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]:  ¬ xB→ x¬B⊢ ∃ ∀

(1) B→ xB∃ Axiom L13: F(x)→ xF(x).∃

(2) ¬ xB→¬B∃
From (1), by the Contraposition Law [L1, L2, 

L9, MP].

(3) x(¬ xB→¬B)∀ ∃ From (2), by Gen.

(4) ¬ xB→ x¬B∃ ∀ From (3), by Axiom L14: 

x(G→F(x))→(G→ xF(x)).∀ ∀
Thus, we have proved that in Group IV all the formulas are constructively 
equivalent.

And thus, we have proved the positive part of the legend of Table 3.2. The 
negative part  of the legend asserts  that the following (classically provable) 
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formulas cannot be proved constructively:

(1) ¬¬ xB→ xB∀ ∀ See Group I. Simply, an instance of (the non-
constructive) ¬¬A→A. 

(2) x¬¬B→¬¬ xB∀ ∀ See Group I. Super-non-constructive: even 
¬¬(2) is non-constructive!

(3) ¬¬( x¬¬B→¬¬ xB)∀ ∀ ¬¬(2). See Group I. 

(4) x¬¬B→ xB∃ ∃ See Group II. Nearly, an instance of (the non-
constructive) ¬¬A→A.

(5) ¬¬ xB→ x¬¬B∃ ∃ See Group II. Stronger than simply non-
constructivity of ¬¬A→A?

(6) ¬¬ x¬B→ x¬B∃ ∃ See Group III. Simply, an instance of (the 
non-constructive) ¬¬A→A.

(7) ¬ xB→¬ x¬¬B∀ ∀ See Group III. Super-non-constructive: 
even ¬¬(7) is non-constructive!

(8) ¬¬(¬ xB→¬ x¬¬B)∀ ∀ ¬¬(7). See Group III. 

We will prove these facts in Section 4.5 (see Exercise 4.5.1).

Still,  the  most  striking  (classically  provable)  non-constructive  quantifier 
implications correspond to existence proofs via reductio ad absurdum:

(8) ¬ x¬B→ xB∀ ∃

¬¬(8) is constructively provable, but (8) is not, 
see Group II. If we know how to derive a 
contradiction from x¬B, then may be, we do ∀
not know how to find a particular x such that 
B.

(9) ¬ x¬B→¬¬ x¬¬B∀ ∃

(9) is weaker than (8), but still non-
constructive, see Group II. If we know how to 
derive a contradiction from x¬B, then may ∀
be, we do not know how to derive a 
contradiction from ¬ x¬¬B.∃

(10) ¬ xB→ x¬B∀ ∃
ven ¬¬(10) is non-constructive, see Group III.∃  

If we know how to derive a contradiction from 
xB, then may be, we do not know how to ∀

find a particular x such that ¬B.
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(11) ¬ xB→¬¬ x¬B∀ ∃

(11) is weaker than (10), but still super-non-
constructive (i.e. even ¬¬(11) is non-
constructive), see Group III. If we know how 
to derive a contradiction from xB, then may ∀
be, we do not know how to derive a 
contradiction from ¬ x¬B.∃

3.3. Proving Formulas Containing Conjunction and 
Disjunction

Theorem 3.3.1. 

a) [L1-L5, L12, L14, MP, Gen]: ⊢ ∀x (B∧C )↔∀xB∧∀xC .

b)  [L1,  L2,  L6-L8,  L14,  MP,  Gen]:  ⊢ ∀xB∨∀xC →∀x( B∨C ) .  The 

converse formula ∀x (B∨C )→∀xB∨∀xC  cannot be true. Explain, why.

Exercise 3.3.1.

Prove [L3-L5, L12, MP, Gen]: ∀x (B∧C ) ⊢ ∀xB∧∀xC  and

 [L3-L5, L12, MP, Gen]: ∀xB∧∀xC ⊢ ∀x (B∧C ) . 

Since, in your first proof, Gen has been applied only to x, which is not a free 
variable in x(B&C), then, by Deduction theorem 2 [L∀ 1, L2, L14, MP, Gen] we 

obtain that

 [L1- L5, L12, L14, MP, Gen]: ⊢ ∀x (B∧C )→∀xB∧∀xC .

Similarly, in your second proof, Gen has been applied only to x, which is not a 
free variable in ∀xB∧∀xC , then, by Deduction theorem 2 [L1, L2, L14, 

MP, Gen] we obtain that

 [L1- L5, L12, L14, MP, Gen]: ⊢ ∀xB∧∀xC →∀x( B∧C ) .

Now, by Theorem 2.2.1(a) [L5]: A, B ⊢ A∧B , we obtain the equivalence (a) 

of Theorem 3.3.1.

Let us prove (b): ⊢ ∀xB∨∀xC →∀x (B∨C ) .

(1) B → BvC Axiom L6.

(2) ∀x (B → B∨C) From (1), by Gen.
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(3) ∀xB →∀x( B∨C )
From (2), by Theorem 3.1.1(a) [L1, L2, 

L12, L14, MP, Gen].

(4) C → B∨C Axiom L7.

(5) ∀x (C → B∨C) From (4), by Gen.

(6) ∀xC →∀x( B∨C )
From (5), by Theorem 3.1.1(a) [L1, L2, 

L12, L14, MP, Gen].

(7) ∀xB∨∀xC →∀x (B∨C ) From (3) and (6), by Axiom L8.

The summary is [L1, L2, L6-L8, L12, L14, MP, Gen]. Q.E.D.

Theorem 3.3.2. a) [L1-L8, L12-L15, MP, Gen]: ⊢ ∃ x (B∨C )↔∃ xB∨∃ xC .

b) [L1-L5,  L13-L15,  MP, Gen]: ⊢ ∃ x (B∧C )→∃ xB∧∃ xC .  The converse 

implication ∃ xB∧∃ xC →∃ x (B∧C ) cannot be true. Explain, why.

For the proof of ∃ x (B∨C )→∃ xB∨∃ xC , see Exercise 3.3.2(a) below.

Let us prove ∃ xB∨∃ xC →∃ x (B∨C ) .

(1) B → B∨C Axiom L6.

(2) ∀x (B → B∨C ) By Gen.

(3) ∃ xB →∃ x (B∨C )
By Theorem 3.1.1(b): [L1, L2, L12-L15, 

MP, Gen]  x(B→C)→( xB→ xC)⊢∀ ∃ ∃

(4) C → B∨C Axiom L7.

(5) ∀x (C → B∨C) By Gen.

(6) ∃ xC →∃ x ( B∨C ) By Theorem 3.1.1(b).

(7) ∃ xB∨∃ xC →∃ x (B∨C) From (3) and (6), by Axiom L8.

The summary is [L1, L2, L6-L8, L12-L15, MP, Gen]. 

Now, by Theorem 2.2.1(a) [L5]: A, B ⊢ A∧B , we obtain the equivalence 

(a). Q.E.D.

Exercise 3.3.2. a)  Prove  (a→) of  Theorem 3.3.2 (Hint:  start  with L13 and 

finish by applying L15.)
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b)  Prove  (b)  of  Theorem  3.3.2.  (Hint:  first,  assume B∧C ,  derive
∃ xB∧∃ xC , and apply Deduction Theorem 1). The converse implication
∃ xB∧∃ xC →∃ x (B∧C ) cannot be true. Explain, why.

3.4. Replacement Theorems

An  example:  we  know  that log xy=log x+ log y and log x y
= y⋅log x . 

Hence,

log 2a 3b
=log 2a

+ log 3b
=a⋅log 2+ b⋅log3 .

Another  example:  we  know  that  (in  the  classical  logic):
⊢ (A → B)↔¬ A∨B .  Hence,  the  formula  (X→Y)→Z  "should  be" 
equivalent to ¬( X → Y )∨Z , and to ¬(¬ X ∨Y )∨Z . We know also that

¬(A∨B)↔ ¬ A∧¬ B ,  hence,  we can  continue:  (X→Y)→Z "should  be" 
equivalent to (¬¬ X ∧¬ Y )∨Z , and to ( X ∧¬Y )∨Z  (since ¬¬A↔A).⊢
Until  now,  in  our  logic,  we  could  not  use  this  very  natural  kind  of 
mathematical argument.

In this  section we will  prove meta-theorems that  will  allow replacing sub-
formulas by equivalent  formulas.  For example,  if  have proved the formula 

xB→D, and we know that  B↔C, then we can replace B by C, obtaining the∃ ⊢  
formula  xC→D.  These  theorems  will  make  the  above  treatment  of  the∃  
formula (X→Y)→Z completely legal.

We will  prove also that the meaning of a formula does not depend on the 
names of bound variables used in it. For example,

 ( xB(x)→C)↔( yB(y)→C).⊢ ∃ ∃
Note. To prove all these replacement theorems we will need only the minimal 
logic [L1-L9, L12-L15, MP, Gen].

Sub-formulas and Occurrences

Intuitively,  B  is  a  sub-formula  of  C,  if  B  is  a  formula,  and  B  is  a  part  
(substring) of C. But note that a sub-formula may appear in the same formula 
more than once, as, for example, in the following instance of the axiom L1: 

xB(x)∃ →( xC(x)→∃ xB(x)∃ ). Thus, it would be more correctly to speak about 
occurrences of sub-formulas. In the above example, there are two occurrences 
of the formula xB(x).∃
The formal definition is as follows:
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a) o(B) is an occurrence in B in B.

b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in ¬C,
C∧D , D∧C , C∨D , D∨C , C→D, and D→C.

b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in xC,∃  
and xC.∀
We can define also the notion of propositional occurrences:

a) o(B) is a propositional occurrence in B in B.

b) If o(B) is a propositional occurrence of B in C, then o(B) is a propositional 
occurrence of B in ¬C, C∧D , D∧C , C∨D , D∨C , C→D, and D→C.

Intuitively, o(B) is a propositional occurrence of B in C, if, in C, no quantifiers 
stand over o(B).

Replacement Lemma 1. In the minimal logic, [L1-L9, MP]:

(a) A↔B  (A→C)↔(B→C)⊢ [L1-L5, MP] 

(b) A↔B  (C→A)↔(C→B)⊢ [L1-L5, MP]

(c) A↔B ⊢ A∧C ↔ B∧C [L1-L5, MP]

(d) A↔B ⊢ C∧A↔ C∧B [L1-L5, MP]

(e) A↔B  ⊢ A∨C ↔ B∨C [L1-L8, MP]

(f) A↔B  ⊢ C∨A↔ C∨B [L1-L8, MP]

(g) A↔B  ¬A↔¬B⊢ [L1-L9, MP]

Case (a). We will first prove that [L1, L2, L4, MP]: A↔B  (A→C)→(B→C).⊢

(1) (A → B)∧( B → A) A↔B – hypothesis.

(2) A→C Hypothesis.

(3) B→A From (1), by Axiom L4.

(4) B→C
From (3) and (2), by transitivity of 
implication [L1, L2, MP]. 

Thus,  by [L1,  L2,  MP]  Deduction  Theorem 1,  [L1,  L2,  L4,  MP]:  A↔B ⊢ 

(A→C)→(B→C).
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In a similar way, we can prove that

[L1, L2, L3, MP]: A↔B  (B→C)→(A→C).⊢

Now, by Theorem 2.2.1(a), we obtain (a).

Q.E.D.

Exercise 3.4.1. Prove (b, c, d ) of Replacement Lemma 1.

Exercise 3.4.2. Prove (e, f , g) of Replacement Lemma 1.

This completes our proof of the Replacement Lemma 1.

Replacement Theorem 1. Let us consider three formulas: B, B', C, where B is 
a sub-formula of C, and o(B) is a propositional occurrence of B in C (i.e. no 
quantifiers stand over o(B)). Let us denote by C' the formula obtained from C 
by replacing o(B) by B' . Then, in the minimal logic,

[L1-L9, MP]: B↔B'  C↔C'.⊢

Proof. Induction by the "depth" of the propositional occurrence o(B).

Induction base: depth  = 0.  Then C is  B,  and C'  is  B'.  The conclusion  is 
obvious.

Induction step. If C is not B, then one of the following holds:

a) C is F→G, and o(B) is in F.

b) C is F→G, and o(B) is in G.

c) C is F∧G , and o(B) is in F.

d) C is F∧G , and o(B) is in G.

e) C is F∨G , and o(B) is in F.

f) C is F∨G , and o(B) is in G.

g) C is ¬F, and o(B) is in F.

Case  (a).  By  induction  assumption,  [L1-L9,  MP]:  B↔B'   F↔F'.  By⊢  

Replacement Lemma 1(a), [L1-L9, MP]: F↔F'  (F→G)↔(F'→G). Thus,⊢

 [L1-L9, MP]: B↔B'  C↔C'.⊢

Exercise 3.4.3. Repeat the above argument for the remaining cases (b, c, d, e, 
f, g).

Q.E.D.

Now, we can use the replacement argument mentioned at the beginning of this 
section – at least, for propositional occurrences of equivalent sub-formulas.
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Replacement Lemma 2. In the minimal logic, [L1-L9, L12-L15, MP, Gen]:

(a) B↔C  xB↔ xC⊢∀ ∀ [L1-L5, L12, L14, MP, Gen]

(b) B↔C  xB↔ xC⊢∃ ∃ [L1-L5, L12-L15, MP, Gen]

Exercise 3.4.4. Prove Replacement Lemma 2.

Replacement Theorem 2. Let us consider three formulas: B, B', C, where B is 
a sub-formula of C, and o(B) is any occurrence of B in C. Let us denote by C' 
the formula obtained from C by replacing o(B) by B' . Then, in the minimal 
logic,

 [L1-L9, L12-L15, MP, Gen]: B↔B'  C↔C'.⊢

Proof. Induction by the "depth" of the occurrence o(B).

Induction base: depth  = 0.  Then C is  B,  and C'  is  B'.  The conclusion  is 
obvious.

Induction step. If C is not B, then one of the following holds:

a)-g) – as in the proof of Replacement Theorem 1.

h) C is xF, and o(B) is in F.∀
i) C is xF, and o(B) is in F.∃
Case  (h).  By induction  assumption,  [L1-L9,  L12-L15,  MP,  Gen]:  B↔B'  ⊢ 

F↔F'.  By Replacement  Lemma 2(a),  [L1-L9,  L12-L15,  MP,  Gen]:  F↔F'  ⊢ 

xF↔ xF'. Thus, [L∀ ∀ 1-L9, L12-L15, MP, Gen]: B↔B'  C↔C'.⊢

Case (i). By induction assumption, [L1-L9, L12-L15, MP, Gen]: B↔B'  F↔F'.⊢  

By Replacement Lemma 2(b), [L1-L9, L12-L15, MP, Gen]: F↔F'  xF↔ xF'.⊢∃ ∃  

Thus, [L1-L9, L12-L15, MP, Gen]: B↔B'  C↔C'.⊢

Q.E.D.

Now (only now!) , we may use in our proofs the replacement argument 
mentioned at the beginning of this section. And now, for any equivalent 
sub-formulas!

Finally, let us prove that the meaning of a formula does not depend on the 
names of bound variables used in it. Intuitively, it "must be so", but now we 
can prove this intuition as a meta-theorem.



105

Replacement Lemma 3. If the formula B does not contain the variable y, then 
(in the minimal logic):

a) [L5, L12, L14, MP, Gen]:  xB(x)↔ yB(y)⊢∀ ∀

b) [L5, L13, L15, MP, Gen]:  xB(x)↔ yB(y).⊢∃ ∃

First, let us prove [L12, L14, MP, Gen]:  xB(x)→ yB(y).⊢∀ ∀

(1)  xB(x)→B(y)⊢∀
Axiom L12: xF(x)→F(t). B(x) does∀  

not contain y, hence, B(x/y) is an 
admissible substitution.

(2) y( xB(x)→B(y))⊢∀ ∀ By Gen.

(3)
y( xB(x)→B(y))→( xB(x)⊢∀ ∀ ∀

→ yB(y))∀
Axiom L14: 

x(G→F(x))→(G→ xF(x)). ∀ ∀
xB(x) does not contain y.∀

(4)  xB(x)→ yB(y)⊢∀ ∀ By MP.

Now, let us prove [L12, L14, MP, Gen(x)]:  yB(y)→ xB(x).⊢∀ ∀

(1)  yB(y)→B(x)⊢∀
Axiom L12: xF(x)→F(t). B(x) does∀  

not contain y, hence, B(y) contains 
only free occurrences of y, i.e. B(y/x) 
is an admissible substitution.

(2)  x( yB(y)→B(x))⊢∀ ∀ By Gen.

(3)
x( yB(y)→B(x))→( yB(y)⊢∀ ∀ ∀

→ xB(x))∀

Axiom L14: 

x(G→F(x))→(G→ xF(x)). ∀ ∀
yB(y) does not contain x as a free ∀

variable.

(4)  yB(y)→ xB(x)⊢∀ ∀ By MP.

Now, by Theorem 2.2.1(a), we obtain (a).

To prove (b), first, let us prove [L13, L15, MP, Gen(y)]:  yB(y)→ xB(x).⊢∃ ∃

(1)  B(y)→ xB(x)⊢ ∃
Axiom L13: F(t)→ xF(t). B(x) does ∃
not contain y, hence, B(x/y) is an 
admissible substitution.
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(2) y(B(y)→ xB(x))⊢∀ ∃ By Gen.

(3)
y(B(y)→ xB(x))→( yB(y)⊢∀ ∃ ∃

→ xB(x))∃
Axiom L15: 

x(F(x)→G)→( xF(x)→G). xB(x) ∀ ∃ ∃
does not contain y.

(4)  yB(y)→ xB(x)⊢∃ ∃ By MP.

Now, let us prove [L13, L15, MP, Gen(x)]:  xB(x)→ yB(y).⊢∃ ∃

(1)  B(x)→ yB(y)⊢ ∃
Axiom L13: F(t)→ xF(x). B(x) does ∃
not contain y, hence, B(y) contains 
only free occurrences of y, i.e. B(y/x) 
is an admissible substitution.

(2)  x(B(x)→ yB(y))⊢∀ ∃ By Gen.

(3)
x(B(x)→ yB(y))→( xB(x)⊢∀ ∃ ∃

→ yB(y))∃
Axiom L15: 

x(F(x)→G)→( xF(x)→G). yB(y) ∀ ∃ ∃
does not contain x as a free variable.

(4)  xB(x)→ yB(y)⊢∃ ∃ By MP.

Now, by Theorem 2.2.1(a), we obtain (b).

Q.E.D.

Replacement Theorem 3. Let y be a variable that does not occur in a formula 
F, containing an occurrence of a quantifier x (or x). Let us replace by ∀ ∃ y all 
occurrences of the variable  x bound by this particular quantifier occurrence. 
Let us denote the resulting formula by F'. Then, in the minimal logic,

 [L1-L9, L12-L15, MP, Gen]:  F↔F'.⊢

Proof. Thus, the formula F contains a sub-formula xB(x) (or xB(x)), and we∀ ∃  
wish to replace it by y(B(y) (or yB(y)), where y does not occur in F. By∀ ∃  
Replacement  Lemma  3,  in  the  minimal  logic,   xB(x)↔ yB(y),  and  ⊢ ∀ ∀ ⊢ 

xB(x)↔ yB(y). Hence, by Replacement Lemma 2, in the minimal logic, ∃ ∃ ⊢ 
F↔F'. Q.E.D.

Now  let  us  repeat  our  example.  We  know  that  (in  the  classical  logic):
⊢ (A → B)↔¬ A∨B .  Hence,  the  formula  (X→Y)→Z is equivalent  to

¬( X →Y )∨Z ,  and  to ¬(¬ X ∨Y )∨Z .  We  know  also  that
¬(A∨B)↔¬ A∧¬ B , hence, we can continue: (X→Y)→Z is equivalent to
(¬¬ X ∧¬ Y )∨Z , and to ( X ∧¬Y )∨Z  (since ¬¬A↔A).⊢

Now, in our logic, we can use this very natural kind of mathematical argument.
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3.5. Constructive Embedding

Glivenko's  Theorem  (see  Section  2.7)  provides  a  simple  "constructive 
embedding"  for  the  classical  propositional  logic:  any  classically  provable 
formula can be "proved" in the constructive logic, if you put two negations 
before it. This theorem does not hold for the predicate logic. For example (see 
Section 3.2),

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]:  ¬ x¬B→ xB.⊢ ∀ ∃

The double negation of this formula, i.e. the formula ¬¬(¬ x¬B→ xB) cannot∀ ∃  
be proved in the constructive predicate logic (see Section 4.5). Thus, instead of 
the simple operation ¬¬F, we must search for a more complicated embedding 
operation.

However,

Exercise  3.5.0 (optional,  for  smart  students).  Verify  that  a  formula  F  is 
provable in the classical predicate logic, if and only if ¬¬F is provable in the 
constructive  predicate  logic  plus  the  following  axiom  schema: 

x¬¬B→¬¬ xB  (the  so-called  ∀ ∀ Double  Negation  Shift  schema,  see 
Intuitionistic  Logic by  Joan  Moschovakis in  Stanford  Encyclopedia  of 
Philosophy.

The  first  embedding  operation  was  introduced  by  Andrey  Nikolaevich 
Kolmogorov (1903-1987) in 

A.N.Kolmogorov. On the principle tertium non datur. Matem. sbornik, 1925, 
vol.32, pp.646-667 (in Russian).

A quote from A Short Biography of A.N. Kolmogorov by Paul M.B. Vitanyi 
follows:

"K. got interested in mathematical logic,  and in 1925 published a paper in 
Mathematicheskii Sbornik on the law of the excluded middle, which has been 
a continuous source for later work in mathematical logic. This was the first 
Soviet  publication  on mathematical  logic  containing (very substantial)  new 
results, and the first systematic research in the world on intuitionistic logic. K. 
anticipated  to  a  large  extent  A.  Heyting  's  formalization  of  intuitionistic 
reasoning,  and  made  a  more  definite  correlation  between  classical  and 
intuitionistic mathematics. K. defined an operation for `embedding' one logical 
theory in another. Using this – historically the first such operation, now called 
the `Kolmogorov operation' – to embed classical logic in intuitionistic logic, 
he proved that application of the law of the excluded middle in itself cannot 

http://www.cwi.nl/~paulv/index.html
http://www.cwi.nl/~paulv/KOLMOGOROV.BIOGRAPHY.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kolmogorov.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kolmogorov.html
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/
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lead to a contradiction. In 1932 K. published a second paper on intuitionistic 
logic, in which for the first time a semantics was proposed (for this logic), free 
from the philosophical aims of intuitionism. This paper made it possible to 
treat intuitionistic logic as constructive logic."

See also Kolmogorov Centennial.

We will investigate the following version of an embedding operation: to obtain 
O(F), in a formula F, put two negations before: a) every atomic formula, b) 
every disjunction, c) every existential quantifier. More precisely, let us define 
the following embedding operation O (you may wish to compare it with some 
other versions possessing similar properties):

Operation O
Detlovs [1964]

Operation K
Kolmogorov 
[1925]

Operation O'
Gödel [1933],
see Kleene [1952]

Operation Oo 
Gentzen [1936],
see Kleene [1952]

If F is an atomic 
formula, then O(F) 
is ¬¬F.

K(F) is ¬¬F. O'(F) is F. Oo(F) is F.

O(F→G) is 
O(F)→O(G).

¬¬(K(F)→K(G)) ¬(O ' (F )∧¬O ' (G)) Oo(F)→Oo(G)

O (F∧G)  is
O (F )∧O (G ) .

¬¬(K ( F )∧K (G)) O' (F )∧O' (G ) Oo
( F )∧O o

(G)

O (F∨G)  is 
¬¬(O (F )∨O (G))

¬¬(K ( F )∨K (G)) ¬(¬O ' (F )∧¬O ' (G)) ¬(¬Oo (F )∧¬Oo(G ))

O(¬F) is ¬O(F). ¬¬¬K(F), or ¬K(F)* ¬O'(F) ¬Oo(F)

O( xF) is xO(F).∀ ∀ ¬¬ xK(F)∀ xO'(F)∀ xO∀ o(F)

O( xF) is ¬¬ xO(F).∃ ∃ ¬¬ xK(F)∃ ¬ x¬O'(F)∀ ¬ x¬O∀ o(F)

(*) By Theorem 2.4.5, [L1-L9, MP]:  ¬¬¬K(F)↔¬K(F).⊢

For example, let us take the above formula ¬ x¬B→ xB. If B is an atomic∀ ∃  
formula, then

O(¬ x¬B→ xB) is ¬ x¬¬¬B→¬¬ x¬¬B, i.e. ¬ x¬B→¬¬ x¬¬B∀ ∃ ∀ ∃ ∀ ∃
The latter formula is constructively provable (see Section 3.2, Group II).

Lemma 3.5.1. For any formula F, in the classical logic,  F↔O(F).⊢
Proof. By induction. Let us remind Theorem 2.6.1: [L1-L11, MP]  ¬¬A ↔ A.⊢

1. Induction base: F is an atomic formula. Then O(F) is ¬¬F. By Theorem 

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml.htm#Kleene1952
http://kolmogorov.com/Kolmogorov.html
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2.6.1, [L1-L11, MP]  ¬¬F↔F, hence, in the classical logic,  O(F)↔F.⊢ ⊢

2. Induction step. 

Case 2a: F is BvC. Then O(F) is ¬¬(O(B)vO(C)). 

(1) O(B)↔B Induction assumption.

(2) O(C)↔C Induction assumption.

(3) B∨C ↔ O( B)∨C From (1), by Replacement 
Theorem 1.

(4) O(B)∨C ↔O( B)∨O(C )
From (2), by Replacement 
Theorem 1.

(5) O(B)∨O (C)↔ ¬¬(O( B)∨O(C ))
Theorem 2.6.1: [L1-L11, MP]  ⊢
¬¬A ↔ A.

(6)
B∨C ↔ ¬¬(O (B)∨O(C )) , i.e. 

F↔O(F)
By transitivity of implication.

Case 2b: F is xB. Then O(F) is ¬¬ xO(B).∃ ∃
(1) O(B)↔B Induction assumption.

(2) xB↔ xO(B)∃ ∃ From (1), by Replacement Theorem 2.

(3) xO(B)↔¬¬ xO(B)∃ ∃ Theorem 2.6.1: [L1-L11, MP]  ¬¬A ⊢
↔ A.

(4) xB↔¬¬ xO(B), i.e. F↔O(F)∃ ∃ By transitivity of implication.

Case 2c: F is B→C.

Case 2d: F is B&C.

Case 2e: F is ¬B.

Case 2f: F is xB.∀
Exercise 3.5.1.Prove (c, d, e, f).

Q.E.D.

Still, the key feature of the formulas having the form O(F) is given in 

Lemma 3.5.2. For any formula F, there is a proof of

[L1-L9, L12, L14, MP,Gen]:  ¬¬O(F)↔O(F).⊢
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I.e.,  in  the  minimal  logic,  we  may drop  the  double  negation  before  O(F) 
(before an arbitrary formula, we can do this only in the classical logic).

Note. In some other textbooks, if ¬¬G↔G can be proved in the constructive 
logic, then G is called a stable formula. Thus, the embedding O(F) is a stable 
formula for any F.

Proof. By Theorem 2.4.4, [L1, L2, L9, MP]:  A→¬¬A. Thus, it remains to⊢  

prove  ¬¬O(F)→O(F). Let us proceed by induction. ⊢
1.  Induction  base:  F  is  an  atomic  formula.  Then  O(F)  is  ¬¬F,  and 
¬¬O(F)→O(F) is ¬¬¬¬F→¬¬F. Let us remind Theorem 2.4.5: [L1-L9, MP] ⊢ 

¬¬¬A↔¬A. Hence, by taking A = ¬F:

 [L1-L9, MP]  ¬¬¬¬F→¬¬F, i.e. [L⊢ 1-L9, MP]  ¬¬O(F)→O(F).⊢

2. Induction step. 

Case 2a: F is B∨C , or xB, or ¬B. Then O(F) is ∃ ¬¬(O( B)∨O(C )) , or 
¬¬ xO(B),  or  ¬O(B).  Hence,  ∃ ¬¬O(F)→O(F)  is  ¬¬¬G→¬G,  where  G  is 

¬(O(B)∨O (C)) , or ¬ xO(B), or O(B). ∃ Let us remind Theorem 2.4.5: [L1-

L9, MP]  ¬¬¬A↔¬A. Hence,⊢

 [L1-L9, MP]  ¬¬¬G→¬G, i.e. [L⊢ 1-L9, MP]  ¬¬O(F)→O(F).⊢

Case 2b: F is B→C. Then O(F) is O(B)→O(C). By induction assumption, 

[L1, L2, L12, L14, MP, Gen]:  ¬¬O(B)→O(B), and  ¬¬O(C)→O(C).⊢ ⊢

(1) ¬¬O(C)→O(C) Induction assumption.

(2) ¬¬(O(B)→O(C)) ¬¬O(F) – hypothesis.

(3) ¬¬O(B)→¬¬O(C)
By Theorem 2.4.7(b): [L1-L9, MP]  ⊢
¬¬(A→B)→(¬¬A→¬¬B).

(4) O(B)→¬¬O(B) By Theorem 2.4.4, [L1, L2, L9, MP]:  A→¬¬A. ⊢

(5)
O(B)→O(C), i.e. 
O(F)

From (4), (3) and (1), by transitivity of 
implication [L1, L2, MP].

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2, 

MP] we obtain that [L1-L9, L12, L14, MP, Gen]  ¬¬O(F)→O(F).⊢

Case  2c: F  is B∧C .  Then  O(F)  is O(B)∧O (C) .  By  induction 
assumption,
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 [L1, L2, L12, L14, MP, Gen]:  ¬¬O(B)→O(B), and  ¬¬O(C)→O(C).⊢ ⊢

(1) ¬¬(O(B)∧O(C )) ¬¬O(F) – hypothesis. 

(2) ¬¬O (B)∧¬¬ O(C )
From (1), by Theorem 2.4.8(a), [L1-L9, MP] 

⊢ ¬¬( A∧B)↔(¬¬ A∧¬¬ B) .

(3) ¬¬O(B) From (2), by Axiom L3.

(4) ¬¬O(C) From (2), by Axiom L4.

(5) O(B) From (3), by induction assumption. 

(6) O(C) From (4), by induction assumption.

(7)
O(B)∧O (C) , i.e. 

O(F)
From (5) and (6), by Axiom L5.

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2, 

MP] we obtain that [L1-L9, L12, L14, MP, Gen]  ¬¬O(F)→O(F).⊢

Case 2d: F is xB. Then O(F) is xO(B). By induction assumption∀ ∀ ,

 [L1-L9,  L12,  L14,  MP,  Gen]:   ¬¬O(B)→O(B).  We  must  prove  that  ⊢ ⊢ 

¬¬ xO(B)→ xO(B).∀ ∀

(1)  ¬¬ xO(B)→ x¬¬O(B)∀ ∀ Section 3.2, I-2: [L1-L9, L12, L14, MP, Gen] 

 ¬¬ xB→ x¬¬B⊢ ∀ ∀

(2)  ¬¬O(B)→O(B)⊢ Induction assumption

(3)  x(¬¬O(B)→O(B))⊢∀ By Gen.

(4)  x¬¬O(B)→ xO(B)⊢∀ ∀
From (3), by Theorem 3.1.1(a), [L1, L2, L12, 

L14, MP, Gen]  x(B→C)→( xB→ xC).⊢∀ ∀ ∀

(5)  ¬¬ xO(B)→ xO(B)⊢ ∀ ∀ From (1) and (4), by transitivity of 
implication [L1, L2, MP].

Q.E.D.

Lemma 3.5.3. If F is one of the (classical) axioms L1-L11, L12-L15, then, in 

the constructive logic, [L1-L10, L12-L15, MP, Gen]:  O(F).⊢

Note. The axiom L10 will be used in the proof of Lemma 3.5.3 only once – to 
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prove that O(L10) is provable in the constructive logic. But, of course, O(L10) 

cannot  be  proved  in  the  minimal  logic,  hence,  in  the  Lemma  3.5.3,  the 
constructive logic cannot be replaced by the minimal one.

Proof.

Case 1. F (as an axiom schema) does not contain disjunctions and existential 
quantifiers, i.e. if F is L1, L2, L3, L4, L5, L9, L10, L12, or L14., then O(F) is an 

instance of the same axiom as F, i.e. [F]:  O(F). For example, if F is L⊢ 1, i.e. 

B→(C→B), then O(F) is O(B)→(O(C)→O(B)), i.e. O(F) is an instance of the 
same axiom L1.

Case 2a. F is L6: B → B∨C . Then O(F) is O(B)→ ¬¬(O(B)∨O(C )) , 

and [[L1, L2, L6, L9, MP]  O(F). Indeed:⊢

(1) O(B)→ O(B)∨O (C) Axiom L6.

(2)
 

O(B)∨O (C)→ ¬¬(O( B)∨O(C ))

By Theorem 2.4.4, [L1, L2, L9, 

MP]:  A→¬¬A.⊢

(3) O(B)→ ¬¬(O(B)∨O(C ))
By transitivity of implication 
[L1, L2, MP].

Case 2b. F is L7: C → B∨C . Then O(F) is O(C )→¬ ¬(O(B)∨O(C)) , 

and [[L1, L2, L7, L9, MP]  O(F). Proof is similar to Case 2a.⊢

Case 2c. F is L8: (B → D)→ ((C → D)→(B∨C → D)) . Then O(F) is

(O(B)→O(D))→ ((O(C )→ O(D))→(¬¬(O(B)∨O (C))→O (D))) .

(1) ¬¬O(D)→O(D)
By Lemma 3.5.2, [L1-L9, L12, 

L14, MP,Gen]:  ¬¬O(F)→O(F). ⊢

(2) O(B)→O(D) Hypothesis.

(3) (O(C)→O(D) Hypothesis.

(4) ¬¬(O( B)∨O(C )) Hypothesis.

(5)
(O(B)→O(D))→((O(C )→O (D))→(O (B)∨O(C )→O (D))) . 

Axiom L8.

(6) O(B)vO (C)→O(D) By MP.
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(7) ¬¬(O( B)∨O(C ))→¬¬O (D)

From (6), by Theorem 2.4.7(a), 
[L1-L9, MP]  ⊢
(A→B)→(¬¬A→¬¬B)

(8) ¬¬O(D) By MP.

(9) O(D) From (1), by MP.

Hence,  since  Gen  is  not  applied  after  hypotheses  appear  in  the  proof,  by 
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12, 

L14, MP,Gen]  O(F).⊢

Case 2d. F is L11: Bv¬B. Then O(F) is ¬¬(O(B)∨¬O( B)) . Let us remind 

Theorem  2.4.6(b):  [L1-L9,  MP]  ⊢ ¬¬( A∨¬ A) .  Hence,  [L1-L9,  MP]  ⊢ 

O(F).

Case 2e.  F is  L13:  F(t)→ xF(x). Then O(F) is O(F(t))→¬¬ xO(F(x))),  and∃ ∃  

[[L1, L2, L9, L13, MP]  O(F). Indeed:⊢

(1) O(F(t))→ xO(F(x))∃ Axiom L13.

(2)  xO(F(x))→∃ ¬¬ xO(F(x))∃ By Theorem 2.4.4, [L1, L2, L9, MP]:  ⊢
A→¬¬A.

(3)  O(F(t))→¬¬ xO(F(x))⊢ ∃ By transitivity of implication [L1, L2, 

MP].

Case 2f. F is L15: x(F(x)→G)→( xF(x)→G). Then O(F) is∀ ∃

x(O(F(x))→O(G))→(¬¬ xO(F(x))→O(G)).∀ ∃

(1) ¬¬O(G)→O(G)
By Lemma 3.5.2, [L1-L9, L12, L14, 

MP,Gen]:  ¬¬O(F)→O(F).⊢

(2) x(O(F(x))→O(G))∀ Hypothesis.

(3) ¬¬ xO(F(x))∃ Hypothesis.

(4)
x(O(F(x))→O(G))→ ( xO(F(x))→O(G)). Axiom L∀ ∃ 15: 

x(F(x)→G)→( xF(x)→G).∀ ∃

(5) xO(F(x))→O(G)∃ By MP.
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(6) ¬¬ xO(F(x))→¬¬O(G)∃ From (4), by Theorem 2.4.7(a), [L1-L9, MP] 

 (A→B)→(¬¬A→¬¬B)⊢

(7) ¬¬O(G) By MP.

(8) O(G) From (1), by MP.

Hence,  since  Gen  is  not  applied  after  hypotheses  appear  in  the  proof,  by 
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12, 

L14, L15, MP,Gen]  O(F).⊢

Q.E.D.

Theorem 3.5.4. In the classical logic,

 [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn  C,⊢

if and only if, in the constructive logic, 

[L1-L10, L12-L15, MP, Gen]: O(B1), O(B2), ..., O(Bn)  O(C).⊢

In particular, a formula F is provable in the classical logic, if and only if the 
formula O(F) is provable in the constructive logic.

Proof.

1. Let [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn  C. Induction by the length⊢  

of the shortest proof.

Induction base. If C is an axiom, then, by Lemma 3.5.3, in the constructive 
logic,  O(C). If C is B⊢ i, then O(Bi)  O(C) in any logic.⊢

Induction step. 

If C is derived by MP from B and B→C, then, by induction assumption, in the 
constructive logic:  O(B1),  O(B2),  ...,  O(Bn)   O(B),  and O(B⊢ 1),  O(B2),  ..., 

O(Bn)   O(B→C).  Let  us  merge  these  two  proofs.  Since  O(B→C)  is⊢  

O(B)→O(C), then, by MP, in the constructive logic: O(B1), O(B2), ..., O(Bn) ⊢ 

O(C).

If  C  is  xB(x),  and  is  derived  by  Gen  from  B(x),  then,  by  induction∀  
assumption,  in  the  constructive  logic:  O(B1),  O(B2),  ...,  O(Bn)   O(B(x)).⊢  

Hence,  by  Gen,  in  the  constructive  logic:  O(B1),  O(B2),  ...,  O(Bn)  ⊢ 

xO(B(x)), i.e. O(B∀ 1), O(B2), ..., O(Bn)  O(F).⊢

Q.E.D.
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2. Let in the constructive logic:  O(B⊢ 1), O(B2), ..., O(Bn)  O(C). By Lemma⊢  

3.5.1, in the classical logic,  B⊢ i→O(Bi) for all i, and  O(C)→C. Hence, in⊢  

the classical logic, B1, B2, ..., Bn  C.⊢

Q.E.D.

Corollary 3.5.5. If, in the classical logic, B1, B2, ..., Bn ⊢ C∧¬C , then, in 

the constructive logic, O(B1), O(B2), ..., O(Bn) ⊢ O(C )∧¬O (C) . I.e., if the 

postulates  B1,  B2,  ...,  Bn are  inconsistent  in  the  classical  logic,  then  the 

postulates O(B1), O(B2), ..., O(Bn) are inconsistent in the constructive logic. 

Or: if the postulates O(B1), O(B2), ..., O(Bn) are consistent in the constructive 

logic, then the postulates B1, B2, ..., Bn are consistent in the classical logic.

Corollary  3.5.6. If,  for  some  predicate  language,  the  classical  logic  is 
inconsistent,  then  so  is  the  constructive  logic.  Or:  if,  for some predicate 
language, the constructive logic is consistent, then so is the classical logic 
(Gödel [1933], Gentzen [1936]).

Warning! Corollary 3.5.6 does not extend immediately to first order theories, 
having their own specific non-logical axioms. It must be verified separately for 
each theory! For example, 

Exercise 3.5.2 (optional, for smart students). Verify that, if the constructive 
first order arithmetic is consistent, then so is the classical first order arithmetic 
(Gödel  [1933],  Gentzen  [1936]).  (Hint:  verify  that,  a)  atomic  formulas  of 
arithmetic are stable – this is the hard part of the proof, b) if F is an axiom of 
arithmetic, then so is O(F).)

Thus,  the  non-constructivity  does  not  add  contradictions  (at  least)  to 
arithmetic.  If  it  would,  then  we  could  derive  "constructive"  arithmetical 
contradictions as well. 

K.  Gödel.  Zur  intuitionistischen  Arithmetik  und Zahlentheorie.  Ergebnisse  
eines mathematischen Kolloquiums, 1933, Vol. 4, pp. 34-38.

Gerhard  Gentzen.  Die  Widerspruchsfreiheit  der  reinen  Zahlentheorie. 
Mathematische Annalen, 1936, Vol. 112, pp. 493-565.

About constructive embedding operations as a general notion see 

Nikolai A.Shanin. Embedding the classical logical-arithmetical calculus into 
the constructive logical-arithmetical calculus. Dokladi AN SSSR, 1954, vol. 94, 
N2, pp.193-196 (in Russian).

http://logic.pdmi.ras.ru/~shanin/
http://www-history.mcs.st-and.ac.uk/Mathematicians/Gentzen.html
http://en.wikipedia.org/wiki/Peano_axioms
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4. Completeness Theorems (Model Theory)

4.1. Interpretations and Models

In  principle,  to  do  the  so-called  pure  mathematics,  i.e.  simply  to  prove 
theorems, one needs only "syntax" – axioms and rules of inference. And, for 
computers, this is the only way of doing mathematics!

But how about  "semantics" – about our intended "vision” from which we 
started designing of our predicate language and formulating axioms? First of 
all, we must understand that there is no way of formulating (in the predicate 
language and axioms) of all the features of our domain of interest.

For example, what information can be derived about the person Britney from 
our “theory for people” of Section 1.3? All we can derive will be formulated in 
terms of the following predicates: 

Male(x) − means "x is a male"; 
Female(x) − means "x is a female";
Mother(x, y) − means "x is mother of y";
Father(x, y) − means "x is father of y";
Married(x, y) − means "x and y are married";
x=y.

Thus, there is no way of obtaining from such a theory of any information that 
can't be formulated in these terms, for example, about the age, colour of eyes 
etc. 

And thus, by communicating our predicate language and our axioms (in this 
language!) to a computer, we have communicated only a small part of all the 
features of our domain of interest. 

Hence, neither our predicate language, nor our axioms can specify our 
initial “vision” completely. And, if so – in principle, one can imagine many 
different “visions” behind our language and axioms!

It  may seem that  if,  instead  of  our  “people's  domain”  that  is  very rich  in 
details, we will consider, for example, natural numbers, then the situation will 
become  better,  and  we  will  be  able  to  describe  our  informal  “vision” 
unambiguously?

For example, let us considered the language of first order arithmetic (language 
primitives: x, y, ..., 0, 1 +, *, =), and the following non-usual "Boolean vision" 
B behind it.
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a) As the domain of B (the "target" set of objects), instead of the set of all 
natural numbers, let us consider the set of "Boolean values" DB = {t, f}. Thus, 

now, the variables x, y, ... can take only values t, f.

b)  The interpretation  mapping  intB assigns:  to  the  object  constant  1  –  the 

object t, to the object constant 0 – the object t, thus: intB(0)=f, intB(1)=t.

c)  To the function constant "+" we assign the well-known  disjunction truth 
table:  intB(+)= '∨' ,  to  the  function  constant  "*"  –  the  well-known 

conjunction truth table: intB(*)= '∧' .

d) To the predicate constant "=" – the equality predicate for the set DB, i.e. 

intB(=) = {(t, t) , (f, f)}.

Is this vision "worse" than the usual one involving “real” natural numbers? It 
seems, it is worse, because the following axiom of arithmetic:

x+1=y+1 → x=y

is false under this vision. Indeed, set x=0 and y=1: 0+1=1+1 → 0=1. Here, the 
premise is  true: 0+ 1= f ∨t=t=1,1+ 1=t∨t=t=1 ,  but the conclusion is 
not: 0=1 means f=t.

On the other hand, the following theorem of Boolean algebra:

x+x=x

is true under the above "Boolean vision" ( t∨t=t , f ∨ f = f ), but it is false 
under the usual vision involving natural numbers.

Thus, if two theories share the same language (as do Boolean algebra and first 
order arithmetic), then the "validity" of a vision may depend on the formulas 
(axioms and theorems)  that  we expect  to  be  true.  If  we consider  only the 
language, then many different and even strange interpretations-visions will be 
possible.  But  if  we  consider  a  theory (i.e.  a  language  plus  some specific 
axioms), then only a part of the interpretations-visions will be valid – only 
those ones, under which the specific axioms of our theory will be true. Such 
interpretations-visions are called models of the theory.

Another example: in our "language for people" we used names of people (JBritney, John,  
Paris, Peter, ...) as object constants and the following predicate constants:

Male(x) − means "x is a male"; 
Female(x) − means "x is a female";
Mother(x, y) − means "x is mother of y";
Father(x, y) − means "x is father of y";
Married(x, y) − means "x and y are married";
x=y − means "x an y are the same person".
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Now,  let  us  fix  the  list  of  4  names:  Britney,  John,  Paris,  Peter,  and  let  us  consider  the 
following interpretation J of the language - “small world”:

a) The domain – and the range of variables – is DJ = {br, jo, pa, pe} (4 character strings).

b) intJ(Britney)=br, intJ(John)=jo, intJ(Paris)=pa, intJ(Peter)=pe.

c) intJ(Male) = {jo, pe}; intJ(Female) = {br, pa}.

d) intJ(Mother) = {(pa, br), (pa, jo)}; intJ(Father) = {(pe, jo), (pe, br)}.

e) intJ(Married) = {(pa, pe), (pe, pa)}.

f) intJ(=) = {(br, br), (jo, jo), (pa, pa), (pe, pe)}.

An alternative way of specifying interpetations of predicate constants are truth tables, for 
example:

x Male(x) Female(x)

br false true

pa false true

jo true false

pe true false

x y Father(x, y) Mother(x, y) Married(x, y) x=y

br br false false false true

br pa false false false false

... ... ... ... ...

pa br false true false false

... ... ... ... ... ...

pe pe false false false true

Under this interpretation (“in this small world”), it is true that, "mothers are females", and that 
"all fathers are married people" (under this interpretation, not in the real world!). Thus, under 
this  interpretation,  the  corresponding  formulas  ∀x(Mother(x)→Female(x))  and 
∀x(Father(x)→∃y Married(x, y)) qualify as true. 

But, under this interpretation (“in this small world”), it  not true that "each person possess a 
mother". The corresponding formula x∀ ∃y Mother(y, x) qualifys as false.

Exercise  4.1.0. Build  another  interpretation  (a  “crazy”  one!)  of  our “4  people  language”, 
under which the following formulas are true: “some people are both male and female”, “there 
are sex-less people”, “a person may marry herself”, “a person may be mother of herself”. 

By introducing specific non-logical axioms, i.e. by introducing “4 people theory” instead of 
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pure  axiom-less  “4  people  language”  we  can  disqualify  your  “crazy”  interpretation.  For 
example, the following axioms are false under it:

∀x(Male( x)∨Female(x)) ;∀x ¬(Male(x)∧Female(x)).

Model Theory

Could the notion of “arbitrary vision” be defined precisely? For a particular 
predicate  language  and  particular  axioms  –  is  there  only  one “vision” 
possible? Trying to answer these questions, we arrive at the so-called model 
theory.

Model theory is a very specific approach to investigation of formal theories. 
Model theory is using (up to) the full power of  set theory.  In model theory, 
we investigate formal theories by using set theory as a meta-theory.

Paul  Bernays,  in  1958:  "As  Bernays  remarks,  syntax  is  a  branch  of  number  theory and 
semantics the one of set theory." See p. 470 of

Hao Wang. EIGHTY YEARS OF FOUNDATIONAL STUDIES. Dialectica, Vol. 12, Issue 3-
4, pp. 466-497, December 1958 (available online at Blackwell Synergy).

In Sections 4.1-4.3 we will develop model theory for the classical logic, and 
in Sections 4.4-4.5 – model theory for the constructive logic.

In the classical model theory, we will replace our vague "visions” by relatively 
well-defined mathematical structures – the so-called  interpretations. As we 
will see, interpretations are allowed to be non-constructive.

Technically,  an  interpretation  will  be  a  relatively  well-defined  way  of 
assigning "precise  meanings"  to  all  formulas  of  a  predicate  language.  Any 
particular  predicate  language  allows  multiple  ways  of  assigning  "precise 
meanings" to its formulas – multiple interpretations.

Interpretation of a language – the specific part

Let  L be  a  predicate  language  containing  object  constants  c1,  ...,  ck,  ...  , 

function  constants  f1,  ...,  fm,  ...,  and  predicate  constants  p1,  ...,  pn,  ....  An 

interpretation J of the language L consists of the following two entities:

a) A non-empty set DJ – the domain of interpretation (it will serve first of all 

as the range of object variables). (Your favorite set theory comes in here.)

b) A mapping intJ that assigns: 

- to each object constant ci – a member intJ(ci) of the domain DJ (thus, object 

constants "denote" particular objects in DJ),

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1746-8361.1958.tb01476.x?cookieSet=1&journalCode=dltc
http://en.wikipedia.org/wiki/Hao_Wang
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bernays.html
http://en.wikipedia.org/wiki/Set_theory#Axiomatic_set_theory
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- to each function constant fi – a function intJ(fi) from DJ x ... x DJ into DJ (of 

course, intJ(fi) has the same number of arguments as fi),

- to each predicate constant pi – a predicate intJ(pi) on DJ, i.e. a subset of DJ 
x ... x DJ (of course, intJ(pi) has the same number of arguments as pi).

Thus,  in  a  sense,  the  mapping  intJ assigns  "meaning"  to  the  language 

primitives.

The  most  popular  example  –  let  us  consider  the  so-called  standard 
interpretation S of first order (Peano) arithmetic PA:

a) The domain is DS = {0, 1, 2, ...} − the set of all natural numbers "as we 

know it" (more precisely – as you define it in your favorite set theory).

b) The mapping intS assigns: to the object constant 0 – the number 0, to the 

object constant 1 – the number 1, to the function constant "+" − the function 
x+y (addition of natural numbers), to the function constant "*" − the function 
x*y (multiplication of natural numbers), to the predicate constant "=" − the 
predicate x=y (equality of natural numbers).

Yet another interpretation J1 of the same language: 

a) The domain is DJ1 = {e, a, aa, aaa, ...} − the set of all strings built of the letter "a" (e is the  

empty string).

b) The mapping intJ1 assigns:  to the object  constant 0 – the empty string e,  to the object 

constant 1 – the string "a", to the function constant "+" − the concatenation function of strings, 
to the function constant "*" − y times concatenation of x, to the predicate constant "=" − the 
string equality predicate.

Yet  another  interpretation  J2  (there  is  no  way  to  disqualify  it  as  a  formally  correct  
interpretation of the language):

a) The domain is DJ2 = {o} – a single object o.

b) The mapping intJ2 assigns: to the object constant 0 – the object o, to the object constant 1 – 

the same object  o, to the function constant "+" − the only possible function f(o,o)=o, to the 
function constant "*" − the only possible function f(o,o)=o, to the predicate constant "=" − the  
predicate {(o, o)}.

Some time later, we will use specific non-logical axioms to disqualify (at least 
some of) such "inadequate" interpretations.

Having an interpretation J of the language L, we can define the notion of true 
formulas (more precisely − the notion of formulas that are  true under the 
interpretation J).

As the first step, terms of the language L are interpreted as members of DJ or 

functions over  DJ.  Indeed,  terms are defined as object  constants,  or object 
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variables, or their combinations by means of function constants. The term ci is 

interpreted as the member intJ(ci) of DJ. The variable xi is interpreted as the 

function Xi(xi)  = xi.  And,  if  t  =  fi(t1,  ...,  tq),  then intJ(t)  is  defined as  the 

function  obtained  by  substituting  of  functions  intJ(t1),  ...,  intJ(tq)  into  the 

function intJ(fi).

For example (first  order arithmetic),  the standard interpretation of the term 
(1+1)+1 is the number 3, the interpretation of (x+y+1)*(x+y+1) is the function 
(x+y+1)2.

Important − non-constructivity!  Note that,  for an infinite domain DJ,  the 

interpretations of function constants may be non-computable functions. But, 
if they are all computable, then we can compute the "value" of any term t for 
any combination of values of variables appearing in t.

As the next step, the notion of true atomic formulas is defined. Of course, if 
a formula contains variables (as, for example,  the formula x+y=1), then its 
"truth-value"  must  be  defined  for  each  combination  of  values  of  these 
variables. Thus, to obtain the truth-value of the formula pi(t1, ..., tq) for some 

fixed values of the variables contained in t1, .., tq, we must first "compute" the 

values  of  these  terms,  and  then  substitute  these  values  into  the  predicate 
intJ(pi).

For example (first order arithmetic), under the standard interpretation S, the 
formula x+y=1 will be true, if and only if either x takes the value 0, and y 
takes the value 1, or x takes the value 1, and y takes the value 0. Otherwise, 
the formula is false.

Important − non-constructivity!  Note that,  for an infinite domain DJ,  the 

interpretations of predicate constants may be non-computable predicates. But, 
if they were all computable, then we could compute the "truth value" of any 
atomic formula F for any combination of values of variables appearing in F.

Interpretations of languages − the standard common part

And finally, we define the notion of true compound formulas of the language 
L under the interpretation J (of course, for a fixed combination of values of 
their free variables):

a)  Truth-values  of  the  formulas  ¬B, B∧C , B∨C and  B→C  must  be 
computed from the truth-values of B and C (by using the well-known classical 
truth tables – see Section 4.2 below).

b) The formula xB is true under J, if and only if B(c) is true under J for all∀  
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members c of the domain DJ.

c) The formula ∃xB is true under J, if and only if there is a member c of the 
domain DJ such that B(c) is true under J.

For example (first order arithmetic), the formula

∃ y ((x= y+ y)∨(x= y+ y+ 1))

says that "x is even or odd". Under the standard interpretation S, this formula 
is  true for all  values  of its  free variable  x.  Similarly,  x y(x+y=y+x) is  a∀∀  
closed formula that is true under S.

Important − non-constructivity!  It may seem that, under an interpretation, 
any closed formula is "either true or flase". However, note that, for an infinite 
domain  DJ,  the  notion  of  "true  formulas  under  J"  is  extremely  non-

constructive: to establish, for example, the truth-value of the formula xB, or∀  
the formula x y(x+y=y+x), we must verify the truth of B(c) for infinitely∀∀  
many values of c (or a+b=b+a for infinitely many values  of a and b).  Of, 
course,  this  verification  cannot  be  performed  on  a  computer.  It  can  only 
(sometimes) be proved... in some other theory. The "degree of constructivity" 
of  the  formulas  like  as  x yC(x,y),  x y zD(x,y,z)  etc.  is  even less  than∀∃ ∀ ∃ ∀  
that... 

Empty Domains?

Do you think, we should consider also  empty domains of interpretation? According to the 
axiom L13: (B→B)→ x(B→B), hence, x(B→B). In an empty domain, this formula would be∃ ∃  

false. Thus, to cover the empty domain, we would be forced to re-consider the axioms and/or  
re-consider the traditional meaning of x − see (c) above. Let us concentrate on non-empty∃  
domains only.

Let  us  say  that  a  formula  of  the  language  L  is  always  true under  the 
interpretation  J,  if  and only if  this  formula  is  true  for  all  combinations  of 
values of its free variables.

Three Kinds of Formulas

If one explores some formula F of the language L in various interpretations, 
then three situations are possible:

a) F is true in all interpretations of the language L. Formulas of this kind are 
called logically valid formulas.

b)  F  is  true  in  some interpretations  of  L,  and  false  −  in  some other 
interpretations of L. 

c)  F is  false  in  all interpretations  of  L (then,  of  course,  ¬F is  true  in  all 
interpretations). Formulas of this kind are called unsatisfiable formulas.
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Formulas that are "not unsatisfiable" (i.e. formulas of kinds (a) and (b)) are 
called, of course, satisfiable formulas.

Exercise  4.1.1. Verify  that:  a)  F is  satisfiable,  if  and  only  if  ¬F is  not 
logically valid. b) F is logically valid, if and only if ¬F is unsatisfiable.

Logically Valid Formulas

Some formulas are always true under all interpretations, for example:

(B →C)∧(C → D)→( B → D) ,

F ( x)→∃ xF ( x) ,

∀xF (x )→ F (x ) ,

∀x (F (x )→G (x))→(∀xF (x )→∀xG( x)) ,

∀x (F (x )→G (x))→(∃ xF ( x)→∃ xG(x )) ,

∀x (G (x)∧H (x))→(∀xG (x )∧∀xH ( x)) ,

∃ x (G( x)∨H ( x))→(∃ xG( x)∨∃ xH ( x)) .

How about the axioms L1-L15?

Such  formulas  are  called  logically  valid.  More  precisely,  in  a  predicate 
language L, a formula is called logically valid, if and only if it is true in  all 
interpretations of the language L for all values of its free variables.

Thus, a logically valid formula is true independently of its "meaning" − the 
interpretations of constants, functions and predicates used in it. But note that 
here,  the  (classical!)  interpretations  of  propositional  connectives  and 
quantifiers remain fixed.

In a sense, logically valid formulas are “content-free”: they do not give us any 
specific information about features of objects they are “speaking” about.

Important − non-constructivity!  The notion of logically valid formulas is 
doubly  non-constructive in  the  sense  that  the universal  quantifier  "for  all 
interpretations" is added to the (already) non-constructive definition of a true 
formula.

As we will see in, all the axioms of our classical logical axiom system [L1-L15, 

MP, Gen] are logically valid formulas. And that inference rules MP and Gen 
generate only logically valid formulas. I.e. we will prove that all the formulas 
that can be proved in the classical logic [L1-L15, MP, Gen], are logically 

valid.

As an example,  let  us verify that the axiom L12:  xF(x)→F(t)  is  logically∀  
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valid. Let us assume the contrary,  i.e. that, under some interpretation J, for 
some values of its free variables, L12 is false. According to the classical truth 

tables, this could be only, if and only if xF(x) were true, and F(t) were false∀  
(under  the  interpretation  J,  for  the  same  above-mentioned  values  of  free 
variables). Let us "compute" the value of the term t for these values of free 
variables (since the substitution F(x/t) is admissible, t may contain only these 
variables), and denote it by c. Thus, F(c) is false. But xF(x) is true, hence,∀  
F(a) is true for all a in the domain DJ,  i.e. F(c) also is true. Contradiction. 

Hence,  L12 is  true under all  interpretations for all  combinations of its  free 

variables (if any).

Exercise 4.1.2. Verify that the remaining 6 of the above formulas are logically 
valid. (Hint: follow the above example − assume that there is an interpretation 
J  such that  the formula under question is  false  for some values of its  free 
variables, and derive a contradiction.)

Is our axiom system of logic powerful enough to prove ALL the logically 
valid formulas? The answer is positive − see Gödel's Completeness Theorem 
in Section 4.3: a formula is logically valid, if and only of it is provable in the 
classical logic [L1-L11, L12-L15, MP, Gen].

But, of course, there are formulas that are not logically valid. For example, 
negations of logically valid formulas are false in all interpretations, i.e. they 
are not logically valid. Such formulas are called unsatisfiable formulas. But 
there are formulas that are true in some interpretations, and false − in some 
other ones. An example of such formulas: the axiom of arithmetic x+1=y+1 → 
x=y considered above.

To  conclude  that  some  formula  is  not logically  valid,  we  must  build  an 
interpretation J such that the formula under question is false for some values of 
its free variables. 

As an example, let us verify that the formula

∀x ( p( x)∨q( x))→∀x p(x )∨∀x q(x )

is not logically valid (p, q are predicate constants). Why it is not? Because the 
truth-values of p(x) and q(x) may behave in such a way that p (x )∨q (x )  is 
always true, but neither x p(x), nor x q(x) is true. Indeed, let us take the∀ ∀  
domain D = {a, b}, and set:

x p(x) q(x)

a true false

b false true
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In  this  interpretation, p (a)∨q (a) =  true, p (b)∨q(b) =  true,  i.e.  the 
premise ∀x ( p( x)∨q(x )) is true. But the formulas x p(x), x q(x) both∀ ∀  
are false. Hence, in this interpretation, the consequent ∀x p (x )∨∀x q (x ) is 
false,  and  thus, ∀x ( p( x)∨q( x))→∀x p(x )∨∀x q(x ) is  false.  We  have 
built an interpretation, making false the formula under question. Q.E.D.

On the other hand, this formula is satisfiable – there is an interpretation under 
which it is true. Indeed, let us take D={a} as the domain of interpretation, and 
let us set p(a)=q(a)=true. Then all the formulas

∀x ( p( x)∨q( x)) ,∀x p (x ) ,∀x q( x)

become true, and so is the entire formula under consideration. Q.E.D.

Exercise  4.1.3. Verify  that  the  following  formulas  are  satisfiable,  but  not 
logically valid (p, q, r are predicate constants):

a) p (x , y )∧p ( y , z )→ p( x , z ) , 

b) q(x)→ x q(x),∀
c) ( x q(x)→ x r(x))→ x(q(x)→r(x)),∀ ∀ ∀
c1) x(p(x)→B)→( x p(x)→B), where B does not contain x,∃ ∃

d) x y p(x, y)→ y x p(x, y),∀∃ ∃ ∀
e) ∃ x q( x)∧∃ x r ( x)→∃ x (q( x)∧r ( x)) ,

f) ∀x ¬ p(x , x)∧∀x∀y∀z ( p( x , y)∧p( y , z)→ p (x , z ))  →

∀x∀y (x= y∨p( x , y)∨p( y , x)) .

Hint. For the domain D={a, b}, use table form to define your interpretation of 
a binary predicate letter r(x,y), for example,

x y r(x, y)

a a false

a b true

b a true

b b false

 

Exercise  4.1.4. Is  the  following  formula  logically  valid,  or  not  (p,  q  are 
predicate constants):

 ( x p(x)→ x q(x))→ x(p(x)→q(x)).∃ ∃ ∃
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(Hint: follow the above example − use natural numbers or other objects trying 
to build an interpretation J such that the formula under question is false.)

Satisfiability

We  already  know  that,  in  a  predicate  language  L,  a  formula  F  is  called 
satisfiable, if and only if  there is an interpretation of the language L such 
that F is true for some values of its free variables (we will say also that F is 
satisfied under this interpretation). A set of formulas F1, ..., Fn, ... is called 

satisfiable, if and only if there is an interpretation under which the formulas 
F1, ..., Fn, ... are satisfied simultaneously.

Examples.  a)  Formula  x p(x)  is,  of  course,  not  logically  valid,  but  it  is∃  
satisfiable, because it is true in the following interpretation J: DJ={b}, p(b) is 

true.

b) Formulas x*0=0, x+y=y+x and x+(y+z)=(x+y)+z are  not logically valid 
(see Exercise 4.1.7 below), but they are satisfiable, because they are true under 
the standard intepretation of arithmetic.

Exercise 4.1.5. a) Verify that the formula xy(p(x)→p(y)) is true in all one-∀
element interpretations (i.e. when the interpretation domain consists of a single 
element), but is false in at least one two-element interpretation (p is a predicate 
constant).

b) Verify that the formula

∀x∀y∀z [( p(x )↔ p( y ))∨(q ( y)↔q (z ))∨(r (z )↔ r (x ))]

is true in all one- and two-element interpretations, but is false in at least one 
three-element interpretation (p, q, r are predicate constants).

c) Prove that the formula x y F(x,y) is logically valid, if and only if so is the∃ ∀  
formula x F(x, g(x)), where g is a function constant that does not appear in F.∃
d) Prove that the formula x y z F(x,y,z) is satisfiable, if and only if so is the∀∀ ∃  
formula x y F(x,  y,  h(x,y)),  where h is  a function constant that does not∀∀  
appear in F.

Logical Consequences

"F implies G", or "the formula G follows from the formula F" − what should 
this  mean in general?  If  F is  true,  then G is  true? Always,  or under some 
specific conditions? Let us specify  all these "conditions" as formulas A1, ..., 

An (the formula F included). Then, G follows from A1, ..., An unconditionally 
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("logically"), i.e. if A1, ..., An are all true, then G must be true without any 

other conditions. Since the notion of "true" we have formalized as "true in 
interpretation",  we  can  formalize  the  notion  of  "logical  consequence"  as 
follows:

G is a logical consequence of A1, ..., An, if and only if G is true under any 

interpretation, under which A1, ..., An are all true.

Or, as follows:

G is a logical consequence of A1, ..., An, if and only if G is true in any model 

of A1, ..., An.

Exercise 4.1.6. Verify that:

a) The formula G is a logical consequence of formulas A1, ..., An, if and only if 

the formula

 A1∧...∧An →G

is logically valid.

b) If the set  of formulas A1,  ...,  An is  satisfiable,  then the formulas B, ¬B 

cannot both be logical consequences of A1, ..., An.

c) The formula G is a logical consequence of formulas A1, ..., An, if and only if 

the set A1, ..., An, ¬G is unsatisfiable.

We will prove in Section 4.3 that G is a logical consequence of A1, ..., An, if 

and only if

[L1-L11, L12-L15, MP, Gen]: A1∧...∧An  G,⊢

i.e. if the formula A1∧...∧An →G is provable in the classical logic.

Theories and Their Models

If T is a first order theory, and J is an interpretation of its language, and if J  
makes true the specific axioms of T, then (traditionally) J is called a model of 
T.

For  non-mathematical  people,  the  term  "model  of  a  theory"  may  seem 
somewhat strange: in "normal" branches of science, theories serve as a basis 
for building models of natural phenomena, technical devices etc. But only the 
term is strange ("upside down") here, the process is the same as in "normal" 
branches of  science:  first  order  theories "generate"  their  models,  and these 
models can be used for modeling natural phenomena, technical devices etc.
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Specific axioms of a first order theory T are not logically valid formulas! 
They are not true in all interpretations, they are true only in the models of T. 
Models of T − it is a proper subclass of all the possible interpretations. For 
example, the "obvious" arithmetical axioms like as x+0=x (or, theorems like as 
x+y=y+x) are not logically valid. If we would interpret 0 as the number "two", 
then x+0 and x will be equal! Logically valid formulas must be true under all 
interpretations!

Exercise 4.1.7. a)  Verify that,  if  a  theory has  a  model,  then  the  set  of  its 
specific axioms is satisfiable.

b)Verify that x=x, x*0=0, x+y=y+x and x+(y+z)=(x+y)+z are satisfiable, but 
not logically valid formulas.

As we already noted above,  in  a  sense,  logically  valid formulas  "do not 
contain information" (are “content-free”) − just because they are true in all 
interpretations, i.e. they are true independently of the "meaning" of language 
primitives. Indeed, let us consider the formulas x+0=x → x+0=x, and x+0=0 
→ x+0=0. Both are logically valid, but do we get more information about zero 
and addition after reading them? Another example: 2*2=5 → 2*2=5, or 2*2=4 
→  2*2=4,  these  formulas  also  are  logically  valid,  but  do  they  help  in 
computing the value of 2*2? The specific axioms of some theory T, on the 
contrary,  do "contain information" − they separate  a  proper subclass of all 
interpretations − models of T.

Do the axioms of first order arithmetic “specify” the standard interpretation S, 
i.e. are the axioms of first order arithmetic true in this interpretation only? 
No, there are many non-standard interpretations making these axioms true! 
More: Non-standard arithmetic in Wikipedia.

Transitive Predicates and Recursion

Let us return to the problem that we considered already in Section 1.2. 

How about the predicate Ancestor(x, y) − "x is an ancestor of y"? Could it be 
expressed as a formula of our "language for people"? The first idea − let us 
"define" this predicate recursively:

∀x∀y (Father (x , y)∨Mother ( x , y)→ Ancestor ( x , y)) ;
∀x∀y∀z ( Ancestor( x , y)∧Ancestor ( y , z )→ Ancestor (x , z )) . 

The second rule declares the transitivity property of the predicate. The above 
two  formulas  are  axioms,  allowing  to  derive  essential  properties  of  the 
predicate  Ancestor(x,  y).  But  how  about  a  single  formula  F(x,  y)  in  the 
"language for people", expressing that "x is an ancestor of y"? Such a formula 
should be a tricky combination of formulas Father(x, y), Mother(x, y) and x=y. 
And such a formula is impossible! For the proof – see Carlos Areces. Ph.D. 

http://www.loria.fr/~areces/content/papers/files/thesis.pdf
http://www.loria.fr/~areces/
http://en.wikipedia.org/wiki/Non-standard_arithmetic
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Thesis, 2000, Theorem 1.2.

Exercise 4.1.8 (optional, for smart students). Explain the precise meaning of 
the statement: in the "language for people", formula F(x, y) expresses that "x is 
an ancestor of y".

4.2. Classical Propositional Logic − Truth Tables

Emil Leon Post (1897-1954). "... Post's Ph.D. thesis, in which he proved the 
completeness and consistency of the propositional calculus described in the 
Principia  Mathematica by  introducing  the  truth  table  method.  He  then 
generalised his truth table method, which was based on the two values "true" 
and "false", to a method which had an arbitrary finite number of truth-values... 
In the 1920s Post proved results similar to those which Gödel, Church and 
Turing discovered later, but he did not publish them. He reason he did not 
publish was because he felt that a 'complete analysis' was necessary to gain 
acceptance." (According to MacTutor History of Mathematics archive).

First, let us consider the classical propositional logic. Here, each formula is 
built of some is built of some “atoms” B1, B2, ..., Bn by using propositional 

connectives only (i.e. B∧C , B∨C , ¬ B , B →C ). Our axioms for this logic 
we represented as axiom schemas L1-L11, in which the letters B, C, D could be 

replaced by any formulas.

Is our list L1-L11 of classical propositional axiom schemas “complete”? Aren't 

some  necessary  axiom  schemas  missing  there?  If  something  necessary  is 
missing, we must add it to the list.

This  problem was solved by  Emil  L.  Post in  1920.  He proved that  if  one 
would add to L1-L11 as an axiom schema any formula that can't yet be 

proved from these axioms, then one would obtain a system, in which all 
formulas are provable, i.e. an inconsistent system. Thus, nothing is missing 
in our list of classical propositional axioms.

Post  proved  his  theorem  by  using  the  so-called  classical  truth  tables (a 
specific interpetation – in terms of the above Section 4.1). Each propositional 
atom may take any of two truth-values –  true and  false. And, if we already 
know the truth-values of the formulas B, C, then we can use truth tables to 
compute the truth-values of the formulas B∧C , B∨C , ¬ B , B →C . 

If B is false, and C is false, then B∧C is false.
If B is false, and C is true, then B∧C is false.
If B is true, and C is false, then B∧C is false.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www.loria.fr/~areces/content/papers/files/thesis.pdf


130

If B is true, and B is true, then B∧C is true.

B C B∧C

0 0 0

0 1 0

1 0 0

1 1 1

If B is false, and C is false, then B∨C is false.
If B is false, and C is true, then B∨C is true.
If B is true, and C is false, then B∨C is true.
If B is true, and C is true, then B∨C is true.

B C B∨C

0 0 0

0 1 1

1 0 1

1 1 1

If B is false, then ¬B is true.
If B is true, then ¬B is false.

B ¬B 

0 1

1 0

No problems so far.

If B is false, and C is false, then B→C is what? True? False? But, why?
If B is false, and C is true, then B→C is what? True? False? But, why?
If B is true, and C is false, then B→C is false, of course.
If B is true, and C is true, then B→C is what? Perhaps, not false? Hence, true?

How to  answer  the  3  what's?  If  B  is  false,  then  B→C possesses  no  real 
meaning. And, if we already know that B is true, and C is true, then B→C is 
no more interesting. But, if a definite "truth-value" for B→C is mandatory in 
all cases, then we can greatly simplify the situation by assuming that B→C is 
always true, except, if B is true, and C is false. Thus:

If B is false, and C is false, then B→C is true.
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If B is false, and C is true, then B→C is true.
If B is true, and C is false, then B→C is false.
If B is true, and C is true, then B→C is true.

B C B→C

0 0 1

0 1 1

1 0 0

1 1 1

This definition is equivalent to saying that

B→C is true, if and only if ¬(B∧¬ C) is true

or:

B→C is false, if and only if B is true, and C is false.

In this way, having any formula F and some assignment of truth-values to its 
atoms, we can compute the truth-value of F.

But what would happen to some propositional formula F, if we would try all  
the possible truth-values of all the propositional atoms occurring in F? There 
are three possibilities:

F takes only true values;

F takes only false values;

F takes both of values.

Lemma 4.2.1. Under the classical truth tables, all the classical propositional 
axioms L1-L11 take only true values.

Proof. First, let us verify L11 and L10:

B ¬B B∨¬ B  

0 1 1

1 0 1

B C ¬B B→C ¬B→(B→C) 

0 0 1 1 1

0 1 1 1 1
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1 0 0 0 1

1 1 0 1 1

Exercise 4.2.1. Verify L1-L9.

See also:
"Truth Tables" from The Wolfram Demonstrations Project. Contributed by: 
Hector Zenil.

Lemma 4.2.2. Under the classical truth tables, if the formulas B and B→C 
take only true values, then so does C. I.e. from "always true" formulas, Modus 
Ponens allows deriving only of "always true" formulas.

Proof. Let us assume that, in some situation, C takes a false value. In the same 
situation, B and B→C take true values. If B is true, and C is false, then B→C 
is false. Contradiction. Hence, C takes only true values. Q.E.D.

Note.  In the proof of Lemma 4.2.2, only the third row of implication truth 
table was significant: if B is true, and C is false, then B→C is false! 

Theorem 4.2.3 (soundness of the classical propositional logic).

If [L1-L11, MP]:  F, then, under the classical truth tables, F takes only true⊢  

values. In particular:  the classical propositional logic is  consistent – in the 
sense that one cannot prove [L1-L11, MP]: ⊢ G∧¬ G , for any formula G.

Proof. By induction, from Lemmas 4.2.1 and 4.2.2.

Completeness of Classical Propositional Logic

How about the converse statement of Theorem 4.2.3: if,  under the classical 
truth tables, formula F takes only true values, then [L1-L11, MP]:  F? I.e.,⊢  are 

our axioms powerful enough to prove any formula that is taking only true 
values? The answer is "yes":

Theorem 4.2.4 (completeness of the classical propositional logic). Assume, 
the formula F has been built of formulas B1, B2, ..., Bn by using propositional 

connectives only. If, under the classical truth tables, for any truth-values of B1, 

B2, ..., Bn, formula F takes only true values, then: 

a) in the constructive logic, 

 [L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn  F,⊢

b) in the classical logic, [L1-L11, MP]:  F.⊢

http://demonstrations.wolfram.com/author.html?author=Hector+Zenil
http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/TruthTables/
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Corollary  4.2.4.  The  classical  propositional  axioms  [L1-L11,  MP]  are 

"complete" in the sense that if one would add any formula that can't yet be 
proved  from these  axioms,  then  one  would  obtain  a  system,  in  which  all 
formulas are provable, i.e. an inconsistent system.

Of  course,  (b)  follows  from  (a)  immediately  −  all  the  premises
B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn are instances of the axiom L11.

The corollary also follows immediately.  Indeed, if some formula F can't be 
proved from [L1-L11, MP], then it takes false value for some combination of 

truth-values of its atoms. Replace each true atom by the formula A→A, and 
each false atom – by ¬(A→A). In this way we obtain a formula F' that takes 
only false values, i.e. ¬F' takes only true values, and hence, can be proved 
from [L1-L11, MP]. Thus, if we would add F to [L1-L11,  MP] as an axiom 

schema, then, in this system, the formulas F' and ¬F' will be provable, and by 
L10 – any formula will be provable. 

Note. Assume,  the  formula  F  is  built  of  atoms  B1,  B2,  ...,  Bn by  using 

propositional  connectives  only.  If,  under  the  classical  truth  tables,  for  any 
(possible and impossible) truth-values of B1, B2, ..., Bn, formula F takes only 

true  values,  then  F  is  called  a tautology.  Theorem  4.2.4  says  that  any 
tautology can be proved in the classical propositional logic.

Completeness of the classical propositional logic was first proved by Emil L. 
Post in his 1920 Ph.D. thesis, and published as

E. Post. Introduction to a general theory of elementary propositions. American 
Journal of Mathematics, 1921, vol. 43, pp.163-185.

About the history, see also:

Richard  Zach.  Completeness  before  Post:  Bernays,  Hilbert,  and  the  development  of 
propositional logic. The Bulletin of Symbolic Logic, 1999, vol. 5, N3, pp.331-366 (online copy 
available).

Following an elegant later idea by Laszlo Kalmar we need two simple lemmas 
before trying to prove this theorem. 

L.  Kalmar.  Ueber  Axiomatisiebarkeit  des  Aussagenkalkuels.  Acta 
scientiarium mathematicarum (Szeged). 1934-35. vol. 7, pp. 222-243.

Lemma 4.2.5. In the constructive logic, one can "compute" the classical truth-
values of ¬ B , B → C , B∧C , B∨C in the following sense:

Negation Implication Conjunction Disjunction 

[ ]: [L10, MP]: [L1, L2, L3, L9, MP]: [L1-L9, MP]: 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www.ucalgary.ca/~rzach/papers/bernays.html
http://www.ucalgary.ca/~rzach/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
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 ¬B  ¬B⊢  ¬B, ¬C  B→C ⊢  ¬B, ¬C ⊢
¬(B∧C )

¬B,¬C ⊢
¬(B∨C )  

[L1, L2, L9, 

MP]:

 B  ¬¬B⊢

[L10, MP]: 

¬B, C  B→C ⊢

[L1, L2, L3, L9, MP]:

 ¬B, C ⊢ ¬(B∧C )

[L7, MP]:

 ¬B, C ⊢ B∨C

[L1, L2, L9, MP]:

 B, ¬C  ¬(B→C)⊢  

[L1, L2, L4, L9, MP]:

 B, ¬C ⊢ ¬(B∧C )

[L6, MP]:

 B, ¬C ⊢ B∨C

[L1, MP]:

 B, C  B→C ⊢

[L5, MP]: 

 B, C ⊢ B∧C

[L6, MP]:

 B, C ⊢ B∨C

Note.  Thus,  to  "compute"  the  classical  truth-values,  the  axiom L11 is  not 

necessary!

Proof.

¬B  ¬B⊢
Immediately, in any logic.

B  ¬ ¬B⊢
By Theorem 2.4.4. [L1, L2, L9, MP]:  A→¬¬A.⊢

¬B, C  B→C⊢
¬B, ¬C  B→C⊢
By axiom L10: ¬B→(B→C) we obtain ¬B  B→C. This covers both cases.⊢

B, ¬C  ¬(B→C)⊢
This is exactly Theorem 2.4.1(c) [L1, L2, L9, MP].

B, C  B→C⊢
By axiom L1: C→(B→C) we obtain C  B→C.⊢

¬B, ¬C  ⊢ ¬(B∧C )

¬B, C  ⊢ ¬(B∧C )

By axiom L3: B∧C → B and the Contraposition Law (Theorem 2.4.2) [L1, 

L2, L9, MP]:  (A→B)→(¬B→¬A) we obtain ⊢ ⊢ ¬ B → ¬(B∧C) , and ¬B ⊢
¬(B∧C ) . This covers both cases.

B, ¬C  ⊢ ¬(B∧C )
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By axiom L4: B∧C →C and the Contraposition Law (Theorem 2.4.2) [L1, 

L2, L9, MP]:  (A→B)→(¬B→¬A) we obtain ⊢ ⊢ ¬C →¬( B∧C ) , an ¬C ⊢ 

¬(B∧C ) .

B, C  ⊢ B∧C

By axiom L5: B →(C → B∧C ) we obtain B, C ⊢ B∧C .

¬B, ¬C  ⊢ ¬(B∨C )

By Theorem 2.4.10(b).

¬B, C ⊢ B∨C  

By axiom L7: C → BvC we obtain C ⊢ B∨C .

B, ¬C ⊢ B∨C

B, C ⊢ B∨C

By axiom L6: B → B∨C we obtain B ⊢ B∨C . This covers both cases.

Q.E.D.

As  the  next  step,  we  will  generalize  Lemma  4.2.5  by  showing  how  to 
"compute" truth-values of arbitrary formula F, which is built of formulas B1, 

B2, ..., Bn by using more than one propositional connective. For example, let 

us take the formula B∨C → B∧C :

B C B∨C  B∧C B∨C → B∧C  

0 0 0 0 1

0 1 1 0 0

1 0 1 0 0

1 1 1 1 1

We will show that, in the constructive logic [L1-L10, MP]:

¬B, ¬C ⊢ B∨C → B∧C ,
¬B, C ⊢ ¬(B∨C → B∧C) ,

B, ¬C ⊢ ¬(B∨C → B∧C) ,

¬B, ¬C ⊢ B∨C → B∧C .

Lemma 4.2.6. Assume, the formula F has been built of formulas B1, B2, ..., Bn 
by using  propositional  connectives  only.  Assume  that,  if  the  formulas  B1, 

B2,  ...,  Bn  take  the  truth-values  v1,  v2,  ...,  vn respectively,  then,  for  these 
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values, formula F takes the truth-value w. Then, in the constructive logic, we 
can "compute" the truth-value of F in the following sense:

[L1-L10, MP]: v1B1, v2B2, ..., vnBn  wF,⊢

where: wF denotes F, if w is true, and ¬F, if w is false, and viBi denotes Bi, if 

vi is true, and ¬Bi, if vi is false.

Proof. By induction.

Induction base. F is one of the formulas Bi. Then w=vi, and, of course, in any 

logic, viBi  wF.⊢

Induction step. 

Note that Lemma 4.2.5 represents the assertion of Lemma 4.2.6 for formulas 
built of B1, B2, ..., Bn by using a single propositional connective.

1. F is ¬G. By the induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn  w'G, ⊢

where w' represents the truth-value of G. By Lemma 4.2.5,

[L1-L10, MP]: w'G  wF, hence, [L⊢ 1-L10, MP]: v1B1, v2B2, ..., vnBn  wF.⊢

2.  F is G o H,  where o is  implication,  conjunction,  or disjunction.  By the 
induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn  w'G,⊢

where w' represents the truth-value of G, and 

[L1-L10, MP]: v1B1, v2B2, ..., vnBn  w''H,⊢

where w'' represents the truth-value of H. By Lemma 4.2.5,

[L1-L10, MP]: w'G, w''H  wF,⊢

 hence, [L1-L10, MP]: v1B1, v2B2, ..., vnBn  wF.⊢

Q.E.D.

Proof of Theorem 4.2.4(a). By Lemma 4.2.6:

[L1-L10, MP]: B1, v2B2, ..., vnBn  F,⊢
[L1-L10, MP]: ¬B1, v2B2, ..., vnBn  F,⊢

because F takes only true values. By [L1, L2, MP] Deduction Theorem 1, 

[L1-L10, MP]: v2B2, ..., vnBn  B⊢ 1→F,
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[L1-L10, MP]: v2B2, ..., vnBn  ¬B⊢ 1→F,

Let us merge these two proofs and append an instance of the axiom L8:

⊢ (B1 → F )→((¬ B1 → F )→(B1∨¬ B1 → F )) .

Hence, by MP:

[L1-L10, MP]: v2B2, ..., vnBn ⊢ B1∨¬ B1→ F ,

and 

[L1-L10, MP]: B1v¬B1, v2B2, ..., vnBn  F.⊢

By repeating this operation we obtain Theorem 4.2.4(a):

[L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn  F.⊢

Q.E.D.

Computational Complexity of the Problem 

From now on, we could forget our ability of proving formulas in the classical 
propositional  logic,  learned  in  Section  2.  Indeed,  in  order  to  verify,  is  a 
formula provable in [L1-L11,  MP],  or not,  we can simply check, under the 

classical  truth  tables,  takes  this  formula  only  true  values,  or  not.  Is  this 
checking really simpler than proving of formulas in [L1-L11, MP]?

If  the  formula  contains  n different  atoms  A,  B,  C,  ...,  then  its  truth  table 
contains 2n rows that must be checked one by one. Of course, if the formula 
contains 2 atoms (like as (A → B)→¬ A∨B , or 3 atoms (like as the Axiom 
L2), then its truth table consists of 4 or 8 rows − for most people this is a 

feasible task. But the "truth table" for a formula containing 32 atoms contains 
four  billions  of  rows  to  check...  So,  let  us  try  inventing  a  more  efficient 
algorithm?

It seems, we will never succeed − the problem of determining the  classical 
provability of propositional formulas belongs to the so-called complexity class 
“co-NP-complete”, see  Boolean satisfiability problem in Wikipedia.  And the 
problem of determining the constructive provability of propositional formulas 
is even harder – it belongs to the complexity class “PSPACE-complete”, see:

Richard Statman. Intuitionistic propositional logic is polynomial-space complete, Theoretical 
Computer Science 9 (1979), pp. 67–72 (online copy available).

http://deepblue.lib.umich.edu/bitstream/2027.42/23534/1/0000493.pdf
http://www.math.cmu.edu/math/faculty/statman.html
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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4.3. Classical Predicate Logic − Gödel's Completeness Theorem

Kurt  Gödel (1906-1978)  "He  is  best  known  for  his  proof  of  Gödel's 
Incompleteness Theorems. In 1931 he published these results in Über formal 
unentscheidbare  Sätze  der  Principia  Mathematica  und  verwandter  
Systeme  .  ...Gödel's  results  were  a  landmark  in  20th-century  mathematics, 
showing that mathematics is not a finished object, as had been believed. It also 
implies that a computer can never be programmed to answer all mathematical 
questions." (According to MacTutor History of Mathematics archive).

As David Hilbert and Wilhelm Ackermann published in 

D.Hilbert,  W.Ackermann.  Grundzuege  der  theoretischen  Logik.  Berlin 
(Springer), 1928

their, in a sense, "final" version of the axioms of classical logic, they observed: 
"Whether the system of axioms is complete at least in the sense that all the 
logical formulas which are correct for each domain of individuals can actually 
be derived from them, is still an unsolved question."

(quoted after
S. C. Kleene. The Work of Kurt Gödel. "The Journal of Symbolic Logic", December 1976, 
Vol.41, N4, pp.761-778
See also:
Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

Indeed, as we will verify below, a) all axioms of the classical logic (L1-L11, 

L12-L15) are logically valid, b) the inference rules MP, Gen allow to prove 

(from logically valid formulas) only logically valid formulas. Hence, in this 
way only logically valid formulas can be proved. Still, is our list of logical 
axioms  complete  in  the  sense  that  all  logically  valid  formulas  can  be 
proved? − the question asked by Hilbert and Ackermann in 1928. The answer 
is  "yes"  −  as  Kurt  Gödel  established  in  1929,  in  his  doctoral  dissertation 
"Ueber  die  Vollständigkeit  des  Logikkalkuels"(visit  Gödel's  Archive in  the 
Princeton   University Library  ). The corresponding paper appeared in 1930:

K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalkuels. 
"Monatshefte fuer Mathematik und Physik", 1930, Vol.37, pp.349-360.

Gödel's  Completeness  Theorem. In  any predicate  language,  a  formula  is 
logically valid, if and only if it can be proved by using the classical logic [L1-

L11, L12-L15, MP, Gen].

In fact, a more general theorem can be proved:

Theorem 4.3.0 (Thanks to Sune Foldager for the idea.). If T is a first order 
theory with classical logic, then some formula F is always true in all models of 

http://libweb.princeton.edu/
http://libweb.princeton.edu/
http://libweb.princeton.edu/libraries/firestone/rbsc/aids/godel/godel3.html
http://www.math.uwaterloo.ca/~snburris/
http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Ackermann.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Godel.html
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T, if and only if T proves F.

Gödel's  Completeness  Theorem follows  from Theorem 4.3.0,  if  the  set  of 
specific axioms of T is empty.

First, let us prove the easy part (sometimes called the soundness theorem) − 
that all the formulas that can be proved by using the classical logic [L1-L11, 

L12-L15, MP, Gen] are logically valid.

Lemma 4.3.1.  All  the  axioms  of  the  classical  logic  (L1-L11,  L12-L15)  are 

logically valid.

Proof. 

1) Under the classical truth tables, the propositional axioms L1-L11 take only 

true  values  (Lemma  4.2.1).  Hence,  these  axioms  are  true  under  all 
interpretations.

2a)  L12: xF(x)→F(t), where F is any formula, and t is a term such that the∀  

substitution F(x/t) is admissible.

Let us assume that, under some interpretation J, for some values of its free 
variables, L12 is false. According to the classical truth tables, this could be 

only,  if  and  only  if  xF(x)  were  true,  and  F(t)  were  false  (under  the∀  
interpretation J, for the same above-mentioned values of free variables). Let us 
"compute" the value of the term t for these values of free variables (since the 
substitution  F(x/t)  is  admissible,  t  may  contain  only  these  variables),  and 
denote it by c. Thus, F(c) is false. But xF(x) is true, hence, F(a) is true for all∀

a∈D J ,  i.e. F(c) also is true. Contradiction. Hence, L12 is true under all 

interpretations for all combinations of its free variables.

2b)  L13: F(t)→ xF(x), where F is any formula, and t is a term such that the∃  

substitution F(x/t) is admissible.

Similarly, see Exercise 4.3.1.

2c)  L14:  x(G→F(x))→(G→ xF(x)),  where  F  is  any formula,  and G is  a∀ ∀  

formula that does not contain x as a free variable.

Let us assume that, under some interpretation J, for some values of its free 
variables, L14 is false. According to the classical truth tables, this could be 

only, if and only if x(G→F(x)) were true, and G→ xF(x) were false (under∀ ∀  
the interpretation J, for the same above-mentioned values of free variables)

If x(G→F(x)) is true, then G→F(c) is true for all∀ c∈D J . Since G does not 
contain x, this means that if G is true, then F(c) is true for all c∈DJ .
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From the orher side, if G→ xF(x) is false, then G is true, and xF(x) is false.∀ ∀  
And finally, if xF(x) is false, then F(c) is false for some∀ c∈DJ . But, as we 
established above, if G is true, then F(c) is true for all c∈DJ . Contradiction. 
Hence,  under all  interpretations, L14 is true for all combinations of its free 

variables.

2d)  L15:  x(F(x)→G)→( xF(x)→G),  where  F is  any formula,  and  G is  a∀ ∃  

formula that does not contain x as a free variable.

Similarly, see Exercise 4.3.1.

Q.E.D.

Exercise 4.3.1. Verify that the axioms L13 and L15 are logically valid.

Lemma 4.3.2. From logically valid  formulas,  inference rules  MP and Gen 
allow deriving only of logically valid formulas..

Proof.

1. Modus Ponens. Assume, B and B→C are logically valid formulas. By MP, 
we derive C. Assume, C is not logically valid, i.e., under some interpretation J, 
for some values of its free variables, C is false. Under this interpretation J, for 
these values of free variables of C, the formulas B and B→C are true. Then, 
according to  the  classical  truth  tables,  C also  must  be  true.  Contradiction. 
Hence, C is logically valid.

2.  Generalization.  Assume,  F(x)  is  logically valid,  but  xF(x) is  not,  i.e.,∀  
under some interpretation J, for some values of its free variables, xF(x) is∀  
false. Hence, under this interpretation J, for these values of free variables of 

xF(x), there is∀ c∈DJ such that F(c) is false. But F(x) is logically valid, i.e. 
F(c) is true. Contradiction. Hence, xF(x) is logically valid.∀
Q.E.D.

Corollary 4.3.3 (soundness of the classical predicate logic). All the formulas 
that can be proved by using the classical logic [L1-L11, L12-L15, MP, Gen], are 

logically valid.

Proof. Immediately, by Lemmas 4.3.1 and 4.3.2.

Exercise 4.3.1X. Verify that if, under an interpretation J, all specific axioms of 
a theory T are true, then all  theorems of T also are true under J. (Hint: each 
theorem C is proved by using some finite set of specific axioms, let us denote 
by B the conjunction of these axioms, consider the formula B→C, and use 
Corollary 4.3.3.)

Of  course,  the  above  soundness  theorem  is  the  easy  half  of  Gödel's 
Completeness Theorem. To complete the proof, we must prove the converse: if 
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some formula is logically valid, then it can be proved by using the classical 
logic [L1-L11, L12-L15, MP, Gen].

Model Existence Theorem

Gödel's initial proof was simplified in 1947, when Leon   Henkin   presented in 
his Ph.D. thesis a new proof of the so-called Model Existence Theorem (see 
below). The result was published in 1949:

L. Henkin. The completeness  of  the  first-order  functional  calculus.  "J.  Symbolic  Logic", 
1949, vol.14, pp.159-166.

See also Henkin's later account of his discovery:

L. Henkin.  The discovery of my completeness proofs.  "The Bulletin of Symbolic Logic", 
1996, vol.2, N2, pp.127-158.

An even simpler version Henkin's proof was found independently and almost 
simultaneously  by  Gisbert  Hasenjäger,  however,  when  publishing,  he 
acknowledged Henkin's priority:

G.  Hasenjäger.  Eine  Bemerkung  zu  Henkin's  Beweis  fuer  die  Vollständigkeit  des 
Prädikatenkalkuels der ersten Stufe. "J. Symbolic Logic", 1953, vol.18, pp.42-48.

If T is an inconsistent theory, then there are no models of T. Indeed, if T proves 
a contradiction, i.e. a formula of the kind B∧¬B , then, in a model of T, the 
formula B must be true and false simultaneously. This is imposssible.

Hence, if there is a model of T, then T is consistent. 

The converse question: could it be possible that T is a consistent theory, but 
there are no models of T? The answer is given in the

Model  Existence  Theorem. If  a  first  order  classical  formal  theory  is 
consistent (in the sense that,  by using the classical logic,  it  does not prove 
contradictions), then there is a finite or countable model of this theory (i.e. an 
interpretation with a finite or countable domain, under which all axioms and 
theorems of the theory are always true).

In the 1920s, some people insisted that mere consistency of a theory (in the 
syntactic sense of the word − as the lack of contradictions) is not sufficient to 
regard  it  as  a  meaningful  theory  −  as  a  "theory  of  something".  Model 
Existence Theorem says the contrary − (syntactic!) consistency of a theory is 
sufficient: if a theory does not contain contradictions, then it is a "theory 
of something" − it describes at least some kind of "mathematical reality". For 
example, you may think that Euclidean geometry is "meaningless" − because it 
does not describe 100% correctly the spacial properties of the Universe. But 
it's your problem, not  Euclid's − use another theory, if necessary. Euclidean 
geometry  describes  its  own  kind  of  "mathematical  reality"  –  and  100% 

http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Gisbert_Hasenjaeger
http://en.wikipedia.org/wiki/Leon_Henkin
http://math.berkeley.edu/people/faculty/leon-henkin
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correctly!

Let us assume the Model Existence Theorem (we will prove it later in this 
Section).

Proof of Theorem 4.3.0.

If T proves F, then F is always true in all models of T (Exercise 4.3.1X).

Now, let us assume that some formula F is always true in all models of theory 
T, yet it cannot be proved in T. Let us consider the theory T' in the language of 
T which contains (besides the axioms of T) an additional non-logical axiom − 
the negation of F, i.e. the formula ¬ x∀ 1... x∀ nF, where x1, .., xn are exactly all 

the free variables of F (if F contains free variables x1, .., xn, then, to negate its 

assertion,  we must  add to  F  the  quantifiers  x∀ 1... x∀ n).  Since  F  cannot  be 

derived from the axioms of T, T' is a consistent theory.

Indeed, if T' would be inconsistent, i.e. we could prove in T' some formula C 
and its negation ¬C, then we had proofs of [T]: ¬ x∀ 1... x∀ nF  C, and [T]:⊢  

¬ x∀ 1... x∀ nF   ¬C.  Since  ¬ x⊢ ∀ 1... x∀ nF  is  a  closed  formula,  by  Deduction 

Theorem 2, [T]:  ¬ x⊢ ∀ 1... x∀ nF →C, and [T]:  ¬ x⊢ ∀ 1... x∀ nF →¬C. Now, by 

axiom L9:  (B→C)→(B→¬C)→¬B, we obtain that [T]:  ¬¬ x⊢ ∀ 1... x∀ nF. By 

the (classical) Double Negation Law, this implies [T]:  x⊢∀ 1... x∀ nF, and by 

axiom L12: xB(x)→B(x) − [T]:  F. But, by our assumption, F cannot be∀ ⊢  

proved in T. Hence, T' is a consistent theory.

Now,  by  the  Model  Existence  Theorem,  there  is  a  model  of  T',  i.e.  an 
interpretation J that makes all its axioms always true. Under this interpretation, 
all  axioms  of  T are  always  true,  i.e.  J  is  a  model  of  T.  And the  formula 
¬ x∀ 1... x∀ nF (as an axiom of T') also is true under J. On the other hand, since F 

is always true in all models of T, it is always true also under the interpretation 
J. Hence, formulas x∀ 1... x∀ nF and ¬ x∀ 1... x∀ nF both are always true under J. 

This is impossible, hence, F must be provable in T. Q.E.D.

1.  Such a  simple  proof  seems almost  impossible!  We are  proving that  the 
logical axioms and rules of inference are strong enough, but where come these 
axioms in? They come in − in the proof of the Model Existence Theorem. This 
theorem says  that if  some formal theory T does not have models,  then the 
logical  axioms  and  rules  of  inference  are  strong  enough  to  derive  a 
contradiction from the axioms of T.  But  the proof  of  the Model  Existence 
Theorem that we will consider below, is positive, not negative!

2. The above simple proof seems to be extremely non-constructive! "If F is 
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always true in all models of T, then it can be proved in T". How could we 
obtain this proof? Still, how do we know that F is true in all models of T? 
Only, if we had a constructive procedure that is verifying this, we could ask for 
an algorithm converting such procedures into proofs in T!

Proof of the Model Existence Theorem

Exercise  4.3.3  (optional,  for  smart  students).  Prove  the  Model  Existence 
Theorem  by  using  the  following  smart  ideas  due  to  L.  Henkin  and  G. 
Hasenjäger. Let T be a consistent theory. We must build a model of T. What 
kind of "bricks" should we use for this "building"? Idea #1: let us use object 
constants of the language! So, let us add to the language of T an infinite set of 
new object constants d1,  d2,  d3,  ...  (and adopt the corresponding additional 

instances of logical axioms). Prove that this extended theory T0 is consistent. 

The model we are building must contain all "objects" whose existence can be 
proved in  T0.  Idea #2: for  each  formula  F  of  T0 having exactly one  free 

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃ i), 

where the  constant  di is  unique  for  each F.  If  T0 proves  xF(x),  then  this∃  

constant di will represent in our model the "object" x having the property F. 

Prove  that  this  extended theory T1 is  consistent.  Idea  #3:  prove  the  (non-

constructive) Lindenbaum's lemma: the axiom set of any consistent theory can 
be extended in such a way, that the extended theory is consistent and complete 
(the axiom set of the extended theory may be not  algorithmically solvable). 
After this, extend T1 to a consistent complete theory T2. Idea #4: let us take as 

the domain of the interpretation M the set of all those terms of T0 that do not 

contain variables. And let us interpret each function constant f as the "syntactic 
constructor function" f', i.e. let us define the value f'(t1, ..., tn) simply as the 

character string "f(t1, ..., tn)". Finally, let us interpret each predicate constant p 

as the relation p' such that p'(t1, ..., tn) is true in M, if and only if T2 proves 

p'(t1, ..., tn). To complete the proof, prove that an arbitrary formula G is always 

true in M, if and only if T2 proves G. Hence, all theorems of the initial theory 

T are always true in M.

Adolf Lindenbaum (1904-1941), his wife Janina Hosiasson-Lindenbaum (1899-1942).

Lindenbaum's Lemma. Any consistent first order theory can be extended to a 
consistent  complete  theory.  More  precisely,  if  T is  a  consistent  first  order 
theory, then, in the language of T, there is a set A of closed formulas such that 
T+A is a consistent complete theory. (In general, T+A is not a formal theory in 
the sense of Section 1.1, see below.)

http://en.wikipedia.org/wiki/Janina_Hosiasson-Lindenbaum
http://en.wikipedia.org/wiki/Adolf_Lindenbaum
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Note. By T+A we denote the first order theory in the language of T, obtained 
from T by adding the formulas of the set A as non-logical axioms.

Exercise 4.3.4. Verify that, in any predicate language L, only countably many 
formulas  can  be  generated.  I.e.  produce  an  algorithm  for  printing  out  a 
sequence F0, F1, F2, ... containing all the formulas of L.

Proof of Lindenbaum's Lemma (Attention: non-constructive reasoning!)

Let us use the algorithm of the Exercise 4.3.4 printing out the sequence F0, F1, 

F2,  ...  of  all  formulas  in  the  language  of  T,  and  let  us  run  through  this 

sequence, processing only those formulas Fi that are closed.

At the very beginning, the set of new axioms A0 is empty.

At the step i, we already have some set Ai-1 of new axioms. If the formula Fi is 

not closed, let us ignore it, and set Ai=Ai-1. Now, let us suppose that Fi is a 

closed formula. If T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, then we can ignore 

this formula, and set Ai=Ai-1. If T+A does not prove neither Fi, nor ¬Fi, then 

let us simply add Fi (or ¬Fi, if you like it better) to our set of new axioms, i.e. 

set Ai=Ai−1∪{Fi} . 

Etc.,  ad infinitum.  As the  result  of  this  process  we obtain  a  set  of  closed 
formulas A=A0∪A1∪A2∪...∪Ai∪ ... . 

Let us prove that T+A is a consistent complete theory.

Consistency. If T+A would be inconsistent, we would have a proof of [T+A] ⊢
C∧¬C for some formula C. If,  in this  proof, no axioms from the set A 

would be used, we would have a proof of [T] ⊢ C∧¬C , i.e. T would be 
inconsistent. 

Otherwise, the proof of [T+A] ⊢ C∧¬C could contain a finite number of 
axioms B1, ..., Bk from the set A. Let us arrange these axioms in the sequence, 

as we added them to the set A. Thus we have a proof of [T]: B1, ..., Bk ⊢
C∧¬C . Let us remind Theorem 2.4.1(a):

If A1, A2, ..., An, B ⊢ C∧¬C , then A1, A2, ..., An  ¬B. ⊢

Hence, we have a proof of [T]: B1, ..., Bk-1  ¬B⊢ k. But this is impossible − we 

added Bk to the set A just because T+Ai-1 could not prove neither Bk, nor ¬Bk. 

Q.E.D.

Completeness. We must verify that, for any closed formula F in the language 
of T, either T+A  F, or T+A  ¬F. Let us assume, this is not the case for some⊢ ⊢  
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closed formula F. Of course, F appears in the above sequence F0, F1, F2, ... as 

some Fi. If neither T+A  F, nor T+A  ¬F, then neither T+A⊢ ⊢ i-1  F⊢ i, nor T+Ai-

1  ¬F⊢ i. In such a situation we would add F to the set A, hence, we would have 

T+A  F. Q.E.D.⊢
This completes the proof of Lindenbaum's Lemma.

Attention: non-constructive reasoning!  T+A is a somewhat strange theory, 
because, in general, we do not have an algorithmical decision procedure for its 
axiom set. Indeed, to decide, is some closed formula F an axiom of T+A, or 
not, we must identify F in the sequence F0, F1, F2, ... as some Fi, and after this, 

we must verify, whether T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, or none of 

these. Thus, in general, T+A is not a formal theory in the sense of ion 1.1.

Proof  of  the  Model  Existence  Theorem (Attention:  non-constructive 
reasoning!)

Inspired by the beautiful exposition in Mendelson [1997].

Step 1. We must build a model of T. What kind of "bricks" should we use for 
this "building"? Idea #1: let us use object constants of the language! So, in 
order to prepare enough "bricks", let us add to the language of T a countable 
set of new object constants d1, d2, d3, ... (and extend the definitions of terms, 

atomic formulas and formulas accordingly, and add new instances of logical 
axioms accordingly). Let us prove that, if T is consistent, then this extended 
theory T0 also is consistent. 

If T0 would be inconsistent, then, for some formula C, we could obtain a proof 

of [T0]: ⊢ C∧¬C . If, in this proof, object constants from the set {d1, d2, d3, 

...} would not appear at all, then, in fact, we had a proof of [T]: ⊢ C∧¬C , 
i.e. we could conclude that T is inconsistent. But, if the new object constants 
do  appear  in  the  proof  of  [T0]:  ⊢ C∧¬C ?  Then,  let  us  replace  these 

constants  by  any  variables  of  T  that  do  not  appear  in  this  proof  (this  is 
possible,  since  each  predicate  language  contains  a  countable  set  of  object 
variables). After these substitutions, the proof becomes a valid proofs of T, 
because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the object constants d1,  d2, 

d3, ..., i.e. they do not change.

c) Applications of inference rules MP and Gen remain valid.

Hence, [T]: ⊢ C ' ∧¬C ' , where the formula C' has been obtained from C by 

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml.htm#Mendelson1997
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml1.htm#s11
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the above substitutions. I.e., if T0 would be inconsistent, then T also would be 

inconsistent.

Step 2. The model we are building must contain all "objects" whose existence 
can be proved in T0. Idea #2: for each formula F of T0 having exactly one free 

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃ i), 

where the constant di is unique for each F. If T0 proves xF(x), then this d∃ i will 

represent in our model the "object" x having the property F. Let us prove that, 
if T is consistent, then this extended theory T1 also is consistent. Note that in 

T1 the same language is used as in T0.

To  implement  the  Idea  #2  correctly,  first  let  us  use  the  algorithm of  the 
Exercise 4.3.4 printing out the sequence F0, F1, F2, ... of all formulas in the 

language of T0, and let us run through this sequence, processing only those 

formulas Fi that have exactly one free variable. Let us assign to each such 

formula Fi a unique constant dc(i) in such a way that dc(i)  does not appear 

neither  in  the  non-logical  axioms  of  T,  nor  in  Fi,  nor  in  the  axioms 

yF∃ j(y)→Fj(dc(j))  for  all  formulas  Fj preceding  Fi in  the  sequence  F0,  F1, 

F2, .... And, if x is the (only) free variable of Fi, let us adopt xF∃ i(x)→Fj(dc(i)) 

as an axiom of T1.

Now, let us assume that the extended theory T1 is inconsistent, i.e. that, for 

some formula C of T0, we have a proof of [T1]: ⊢ C∧¬C . In these proofs, 

only a finite number n of axioms xF(x)→F(d∃ c(F)) could be used. If n=0, then 

we have [T0]: ⊢ C∧¬C , i.e. then T0 is inconsistent.

If n>0, then let us mark the axiom xF(x)→F(d∃ c(F)) with F having the largest 

index in the sequence F0, F1, F2, .... And, in the proof of [T1]: ⊢ C∧¬C , let 

us replace the constant c(F) by some variable y that does not appear in this 
proof (this is possible, since each predicate language contains a countable set 
of  variables).  After  this  substitution,  the proof remain a  valid  proof  of T1, 

because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the constant c(F), i.e. they do 
not change.

c)  The  axiom  xF(x)→F(d∃ c(F))  becomes  xF(x)→F(y).  Since  F  does  not∃  

contain the constant c(F), the premise xF(x) does not change.∃



147

d)  The  remaining  n-1  axioms  yF∃ j(y)→Fj(dc(j))  of  T1 do  not  contain  the 

constant c(F), i.e. they do not change.

e) Applications of inference rules MP and Gen remain valid.

Thus we have now another proof of a contradiction − [T1]: ⊢ C ' ∧¬C ' , 

where the formula C' has been obtained from C by substituting y for c(F). Let 
us remind Theorem 2.4.1(a):

If A1, A2, ..., An, B ⊢ C∧¬C , then A1, A2, ..., An  ¬B. ⊢

Let us take the formula xF(x)→F(y) for B, and C'- for C. Thus, there is a∃  
proof of ¬( xF(x)→F(y)), where only logical axioms, non-logical axioms of T,∃  
and the remaining n-1 axioms yF∃ j(y)→Fj(dc(j)) of T1 are used. Let us remind 

the  Exercise  2.6.3(b)  [L1-L11,  MP]:  ⊢ ¬(A → B)↔ A∧¬ B .  Thus, 

¬( xF(x)→F(y)) is equivalent to∃ ∃ xF ( x)∧¬ F ( y) , and, in fact, we have a 
proof of xF(x), and a proof of ¬F(y). By applying Gen to the second formula,∃  
we obtain a proof of y¬F(y), which is equivalent to ¬ yF(y) (indeed, let us∀ ∃  
remind Section 3.2, Table 3.2, Group IV, constructively,  x¬B↔¬ xB). By⊢∀ ∃  
Replacement Theorem 3, ¬ yF(y) is equivalent to ¬ xF(x). Thus, we have a∃ ∃  
proof of a contradiction ∃ xF ( x)∧¬∃ xF ( x) ,  where only logical axioms, 
non-logical axioms of T, and the remaining n-1 axioms yF∃ j(y)→Fj(dc(j)) of T1 
are used.

Let us repeat the above chain of reasoning another n-1 times to eliminate  all 
occurrences of the axioms xF(x)→F(d∃ c(F)) from our proof of a contradiction. 

In this way we obtain a proof of a contradiction in T0, which is impossible (see 

Step 1). Hence, T1 is a consistent theory.

Step 3. Idea #3: let us use the (non-constructive!) Lindenbaum's lemma, and 
extend  T1 to  a  consistent  complete  theory  T2.  Note  that  in  T2 the  same 

language is used as in T0.

Step 4. Let us define an interpretation M of the language of T0, in which all 

theorems of T2 will be always true. Since all theorems of the initial theory T 

are theorems of T2, this will complete our proof.

Idea #4: let us take as the domain DM of the interpretation M the (countable! − 

verify!) set of all constant terms of T0, i.e. terms that do not contain variables 

(this set of terms is not empty, it contains at least the countable set of object 
constants  added  in  Step  1).  And  let  us  define  interpretations  of  object 
constants, function constants and predicate constants as follows.
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a) The interpretation of each object constant c is the constant c itself.

b)  The  interpretation  of  a  function  constant  f  is  the  "syntactic  constructor 
function" f', i.e., if f is an n-ary function constant, and t1, ..., tn are constant 

terms,  then  the value f'(t1,  ...,  tn)  is  defined simply as  the  character  string 

"f(t1, ..., tn)" (quotation marks ignored).

c) The interpretation of a predicate constant p is the relation p' such, if p is an 
n-ary predicate constant, and t1, ..., tn are constant terms, then p'(t1, ..., tn) is 

defined as true in M, if and only if T2 proves p(t1, ..., tn) (note that T2 is a 

consistent complete theory, i.e. it proves either p(t1, ..., tn), or ¬p(t1, ..., tn), but 

not both!).

Step 5. To complete the proof, we must prove that, in the language of T0, an 

arbitrary formula G is always true in M, if and only if T2 proves G (let us 

denote this, as usual, by T2  G. This will be proved, if we will prove that, if⊢  

x1, ..., xm is the set of at least all free variables contained in the formula G, and 

t1, ..., tm are constant terms, then G(t1, ..., tm) is true in M, if and only if T2 ⊢ 

G(t1, ..., tm). The proof will be by induction.

Induction base: G is an atomic formula p(s1, ..., sn), where p is a predicate 

constant, and the terms s1, ..., sn contain some of the variables x1, ..., xm. In 

s1, ..., sn, let us substitute for x1, ..., xm the terms t1, ..., tm respectively. In this 

way we obtain constant terms s'1, ..., s'n. Thus G(t1, ..., tm) is simply p(s'1, ..., 

s'n). By definition (see Step 4), p(s'1, ..., s'n) is true, if and only if T2  p(s'⊢ 1, ..., 

s'n), i.e., if and only if T2  G(t⊢ 1, ..., tm). Q.E.D.

Induction step.

Note. Since, T2 is a complete consistent theory, for any closed formula F, T2 
proves either F, or ¬F (but not both). Hence, if we know that F is true in M, if 
and only if T2  F, then we can conclude that F is false in M, if and only if T⊢ 2 

 ¬F. Indeed, if F is false, then F is not true, i.e. T⊢ 2 does not prove F, i.e. T2 ⊢ 

¬F. And, if T2  ¬F, then T⊢ 2 does not prove F, i.e. F is not true, i.e. F is false. 

And conversely: if we know that F is false in M, if and only if T2  ¬F, then⊢  

we can conclude that F is true in M, if and only if T2  F. Indeed, if F is true,⊢  

then ¬F is not true, i.e. T2 does not prove ¬F, i.e. T2  F. And, if T⊢ 2  F, then⊢  

T2 does not prove ¬F, i.e. F is not false, i.e. F is true.
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Case 1: G is ¬H. Then, according to the classical truth tables, G(t1, ..., tm) is 

true  in  M,  if  and  only  if  H(t1,  ...,  tm)  is  false  in  M.  By  the  induction 

assumption, H(t1, ..., tm) is true in M, if and only if T2  H(t⊢ 1, ..., tm). Then, by 

the above note, since H(t1, ..., tm) is a closed formula, H(t1, ..., tm) is false in 

M, if and only if T2  ¬H(t⊢ 1, ..., tm), i.e., if and only if T2  G(t⊢ 1, ..., tm). 

Q.E.D.

Case 2: G is H→K. Then, according to the classical truth tables, G(t1, ..., tm) 

is false in M, if and only if H(t1, ..., tm) is true in M, and K(t1, ..., tm) is false in 

M. By the induction assumption, H(t1, ..., tm) is true in M, if and only if T2 ⊢ 

H(t1, ..., tm), and K(t1, ..., tm) is true in M, if and only if T2  K(t⊢ 1, ..., tm). By 

the above note, K(t1, ..., tm) is false in M, if and only if T2  ¬K(t⊢ 1, ..., tm). 

Hence,

G(t1, ..., tm) is false in M, if and only if

 T2  H(t⊢ 1, ..., tm), and T2  ¬K(t⊢ 1, ..., tm),

or,

G(t1, ..., tm) is true in M, if and only if

 not (T2  H(t⊢ 1, ..., tm), and T2  ¬K(t⊢ 1, ..., tm)).

Let  us  remind  Theorem  2.2.1  and  Exercise  2.6.3(a),  [L1-L11,  MP]:  ⊢
(A → B)↔¬( A∧¬ B) .  In  T2,  all  the  axioms  of  the  classical  logic  are 

adopted, hence (verify!),

G(t1, ..., tm) is true in M, if and only if T2  H(t⊢ 1, ..., tm)→K(t1, ..., tm),

or,

 G(t1, ..., tm) is true in M, if and only if T2  G(t⊢ 1, ..., tm). 

Q.E.D.

Case 3: G is H ∧K . Then, according to the classical truth tables, G(t1, ..., 

tm) is true in M, if and only if H(t1, ..., tm) is true in M, and K(t1, ..., tm) is true 

in M. By the induction assumption, H(t1, ..., tm) is true in M, if and only if T2 
 H(t⊢ 1, ..., tm), and K(t1, ..., tm) is true in M, if and only if T2  K(t⊢ 1, ..., tm). 

Let us remind Theorem 2.2.1. In T2, all the axioms of the classical logic are 

adopted, hence (verify!),



150

G(t1, ..., tm) is true in M, if and only if T2 ⊢ H (t 1 , ... , tm)∧K ( t1 ,... ,tm) ,

or,

G(t1, ..., tm) is true in M, if and only if T2  G(t⊢ 1, ..., tm). 

Q.E.D.

Case 4: G is H ∨K . Then, according to the classical truth tables, G(t1, ..., 

tm) is false in M, if and only if H(t1, ..., tm) is false in M, and K(t1, ..., tm) is 

false in M. By the induction assumption, and by the above note, H(t1, ..., tm) is 

false in M, if and only if T2  ¬H(t⊢ 1, ..., tm), and K(t1, ..., tm) is false in M, if 

and only if T2  ¬K(t⊢ 1, ..., tm). Let us remind Theorem 2.2.1 and Theorem 

2.4.10(b):  [L1-L10,  MP]  ⊢ ¬(A∨B)↔ ¬ A∧¬ B (the  so-called  Second  de 

Morgan Law). In T2, all the axioms of the classical logic are adopted, hence 

(verify!),

G(t1, ..., tm) is false in M, if and only if T2 ⊢ ¬(H (t1 ,... , tm)∨K (t 1, ... , tm)) ,

or, G(t1, ..., tm) is false in M, if and only if T2  ¬G(t⊢ 1, ..., tm). Thus, by the 

above note, G(t1, ..., tm) is true in M, if and only if T2  G(t⊢ 1, ..., tm). Q.E.D.

Case 5: G is xH. Then, by definition, G(t∃ 1, ..., tm) is true in M, if and only if 

H(x, t1, ..., tm) is "true for some x", i.e., if and only if H(t, t1, ..., tm) is true in 

M for some constant term t in M. By the induction assumption, H(t, t1, ..., tm) 

is true in M, if and only if T2  H(t, t⊢ 1, ..., tm). Let us remind our above Step 2. 

Since H(x, t1, ..., tm) is a formula containing exactly one free variable, in T2 
we have an axiom xH(x, t∃ 1, ..., tm)→H(cH, t1, ..., tm), where cH is an object 

constant. 

First, let us assume that G(t1, ..., tm) is true in M. Then H(t, t1, ..., tm) is true in 

M for some constant term t in M, hence, T2  H(t, t⊢ 1, ..., tm) for this particular 

t. Let us remind the axiom L13: F(t)→ xF(x). Since t is a constant term, this∃  

axiom  is  valid  for  t.  We  need  the  following  instance  of  L13:  H(t,  t1,  ..., 

tm)→ xH(x, t∃ 1, ..., tm). In T2, all the axioms of the classical logic are adopted, 

hence, T2  H(t, t⊢ 1, ..., tm)→ xH(x, t∃ 1, ..., tm), and, by MP, T2  xH(x, t⊢∃ 1, ..., 

tm), i.e. T2  G(t⊢ 1, ..., tm). Q.E.D.

Now, let us assume that T2  G(t⊢ 1, ..., tm), i.e. T2  xH(x, t⊢∃ 1, ..., tm). By the 

above-mentioned axiom, T2  xH(x, t⊢∃ 1, ..., tm)→H(cH, t1, ..., tm), where cH is 
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an object constant. Thus, by MP, T2  H(c⊢ H, t1, ..., tm). Since cH is a constant 

term, by the induction assumption, if T2  H(c⊢ H, t1, ..., tm), then H(cH, t1, ..., 

tm) is true in M. Hence, H(cH, t1, ..., tm) is true in M, i.e. H(x, t1, ..., tm) is true 

"for some x", i.e. xH(x, t∃ 1, ..., tm) is true in M, i.e. G(t1, ..., tm) is true in M. 

Q.E.D.

Case 6: G is xH. By definition, G(t∀ 1, ..., tm) is true in M, if and only if H(x, 

t1, ..., tm) is "true for all x", i.e., if and only if H(t, t1, ..., tm) is true in M for all 

constant terms t in M. By the induction assumption, H(t, t1, ..., tm) is true in M, 

if and only if T2  H(t, t⊢ 1, ..., tm).

Let us prove that

 G(t1, ..., tm) is false in M, if and only if T2  x¬H(x, t⊢∃ 1, ..., tm).

First, let us assume that G(t1, ..., tm) is false in M. Then H(t, t1, ..., tm) is false 

in M for some constant term t in M. By the induction assumption, and by the 
above note, T2  ¬H(t, t⊢ 1, ..., tm). As in the Case 5, let us remind the axiom 

L13: ¬H(t, t1, ..., tm)→ x¬H(x, t∃ 1, ..., tm). In T2, all the axioms of the classical 

logic are adopted, hence, by MP, T2  x¬H(x, t⊢∃ 1, ..., tm).

Now, let  us assume that T2  x¬H(x, t⊢∃ 1,  ...,  tm).  As in the Case 5, let  us 

remind the axiom x¬H(x, t∃ 1, ..., tm)→¬H(c¬H, t1,  ...,  tm),  where c¬H is an 

object constant. Hence, by MP, T2  ¬H(c⊢ ¬H, t1, ..., tm), i.e. T2 does not prove 

H(c¬H, t1, ..., tm). Then, by the induction assumption, H(c¬H, t1, ..., tm) is false 

in M, i.e. xH(x, t∀ 1, ..., tm) is false in M, i.e G(t1, ..., tm) is false in M.

Thus, we know that G(t1, ..., tm) is true in M, if and only if T2 does not prove 

x¬H(x, t∃ 1, ..., tm). Since T2 is a complete theory, G(t1, ..., tm) is true in M, if 

and only if T2  ¬ x¬H(x, t⊢ ∃ 1, ..., tm). Now, let us remind from Section 3.2, 

Table 3.2, Group I, [L1-L11, L12-L15, MP, Gen]:  ¬ x¬B↔ xB. In T⊢ ∃ ∀ 2, all the 

axioms of the classical logic are adopted, hence, T2  ¬ x¬H(x, t⊢ ∃ 1, ..., tm), if 

and only if T2  xH(x, t⊢∀ 1, ..., tm), i.e. G(t1, ..., tm) is true in M, if and only if 

T2  G(t⊢ 1, ..., tm). Q.E.D.

This completes the proof of the Model Existence Theorem. Q.E.D.

Attention: non-constructive reasoning! The above construction of the model 
M seems to be "almost constructive". The domain DM consists of all constant 

terms from the language of T0. The axiom set of T1 is algorithmically solvable 
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(verify!). The interpretations of function constants are computable functions 
(verify!). But the interpretations of predicate constants? We interpreted each 
predicate constant p as the relation p' such that p'(t1, ..., tn) is true, if and only 

if T2 proves p(t1, ..., tn). This relation would be, in general, not algorithmically 

solvable, even if the axiom set of T2 would be solvable! But, in general, the 

axiom set of theory T2 (obtained by means of Lindenbaum's Lemma) is not 

algorithmically solvable! Thus, our construction of the model M is essentially 
non-constructive.

Exercise 4.3.5  (optional, for smart students). Verify that the "degree of non-
constructiveness"  of  the  Model  Existence  Theorem  is Δ2

0 in  the  so-called 
arithmetical  hierarchy.  This  became  possible  due  to  the  improvements 
introduced by G. Hasenjäger. Hint: verify that all the functions necessary for 
the proof are "computable in the limit". A function f(x) is called computable in 
the limit, if and only if there is a computable function g(x,y) such that, for all 

x, f (x )=lim
y→∞

g (x , y ) ).

 

Consequences of Gödel's Completeness Theorem

Notion of Logical Consequence

As noted above (Exercise 4.1.6), some formula G is a "logical consequence" 
of the formulas A1, ..., An, if and only if the formula A1, ..., An→G is logically 

valid, hence, by Gödel's Completeness Theorem – if and only if,  G can be 
derived from A1, ..., An by using the axioms and rules of inference of the 

classical  logic.  This  completes  the formalization of  the somewhat  mystical 
notion of "logical consequence", and allows to consider reasoning as a process 
that could be performed by using computers (see below).

Consistency and Satisfiability

A set of formulas F1, ..., Fn is called inconsistent, if and only if a contradiction 

(i.e. a formula B∧¬ B ) can be derived from it.  For example, the set {B, 
B→C, C→¬B} is inconsistent (verify).

The Model Existence Theorem allows to connect the notions of consistency 
and satisfiability.

Exercise 4.3.6. Verify,  that a set of formulas in a predicate language: a) is 
consistent in the classical logic, if and only if it is satisfiable, b) is inconsistent 
in the classical logic, if and only if it is unsatisfiable. (Hint: use the result of 

http://en.wikipedia.org/wiki/Arithmetical_hierarchy
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Exercise 4.1.1).

Computational Complexity of the Problem

Corollary  4.3.4. In  any  predicate language  the  set  of  all  logically  valid 
formulas is algorithmically enumerable. I.e. given a language L, we can write 
an  algorithm that  (working  ad  infinitum)  prints  out  all  the  logically  valid 
formulas of L (and only these formulas).

Proof. Immediately from Exercise 1.1.4 and Gödel's Completeness Theorem.

This makes Gödel's Completeness Theorem very significant: it shows that the 
"doubly non-constructive" notion of logically valid formula is at  least 50% 
constructive – semi-constructive! Semi-feasible for computers! 

Still, unfortunately, this notion appears to be not 100% constructive. In 1936, 
Alonzo   Church   proved that at least some predicate languages do not allow an 
algorithm  determining,  is  a  given  formula  logically  valid  or  not  (i.e.  an 
algorithm solving the famous Entscheidungsproblem – the decision problem):

A. Church. A note on the Entscheidungsproblem. "Journal  of Symb. Logic",  1936, vol.1, 
pp.40-41

After this, Laszlo Kalmar in

L. Kalmar. Die Zurueckfuehrung des Entscheidungsproblems auf den Fall von Formeln mit 
einer einzigen, binären Funktionsvariablen. "Compositio Math.", 1936, Vol.4, pp.137-144

improved Church's result:

Church-Kalmar  Theorem.  If  a  predicate  language  contains  at  least  one 
predicate constant that is at least binary, then this language does not allow 
an algorithm determining, is a given formula of this language logically valid or 
not.

Thus, none of serious predicate languages allows such an algorithm (languages 
of PA and ZF included). For details, Mendelson [1997].

Sometimes,  this fact (the 50% constructiveness of the notion of the logical 
validity) is expressed a follows: the logical validity of predicate formulas is 
semi-decidable.

Corollary  4.3.5.  If  a  predicate  language  contains  at  least  one  predicate 
constant that is at least binary, then this language does not allow an algorithm 
determining, does some formula G of this language follow from some other 
formulas  A1,  ...,  An.  In  other  words  –  the  task  of  reasoning  in  such  a 

language is not algorithmically solvable.

Exercise 4.3.7. Verify, this.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml.htm#Mendelson1997
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Church.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Church.html
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/HOME/mlog/ml1.htm#e114
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Church-Kalmar Theorem and Knowledge Bases

If we will build our knowledge base by using some predicate language, then, 
in general, the situation will be as follows:

a) We will have some set of constants registered in the knowledge base: object 
constants:  c1,  c2,  ...,  ck,  function constants and  predicate  constants:  p1, 

p2, ..., pm (with argument numbers specified). 

[The Closed  World  Assumption:  in  the  world,  there  exist  only  objects 
denoted  by our  constants  c1,  c2,  ...,  ck.  In  fact,  this  assumption  should  be 

represented as an axiom x (x=c∀ 1 v x=c2 v ...  v x=ck).  The  Open World 

Assumption: in the world, there exist more objects than denoted by our object 
constants.]

b)  Facts, concepts and  rules (“laws”) are stored in the knowledge base as a 
set  of  formulas  F1,  F2,  ...,  Fn.  Facts  are  represented  as  atomic  formulas, 

without or with negation, that do not contain variables: pi(cj1, cj2, ..., cjs), or 

¬pi(cj1, cj2, ..., cjs). Facts build up a kind of “database tables”. Some of the 

rules may serve as integrity conditions. 

c) A query is simply another formula ?G. Answering of such a query means 
that the  query processor  of the knowledge base must determine, does G (or, 
maybe, ¬G) follow from the formulas F1, F2, ..., Fn, stored in the knowledge 

base. 

If G contains a free variable x, then the query ?G(x) means the following: 
return all the object constants ci, for which the formula G(ci) follows from F1, 

F2, ..., Fn.

Note. Two different strategies may be used when building a knowledge base. 
The so-called  Closed  World  Assumption is  typical  for  the  traditional 
databases: the predicate pi(cj1, cj2, ..., cjs) is regarded as true, if and only if the 

formula pi(cj1, cj2, ..., cjs) is stored in the knowledge base. If there is no such 

formula in the knowledge base, then pi(cj1, cj2, ..., cjs) is regarded as false. For 

example,  if  the knowledge base does not contain the formula  Father(John,  
Britney), then it is assumed that John is not father of Britney.

For knowledge bases more natural is the so-called Open World Assumption: 
if neither the formula pi(cj1, cj2, ..., cjs), nor the formula ¬pi(cj1, cj2, ..., cjs) is 

stored  in  the  knowledge  base,  then  the  truth-value  of  the  predicate  pi(cj1, 

cj2, ..., cjs) is regarded as unknown. However, a definite truth value of pi(cj1, 

cj2, ..., cjs) may follow from other formulas stored in the knowledge base. For 
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example,  if  the  knowledge  base  does  not  contain  neither  the  formula 
Father(John, Britney),  nor  ¬Father(John, Britney),  then it  is assumed that 
John  is not known to be (but may be) father of Britney, unless the answer 
follows from other formulas stored in the database.

Thus, to build the query processor of our knowledge base, we must use some 
algorithm allowing to determine (as fast as possible), given the formulas  F1, 

F2, ..., Fn, G, does G follow from F1, F2, ..., Fn, or not. Let's call this task the 

reasoning task.

According to Gödel's Completeness Theorem, G follows from F1, F2, ..., Fn, if 

and only if

 [L1-L15, MP, Gen]: F1, F2, ..., Fn  G,⊢

i.e. if G can be derived fromF1, F2, ..., Fn in the classical predicate logic. This 

makes the reasoning task at least semi-feasible for computers (in the sense of 
Corollary 4.3.4). However,

Corollary (of the Church-Kalmar theorem, Corollary 4.3.5). If, when building 
a  knowledge base,  we will  use  the full  power of  some predicate  language 
(containing at  least  one predicate  constant  that  is  at  least  binary),  then the 
reasoning  task  will  not  be  algorithmically  solvable,  and  –  for  such  a 
knowledge base – we will fail to build a universal query processor.

Thus, to build a really usable knowledge base, we must restrict somehow our 
predicate  language  to  make  the  reasoning  task  solvable.  For  a  successful 
attempt to do this see the so-called description logics.

Skolem's Paradox

Initially, the Model Existence Theorem was proved in a weaker form in 1915 
(by Leopold Löwenheim) and 1919 (by Thoralf Skolem): if a first order theory 
has a model, then it has a finite or countable model (the famous Löwenheim-
Skolem theorem). Proof (after 1949): if T has a model, then T is consistent, 
i.e. T has a finite or countable model.

L. Löwenheim. Ueber Möglichkeiten  im Relativkalkuel.  "Mathematische  Annalen",  1915, 
Vol.76, pp.447-470.

Th.  Skolem. Logisch-kombinatorische  Untersuchungen  über  die  Erfüllbarkeit  und 
Beweisbarkeit  mathematischen  Sätze  nebst  einem  Theoreme  über  dichte  Mengen. 
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

Löwenheim-Skolem theorem (and the Model Existence theorem) is steadily 
provoking  the  so-called  Skolem's  Paradox,  first  noted  by  Skolem  in  his 
address before the 5th Congress of Scandinavian Mathematicians (July 4-7, 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lowenheim.html
http://en.wikipedia.org/wiki/Description_logic
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1922):

Th.  Skolem. Einige  Bemerkungen  zur  axiomatischen  Begruendung  der  Mengenlehre. 
Matematikerkongressen  i  Helsingfors  den  4-7  Juli  1922,  Den  femte  skandinaviska  
matematikerkongressen, Redogörelse, Akademiska Bokhandeln, Helsinki, 1923, pp. 217-232. 

Skolem called the effect "relativity of set-theoretic notions". In all formal set 
theories (for example, in ZF) we can prove the existence of uncountable sets. 
Still,  according  to  the  Model  Existence  theorem,  if  our  formal  set  theory 
consistent, then there is a countable model where all its axioms and theorems 
are true. I.e. a theory proves the existence of uncountable sets, yet it  has a 
countable model! Is this possible? Does it mean that all formal set theories are 
inconsistent? Platonists put it as follows: any consistent axiomatic set theory 
has countable models, hence, no axiom system can represent our "intended" 
set theory (i.e. the Platonist "world of sets") adequately.

For a formalist, Skolem's Paradox is not a paradox at all. I would rather call it 
Skolem's  Effect  −  like  as  the  photo-effect,  it  is  simply  a  striking 
phenomenon. Indeed, let J be a countable model of our formal set theory. In 
this theory, we can prove that the set r of all real numbers is uncountable, i.e. 

¬ f (f is 1-1 function from r into w), ∃ (1)

where w is the set of all natural numbers. What is the meaning of this theorem 
in the countable model J? Interpretations of r and w are subsets of the domain 
DJ, i.e. they both are countable sets, i.e. 

f (f is 1-1 function from r∃ J into wJ). (2)

Interpretation of (1) in J is 

¬ f((∃ f ∈DJ ) and (f is 1-1 function from rJ into wJ)).

Hence, the mapping f of (2) does exist, yet it exists outside the model J! Do 
you think that f of (2) "must" be located in the model? Why? If you are living 
(as an "internal observer") within the model J, the set rJ seems uncountable to 

you (because you cannot find a 1-1 function from rJ into wJ in your world J). 

Still, for me (an "external observer") your uncountable rJ is countable − in my 

world I have a 1-1 function from rJ into wJ!

Hence, indeed, Skolem's Paradox represents simply a striking phenomenon. It 
is worth of knowing, yet there is no danger in it.

Added February 9, 2007.

The inter-relationship of the Completeness Theorem and Model Existence Theorem can be 
represented in the following very general way.
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Let us replace:

- Predicate language L − by any set S of "formulas".

- First order theory T − by any "formula" of S (assume, T contains only a finite number of  
axioms, and take the conjuction of them).

-  The notion of  interpretation − by any set  M and a "predicate" T(m, F)  (where m is  
member of M, and F − a formula of S). If you wish, you may read T(m, F) as "m makes F  
true", i.e. m is a "model" of F.

- The notion of provability in the classical logic − by a "predicate" P(F) (where F is a 
formula of S). If you wish, you may read P(F) as "F is provable in the classical logic".

Assume, for a a set of "formulas" S, we have any set M and any two "predicates" T(m, F)  
and P(F) (where m is a member of M, and F − a formula of S) such that only the following 
simple principles hold:

a) For all F, F∈S →¬¬ F ∈S  (i.e. S is closed under negation).

b) For all m∈M and F∈S , T(m, F) ↔¬T(m, ¬F). 

c) For all F∈S , ¬¬P(¬¬F) → P (F). 

"Completeness Theorem". For all F, m T(m, F) → P(F).∀
"Model Existence Theorem". For all F, ¬P(¬F) → m T(m, F).∃
Theorem. If a, b, c) hold, then the above "theorems" are equivalent.

Proof. 1) Assume m T(m, F) → P(F) for all F. Then ¬P(F) → ¬ m T(m, F), and by a)∀ ∀  
also, ¬P(¬F) → ¬ m T(m, ¬F) → m¬T(m, ¬F) → m T(m, F) by b). Q.E.D.∀ ∃ ∃
2) Assume ¬P(¬F) → m T(m, F) for all F.Then ¬ m T(m, F) → ¬¬P(¬F), and by a) also∃ ∃  
¬ m T(m, ¬F) → ¬¬P(¬¬F). By b), m T(m, F) → m ¬T(m, ¬F) → ¬ m T(m, ¬F) →∃ ∀ ∀ ∃  
¬¬P(¬¬F) → P(F) by c). Q.E.D.

4.4. Constructive Propositional Logic – Kripke Semantics

Saul Aaron Kripke (born 1940).

"American  logician  and philosopher  Saul  Kripke  is  one  of  today's  leading 
thinkers  on  thought  and  its  manifold  relations  to  the  world.  His  name  is 
attached to  objects  in several fields of logic from Kripke-Platek axioms in 
higher  recursion  theory  to  the  "Brouwer-Kripke  scheme"  in  intuitionistic 
mathematics. Kripke models for modal logic, a discovery he made in his teen-
age years, became part of the standard vocabulary of mathematical logicians 
after his first article appeared in 1963, when he was just 23 years old. Kripke 
models  and the  results  that  depend upon them are  cited  today not  only in 
philosophy and logic,  but  also in  linguistics  and computer  science..."  (The 

http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html
http://en.wikipedia.org/wiki/Saul_Kripke
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Gazette.  The  newspaper  of  the  John  Hopkins  University,  May  12,  1997, 
Vol.26, N 34)

S.  Kripke (1963).  Semantical  Considerations  on  Modal  Logic,  Acta 
Philosophica Fennica 16: 83-94. 

S.  Kripke (1963).  Semantical  analysis  of  modal  logic.  I.  Normal  modal 
propositional calculi. Z. Math. Logik Grundl. Math., 9:67-96, 1963.

S.  Kripke (1965).  Semantical  analysis  of  intuitionistic  logic.  In:  J.  N.  
Crossley, M. A. E.  Dummet (eds.),  Formal systems and recursive functions. 
Amsterdam, North Holland, 1965, pp.92-129.

As usual, let us assume, the formula F has been built of "atomic" formulas B1, 

B2,  ...,  Bn by  using  propositional  connectives  only.  Instead  of  simply 

computing  truth  values  of  F  from truth  values  of  B1,  B2,  ...,  Bn,  Kripke 

proposed to consider the behavior of F when the truth values of B1, B2, ..., Bn 
are changing gradually from false to true according to some "scenario".

Thus, Kripke proposed to replace the classical semantics (interpretation) of the 
propositional  connectives  (defined  by the  classical  truth  tables)  by a  more 
complicated "dynamic" semantics.

Instead of simply saying that ¬F is true, iff F is false, let us say that, at some 
point  in  a  scenario,  ¬F is  true,  if  and only if,  at  this  point,  F is  false and 
remains false, when truth values of B1, B2, ..., Bn are changing according to 

the scenario.

Let  o  stand  for  implication,  conjunction  or  disjunction.  Instead  of  simply 
saying that FoG is true, if and only if, FoG is true according to the classical 
truth tables, let us say that, at some point in a scenario, FoG is true, if and only 
if, at this point, it is true and remains true, when truth values of B1, B2, ..., Bn 
are changing according to the scenario.

Example  4.4.1. Let  us  consider  the  behavior  of  the  classical  axiom  L11: 

B∨¬ B in the scenario, where, at first, B is false, and at the next step it 
becomes true:

0 -------------- 1

At the starting point, B is false, ¬B also is false (here, for ¬B to be true, B 
must  remain  false  at  the next  step,  but  it  doesn't).  This  means that,  at  the 
starting point, B∨¬ B is false. At the next step: B is true, hence, ¬B is false, 
but, of course, B∨¬ B is true. Thus, in Kripke scenarios, B∨¬ B is  not 
always true. Surprisingly, some time later (Lemma 4.4.3), we will derive from 
this  simple fact  that  Bv¬B cannot  be proved in the constructive logic (we 

http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html
http://www.jhu.edu/~gazette/aprjun97/may1297/honors.html
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already know this from Section 2.8).

Example 4.4.2. Let us consider the behavior of the (only) classically provable 
half  of  the  First  de  Morgan  Law: ¬(A∧B)→ ¬ A∨¬ B in  the  scenario, 
where, at first A and B are both false, and at the next step, two branches appear 
in the scenario: in the first branch: A remains false, and B becomes true, in the 
second branch: A becomes true, and B remains false:

--01⊢
00- ---------⊢

--10⊢
At the starting point: A is false, ¬A – also is false (for ¬A to be true, A must 
remain false at the next step, but in the second branch it doesn't). Similarly, at 
the starting point: B is false, ¬B – also false (for ¬B to be true, B must remain 
false at the next step, but in the first branch it doesn't). This means that, at the 
starting  point, ¬(A∧B) is  true  (because A∧B is  false,  and  it  remains 
false  in  both  branches),  and ¬ A∨¬ B is  false,  hence, 

¬(A∧B)→ ¬ A∨¬ B is  false.  Thus,  in  Kripke  scenarios, 
¬(A∧B)→ ¬ A∨¬ B is  not always  true.  Surprisingly,  some  time  later 

(Lemma 4.4.3), we will derive from this simple fact that the this half of the 
First de Morgan Law cannot be proved in the constructive logic. We failed to 
do this in Section 2.8!

Exercise  4.4.1. Investigate,  in  appropriate  scenarios,  the  behavior  of  the 
following (only) classically provable formulas:

¬¬( A∨B)→ ¬¬ A∨¬ ¬ B ,
(A→B)→((¬A→B)→B),

(A → B)∨( B → A) ,

and verify that, in Kripke scenarios, these formulas are not always true. Some 
time  later  (Lemma  4.4.3),  we  will  derive  from this  simple  fact  that  these 
formulas cannot be proved in the constructive logic. We failed to do this in 
Section 2.8! (Hint: try the most simple scenarios first: 00--01, 00-10, 00-11, 
etc.)

More precisely, the definition of the  Kripke semantics for the propositional 
logic is as follows. Assume, the formula F has been built of "atomic" formulas 
B1, B2, ..., Bn by using propositional connectives only. Instead of considering 

truth values of F for all the possible tuples of truth values of B1, B2, ..., Bn, let 

us consider the behavior of F in all the possible Kripke scenarios, defined as 
follows.

Definition of Kripke scenarios. Each scenario s is a triple (b,  ≤, t) of the 
following objects. First, b is a finite set of objects called nodes (or, states).
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The second member ≤ is a partial ordering relationship between the nodes, i.e. 
for all x , y , z∈b : x≤y → (y≤z → x≤z) (transitivity).

The third member t of the tripple is a function (t means "true"). It associates 
with each node x a "growing" set t(x) of "atomic" formulas, i.e. a subset of 
{B1, B2, ..., Bn} in such a way that for all x , y∈b : x≤ y → t( x)⊆t( y ) .

Note. In some other textbooks, Kripke scenarios are called Kripke models, or 
Kripke structures.

Let us say that Bi is true at the node x, if and only if Bi is in the set t(x). We 

will denote this fact by x |= Bi ("at x, Bi is true", or "x forces Bi"). Since t is 

monotonic, if x |= Bi , then y |= Bi for all y after x, i.e. for all y∈b such that 

y≥x. I.e. if Bi is true at some node x, then Bi remains true at all nodes after x.

Let us define x |= F ("F is true at x", or "x forces F") for any formula F that has 
been  built  of  "atomic"  formulas  B1,  B2,  ...,  Bn by  using  propositional 

connectives only.

1.  Negation.  Suppose,  the  truth  value  of  x  |=  F  is  already defined  for  all
x∈b . Then x |= ¬F is defined to be true, if and only if, for all y≥ x∈b , y 

|= F is false (i.e. ¬(y |= F) is true according to the classical truth table of the 
negation connective). 

2. Implication, conjunction or disjunction. Suppose, the truth values of x |= F 
and x |= G are already defined for all x∈b . Then x |= FoG is defined to be 
true, if and only if, for all y≥ x∈b , (y |= F)o(y |= G) is true according to the 
classical truth table of the implication, conjunction or disjunction connective 
respectively.

Lemma 4.4.1. For any formula F, any Kripke scenario (b, ≤, t), and any node
x∈b : if x |= F, then y |= F for all y∈b such that y≥x. I.e. if, in a Kripke 

scenario, a formula becomes true at some node, then it remains true forever 
after this node.

Proof. By induction.

Induction base. See above: if x |= Bi , then y |= Bi for all y after x, i.e. for all

y∈b such that y≥x.

Induction step.

1. Negation. Assume, x |= ¬F, i.e., according to the classical truth table, not y |
= F for all y≥ x∈b . If y≥x, then is y |= ¬F true or false? By definition, y |= 
¬F would be true, if and only if not z |= F for all z ≥ y∈b . By transitivity of 
≤, if z≥y and y≥x, then z≥x. Thus, by our assumption, if z≥y, then not z |= F. 
Hence, y |= ¬F. Q.E.D.
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2. Implication, conjunction or disjunction. Assume, x |= FoG, i.e., according 
to  the  corresponding classical  truth  table,  (y |=  F)o(y |=  G) is  true  for  all

y≥ x∈b . If y≥x, then is y |= FoG true or false? By definition, y |= FoG 
would be true, if and only if (z |=F)o(z |= G) would be true for all z ≥ y∈b . 
By transitivity of ≤, if z≥y and y≥x, then z≥x. Thus, by our assumption, if z≥x,  
then (z |= F)o(z |= G) is true. Hence, y |= FoG. Q.E.D.

Exercise 4.4.2. Verify that if x is a maximal node in a scenario (b, ≤, t), then x 
|= F, if and only if F is true at x according to the classical truth tables.

Kripke  established  that  a  formula  is  provable  in  the  constructive 
propositional  logic,  if  and only  if  it  is  true  at  all  nodes  in  all  Kripke 
scenarios.

Theorem 4.4.2 (S. Kripke, completeness of the constructive propositional 
logic). A formula F is provable in the constructive propositional logic (i.e. [L1-

L10, MP]  F), if and only if F is true at all nodes in all Kripke scenarios. ⊢

As usual, the hard part of the proof is establishing that "true is provable", i.e. if 
F  is  true at  all  nodes in  all  Kripke scenarios,  then [L1-L10,  MP]  F (see⊢  

Corollary 4.4.7 below). The easy part of the proof is, as usual, the soundness 
lemma:

Lemma 4.4.3. If [L1-L10, MP]  F, then F is true at all nodes in all Kripke⊢  

scenarios.

This lemma will follow from

Lemma 4.4.4. If F is any of the constructive axioms L1-L10,  then, for any 

Kripke scenario (b, ≤, t), and any node x∈b : x |= F. I.e. the constructive 
axioms are true at all nodes in all Kripke scenarios.

and

Lemma 4.4.5. If, in a Kripke scenario (b, ≤, t), at the node x∈b : x |= F and 
x |= F→G, then x |= G. Hence, if F and F→G are true at all nodes in all Kripke 
scenarios, then so is G.

Proof of Lemma 4.4.3. Indeed, by Lemma 4.4.4, all the constructive axioms 
L1-L10 are true at all nodes in all scenarios, and, by Lemma 4.4.5, the Modus 

Ponens rule preserves the property of being "true at all nodes in all scenarios". 
Q.E.D.

Note.  Let  us  return  to  the  above  Example  4.4.2  and  Exercise  4.4.1.  We 
established that formulas

¬(A∧B)→ ¬ A∨¬ B ;
¬¬( A∨B)→ ¬¬ A∨¬ ¬ B ;
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(A→B)→((¬A→B)→B)

are  not  true  at  all  nodes  in  all  scenarios.  Hence,  by  Lemma  4.4.3,  these 
formulas cannot be proved in the constructive logic [L1-L10, MP]. We failed to 

prove this in Section 2.8!

Proof of Lemma 4.4.5. We know that x |= F→G means that (y |= F)→(y |= G) 
is true (according to the classical truth table) for all y≥ x∈b . By  Lemma 
4.4.1, we know that y |= F for all y≥ x∈b . Hence, if y |= G would be false, 
then (y |= F)→(y |= G) also would be false. Hence, x |= G. Q.E.D.

Proof of Lemma 4.4.4.

L1: B→(C→B)

x |= B→(C→B) is true, if and only if (y |= B)→(y |= C→B) is true for all y≥x. 

x |= B→(C→B) is false, if and only if (y |= B)→(y |= C→B) is false for some 
y≥x. 

How could (y |= B)→(y |= C→B) be false for some y≥x? According to the 
classical implication truth table, this could be only, if and only if y |= B is true, 
and y |= C→B is false.

y |= C→B is true, if and only if (z |= C)→(z |= B) is true for all z≥y.

y |= C→B is false, if and only if (z |= C)→(z |= B) is false for some z≥y.

How could (z |= C)→(z |= B) be false for some z≥y? According to the classical 
implication truth table, this could be, if and only if z |= C is true, and z |= B is 
false.

Summary:

x |= B→(C→B) is false
if and only if

y≥x (∃ y |= B is true and y |= C→B is false)
if and only if

z≥y (z |= C is true and ∃ z |= B is false)

Hence, if x |= B→(C→B) is false, then there are y and z such that: x≤y≤z, y |= 
B is true, z |= C is true, and z |= B is false. By Lemma 4.4.1, if y≤z and y |= B 
is true, then z |= B is true. Contradiction with "z |= B is false". Thus, x |= 
B→(C→B) is true.

L10: ¬B→(B→C)

x |= ¬B→(B→C) is false, if and only if (y |= ¬B)→(y |= B→C) is false for 
some y≥x, i.e. if and only if y |= ¬B is true, and y |= B→C is false.

y |= ¬B is true, if and only if z |=B is false for all z≥y.

file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml2.htm#s28
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y |= B→C is false, if and only if (z |= B)→(z |= C) is false for some z≥y, i.e. if  
and only if z |= B is true, and z |= C is false.

Summary:

x |= ¬B→(B→C) is false
if and only if

y≥x (y |= ¬B is true and y |= B→C is false)∃
if and only if if and only if

z≥y (∀ z |=B is false) z≥y (∃ z |= B is true and z |= C is false)

Hence, if x |= ¬B→(B→C) is false, then there is y≥x such that: a) z≥y (∀ z |=B 
is false), and b) z≥y (∃ z |= B is true). Contradiction. Thus, x |= ¬B→(B→C) is 
true. 

L3: B∧C → B

x |= B∧C → B is false
if and only if

y≥x (y |=∃ B∧C is true and y |= B is false)
if and only if

z≥y ∀ (z |=B is true and z |= C is true)

Hence, there is y such that x≤y and y |= B is false. From z≥y ∀ (z |=B is true) 
we obtain that y |= B is true. Contradiction. Thus, x |= B∧C → C is true. 

L4: B∧C →C

Similarly.

L5: B →(C → B∧C )

x |= B →(C → B∧C ) is false
if and only if

y≥x (∃ y |=B is true and y |= C → B∧C is false)
if and only if

z≥y ∃ (z |=C is true and z |= B∧C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= C is true, and z |=
B∧C is false. Then, by  Lemma 4.4.1, (u |= B is true)and(u |= C) for all 

u≥z. I.e. z |= B∧C is true. Contradiction. Thus, x |= B →(C → B∧C ) is 
true.

L6: B → B∨C

x |= B → B∨C is false
if and only if

y≥x (∃ y |=B is true and y |= B∨C is false)
if and only if



164

z≥y (∃ z |= B is false and z |= C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= B is false. By 
Lemma 4.4.1, this is a contradiction. Thus, x |= B → B∨C is true.

L7: C → B∨C

Similarly.

L8: (B → D)→((C → D)→( B∨C → D))

x |= (B → D)→ ((C → D)→(B∨C → D)) is false
if and only if

y≥x (∃ y |=B→D is true and y |= (C → D)→( B∨C → D) is false)
if and only if

z≥y (∃ z |= C→D is true and z |= B∨C → D is false)
if and only if

u≥z (u |=∃ B∨C is true and u |= D is false)

Hence, there are y, z, u such that x≤y≤z≤u, y |= B→D is true, z |= C→D is 
true, and u |= D is false. By Lemma 4.4.1, u |= B→D is true, and u |= C→D is 
true. Thus, if u |= B would be true, then u |= D also would be true. Hence, u |= 
B is false. Similarly, u |= C also is false. Hence, u |= B∨C is false. But we 
know that it is true. Contradiction. Thus, x |= L8 is true.

L2: (B→(C→D))→((B→C)→(B→D))

x |= (B→(C→D))→((B→C)→(B→D)) is false
if and only if

y≥x (y |= B→(C→D) is true and y |= (B→C)→(B→D) is false)∃
if and only if if and only if

z≥y ((z |= B)→(z |= C→D))∀
z≥y (z ∃ |= B→C is true and z |= B→D is false)

if and only if if and only if
u≥z ((u |= B)→(u |= C))∀ u≥z (u |= B is true and u |= D is false)∃

Hence, there are y, z, u such that x≤y≤z≤u, u |= B is true and u |= D is false. 
From u≥z ((u |= B)→(u |= C)) we obtain that u |=C also is true, and from∀  

z≥y ((z |= B)→(z |= C→D)) – that z |= C→D is true. Then, by ∀ Lemma 4.4.1, 
u |=  C→D also is  true,  i.e.  v≥u ((v |= C)→(v |=  D)),  in  particular,  (u |=∀  
C)→(u |= D). Hence, u|= D is true. Contradiction. Thus, x |= L2 is true.

L9: (B→C)→((B→¬C)→¬B)

x |= (B→C)→((B→¬C)→¬B) is false
if and only if

y≥x (y |= B→C is true and y |= (B→¬C)→¬B is false)∃
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if and only if if and only if
z≥y ((z |= B)→(z |= C))∀ z≥y (z |= B→¬C is true and z |= ¬B is false)∃

if and only if if and only if
u≥z ((u |= B)→(u |= ¬C))∀ u≥z (∃ u |= B is true)

Hence, there are y, z, u such that x≤y≤z≤u , and u |= B is true. From z≥y ((z |∀
= B)→(z |= C)) we obtain that u |= C is true. From u≥z ((u |= B)→(u |= ¬C))∀  
we obtain that u |= ¬C is true, i.e. v |= C is false for some v≥u. By Lemma 
4.4.1, if u |= C is true, then v |= C is true. Contradiction with "v |= C is false".  
Hence, x |= L9 is true.

Exercise 4.4.3. Verify that, in the above recursive definition of x |= F, the item

2. Implication, conjunction or disjunction: x |= FoG is defined to be true, if 
and only if, according to the classical truth tables, (y |= F)o(y |= G) is true for 
all y≥ x∈b .

could be replaced by 

2a. Implication ("non-monotonic" connective): x |= F→G is defined to be true, 
if and only if, according to the classical truth tables, (y |= F)→(y |= G) is true 
for all y≥ x∈b .

2b. Conjunction or disjunction ("monotonic" connectives): x |= FoG is defined 
to be true, if and only if, according to the classical truth tables, (x |= F)o(x |=  
G) is true.

End of Exercise 4.4.3.

The Hard Part of the Proof

Now, let us try proving that, if F is true at all nodes in all Kripke scenarios, 
then F is provable in the constructive propositional logic). We will follow the 
paper by

Judith  Underwood.  A constructive  Completeness  Proof  for  Intuitionistic 
Propositional  Calculus.  TR-90-1179,  December  1990,  Department  of  
Computer Science, Cornell University.

based on the contructions from

Melvin  Fitting.  Intuitionistic  Logic,  Model  Theory  and  Forcing.  North-
Holland, Amsterdam, 1969

The smart idea is to generalize the problem in the following way. Instead of 
considering  constructive  provability  of  single  formulas,  let  us  consider  the 
constructive provability of D1,  D2,  ...,  Dm ⊢ C1∨C2∨...∨Cn for arbitrary 

formulas D1, D2, ..., Dm, C1, C2, ..., Cn, i.e. let us consider ordered pairs of 

http://comet.lehman.cuny.edu/fitting
http://www.dcs.st-and.ac.uk/~ipg/
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sets ({D1, D2, ..., Dm}, {C1, C2, ..., Cn}). Let us call such pairs sequents. If S1, 

S2 are sets of formulas (S1 may be empty), let us call the sequent (S1, S2) 

constructively provable, if and only if [L1-L10, MP]: S1  VS⊢ 2, where VS2 
denotes the disjunction of formulas contained in S2. Moreover, let us consider 

sets of sequents. This will allow to carry out a specific induction argument 
(considering  single  formulas  or  single  sequents  does  not  allow  such  an 
argument!).

Let us say that a Kripke scenario (b, ≤, t) contains a counterexample for the 
sequent (S1, S2), if and only if the sequent is false at some node in the scenario 

(or,  more  precisely,  if  and only  if  there  is x∈b such  that  x  |=  F  for  all 
formulas F∈S1 and not x |= G for all formulas G∈S 2 ).

Additionally,  let  us  use  Corollary 6.1.2(b) of  Theorem 6.1.1 to  replace  all 
negations ¬F by F→f, where f is an atomic formula, which is "always false", 
i.e.  which,  in  a  sequent  (S1,  S2),  never  belongs  to  S1.  Thus,  formulas 

mentioned  in  the  proof  of  the  following  Theorem  4.4.6  do  not  contain 
negations (but they may contain the specific atomic formula f).

Theorem  4.4.6. For  any  set  S  of  sequents,  either  some  sequent  of  S  is 
constructively provable, or there is a Kripke scenario (b, ≤, t), which contains 
counterexamples for each sequent in S.

Proof.  Let us start  with a  proof overview.  We will  consider the following 
cases:

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬( A∈S1∧B∈S 1) . Let us 

consider the set S' obtained from S by adding the "missing" formulas A, B to 
S1,  i.e.  by replacing  (S1,  S2)  by ( S 1∪{A ,B} ,  S2).  Let  us  verify that  if 

Theorem is true for S', then it is true for S...

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us 

consider the following two sets: a) S' – obtained from S by adding the formula 
A to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{A} ). b) S'' – obtained from S 

by adding the formula B to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{B} ). 

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬( A∈S1∨B∈S 1) . Let us 

consider the following two sets: a) S' – obtained from S by adding the formula 
A to S1, i.e. by replacing (S1, S2) by ( S 1∪{A} , S2). b) S'' – obtained from S 

by adding the formula B to S1, i.e. by replacing (S1, S2) by ( S 1∪{B} , S2). 

Let us verify that if Theorem is true for S' and S'', then it is true for S...
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Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us 

consider the set S' obtained from S by adding the "missing" formulas A, B to 
S2,  i.e.  by  replacing  (S1,  S2)  by  (S1, S 2∪{A , B} ).  Let  us  verify  that  if 

Theorem is true for S', then it is true for S...

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us 

consider the following two sets: a) S' – obtained from S by adding the formula 
A to S2, i.e. by replacing (S1, S2) by (S1, S 2∪{A} ). b) S'' – obtained from S 

by adding the formula B to S1, i.e. by replacing (S1, S2) by ( S 1∪{B} , S2). 

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case  6. S  contains  (S1,  S2)  such  that A → B∈S 2 and  for  every  sequent 

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) .  Let  us  consider  the  set  S' 
obtained from S by adding the sequent ( S 1∪{A} , B) to it. Let us verify that 
if Theorem is true for S', then it is true for S...

Case 7. None of the above cases hold for S. Then, Theorem is true for S – easy 
to verify...

The first six cases represent the induction argument: proving of Theorem for a 
sequent set  S is reduced to proving it for some other sets – S' and S". By 
iterating  this  reduction,  we  always  arrive  happily  to  the  Case  7,  where 
Theorem is easy to verify.

Indeed,  let  us  denote by universe (S1, S2) the set  of  all  formulas  and sub-
formulas  (of  the  formulas)  contained  in S 1∪S2 .  Let  us  denote  by

universe (S ) the union of the universes of sequents from S.

Exercise 4.4.4. Verify that:

a)  When, in the Cases 1-5,  the sequent (S1,  S2) is  replaced by some other 

sequent (T1, T2), then

universe (T 1, T 2)⊆universe (S 1, S 2) .

b)  When,  in  the  Case  6,  because  of  the  sequent  (S1,  S2),  the  sequent 

(S1∪{A}, B)  is added to S, then

universe (S1∪{A}, B)⊆universe(S 1, S 2) .

c)  For  a  given universe (S ) ,  there  exist  no  more  than N=2∣universe(S )∣+ 1

different sequents (S1, S2) such that universe (S1 , S2)≤ universe (S ) . And, no 

more than 2N different sets of sequents. 

Thus, any chain of iterated Cases 1-6 cannot be longer than 2N+1 – either we 
will arrive at a set of sequents already built at a previous step, or we will arrive 
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at the Case 7.

Now – the proof as it should be.

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬( A∈S1∧B∈S 1) . Let us 

consider the set S' obtained from S by adding the "missing" formulas A, B to 
S1, i.e. by replacing (S1, S2) by (S1∪{A ,B }, S 2) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is 
(S1∪{A ,B }, S 2) or some other sequent. If it is some other sequent, then it 

belongs  to  S,  i.e.  some  sequent  of  S  is  constructively  provable.  If 
(S1∪{A ,B }, S 2) is constructively provable, then so is (S1, S2). Indeed, if 

S 1∪{A ,B}  VS⊢ 2 is constructively provable, how to prove S1  VS⊢ 2? Since 

S1 contains A∧B , by axioms L3 and L3 we can derive A and B. After this, 

we  can  apply  the  proof  of S 1∪{A , B}  VS⊢ 2.  Hence,  S1  VS⊢ 2 is 

constructively provable.

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S', then it contains also a counterexample 
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other 

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a 
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1, 

S2)? We know that it contains a counterexample for (S1∪{A ,B }, S 2) , i.e. 

for some x∈b , x |= F for all formulas F∈S1∪{A , B} and not x |= G for 
all formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1, 

S2). Q.E.D.

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us 

consider the following two sets:

a) S' – obtained from S by adding the formula A to S2, i.e. by replacing (S1, 

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S2, i.e. by replacing (S1, 

S2) by (S1 , S2∪{B}) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable. 
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
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The sequent of S'' is (S1 , S2∪{B}) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
So,  let  us  consider  the  situation,  when (S1 , S2∪{A}) and (S1 , S2∪{B})

both are constructively provable.

If S1 ⊢ A∨S 2  and S1 ⊢ B∨S 2 both are constructively provable, how to 

prove S1  VS⊢ 2 (we know that S2 contains A∧B )? 

By Theorem 2.3.1, conjunction is distributive to disjunction:

[L1-L8, MP]:  ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) .

 Hence, [L1-L8, MP]: (A∨S 2)∧(B∨S2)→ (A∧B)∨S 2 . So, let us merge the 

proofs of S1 ⊢ A∨S 2 and S1 ⊢ B∨S 2 ,  and let  us append the proof of 

Theorem 2.3.1. Thus, we have obtained a proof of S1 ⊢ (A∧B)∨S 2 .

From  Section  2.3 we know that  in  [L1-L8,  MP] disjunction  is  associative, 

commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8, MP] A↔B ⊢ A∨C ↔ B∨C . Since S2 contains A∧B , these facts 

allow, from a proof of S1 ⊢ (A∧B)∨S 2 , to derive a proof of S1  VS⊢ 2.

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S', then it contains also a counterexample 
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other 

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a 
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1, 

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e. for 

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2). 

Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for 
each sequent in S'', then it contains also a counterexample for each sequent in 
S. The argument is similar to the above.

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬( A∈S1∨B∈S 1) . Let us 

consider the following two sets: 

a) S' – obtained from S by adding the formula A to S1, i.e. by replacing (S1, 

S2) by (S1∪{A}, S 2) .

b) S'' – obtained from S by adding the formula B to S1, i.e. by replacing (S1, 

S2) by (S1∪{B}, S2) .
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Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable. 
The sequent of S' is (S1∪{A}, S 2) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
So,  let  us  consider  the  situation,  when (S1∪{A}, S 2) and (S1∪{B}, S2)

both are constructively provable.

Let us remind Exercise 2.3.2 [L1, L2, L8, MP]: if A1, A2, ..., An, B  D, and⊢  

A1, A2, ..., An, C  D, then A⊢ 1, A2, ..., An , B∨C  D. Thus, if⊢ S 1∪{A} ⊢ 

VS2 and S 1∪{B}  VS⊢ 2  both  are  constructively provable,  then  (since  S1 
contains A∨B ) so is S1U{B}  VS⊢ 2.

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S', then it contains also a counterexample 
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other 

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a 
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1, 

S2)? We know that it is contains counterexample for (S1∪{A}, S 2) , i.e. for 

some x∈b ,  x  |=  F for all  formulas F∈S1∪{A} and not  x  |=  G for all 
formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1, 

S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for 
each sequent in S'', then it is also contains counterexample for each sequents in 
S. The argument is similar to the above.

Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us 

consider the set S' obtained from S by adding the "missing" formulas A, B to 
S2, i.e. by replacing (S1, S2) by (S1 , S2∪{A , B}) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is
(S1 , S2∪{A , B}) or some other sequent. If it is some other sequent, then it 

belongs  to  S,  i.e.  some  sequent  of  S  is  constructively  provable.  If
(S1 , S2∪{A , B}) is constructively provable, then so is (S1, S2). Indeed, if 

S1⊢ (A∨B)∨S 2 is constructively provable, how to prove S1  VS⊢ 2 (where 

S2 contains A∨B )?

From  Section  2.3 we know that  in  [L1-L8,  MP] disjunction  is  associative, 
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commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8, MP] A↔B ⊢ A∨C ↔ B∨C . Since that S2 contains AvB, these facts 

allow, from a proof of S1 ⊢ (A∨B)∨S 2 , to derive a proof of S1  VS⊢ 2.

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S', then it contains also a counterexample 
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other 

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a 
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1, 

S2)? We know that it contains a counterexample for (S1 , S2∪{A , B}) , i.e. 

for  some x∈b ,  x  |=  F  for  all  formulas F∈S1 and  not  x  |=  G  for  all 
formulas G∈S 2∪{A , B} . Hence, (b, ≤, t) contains a counterexample also 
for (S1, S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for 
each sequent in S'', then it contains also a counterexample for each sequent in 
S. The argument is similar to the above.

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us 

consider the following two sets: 

a) S' – obtained from S by adding the formula A to S2, i.e. by replacing (S1, 

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S1, i.e. by replacing (S1, 

S2) by (S1∪{B}, S2) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable. 
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other 
sequent, then it belongs to S, i.e. some sequent of S is constructively provable. 
So,  let  us  consider  the  situation,  when (S1 , S2∪{A}) and (S1∪{B}, S2)

both are constructively provable. 

We have two proofs: S1 ⊢ A∨S 2 and S1, B  VS⊢ 2, and we know that S1 
contains A→B. How to derive a proof of S1  VS⊢ 2? 

Since S1 contains A→B, we have a proof of S1, A  B. Together with S⊢ 1, B ⊢ 

VS2 this yields a proof of S1, A  VS⊢ 2. Of course, VS2  VS⊢ 2. Now, let us 



172

remind Exercise 2.3.2 [L1, L2, L8, MP]:

If A1, A2, ..., An, B  D, and A⊢ 1, A2, ..., An, C  D, then A⊢ 1, A2, ..., An ,

B∨C  D.  Thus,  S⊢ 1, A∨S 2  VS⊢ 2.  Since  we  have  a  proof  of  S1 ⊢
A∨S 2 , we have also a proof of S1 ⊢ A∨S 2 .

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S', then it contains also a counterexample 
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other 

sequent. If it is some other sequent, then it belongs to S', i.e. (b, ≤, t) contains a 
counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1, 

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e. for 

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas 
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2). 

Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for 
each sequent in S'', then it contains also a counterexample for each sequent in 
S. The argument is similar to the above.

Case  6. S  contains  (S1,  S2)  such  that A → B∈S 2 and  for  every  sequent 

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) .  Let  us  consider  the  set  S' 
obtained from S by adding the sequent (S1U A , B) to it.

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is
(S1∪{A}, B) or  some other  sequent.  If  it  is  some other  sequent,  then  it 

belongs  to  S,  i.e.  some  sequent  of  S  is  constructively  provable.  If
(S1∪{A}, B) is constructively provable, then so is (S1, S2). Indeed, if S1, A 

 B is constructively provable, then, by Deduction Theorem 1, S⊢ 1  A→B, and⊢  

S1  VS⊢ 2 (since S2 contains A→B).

On the other side,  if  there is  a Kripke scenario (b,  ≤,  t),  which contains a 
counterexample for each sequent in S',  then,  since S is  a subset of S',  this 
scenario contains also a counterexample for each sequent in S. 

Case  7. None  of  the  above  cases  hold  for  S.  Hence,  for  every  sequent
(S1 , S2)∈S the following holds:

1) If A∧B∈S 1 , then A∈S 1∧B∈S1 ,

2) If A∧B∈S 2 , then A∈S 2∨B∈S 2 ,

3) If A∨B∈S 1 , then A∈S 1∨B∈S1 ,
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4) If A∨B∈S 2 , then A∈S 2∧B∈S 2 ,

5) If A → B∈S 1 , then A∈S 2∨B∈S1 ,

6) If A → B∈S 2 , then there is

(T1 ,T2)∈S such that S 1⊆T 1∧A∈T 2∧B∈T 2 .

For this kind of sequent sets we have a very simple situation:

a) If, in some sequent (S1 , S2)∈S the sets S1, S2 contain the same formula 

A, then from L6: A → A∨B we can derive easily that [L1-L8,  MP]: S1 ⊢ 

VS2.

b) If the sets S1, S2 are disjoint for all sequents (S1 , S2)∈S , then we must 

(and will) build a scenario, containing a counterexample for each sequent in S.

So, let us suppose that the sets S1, S2 are disjoint for all sequents (S1, S 2)∈S

, and let us define the following Kripke scenario (b, ≤, t):

b = S,

x≤y must  be defined for every two members  x,  y  of b,  i.e.  for every two 
sequents (S1, S2) and (T1, T2) in S. Let us define (S1, S2) ≤ (T1, T2), if and 

only if S 1⊆T 1 . Of course, '⊆' is a partial ordering of b.

t must be a monotonic mapping from members of b to sets of atomic formulas. 
Let us define t(S1, S2) as the set of all atomic formulas in S1. Of course, t is 

monotonic for '⊆' . (And, of course, f – our atomic "false", never belongs to 
t(S1, S2)).

Thus,  (b,  ≤,  t)  is  a  Kripke  scenario.  Let  us  prove  that  it  contains  a 
counterexample for each sequent in S. In fact,  we will  prove that for each 
sequent (S1 , S2)∈S , and each formula F:

If F∈S1 , then (S1, S2) |= F.

If F∈S2 , then not (S1, S2) |= F.

This will mean that, (S1, S2) represents a counterexample for (S1, S2).

Of course, our proof will be by induction along the structure of the formula F.

a) F is an atomic formula.

If F∈S1 ,  then F∈t (T 1, T 2) for  every (T 1 , T 2)∈S such  that  (S1, 

S2)≤(T1, T2). Hence, (S1, S2) |= F.
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If F∈S2 ,  then,  since  S1 and  S2 are  disjoint  sets, F∉S1 ,  and

F∉t (S1, S 2) , i.e. not (S1, S2) |= F.

b) F is A∧B .

If F∈S1 , then, by (1), A∈S 1∧B∈S1 . Hence, by induction assumption, 
(S1, S2) |= A and (S1, S2) |= B, i.e., by Exercise 4.4.3, (S1, S2) |= A∧B .

If F∈S2 ,  then,  by  (2), A∈S 2∨B∈S 2 .  If A∈S 2 ,  then,  by  induction 
assumption, not (S1, S2) |= A, i.e., by Exercise 4.4.3, not (S1, S2) |= A∧B . 

If B∈S 2 – the argument is similar.

c) F is A∨B . 

If F∈S1 ,  then,  by  (3), A∈S 1∨B∈S1 .  If A∈S 1 ,  then,  by  induction 
assumption,  (S1,  S2)  |=  A,  i.e.,  by  Exercise  4.4.3,  (S1,  S2)  |= A∨B .  If

B∈S 1 – the argument is similar.

If F∈S2 , then, by (4), A∈S 2∧B∈S 2 . By induction assumption, not (S1, 

S2) |= A and not (S1, S2) |= B, i.e., by Exercise 4.4.3, not (S1, S2) |= A∨B .

d) F is A→B. 

d1) F∈S1 . We must prove that (S1, S2) |= A→B, i.e. that (T1, T2) |= A→B 

for each (T 1 , T 2)∈S such that (S1, S2)≤(T1, T2). So, let us assume that not 

(T1,  T2)  |=  A→B, i.e.  that  (U1,  U2)  |=  A and not  (U1,  U2)  |=  B for some

(U 1,U 2)∈S such that (T1, T2)≤ (U1, U2).

Since A → B∈S 1 , then also A → B∈U 1 , and, by (5), A∈U 2∨B∈U 1 . 
By induction assumption, this means that not (U1, U2) |= A or (U1, U2) |= B. 

Contradiction, hence, (S1, S2) |= A→B.

d2) F∈S2 .  We  must  prove  that  not  (S1,  S2)  |=  A→B,  i.e.  that  there  is

(T 1, T 2)∈S such that (S1, S2)≤(T1, T2) and (T1, T2) |= A and not (T1, T2) |= 

B.

Since A → B∈S 2 , by (6), there is (T 1, T 2)∈S such that (S1, S2)≤(T1, T2) 

and A∈T 1 and B∈T 2 . By induction assumption, this means that

(T1, T2) |= A and not (T1, T2) |= B. Q.E.D.

This completes the proof of Theorem 4.4.6.

Note. The above proof contains an algorithm allowing to find, for each set S 
of sequents,  either  a constructive proof of some sequent of S,  or a Kripke 
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scenario containing counterexamples for each sequent of S.

Corollary 4.4.7. If a formula F is true at all nodes in all scenarios, then

[L1-L10, MP]  F (i.e. F is provable in the constructive propositional logic).⊢

Indeed, let us consider the set of sequents {(0, {F})} consisting of a single 
sequent (0, {F}), where 0 is empty set. By Theorem 4.4.6, either the sequent 
(0,  {F})  is  constructively provable,  or  there  is  a  Kripke scenario  (b,  ≤,  t), 
which contains a counterexample for (0, {F}). Since F is true at all nodes in all 
Kripke scenarios, it cannot have counterexamples; hence, the sequent (0, {F}) 
(i.e. the formula F) is constructively provable.

Together with Lemma 4.4.3 this Corollary implies the above Theorem 4.4.2 – 
Kripke's theorem on the completeness of the constructive propositional 
logic: a formula F is true at all nodes in all Kripke scenarios, if and only if F is 
provable in the constructive propositional logic.

Corollary 4.4.8 (decidability of the constructive propositional logic). There 
is  an  algorithm allowing  to  determine  for  any formula  F,  is  this  formula 
provable in the constructive propositional logic [L1-L10, MP], or not. 

Gerhard Gentzen established this fact in 1934: 

G. Gentzen. Untersuchungen über das logische Schliessen II. Mathematische 
Zeitschrift, 1934, Vol. 39, pp. 405-431.

Corollary 4.4.9. If F∨G is true at all nodes in all scenarios, then F is true at 
all nodes in all scenarios, or G is true at all nodes in all scenarios.

Proof.  Assume, there is a scenario (b1, ≤1, t1) such that x1 |= F is false for 

some x1∈b1 , and a scenario (b2, ≤2, t2) such that x2 |= G is false for some

x2∈b2 . We may assume that the (node) sets b1 and b2 do not intersect. Let 

us merge these scenarios by adding a new common starting node x0, where all 

Bi are  false.  Then,  x0 |=  F  is  false  (Lemma  4.4.1),  and  x0 |=  G  is  false 

(similarly).  Hence,  according  to  the  classical  disjunction  truth  table,  x0 |=

F∨G  is false. But, x |= F∨G is always true. Hence, x |= F is always 
true, or x |= G is always true. Q.E.D.

Theorem 4.4.10. (Gödel [1932]). If [L1-L10, MP]: ⊢ B∨C , then

[L1-L10,  MP]:  B or [L⊢ 1-L10,  MP]:  C. (I.e. if  the disjunction⊢ B∨C is 

constructively provable, then one of the formulas B, C also is constructively 
provable.)

Proof. If [L1-L10, MP]: ⊢ B∨C , then, by Kripke's Completeness Theorem 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Gentzen.html
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4.4.2, B∨C is true at all nodes in all scenarios. Then, by Corollary 4.4.9, so 
is B or so is C. By Kripke's Completeness Theorem 4.4.2, this means that one 
of the formulas B, C is constructively provable. Q.E.D.

Let us remind the constructive interpretation of disjunction from Section 1.3:

- To prove B∨C constructively,  you must prove B, or prove C. To prove 
B∨C classically, you may assume ¬(B∨C ) as a hypothesis, and derive a 

contradiction.  Having only such a  "negative" proof,  you may be unable to 
determine, which part of the disjunction B∨C is true – B, or C, or both.

According to  Theorem 4.4.10,  the constructive propositional  logic  [L1-L10, 

MP] supports the constructive interpretation of disjunction.

K.Gödel established this fact in 1932:

K.  Gödel.  Zum  intuitionistischen  Aussagenkalkül.  Akademie  der 
Wissenschaften  in  Wien,  Mathematisch-  naturwissenschaftliche  Klasse,  
Anzeiger, 1932, Vol.69, pp.65-66.

Exercise  4.4.5  (optional,  for  smart  students).  By  adding  the  schema
(B → C)∨(C → B) to the axioms of the constructive logic, we obtain the 

so-called  Gödel-Dummett  logic.  Verify,  that  a  propositional  formula  F  is 
provable in Gödel-Dummett logic, if and only if F is true at all nodes in all 
linear Kripke scenarios (i.e. in the scenarious that do not allow branching). 
See also  Intuitionistic Logic by Joan Moschovakis in  Stanford Encyclopedia 
of Philosophy, and Michael Dummett in Internet Encyclopedia of Philosophy.

http://www.iep.utm.edu/
http://www.iep.utm.edu/d/dummett.htm
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/contents.html
http://www.math.ucla.edu/~joan/
http://plato.stanford.edu/entries/logic-intuitionistic/
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5. Normal Forms. Resolution Method

In this section, we will try to produce a practical method allowing to derive 
consequences and prove theorems by using computers. In general, this task is 
not feasible because of its enormous computational complexity (see  Section 
4.3). Still, for problems of a "practical size" (arising, for example, in deductive 
databases and other artificial intelligence systems, or, trying to formalize real 
mathematical proofs), such methods are possible and some of them are already 
implemented successfully.

This field of research is called  automated reasoning, or automated theorem-
proving. 

Warning! The principal results of this Section are valid only for the classical 
logic!

Main Ideas

If F1,  ...,  Fn is the set of our assumptions (facts, rules,  axioms, hypotheses 

etc.),  does  the  assertion  G  follow  from this  set?  One  of  the  well  known 
approaches to proving theorems in mathematics – and especially convenient 
for computers – are the so-called refutation proofs (reductio ad absurdum) – 
proofs  by  deriving  a  contradiction:  assume  ¬G,  and  try  deriving  a 
contradiction.  I.e.  try  proving that  F1,  ...,  Fn,  ¬G is  an  inconsistent  set  of 

assumptions.

Idea #1: let us derive consequences and prove theorems only in this way. Let 
us try developing the best possible  method of deriving contradictions from 
inconsistent sets of assumptions. This (at first glance – trivial) decision is one 
of the most important steps in the whole story – it will allow (see Section 5.2 
below) conversion of the formulas F1, ..., Fn, ¬G into a form that does not 

contain existential quantifiers. And after this, having universal quantifiers only, 
we may simply drop them at all,  and continue working with quantifier-free 
formulas (see Section 5.4).

Idea #2: let us "normalize" our assumption formulas as far as possible.

The first step (idea #2a) is reducing to the so-called prenex normal form – 
moving all the quantifiers to left. For example, the formula

[( xB(x) ∃ → xC(x)) → xD(x)] → xF(x)∃ ∃ ∃
is equivalent (in the classical logic!) to the following formula in prenex normal 
form:

http://en.wikipedia.org/wiki/Automated_reasoning
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x∀ 1 x∃ 2 x∀ 3 x∃ 4[[(B(x1) → C(x2)) →D(x3)] → F(x4)].

(When moving quantifiers to left, some of them must be changed from  to ,∃ ∀ 
or from  to , see ∀ ∃ Section 5.1 below.)

The  second  step  (idea #2b,  due  to  Thoralf  Skolem)  allows  elimination  of 
existential  quantifiers.  Indeed,  x∀ 1 x∃ 2 means that  x2=f(x1),  and x∀ 1 x∀ 3 x∃ 4 
means that x4=g(x1, x3), where f and g are some functions (see Section 5.2). In 

this way we obtain the so-called Skolem normal form, containing universal 
quantifiers only:

x∀ 1 x∀ 3[[(B(x1) → C(f(x1))) →D(x3)] → F(g(x1, x3))].

Note that a formula and its Skolem normal form are not equivalent (even in 
the  classical  logic!),  they  are  only  a  kind  of  "semi-equivalent":  a  set  of 
formulas is inconsistent, if and only if so is the set of their Skolem normal 
forms.

Now, since,  our  formulas  contain universal  quantifiers  only,  we may  drop 
these quantifiers (simply by assuming that all free variables are universally 
quantified):

[(B(x1) → C(f(x1))) →D(x3)] → F(g(x1, x3)).

The third step (idea #2c) – reduction of quantifier-free formulas to the so-
called  conjunctive  normal  form (a  conjunction  of  disjunctions  of  atomic 
formulas – with or without negations, see Section 5.3). For example, the above 
formula can be reduced to the following form:

(¬ B (x1)∨C ( f (x1))∨F (g (x1, x3)))∧(¬ D( x3)∨F (g ( x1, x3))) .

By assuming that a set of formulas means their conjunction, we can drop the 
conjunction(s) obtaining a set of the so-called clauses:

¬ B(x1)∨C ( f (x1))∨F (g (x1, x3)) ;

¬ D(x3)∨F (g (x1, x3)) .

Each clause is a disjunctions of atomic formulas – with or without negations. 
To separate clearly the meaning of each clause, we must rename some of the 
variables – no two clauses are allowed to contain common variables:

¬ B (x1)∨C ( f ( x1))∨F ( g (x1, x3)) ;

¬ D(x5)∨F (g (x4, x5)) .

In this way, instead of our initial set of assumptions F1, ..., Fn, ¬G, we obtain a 

set  of  separate  clauses  (“large  cloud  of  simple  disjunctions”),  which  is 
inconsistent, if and only if so is the initial set F1, ..., Fn, ¬G.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
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The last  step – how to work with a set  of clauses (“large cloud of simple 
disjunctions”)?

Idea #3 (due to John Alan Robinson, see Section 5.5 and 5.7) – a set of clauses 
is inconsistent, if and only if a contradiction can be derived from it by using 
term substitution and the so-called Robinson's Resolution rule:

F∨C , ¬ C∨G
F∨G

.

Continue reading...

Alternative method:  the so-called Method of Analytic Tableaux.

5.1. Prenex Normal Form

Warning! The principal results of this Section are valid only for the classical 
logic!

Let us consider an interpretation J of some predicate language L, such that the 
domain DJ contains an infinite set of "objects". Under such interpretation, the 

"meaning"  of  formulas  containing  quantifiers  may  be  more  or  less  non-
constructive, or, at least, "constructively difficult".

For  example,  the formula  xB(x)  will  be true,  if  B(x)  will  be true  for  all∀  
"objects" x in the (infinite!) set DJ. Thus, it is impossible to verify directly (i.e. 

"empirically"),  is  xB(x)  true  or  not.  Saying  that  x y(x+y=y+x)  is  true∀ ∀∀  
under the standard interpretation of first order arithmetic, does not mean that 
we have verified this fact empirically – by checking x+y=y+x for all pairs of 
natural numbers x, y. Then, how do we know that x y(x+y=y+x) is true? Of∀∀  
course,  we  either  postulated  this  feature  of  natural  numbers  directly  (i.e. 
derived  it  from "empirical  evidence"),  or  proved  it  by  using  some  set  of 
axioms (i.e. derived it from other postulates). But, in general, formulas having 
the form xB(x), are "constructively difficult".∀
The formula x yC(x, y) may be even more difficult: it will be true, if for∀∃  
each x in DJ we will be able to find y in DJ such that C(x, y) is true. Thus, 

thinking constructively, we could say that x yC(x, y) is true, only, if there is∀∃  
an algorithm, which, for each x in DJ can find y in DJ such that C(x, y) is true. 

For example,  under the standard interpretation of first  order arithmetic,  the 
formula 

∀x∃ y ( x< y∧prime ( y ))

http://en.wikipedia.org/wiki/John_Alan_Robinson
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is true (i.e. "there are infinitely many prime numbers"). How do we know this? 
This fact was proved in VI century BC. But the (similarly quantified) formula 

∀x∃ y ( x< y∧prime ( y )∧ prime( y+ 2)) ,

i.e.  the famous  twin prime conjecture, is it  true or not? Until  now, nobody 
knows the answer.

Exercise  5.1.1. Verify  that  the  "meaning"  of  x y zD(x,  y,  z)  and∀∃ ∀  
x y z uF(x, y, z, u) may be even more non-constructive.∀∃ ∀∃

But how about the formula xG(x)→ yH(y)? Is it constructively more difficult∃ ∃  
than x yC(x, y), or less? In general, we could prove that xG(x)→ yH(y) is∀∃ ∃ ∃  
true, if we had an algorithm, which, for each x∈D J such that G(x) is true, 
could find y∈DI such that G( y) is true, i.e. if x y(G(x)→H(y)) would be∀∃  
true. We will establish below, that, in the classical logic, if G does not contain 
y, and H does not contain x, then the formula xG(x)→ yH(y) is equivalent to∃ ∃  

x y(G(x)→H(y)).  Thus,  in  general,  the  formula  xG(x)→ yH(y)  is∀∃ ∃ ∃  
constructively as difficult as is the formula x yC(x, y)!∀∃
To generalize this approach to comparing "constructive difficulty" of formulas, 
the so-called prenex normal forms have been introduced:

a) If a formula does not contain quantifiers, then it is in the prenex normal 
form.

b) If x is any variable, and the formula F is in the prenex normal form, then 
xF and xF also are in the prenex normal form.∀ ∃

c) (If you wish so,) there are no other formulas in the prenex normal form.

I.e.  a  formula  is  in  the  prenex  normal  form,  if  and  only  if  it  has  all  its 
quantifiers gathered in front of a formula that does not contain quantifiers. It 
appears,  that  in  the  classical  logic,  each  formula  cane  be  "reduced"  to  an 
appropriate  equivalent  formula  in  the  prenex  normal  form.  To  obtain  this 
normal form, the following Lemmas 5.1.1-5.1.3 can be used.

Lemma 5.1.1. If the formula G does not contain x as a free variable, then:

a) [L1, L2, L5, L12, L14, MP, Gen]: (G→ xF(x)) ∀ ↔ x(G→F(x)).∀

b) [L1, L2, L5, L12-L15, MP, Gen]: (∃xF(x)→G) ↔ ∀x(F(x)→G). What does it 

mean precisely?

c) [L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) ↔ x(G→F(x)). More precisely:∃ ∃

[L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) → x(G→F(x)). This formula ∃ ∃
cannot be proved constructively! Why? See Section 4.5. But the converse 
formula can be proved constructively:

http://www.utm.edu/research/primes/lists/top20/twin.html
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[L1, L2, L13-L15, MP, Gen]: x(G→F(x)) → (G→ xF(x)). ∃ ∃

d) [L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) ↔ ∃x(F(x)→G). What does it 

mean precisely? More precisely:

[L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) → ∃x(F(x)→G). This formula 

cannot be proved constructively! Why? See Section 4.5. But the converse 
formula can be proved constructively:

[L1, L2, L13-L15, MP, Gen]: ∃x(F(x)→G) → (∀xF(x)→G).

Proof.

First,  let  us  note  that  (a)← is  an  instance  of  the  axiom  L14: 

x(G→F(x))→(G→ xF(x)), and that (b)← is an instance of the axiom L∀ ∀ 15.

Prove (a)→ and (b)→ as the Exercise 5.1.2 below.

Let us prove (c)←: x(G→F(x))→(G→ xF(x)).∃ ∃
(1) G→F(x) Hypothesis.

(2) G Hypothesis.

(3) F(x) By MP.

(4) xF(x)∃ By Axiom L13: F(x)→ xF(x).∃

(5) (G→F(x))→(G→ xF(x))∃ By Deduction Theorem 1.

(6) x((G→F(x))→(G→ xF(x)))∀ ∃ By Gen.

(7) x(G→F(x))→(G→ xF(x))∃ ∃
By Axiom L15: 

x(F(x)→G)→( xF(x)→G), since ∀ ∃
G→ xF(x) does not contain x as a ∃
free variable.

Let us prove (d)←: ∃x(F(x)→G) →(∀xF(x)→G).
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(1) F(x)→G Hypothesis.

(2) ∀xF(x) Hypothesis.

(3) F(x) By Axiom L12: xF(x)→F(x).∀

(4) G By MP.

(5) (F(x)→G)→(∀xF(x)→G) By Deduction Theorem 1.

(6) x((F(x)→G)→(∀ ∀xF(x)→G)) By Gen.

(7) ∃x(F(x)→G) →(∀xF(x)→G)

By Axiom L15: 

x(F(x)→G)→( xF(x)→G), since ∀ ∃
xF(x)→G does not contain x as a ∀

free variable.

Now, let us prove (c)→: (G→ xF(x)) → x(G→F(x)) in the classical logic (a∃ ∃  
constructive proof is impossible, see Section 4.5).

First, let us prove: ¬G → ((G→ xF(x))→ x(G→F(x)))∃ ∃

(1) ¬G→(G→F(x)) Axiom L10.

(2) (G→F(x))→ x(G→F(x))∃ Axiom L13: F(x)→ xF(x).∃

(3) ¬G→ x(G→F(x))∃ From (1) and (2).

(4)
¬G → ((G→ xF(x)) → ∃

x(G→F(x)))∃ By Axiom L1: B→(C→B).

Now, let us prove: G → ((G→ xF(x))→ x(G→F(x)))∃ ∃

(5) G Hypothesis.

(6) G→ xF(x)∃ Hypothesis.

(7) xF(x)∃ From (5) and (6).

(8) F(x)→(G→F(x)) Axiom L1: B→(C→B).

(9) x(F(x)→(G→F(x)))∀ By Gen.

(10) xF(x)→ x(G→F(x))∃ ∃ By Theorem 3.1.1(b), [L1, L2, L12-
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L15, MP, Gen]  ⊢
x(B→C)→( xB→ xC).∀ ∃ ∃

(11) x(G→F(x))∃ From (7) and (10).

(12)
G → ((G→ xF(x))→ ∃

x(G→F(x)))∃
By Deduction Theorem 2 (x is not a 
free variable in G and G→ xF(x).∃

(13)
Gv¬G → ((G→ xF(x))→ ∃

x(G→F(x)))∃

From (4) and (12), by Axiom L8. The 

total is [L1, L2, L8, L10, L12-L15, MP, 

Gen]

(14) (G→ xF(x)→ x(G→F(x))∃ ∃ By Axiom L11: Gv¬G.

Finally,  let  us  prove  (d)→:  (∀xF(x)→G)  →  ∃x(F(x)→G)  in  the  classical 
logic(a constructive proof is impossible, see  Section 4.5). Let us denote this 
formula by H.

First, let us prove: xF(x)∀ →H

(1) xF(x)∀ Hypothesis.

(2) xF(x)→G∀ Hypothesis.

(3) G From (1) and (2).

(4) F(x)→G By Axiom L1: B→(C→B).

(5) x(F(x)→G)∃ By Axiom L13: F(x)→ xF(x).∃

(6) xF(x) →H∀ By Deduction Theorem 2.

Now, let us prove: x¬F(x)∃ →H

(5) ¬F(x) Hypothesis.

(6) ¬F(x)→(F(x)→G) Axiom L10.

(7) F(x)→G From (5) and (6).

(8) x(F(x)→G)∃ By Axiom L13: F(x)→ xF(x).∃

(9) ( xF(x)→G) → x(F(x)→G)∀ ∃ By Axiom L1: B→(C→B).

(10) ¬F(x)→H By Deduction Theorem 2.
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(11) x¬F(x)∃ →H
By Gen and Axiom L15: 

x(¬F(x)→H)→ ( x¬F(x)→H).∀ ∃

(12) ¬ xF(x)∀ →H

By Section 3.2, III-4. [L1-L11, 

L13, L14, MP, Gen]:  ⊢
¬ xF(x)→ x¬F(x). ∀ ∃ Axiom L11 

is used here!

(13) xF(x) v ¬ xF(x)∀ ∀  → H From (4) and (12), by Axiom L8.

(13) H
By Axiom

 L11: xF(x) v ¬ xF(x)∀ ∀

Q.E.D.

Exercise 5.1.2. a) Prove (a)→ of Lemma 5.1.1,

[L1, L2, L12, MP, Gen]: (G→ xF(x)) → x(G→F(x)).∀ ∀

b) Prove (b)→ of Lemma 5.1.1,

 [L1, L2, L13, MP, Gen]: (∃xF(x)→G) → ∀x(F(x)→G).

Lemma 5.1.2. If the formula G does not contain x as a free variable, then

a) [L1-L5, L12-L15, MP, Gen]: ∃ xF ( x)∧G ↔∃ x (F (x )∧G) .

b) [L1-L5, L12, L14, MP, Gen]: ∀xF (x )∧G ↔∀x (F (x )∧G) .

c) [L1, L2, L5, L6-L8, L12-L15, MP, Gen]: ∃ xF ( x)∨G ↔∃ x (F (x )∨G) .

d)  [L1-L11,  L12,  L14,  MP,  Gen]: ∀xF (x )∨G ↔∀x (F (x )∨G) .  More 

precisely:

[L1, L2, L5, L6-L8, L12, L14, MP, Gen]: ∀xF (x )∨G →∀x (F (x )∨G) , i.e. 

this part of the equivalence can be proved constructively. But, 

[L1-L11, L12, L14, MP, Gen]: ∀x (F (x )∨G)→∀xF ( x)∨G . This formula 

cannot be proved constructively! Why? See Section 4.5.

Proof. 

Prove (a, b, c) as the Exercise 5.1.3 below.

Let us prove (d)→: ∀xF (x )∨G →∀x (F (x )∨G) .
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(1) F ( x)→ F ( x)∨G Axiom L6.

(2) ∀x (F (x )→ F (x )∨G) By Gen.

(3) x(B→C)→( xB→ xC)∀ ∀ ∀ Theorem 3.1.1(a) [L1, L2, L12, L14, 

MP, Gen].

(4) ∀xF (x )→∀x( F ( x)∨G) From (2) and (3).

(5) G → F ( x)∨G Axiom L7.

(6) ∀x (G → F (x )∨G) By Gen.

(7) G →∀x (F (x )∨G) By Axiom L14.

(8) ∀xF (x )∨G →∀x (F (x )∨G) From (4) and (7), by Axiom L8.

Finally,  let  us  prove  (d)←: ∀x (F (x )∨G)→∀xF ( x)∨G in  the  classical 
logic (a constructive proof is impossible, see Section 4.5).

(1) ∀x (F (x )∨G) Hypothesis.

(2) F ( x)∨G By Axiom L12.

(3) G∨F ( x) From (2).

(4) ¬G Hypothesis.

(4) F(x)

By Theorem 2.5.1(b) 
[L1, L2, L8, L10, 

MP]: ⊢
A∨B →(¬ A→ B)

(5) xF(x)∀ By Gen.

(6) ∀xF (x )∨G By Axiom L6.

(7) ¬G →(∀x (F (x)∨G)→∀xF ( x)∨G)

By Deduction 
Theorem 2 (x is not 
free variable in 
∀x (F (x )∨G) .

(8) G →∀xF (x )∨G Axiom L7.
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(9) G →(∀x(F ( x)∨G)→∀xF (x )∨G)
By Axiom L1: 

B→(C→B).

(10) G∨¬ G →(∀x( F ( x)∨G)→∀xF (x )∨G)
From (7) and (9), by 
Axiom L8.

(11) ∀x (F (x )∨G)→∀xF ( x)∨G
By Axiom L11: 

G∨¬ G .

Q.E.D

Exercise 5.1.3. Prove (a, b, c) of Lemma 5.1.2.

Lemma 5.1.3. a) [L1-L10, L12-L15, MP, Gen]: ¬∃xF(x) ↔ ∀x¬F(x).

b) [L1-L11, L12-L15, MP, Gen]: ¬∀xF(x) ↔ ∃x¬F(x). More precisely:

[L1-L11,  L13,  L14,  MP, Gen]: ¬∀xF(x) →  ∃x¬F(x).  This formula cannot be 

proved constructively! Why? See Section 4.5. But,

[L1-L10, L13, L14, MP, Gen]: ∃x¬F(x) → ¬∀xF(x).

Proof. 

a) See Section 3.2, Group IV.

b)→. This is exactly Section 3.2, III-4.

b)←. See Section 3.2, Group III.

Q.E.D.

Let us remind that a formula is in the prenex normal form, if and only if it has 
all  its  quantifiers  gathered  in  front  of  a  formula  that  does  not  contain 
quantifiers.

Theorem  5.1.4. In  the  classical  logic,  each  formula  is  equivalent  to  an 
appropriate  formula  in  the  prenex  normal  form.  More  precisely,  if  F  is  a 
formula, then, following a simple algorithm, a formula F' can be constructed 
such that: a) F' is in a prenex normal form, b) F' has the same free variables as 
F, c) [L1-L11, L12-L15, MP, Gen]: F↔F'.

Proof. Let us start by an example:

xG(x)→ yH(y).∃ ∃
If H did not contain x as a free variable, then, by Lemma 5.1.1(b): ∃xF(x)→G 
↔ ∀x(F(x)→G), i.e. this formula would be equivalent to x(G(x)→ yH(y)).∀ ∃  
Now, let us consider the sub-formula G(x)→ yH(y). If G did not contain y as∃  
a free variable, then, by Lemma 5.1.1(c): G→ xF(x) ↔ x(G→F(x)), the sub-∃ ∃
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formula  would  be  equivalent  to  y(G(x)→H(y)).  Hence,  by  Replacement∃  
Theorem 2, x(G(x)→ yH(y)) would be equivalent to x y(G(x)→H(y)).∀ ∃ ∀∃
But, if H would contain x as a free variable, and/or G would contain y as a free 
variable? Then our "shifting quantifiers up" would be wrong – the formula 

x y(G(x)→H(y)) would ∀∃ not be equivalent to xG(x)→ yH(y).∃ ∃
To avoid this problem, let us use Replacement Theorem 3, which says that the 
meaning of a formula does not depend on the names of bound variables used 
in it. Thus, as the first step, in xG(x), let us replace x by another variable x∃ 1 
that does not appear neither in G, nor in H. Then, by Replacement Theorem 3, 

xG(x)  is  equivalent  to  x∃ ∃ 1G(x1),  and  by  Replacement  Theorem  2, 

xG(x)→ yH(y)  is  equivalent  to  x∃ ∃ ∃ 1G(x1)→ yH(y).  Now,∃  

x∀ 1(G(x1)→ yH(y))  is  really equivalent  to  x∃ ∃ 1G(x1)→ yH(y).  As the next∃  

step, in yH(y), let us replace y by another variable y∃ 1 that does not appear 

neither in G, nor in H. Then, by Replacement Theorem 3, yH(y) is equivalent∃  
to y∃ 1H(y1), and by Replacement Theorem 2, G(x1)→ y∃ 1H(y1) is equivalent 

to  y∃ 1(G(x1)→H(y1)).  And,  finally,  xG(x)→ yH(y)  is  equivalent  to∃ ∃  

x∀ 1 y∃ 1(G(x1)→H(y1)).

Now, we can start the general proof. In a formula F, let us find the  leftmost 
quantifier having a propositional connective over it. If such a quantifier does 
not exist, the formula is in the prenex normal form. If such a quantifier exists, 
then F is in one of the following forms:

QqQq...Qq(...(¬QxG)...), or QqQq...Qq(...(QxGooH)...), or QqQq...Qq(...

(GooQxH)...),

where QqQq...Qq are the quantifiers "already in prefix", Q is the quantifier in 

question, and oo is the propositional connective standing directly over Q.

In the first case, by Lemma 5.1.3, ¬QxG is equivalent to Q'x¬G, where Q' is 
the  quantifier  opposite  to  Q.  By  Replacement  Theorem  2,  QqQq...Qq(...

(¬QxG)...) is then equivalent to QqQq...Qq(...(Q'x¬G)...), i.e. Q' has now one 

propositional connective less over it ( (than had Q).

In  the  second case,  as  the  first  step,  in  QxG,  let  us  replace  x  by another 
variable  x1 that  does  not  appear  in  the  entire  formula  F  at  all.  Then,  by 

Replacement Theorem 3, QxG is equivalent to Qx1G1, and by Replacement 

Theorem  2,  QqQq...Qq(...(QxGooH)...)  is  equivalent  to  QqQq...Qq(...

(Qx1G1ooH)...). Now, we can apply the appropriate case of Lemma 5.1.1 or 

Lemma 5.1.2, obtaining that Qx1G1ooH is equivalent to Q'x1(G1ooH), where 
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Q' is the quantifier determined by the lemma applied. Then , by Replacement 
Theorem  2,  QqQq...Qq(...(Qx1G1ooH)...)  is  equivalent  to  QqQq...Qq(...

(Q'x1(G1ooH))...),  i.e.  Q' has now one propositional connective less over it 

(than had Q).

In the third case, the argument is similar.

By iterating this operation a finite number of times, we arrive at a formula F' 
which  is  in  the  prenex  normal  form,  and  which  is  (in  the  classical  logic) 
equivalent to F. Q.E.D.

Note. Most formulas admit many different prenex normal forms. For example, 
the  above  formula  xG(x)→ yH(y)  is  equivalent  not  only  to∃ ∃  

x∀ 1 y∃ 1(G(x1)→H(y1)), but also to y∃ 1 x∀ 1(G(x1)→H(y1)) (verify).

As an example, let us obtain a prenex normal form of the following formula:

∃ xB( x)∨∀xC (x )→∀xD( x)∧(¬∀xF ( x)) .

First, assign unique names to bound variables:

∃ x1 B( x1)∨∀x2C ( x2)→∀x3 D(x3)∧(¬∀x4 F ( x4)) .

Process disjunction:

∃ x1∀x2( B(x1)∨C (x2))→∀x3 D(x3)∧(¬∀x4 F ( x4)) .

Process negation ( - ):∀∃
∃ x1∀x2( B(x1)∨C (x2))→∀x3 D(x3)∧∃ x4¬ F ( x4) .

Process conjunction:

∃ x1∀x2( B(x1)∨C (x2))→∀x3∃ x4( D(x3)∧¬ F (x4)) .

Process implication premise ( - , - ):∃∀∀∃
∀x1∃ x2( B(x1)∨C (x2)→∀x3∃ x4(D( x3)∧¬ F ( x4))) .

Process implication consequent:

∀x1∃ x2∀x3∃ x4(B (x1)∨C (x2)→ D( x3)∧¬ F ( x4)) .

The last two steps could be performed in the reverse order as well.

Exercise 5.1.4. Transform each of the following formulas into a prenex normal 
form. Write  down every single step of the process.  (Hint:  the algorithm is 
explained in the proof of Theorem 5.1.4.)

a) ∃ xB( x)→(∃ xC (x )→∃ xD( x)) ,

b) ∀x∃ yB (x , y )∧∃ xC (x )→∀y∃ xD(x , y ) , 

c) ∃ xB( x , y , z )→∀xC (x , y )∨∃ yD( y , z ) ,



189

d) ∀xB (x)→(∀xC ( x)→(∀xD (x)→∀xF (x ))) ,

e) ((∃ xB (x )→∃ xC ( x))→∃ xD( x))→∃ xF (x ) .

Note. From a programmer's point of view, prenex normal forms are, in a sense, 
a crazy invention. In computer programming, you always try to reduce loop 
bodies, not to extend them as much as possible!

Exercise 5.1.5 (optional). We may use reduction to prenex normal forms in 
proofs. More precisely, let us try extending the classical logic by introducing 
of the following additional inference rule (let us call it  PNF-rule): given a 
formula F, replace it by some its prenex normal form F'. Verify, that, in fact, 
this rule does not extend the classical logic, i.e. if there is a proof of F1, F2, ..., 

Fn  G in [L⊢ 1-L15, MP, Gen, PNF-rule], then there is a proof of the same in 

[L1-L15,  MP,  Gen].  (In  some other  texts,  such  rules  are  called  admissible 

rules. Thus, the PNF-rule is an admissible rule in the classical logic.)

The notion of prenex normal forms and a version of Theorem 5.1.4 were known to Charles 
S. Peirce in 1885:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American 
Journal of Mathematics, 1885, vol.7, pp.180-202.

As  noted  by  Alasdair  Urquhart at  http://www.cs.nyu.edu/pipermail/fom/2007-
July/011720.html: "On page 196 of that article, he gives a brief sketch of conversion to 
prenex normal form, remarking that it "can evidently be done."".

5.2. Skolem Normal Form

This  normal  form was  first  introduced  by  Thoralf  Skolem (1887-1963)  in 
1928:

Th.Skolem. Über  die  mathematische  Logik.  "Norsk  matematisk  tidsskrift",  1928,  vol.10, 
pp.125-142.

Warning! The principal results of this Section are valid only for the classical 
logic!

The first very important idea was proposed by Skolem already in 1920:

Th.  Skolem. Logisch-kombinatorische  Untersuchungen  über  die  Erfüllbarkeit  und 
Beweisbarkeit  mathematischen  Sätze  nebst  einem  Theoreme  über  dichte  Mengen. 
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

Namely,  according  to  Skolem's  idea,  further  "normalization"  becomes 
possible, if we drop the requirement that the "normal form" must be equivalent 
to the initial formula, and replace it by the requirement: "normal form" must 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
http://www.cs.nyu.edu/pipermail/fom/2007-July/011720.html
http://www.cs.nyu.edu/pipermail/fom/2007-July/011720.html
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce
file:///C:/Users/Karlis%20Podnieks/Desktop/HOME/GRAMATAS/Detlovs%20Podnieks/ml1.htm#peirce
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be logically valid; if  and only if  the initial  formula is logically valid .  It 
appears,  that  in  this  way we can  "reduce"  any closed  formula  to  a  closed 
formula containing only one kind of quantifiers:

x∃ 1 x∃ 2... x∃ nH(x1, x2, ..., xn),

where H does not contain quantifiers at all (see Theorem 5.2.4 below).

Still,  in  his  original  formulation,  instead  of  logical  validity,  Skolem  was 
interested in a more technical notion – satisfiability. Let us remind that, in a 
predicate language L, a formula F is called satisfiable, if and only if there is an 
interpretation of the language L such that F is true for some values of its free 
variables. For our current purpose – refutation proofs (to prove that F1, .., Fn 

 G, we assume ¬G and try to derive a contradiction) satisfiability works as⊢  
well  as  does  logical  validity.  Indeed  (verify,  see  Exercise  4.1.1),  a  set  of 
formulas  is  inconsistent,  if  and  only  if  it  is  unsatisfiable.  Thus,  if,  in  a 
refutation  proof,  we  replace  some  formula  H  by  an  "equally  satisfiable" 
formula H' (i.e. H' is satisfiable, if and only if so is H), then the refutation 
proof remains valid. I.e. if,  this way, we derive a contradiction from F1,  .., 

Fn,¬G, then this set of fomulas is, indeed, unsatisfiable, i.e. G logically follows 

from F1,  ..,  Fn (for  a  more  precise version  of  this  argument  see Exercises 

5.2.4).

Skolem's second main idea (proposed in his 1928 paper): allow introduction 
of new object constants and function constants. It can be demonstrated on 
the following example: how could we "simplify" the formula x y F(x, y)? It∀∃  
asserts that for each x there is y such that F(x, y) is true. Thus, it asserts, that 
there is a function g, which selects for each value of x a value of y such that 
F(x, y) is true. Thus, in a sense, x y F(x, y) is "equivalent" to x F(x, g(x)).∀∃ ∀  
In which sense? In the sense that 

x y F(x, y) is satisfiable, if and only if x F(x, g(x)) is satisfiable.∀∃ ∀
Indeed,

1. If x y F(x, y) is satisfiable, then there is an interpretation J where it is true,∀∃  
i.e. for each value of x there is a value of y such that F(x, y) is true. This 
allows us to define the following interpretation of the function constant g: g(x) 
is  one of y-s such that  F(x,  y)  is  true in  J.  If  we extend J by adding this 
interpretation of the function constant g, we obtain an interpretation J', where 

x F(x, g(x)) is true, i.e. this formula is satisfiable.∀
2. If x F(x, g(x)) is satisfiable, then there is an interpretation J where it is∀  
true,  i.e.  for each value of x the formula F(x,  g(x)) is  true.  Hence,  in  this 
interpretation, for each value of x there is a value of y (namely, g(x)) such that 
F(x,  y)  is  true  in  J.  Thus,  x y F(x,  y)  is  true  in  J,  i.e.  this  formula  is∀∃  
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satisfiable.

Note.  In  the  first  part  of  this  proof,  to  define  the  function g,  we need,  in 
general, the Axiom of Choice. Indeed, if there is a non-empty set Yx of y-s 

such that F(x, y) is true, to define g(x), we must choose a single element of Yx. 

If we know nothing else about the interpretation J, we are forced to use the 
Axiom of Choice. But, if we know that the interpretation J has a countable 
domain, then we can define g(x) as the "least" y from the set Yx. In this way 

we can avoid the Axiom of Choice.

The third idea is even simpler: the formula x F(x) asserts that there is x such∃  
that F(x) is true, so, let us denote by (an object constant) c one of these x-s, 
thus obtaining F(c) as a "normal form" of x F(x). Of course (verify),∃

x F(x) is satisfiable, if and only if F(c) is satisfiable.∃
These two ideas allow "reducing" of any quantifier prefix Qx1Qx2...Qxn to a 

sequence of universal quantifiers only:

Theorem 5.2.1 (Th.  Skolem).  Let  L be a  predicate  language.  There is  an 
algorithm allowing to construct, for each closed formula F of this language, a 
closed formula F' (in a language L' obtained from L by adding a finite set of 
new object constants and new function constants – depending on F) such that:

a) F' is satisfiable, if and only if F is satisfiable,

b) F' is in form x∀ 1 x∀ 2... x∀ nG, where n≥0, and G does not contain quantifiers. 

If a formula is in form x∀ 1 x∀ 2... x∀ nG, where n≥0, and G does not contain 

quantifiers, let us call it Skolem normal form. Thus, each closed formula can 
be reduced to a Skolem normal form in the following sense: for each closed 
formula F of a language L there is a Skolem normal form |F|Sk (in the language 

L extended by a finite set of Skolem constants and Skolem functions), which is 
satisfiable, if and only if so is F.

Note. In computer science slang, the reduction procedure leading to Skolem 
normal form is called "skolemization".

Note. Theorem 5.2.1  does not assert that a formula and its Skolem normal 
form are equivalent. It asserts only that the satisfiability problem of the first 
formula is equivalent to the satisfiability problem of the second formula. As 
already mentioned above, this is enough to allow using of Skolem reduction in 
refutation proofs.

Thus, if we are interested in determining the satisfiability of formulas, then 
reducing to Skolem normal forms is a promising method. Indeed, formulas 

x∀ 1 x∀ 2... x∀ nG (where G does not contain quantifiers) are, perhaps, easier to 
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analyze than more complicated combinations of quantifiers.

Proof of Theorem 5.2.1 First, let us obtain a prenex normal form F1  of the 

formula  F  (see  Section  5.1).  Indeed,  by  Theorem 5.1.4,  there  is  a  simple 
algorithm, allowing to construct a closed formula F1 such that F1 is a prenex 

normal form, and, in the classical logic,  F↔F⊢ 1. Of course, F1 is satisfiable; 

if and only if so is F.

If the quantifier prefix of F1 starts with a sequence of existential quantifiers 

( ... ...), we will need the following lemma to "reduce" these quantifiers:∃∃ ∃∀
Lemma 5.2.2 . A closed formula x∃ 1 x∃ 2... x∃ n H(x1, x2, ..., xn) is satisfiable, if 

and only if H(c1, c2, ..., cn) is satisfiable, where c1, c2, ..., cn are new object 

constants that do not appear in H.

After this operation, we have a closed prenex formula H(c1, c2, ..., cn) (in a 

language obtained from L by adding a finite set of new object constants, called 
Skolem constants), which is satisfiable, if and only if so is F1 (and F). The the 

quantifier prefix of H(c1, c2, ..., cn) (if any) starts with a sequence of universal 

quantifiers ( ... ...).∀∀ ∀∃
To proceed, we will need the following

Lemma  5.2.3.  A  closed  formula  x∀ 1 x∀ 2... x∀ n yK(x∃ 1,  x2,  ...,  xn,  y)  is 

satisfiable,  if  and only if  x∀ 1 x∀ 2... x∀ nK(x1,  x2,  ...,  xn,  g(x1,  x2,  ...,  xn))  is 

satisfiable, where g is a new n-ary function constant (called Skolem function), 
which does not appear in K.

By iterating this lemma, we can "reduce" the entire quantifier prefix of H(c1, 

c2, ..., cn) to a sequence of universal quantifiers only ( ... ).∀∀ ∀

For example, the formula t x y z u w F(t, x, y, z, u, w) is satisfiable, if and∃∀∀ ∃∀ ∃  
only if so is

x y u w F(c, x, y, g(x, y), u, w)∀∀∀ ∃
(where c is a Skolem constant that does not appear in F), and, if and only if so 
is

x y u w F(c, x, y, g(x, y), u, w),∀∀∀ ∃
and, if and only if so is the Skolem normal form:

x y u F(c, x, y, g(x, y), u, h(x, y, u)),∀∀∀
where g and h are Skolem functions that do not appear in F.

Exercise 5.2.1. a) Prove Lemma 5.2.2. b) Prove Lemma 5.2.3.
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How  many  new  object  constants  and  new  function  constants  (Skolem 
constants  and  functions)  do  we  need  to  obtain  the  final  formula  F'?  The 
number of new symbols is determined by the number of existential quantifiers 
in the quantifier prefix of the prenex formula F1. Indeed, a) the number of new 

object constants is determined by the number of existential quantifiers in front 
of the prefix, and b) the number of new function constants is determined by 
the number of existential quantifiers that follow after the universal ones.

This completes the proof of Theorem 5.2.1.

Exercise 5.2.2.  Obtain Skolem normal forms of the formulas mentioned in 
Exercise 5.1.4.

See also:
"Skolemization" from  The Wolfram Demonstrations Project. Contributed by: 
Hector Zenil.

Still, if we are interested in determining the logical validity of formulas, then 
we should apply the result of Exercise 4.1.1 together with Theorem 5.2.1:

F is logically valid, if and only if ¬F is not satisfiable, if and only if a Skolem 
normal form of ¬F is not satisfiable, if and only if x∀ 1 x∀ 2... x∀ nG (where n≥0, 

and  G  does  not  contain  quantifiers)  is  not  satisfiable,  if  and  only  if 
¬ x∀ 1 x∀ 2... x∀ nG is logically valid, if and only if x∃ 1 x∃ 2... x∃ n¬G is logically 

valid.

Thus we have proved the following 

Theorem 5.2.4. Let L be a first order language. There is an algorithm allowing 
to construct, for each closed formula F of this language, a closed formula F' (in 
a language L' obtained from L by adding a finite set of new object constants 
and new function constants – depending on F) such that:

a) F' is logically valid (or, provable in the classical logic), if and only if F is 
logically valid (or, provable in the classical logic), 

b) F' is in form x∃ 1 x∃ 2... x∃ nG, where n≥0, and G does not contain quantifiers.

Skolem Normal Form of a Set of Formulas

Knowledge bases are, as a rule, large sets of closed formulas F1, F2, ..., Fn, i.e., 

in  fact,  large  conjunctions F1∧F 2∧...∧F n of  closed  formulas.  Could  we 
obtain  a  Skolem  normal  form  of  this  conjunction  simply  by  reducing  to 
Skolem normal form each formula separately? 

Assume that during the entire process of reducing the formulas F1, F2, ..., Fn to 

http://demonstrations.wolfram.com/author.html?author=Hector+Zenil
http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/Skolemization/
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their  Skolem  normal  forms  F'1,  F'2,  ...,  F'n ,  these  formulas  are  “kept 

separated”,  i.e.  the  name  of  each  new  Skolem  constant  and  new  Skolem 
function is chosen as “completely new” with respect to the entire process.  

By examining carefully the proof of Theorem 5.2.1, one can see that this is 
enough to guarantee that the conjunction F ' 1∧F ' 2∧...∧F ' n is satisfiable, if 
and only if so is F1∧F 2∧...∧F n .

Exercise 5.2.3 (optional,  for  smart  students).  In  his  above-mentioned 1920 
paper,  for  quantifier  elimination,  Skolem  proposed  introduction  of  new 
predicate  constants (to  the  idea  that  function  constants  will  do  better,  he 
arrived only in the 1928 paper). Do not read neither Skolem's papers, nor the 
above-mentioned online comments, and prove yourself that by introduction of 
new predicate constants, the satisfiability problem of any closed formula can 
be  reduced  to  the  satisfiability  problem  of  a  formula  having  the  form 

x∀ 1 x∀ 2... x∀ m y∃ 1 y∃ 2... y∃ nG,  where  m,  n≥0,  and  G  does  not  contain 

quantifiers. Thus, function constants "will do better" – see Theorem 5.2.1.

Exercise  5.2.4 (optional,  compare  with  Exercise  5.1.5).  Since,  in  general, 
Skolem normal form is not equivalent to the initial formula, we cannot use 
reduction  to  Skolem normal  forms  in  the  usual  ("positive",  or  affirmative) 
proofs. But we may use it in "negative" (or, refutation) proofs, i.e. in proofs 
aimed at  deriving  a  contradiction!  More precisely,  let  us  try extending the 
classical logic by introducing of the following additional inference rule (let us 
call it  SNF-rule): given a formula F, replace it by some its Skolem normal 
form  F'  (such  that  the  newly  introduced  object  constants  and  function 
constants do not appear in the proof before F'). Verify, that, in fact, this rule 
does not extend the classical logic for refutation proofs, i.e. if, from a set of 
formulas F1, F2, ..., Fn, one can derive a contradiction by using [L1-L15, MP, 

Gen, SNF-rule], then one can do the same by using [L1-L15, MP, Gen]. (Thus, 

the SNF-rule is admissible for refutation proofs in the classical logic.)

5.3. Conjunctive and Disjunctive Normal Forms

Warning! The principal results of this Section are valid only for the classical 
logic!

Let us continue the "normalization" process that we started in Section 5.1 by 
reducing  formulas  to  their  prenex  normal  forms,  where  all  quantifiers  are 
gathered in front of a formula that does not contain quantifiers. How could we 
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further "normalize" this "formula that does not contain quantifiers"?

Step 1: eliminate equivalence

First of all, we can eliminate all equivalence connectives because B↔C is only 
a  shortcut  for (B →C)∧(C → B) .  Why should  we?  Because,  proving  of 
B↔C consists of proving of B→C and proving of C→B. Using the shortcut 
simplifies the appearance of the formula, not its proof.

Step 2: eliminate implication

After this, our formula will contain only implication, conjunction, disjunction 
and negation connectives. As the next step, we could try to eliminate one (or 
two?) of these connectives. The classical logic allows to do that. For example, 
by Theorem 2.6.4(b),

[L1-L11, MP]: ⊢ (A → B)↔ ¬ A∨B .

By  using  this  equivalence,  we  can  eliminate  implication  connectives.  For 
example, the formula B→(C→D) is equivalent (in the classical logic only!) to

¬ B∨(¬ C∨D) .

But,  instead  of  implications,  we  could  try  eliminating  disjunctions  or 
conjunctions as well. Indeed, 

Exercise 5.3.1. In the classical logic [L1-L11, MP], prove the following:

a) ⊢ (A → B)↔ ¬( A∧¬ B) .

b) ⊢ (A∨B)↔(¬ A → B) .

c) ⊢ (A∨B)↔ ¬(¬ A∨¬ B) .

d) ⊢ (A∧B)↔ ¬(A →¬ B) .

e) ⊢ (A∧B)↔ ¬(¬ A∨¬ B) .

(For  smart  students)  Determine,  which  parts  of  these  equivalences  can  be 
proved in the constructive logic [L1-L10, MP]. End of Exercise 5.3.1.

By using these results, we could eliminate from our formulas any one (or any 
two) of the three connectives – implication, conjunction, or disjunction.

However,  the  best  decision  would  be  eliminating  only  implications.  Why? 
Because  conjunction  and  disjunction  are  associative  and  commutative 
operations  –  and  very  much  like  addition  (disjunction)  and  multiplication 
(conjunction)!  For  example,  after  reducing  the  formula  B→(C→B)  to 

¬ B∨(¬ C∨B) ,  we  can  further  transform  it  to ¬ B∨¬C∨B and 
(¬ B∨B)∨C – and conclude that it is "true and provable" (no surprise, it is 

Axiom L1).
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Step 3: move negations down to atoms

Thus,  after  Step  2,  our  formula  contains  only conjunction,  disjunction  and 
negation connectives. Now, let us remind the two de Morgan Laws:

Theorem 2.6.3, [L1-L11, MP]: ⊢ ¬(A∧B)↔ ¬ A∨¬ B .

Theorem 2.4.10(b), [L1-L9, MP] ⊢ ¬(A∨B)↔ ¬ A∧¬ B .

By using these equivalencies, we can shift negations down – until the atoms of 
the formula. For example, let us transform the formula

(( A→ B)→C)→ B∧C .

First, eliminate implications:

¬(( A→ B)→C)∨(B∧C) ,
¬(¬( A → B)∨C)∨(B∧C ) ,
¬(¬(¬ A∨B)∨C)∨(B∧C ).

Apply de Morgan Laws:

(¬¬(¬ A∨B)∧¬ C)∨(B∧C ) ,
(¬(¬¬ A∧¬ B)∧¬C )∨( B∧C ) ,

((¬ ¬¬ A∨¬¬ B)∧¬C )∨(B∧C) .

Now, let us remind the Double Negation Law:

Theorem 2.6.1, [L1-L11, MP]:  ¬¬A ↔ A.⊢

It allows dropping the excessive negations – we can replace ¬¬¬A by ¬A and 
¬¬B – by B:

((¬ A∨B)∧¬C )∨( B∧C ) .

Note. This  form of  formulas  is  called  negation  normal  form.  Namely,  a 
formula is in negation normal form, if  it  is built  of atoms with or without 
negations  by  using  conjunctions  and  disjunctions  only.  I.e.  a  formula  in 
negation normal form contains only conjunctions, disjunctions and negations, 
and negations are located at the atoms only. As we see, in the classical logic, 
any propositional formula can be reduced (is equivalent) to some formula in 
negation normal form.

Negation normal form is the starting point for an alternative (to the Resolution 
method described in this Section 5) method of automated theorem-proving – 
the so-called  Method of Analytic Tableaux. One does not use skolemization 
here,  one  simply  obtains  the  negation  normal  form  of  the  formula  (with 
quantifiers  inside)  and  after  this,  applies  a  specific  tree  algorithm  of  the 
Tableaux method. (My exposition for students, in Latvian:  Tablo algoritms.) 
End of Note.

http://podnieks.id.lv/slides/descrlog/dl3.htm
http://en.wikipedia.org/wiki/Method_of_analytic_tableaux
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Step 4: algebra

After Step 3, our formula is built up by using:

a) atoms,

b) atoms preceded by a negation,

c) conjunction and disjunction connectives.

Conjunction and disjunction are associative and commutative operations. By 
the behavior of "truth values", conjunction is a kind of multiplication:

0∧0=0,0∧1=1∧0=0,1∧1=1 ,

and disjunction – a kind of addition:

0∨0=0,0∨1=1∨0=1, 1∨1=1 .

However, for these operations two distributive laws are valid (Theorem 2.3.1) 
– conjunction is distributive to disjunction, and disjunction is distributive to 
conjunction:

[L1-L8, MP]: ⊢ (A∧B)∨C ↔(A∨C)∧(B∨C) ,

[L1-L8, MP]: ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) .

Thus, both of the two decisions could be justified:

1)  (Our  first  "algebra")  Let  us  treat  conjunction  as  multiplication  and 
disjunction – as addition (+). Then the above formula

((¬ A∨B)∧¬C )∨( B∧C ) takes the form ((A'+B)C')+BC (let us replace ¬A 
by the "more algebraic"  A').  After  this,  the usual  algebraic  transformations 
yield the formula A'C'+BC'+BC.

2)  (Our  second  "algebra")  Let  us  treat  conjunction  as  addition  (+)  and 
disjunction – as multiplication. Then the above formula

((¬ A∨B)∧¬C )∨( B∧C ) takes  the  form (A'B+C')(B+C).  After  this,  the 
usual algebraic transformations yield the formula A'BB+A'BC+C'B+C'C.

Additional rules can be applied in these "algebras".

First rule – conjunction and disjunction are idempotent operations: 

[L1- L5, MP]: ⊢ A∧A ↔ A  (see Section 2.2).

[L1, L2, L5, L6-L8, MP]: ⊢ A∨A ↔ A  (Exercise 2.3.1(c)).

Thus, in both of our "algebras": A+A = AA = A.

Second rule – A∧¬ A (i.e. "false") is a kind of "zero" in the first "algebra", 
and a kind of "one" – in the second "algebra":
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[L1-L10, MP]: ⊢ B∨(A∧¬ A)↔ B  (Exercise 2.5.1(a)),

[L1-L10, MP]: ⊢ (( A∧¬ A)∧B)∨C ↔C (Exercise 2.5.1(b)).

Indeed, in the first "algebra", these formulas mean B+AA' = B and AA'B+C = 
C, i.e. we may think that AA'=0, B0=0, C+0=C. In the second "algebra", these 
formulas  mean B(A+A')  = B and (A+A'+B)C = C,  i.e.  we may think  that 
A+A'=1, B1=B, C+1=1.

Third rule – A∨¬ A (i.e. "true") is a kind of "one" in the first "algebra", and 
a kind of "zero" – in the second "algebra":

[L1-L11, MP]: ⊢ B∧( A∨¬ A)↔ B (Exercise 2.6.2(a)),

[L1-L11, MP]: ⊢ (( A∨¬ A)∨B)∧C ↔C  (Exercise 2.6.2(b)).

Indeed,  in  the  first  "algebra",  these  formulas  mean  B(A+A')  =  B  and 
(A+A'+B)C = C, i.e. we may think that A+A'=1, B1=1, C+1=1. In the second 
"algebra". these formulas mean B+AA' = B and AA'B+C = C, i.e. we may 
think that AA'=0, B0=0, C+0=C.

Thus, in both algebras, 

AA'=0, B0=0, C+0=C, A+A'=1, B1=B, C+1=1.

So, let us continue our example

1)  (The  first  "algebra")  The  formula  A'C'+BC'+BC  is  equivalent  to 
A'C'+B(C'+C)  = A'C'+B,  or,  if  we return  to  logic: (¬ A∧¬C )∨B .  Such 
disjunctions consisting of conjunctions are called  disjunctive normal forms 
(DNFs). In a DNF, each conjunction contains each atom no more than once – 
either without negation, or with it. Indeed, if it contains some atom X twice, 
then: a) replace XX by X, or b) replace X'X' by X', or c) replace XX' by 0 (in 
the latter case – drop the entire conjunction from the expression). In this way, 
for some formulas, we may obtain "zero", i.e. an empty DNF. Of course, such 
formulas take only false values ("false" is "zero" in the first "algebra"). And 
for some formulas,  we may obtain "one",  i.e.  a  kind of  "full" DNF.  Such 
formulas take only true values ("true" is "one" in the first "algebra"). 

2) (The second "algebra") The formula A'BB+A'BC+C'B+C'C is equivalent to 
A'B+A'BC+BC'  =  A'B(1+C)+BC'  =  A'B+BC',  or,  if  we  return  to  logic: 
(¬ A∨B)∧(B∨¬ C) .  Such  conjunctions  consisting  of  disjunctions  are 

called  conjunctive  normal  forms (CNFs).  In  a  CNF,  each  disjunction 
contains each atom no more than once – either without negation, or with it. 
Indeed, if it  contains some atom X twice, then: a) replace XX by X, or b) 
replace X'X' by X', or c) replace XX' by 0 (in the latter case – drop the entire 
disjunction  from the  expression).  In  this  way,  for  some formulas,  we may 
obtain "zero",  i.e. an  empty CNF.  Of course, such formulas take only true 
values ("true" is "zero" in the second "algebra"). And for some formulas, we 
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may obtain "one", i.e. a kind of  "full" CNF. Such formulas take only false 
values ("false" is "one" in the second "algebra"). 

Thus, we have proved the following

Theorem  5.3.1. In  the  classical  logic,  every  propositional  formula  can  be 
reduced to DNF and to CNF. More precisely, assume, the formula F has been 
built of formulas B1, B2, ..., Bn by using propositional connectives only. Then:

a) There is a formula F1, which is in a (possibly empty or full) disjunctive 

normal form over B1, B2, ..., Bn such that [L1-L11, MP]:  F ↔ F⊢ 1.

b) There is a formula F2, which is in a (possibly empty or full) conjunctive 

normal form over B1, B2, ..., Bn such that [L1-L11, MP]:  F ↔ F⊢ 2.

Exercise 5.3.2. a) Build DNFs and CNFs of the following formulas. (Hint: the 
algorithm is explained in the above Steps 1-4.)

¬(A∧B → C ) ,
(A → B)↔ (C → D) ,

A∨B ↔C∨D ,
A∧B ↔C∧D .

b) Build DNFs and CNFs of the following formulas:

¬(A∨¬ A) ,
(( A→ B)→ A)→ A ,

(A → B)→ ((¬ A → B)→ B) .

The notion of disjunctive normal form was known in 1883 to Oscar Howard Mitchell (1851-
1889):

Oscar Howard Mitchell. On a New Algebra of Logic. In: Studies in Logic by Members of the  
Johns Hopkins University, 1885, pp. 72-106.

5.4. Clause Form

Warning! The principal results of this Section are valid only for the classical 
logic!

Clause Forms of Propositional Formulas

Which  form is  more  "natural"  –  DNF,  or  CNF? Of  course,  CNF is  more 
natural. Indeed, a DNF D1∨D2∨...∨Dm asserts  that one (or more) of the 

http://www.cspeirce.com/menu/library/aboutcsp/nubiola/reyes.htm
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formulas Di is true. This is a very complicated assertion – sometimes D1 is 

true,  sometimes  D2 is  true,  etc.  But,  if  we  have  a  CNF  instead  –

C1∧C2∧...∧Cn ? It asserts that all the formulas Ci are true,  i.e.  we can 

replace the long formula C1∧C2∧...∧Cn by a set of shorter formulas C1, 

C2, ..., Cn. For human reading and for computer processing, a set of shorter 

formulas is much more convenient than a single long formula.

Let us return to our example formula (( A→ B)→ C)→ B∧C of Section 5.3, 
for which we obtained a DNF (¬ A∧¬C )∨B and a CNF:

(¬ A∨B)∧( B∨¬ C) .

Without a transformation, DNF may be hard for reading and understanding. 
The  CNF  is  more  convenient  –  it  says  simply  that ¬ A∨B is  true  and

B∨¬ C is true.

As another step, making the formulas easier to understand, we could apply the 
following equivalences:

[L1-L11, MP]: ⊢ ¬ A∨B ↔ A → B ,

[L1-L11, MP]: ⊢ ¬ A∨¬ B∨C ↔ A∧B → C ,

[L1-L11, MP]: ⊢ ¬ A∨B∨C ↔ A→ B∨C , 

[L1-L11, MP]: ⊢ ¬ A∨¬ B∨C∨D ↔ A∧B →C∨D , 

etc.

Exercise 5.4.1. Verify these equivalences by proving that,  generally (in the 
classical logic),

[L1-L11, MP]: ⊢ ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ↔

(A1∧A2∧...∧Am → B1∨B2∨...∨Bn) .

Thus,  we can replace our set  of two formulas ¬ A∨B , B∨¬C by the set 
A → B ,C → B . The conjunction of these two formulas is equivalent to the 

initial formula (( A→ B)→C)→ B∧C .

Formulas having the form

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ,

where A1, A2, ... , Am, B1, B2, ... , Bn are atoms, are called clauses. Clauses are 
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well suited for computer processing. Indeed, in the computer memory, we can 
represent the above formula simply as a pair of sets of atoms – the negative set 
{A1, A2, ... , Am} and the positive set {B1, B2, ... , Bn}.

What, if one (or both) of these sets is (are) empty?

If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m = 0 
and n > 0, then, of course, this formula asserts simply that B1∨B2∨...∨Bn , 
i.e. "converting" it into an implication with empty premise

→ B1∨B2∨...∨Bn

leads us to the following definition: the clause → B1∨B2∨...∨Bn means the 
same as B1∨B2∨...∨Bn .

If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m > 0 
and  n  =  0,  then,  of  course,  this  formula  asserts  simply  that

¬ A1∨¬ A2∨...∨¬ Am , i.e. "converting" it into an implication with empty 
consequence 

A1∧A2∧...∧Am →

leads us to the following definition: the clause A1∧A2∧...∧Am → means the 
same as ¬(A1∧A2∧...∧Am) . 

If m=n=0, then, as an empty disjunction, the clause must be qualified as false.

Note. Clauses are similar to sequents – pairs of sets of formulas (S1, S2), used 

in the proof of Theorem 4.4.5 (completeness of the constructive propositional 
logic)  in  Section  4.4.  In  a  sequent  (S1,  S2),  the  sets  S1,  S2 could  contain 

arbitrary formulas, but, in a clause, S1, S2 are sets of atoms.

Sets (i.e. conjunctions) of clauses are called  clause forms (in some texts – 
clausal forms). By Theorem 5.3.1, every propositional formula can be reduced 
to a (possibly empty, i.e. true) CNF. Since every conjuction member of a CNF 
represents, in fact, a clause, we have established the following

Theorem  5.4.1.  In  the  classical  logic,  every  propositional  formula  can  be 
reduced to a clause form. More precisely, assume, the formula F is built of 
formulas B1, B2, ..., Bn by using propositional connectives only. Then there is 

a (possibly empty) clause form F' (i.e. a set of clauses) over B1, B2, ..., Bn such 

that [L1-L11, MP]: F ↔ conj(F'), where conj(F') denotes the conjunction of the 

clauses contained in the set F'.

For  example,  as  we  established  above,  the  set ¬ A∨B , B∨¬C (or, 
alternatively, A → B ,C → B )  is  a  clause  form  of  the  formula
(( A→ B)→C)→ B∧C .
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Exercise 5.4.2. Obtain clause forms of the formulas mentioned in the Exercise 
5.3.2.

Clause forms (in a sense, “clouds of simple disjunctions”) are well suited for 
computer processing. In the computer memory, every clause

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn

can be represented as a pair of sets of atoms:

(−{A1, A2, ..., Am}, +{B1, B2, ..., Bn}), 

and every clause form – as a set of such pairs – i.e. it means less character 
string processing and less expression parsing!

Clause Form of a Set of Formulas

In  the  knowledge  base,  the  set  of  formulas  F1,  F2,  ...,  Fk is  asserting  the 

conjuction F1∧F 2∧...∧F k .  Hence,  the  clause  form  of  this  set  can  be 
obtained simply as the union of clause forms of separate formulas Fi.

Clause Forms of Predicate Formulas

Of course (unfortunately),  if  we would insist  that  the clause form must  be 
equivalent  to  the  initial  formula,  then  nothing comparable  to  clause  forms 
could be obtained for predicate formulas. Still, reducing of predicate formulas 
to "clause forms" becomes possible, if we drop this requirement, and replace it 
by the requirement that the "clause form" must be satisfiable, if and only if the 
initial formula is satisfiable. And – if we allow Skolem style extending of the 
language by adding new object constants and new function constants.

Then, by Skolem's Theorem (Theorem 5.2.1), for each  closed formula F, we 
can obtain a Skolem normal form x∀ 1 x∀ 2... x∀ k G, where k≥0, the formula G 

does not contain quantifiers, and this form is satisfiable, if and only if so is F.

As the next step, by Theorem 5.3.1, let us convert G into a CNF, and then – 
into a clause form G', i.e into a set of clauses (with atomic sub-formulas of G 
playing the role of atoms B1, B2, ..., Bn). Since conj(G') is equivalent to G, the 

formula x∀ 1 x∀ 2... x∀ kconj(G') is satisfiable, if and only if so is F.

One  more  step  is  necessary to  separate  clauses  completely  –  renaming  of 
variables in such a way that no two clauses contain common variables. For 
the set of clauses G' = {C1, C2, ..., Ck}, the formula x∀ 1 x∀ 2... x∀ nconj(G') is 
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equivalent to the formula

(∀x1∀x2 ...∀xn C1)∧(∀x1∀x2 ...∀xnC 2)∧...∧(∀x1∀x2 ...∀xn C k ) .

According  to  the  Replacement  Theorem  3,  we  will  obtain  an  equivalent 
formula, if we will rename the variables xi in such a way that no two clauses 
contain common variables.

After this separation of clauses via renaming of variables, we can simply drop 
the quantifiers  entirely,  and the set  G'  is  then called a  clause form of  the 
formula F. For predicate formulas, clauses are built as disjunctions of atomic 
formulas  (without,  or  with  negation),  i.e.  the  formulas  having  the  form 

p (t 1,... , tm) , or ¬ p(t 1, ... , tm) , where p is a predicate constant, and t1, ..., 

tm are terms (possibly, containing variables).

Thus, we have proved the following

Theorem 5.4.2. Let L be a predicate language. There is an algorithm allowing 
to construct, for each closed formula F of this language, a clause form S, i.e. a 
finite set of clauses (in a language L' obtained from L by adding a finite set of 
new object constants and new function constants – depending on F, and no two 
closes containing common variables) such that F is satisfiable, if and only if so 
is the formula x∀ 1 x∀ 2... x∀ nconj(S), where conj(S) denotes the conjunction of 

the clauses contained in S, and x1, x2, ..., xn are all the variables appearing in 

these clauses.

Note. In most texts, the closed formula x∀ 1 x∀ 2... x∀ nconj(S) (i.e. where all the 

variables  appearing  in  conj(S)  are  universally  quantified)  is  called  the 
universal closure of conj(S). 

As an example, let us consider the formula asserting that there are infinitely 
many prime numbers:

prime ( x) : x> 1∧¬∃ y∃ z ( y> 1∧z> 1∧x= y∗z ) ,

∀u∃ x ( x> u∧prime ( x)) ,

∀u∃ x ( x> u∧x> 1∧¬∃ y∃ z ( y> 1∧ z> 1∧ x= y∗z )) (1)

Convert it into a prenex normal form:

∀u∃ x ( x> u∧x> 1∧∀ y∀z¬( y> 1∧z> 1∧x= y∗z)) ,

∀u∃ x∀y∀z (x> u∧x> 1∧¬( y> 1∧z> 1∧x= y∗z)) .

Replace u x by u by introducing a Skolem function g:∀∃ ∀
∀u∀ y∀z (g (u )> u∧g (u)> 1∧¬( y> 1∧z> 1∧g (u)= y∗z )) .

In this Skolem normal form, convert the quantifier-free part into a conjunctive 
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normal form:

∀u∀ y∀z (g (u)> u∧g (u)> 1∧(¬( y> 1)∨¬(z> 1)∨¬( g (u)= y∗z ))) .

This formula is satisfiable, if and only if so is the initial formula (1).

The last step: since the last formula is equivalent to the conjunction of three 
formulas:

∀u∀ y∀z (g (u )> u) , ∀u∀ y∀z (g (u )> 1) ,

∀u∀ y∀z (¬( y> 1)∨¬(z> 1)∨¬(g (u)= y∗z )) ,

we  can  rename  the  variables  in  such  a  way  that  no  two  clauses  contain 
common variables:

∀u1(g (u1)> u1) , ∀u2(g (u2)> 1) ,

∀u3∀ y∀z (¬( y> 1)∨¬( z> 1)∨¬(g (u3)= y∗z)) .

Thus, we have obtained a set of 3 clauses:

g (u1)> u1 ,
g (u2)> 1 ,

¬( y> 1)∨¬(z> 1)∨¬(g (u3)= y∗z) .

or, alternatively,

→ g (u1)> u1 ,
→ g (u2)> 1 ,

y> 1, z> 1, g (u3)= y∗z → .

These sets of 3 formulas are clause forms of the formula (1).

Exercise 5.4.3. Obtain clause forms of the formulas mentioned in the Exercise 
5.1.4 (assume that B, C, D, F are predicate constants).

Clause Form of a Set of Formulas

Knowledge bases are, as a rule, large sets of closed formulas F1, F2, ..., Fn, i.e., 

in fact, large conjunctions F1∧F 2∧...∧F n of closed formulas.  The clause 
form of  this  set  can be  obtained,  simply as  the  union of  clause  forms  of 
separate formulas Fi. However, each formula must be “kept separated” during 

the entire process:

a) when reducing to Skolem normal forms, the name of each new Skolem 
constant  and  Skolem  function  must  be  chosen  as  “completely  new”  with 
respect to the entire process (for details, see the end of Section 5.2);

b) when renaming clause variables, one must guarantee that no two clauses of 
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the entire process contain common variables.

Horn Clauses

Alfred Horn (1918-2001).

In, in a clause 

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ,

we have n=1 or n=0, then it is called Horn clause. I.e.,

A1∧A2∧...∧Am → B ,

or, alternatively,

¬ A1∨¬ A2∨...∨¬ Am∨B .

There are formulas that cannot be reduced to Horn clauses (verify).

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Horn+clause

The name "Horn Clause" comes from the logician Alfred Horn, who first  pointed out the 
significance of such clauses in 1951, in the article "On sentences which are true of direct  
unions of algebras", Journal of Symbolic Logic, 16, 14-21.

http://www.cs.ucsd.edu/users/goguen/courses/230/s11.html

As a footnote, Alfred Horn, for whom Horn clauses are named, had nothing to do with logic  
programming;  he  was  a  professor  of  logic  at  UCLA who in  1951 wrote  paper  using the 
sentences that now bear his name for reasons having little to do with computer science. As a 
second  footnote,  it  seems to  me  rather  misleading  to  call  Prolog  a  "logic  programming" 
language, since it departs rather far from logic; I would rather have had it called a "relational 
programming" language,  because  it  is  the  use  and  manipulation  of  relations  that  is  most  
characteristic of its programming style.

http://www.cs.fit.edu/¬ryan/study/bibliography.html

Horn, Alfred. ``On sentences which are true of direct unions of algebras.'' Journal of Symbolic 
Logic, volume 16, number 1, March 1951, pages 14-21. 

This paper has very little to do with Horn clauses. 

To be continued.

5.5. Resolution Method for Propositional Formulas

http://www.cs.fit.edu/~ryan/study/bibliography.html
http://www.cs.ucsd.edu/users/goguen/courses/230/s11.html
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?Horn+clause
http://en.wikipedia.org/wiki/Horn_clause
http://en.wikipedia.org/wiki/Alfred_Horn
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Warning! The principal results of this Section are valid only for the classical 
logic!

Remember, that we are solving the problem of determining, does the formula 
G follow from the formulas   F1, F2,  ..., Fn. If does so, if and only if the set of 

formulas  F1,  F2,   ...,  Fn,  ¬G is  unsatisfiable.  Assume,  we have obtained a 

clause  form  S  of  the  formula F1∧F2∧...∧F n∧¬G .   Then  S  is 
unsatisfiable, if and only if so is the set F1, F2,  ..., Fn, ¬G. How to determine, 

is  S  unsatisfiable,  or  not?  In  a  sense,  S  represents  “a  cloud  of  simple 
disjunctions”. How to work with such a cloud effectively?

History

J. A. Robinson.  Theorem-proving on the computer. "Jour. Assoc. Comput. Mach.", vol.10, 
N2, 1963, pp.163-174

J. A. Robinson.  A machine-oriented logic based on the resolution principle,  "Jour.  Assoc. 
Comput. Mach.", vol.12, N1, January 1965, pp.23-41 (available online, Russian translation 
available: "Kib. sbornik (novaya seriya)", 7, 1970, pp.194-218)

John Alan Robinson:  "Born in Yorkshire in 1930, Robinson came to the United States in 
1952  with  a  classics  degree  from  Cambridge  University.  He  studied  philosophy  at  the 
University of Oregon before moving to Princeton where he received his PhD in philosophy in 
1956.  Temporarily  ``disillusioned  with  philosophy,``  he  went  to  work  as  an  operations 
research analyst for Du Pont, where he learnt programming and taught himself mathematics.  
Robinson moved to Rice University in 1961, spending his summers as a visiting researcher at 
the Argonne National Laboratory's Applied Mathematics Division. Its then Director, William 
F. Miller, pointed Robinson in the direction of theorem proving...

Miller showed Robinson a 1960 paper by Martin Davis and Hilary Putnam (coincidentally, the 
latter had been Robinson's PhD supervisor) proposing a predicate-calculus proof procedure 
that  seemed  potentially  superior  to  Gilmore's,  but  which  they  had  not  yet  turned  into  a 
practical  computer program. Miller suggested that Robinson use his programming skills to 
implement Davis and Putnam's procedure on the Argonne IBM 704. Robinson quickly found 
that  their  procedure  remained  very  inefficient.  However,  while  implementing  a  different 
procedure also suggested in 1960 by Dag Prawitz, Robinson came to see how the two sets of 
ideas could be combined into a new, far more efficient, automated proof procedure for first-
order predicate logic: "resolution"..." (According to  Donald MacKenzie, The Automation of 
Proof: A Historical and Sociological Exploration, "IEEE Annals of the History of Computing", 
vol.17, N3, 1995, pp. 7-29).

"In  retrospect,  unification  and resolution  seem rather  obvious  ideas,  which 
arise  inevitably when one asks  what  must  be syntactically true of  a  set  of 
clauses  which  possesses  the  semantic  property  of  having  no  Herbrand 
models."

(J.A.Robinson,  "Unification  and  Resolution  in  Retrospect",  1997,  see  at  http://www.univ-
orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html).

Note. Almost  at  the same time when J.A.Robinson invented the resolution 

http://www.univ-orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html
http://www.univ-orleans.fr/SCIENCES/LIFO/Manifestations/Jfplc_Unif_97/jfplc/invite-francais.html
http://www.computer.org/annals/
http://www.sps.ed.ac.uk/staff/mackenzie.html
http://en.wikipedia.org/wiki/John_Alan_Robinson
http://portal.acm.org/citation.cfm?doid=321250.321253
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method,  Sergei  Maslov invented  his  inverse  method,  which  has  a  similar 
range of applications:

S. Yu.  Maslov.  An inverse method of  establishing deducibilities in  the classical  predicate 
calculus, "Soviet Mathematics, Doklady", 1964, N5, pp.1420-1423. 

See also: Maslov S. Y. (1939-1982), human rights activist in ENCYCLOPAEDIA OF SAINT 
PETERSBURG. 

About the history of the problem see:

J. A. Robinson. Computational Logic: Memories of the Past and Challenges for the Future. 
Computational Logic – CL 2000, First International Conference, London, UK, 24-28 July,  
2000, Proceedings, Springer, Lecture Notes in Computer Science, 2000, Vol. 1861, pp. 1-24 
(online copy).

M. Davis. The Early History of Automated Deduction.In: Handbook of Automated Reasoning, 
ed.  by  A.  Robinson  and  A.  Voronkov,  Elsevier  Science,  2001,  vol.  I,  pp.  3-15  (online 
postscript)

The Method

Again, how to work with “a cloud of simple disjunctions” effectively?

Assume that, in a set of clauses, two clauses are contained such that an atom C 
appears as a positive member in the first clause, and as a negative member in 
the second one:

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn∨C , (1)

¬C∨¬ D1∨¬ D2∨...∨¬ D p∨E1∨E2∨...∨Eq , (2)

or, simply,

F∨C , (1a)

¬C∨G . (2a)

If C is false, then (1a) yields F, and, if C is true, then (2a) yields G. Thus, from 
(1a)  and  (2a)  we  have  derived F∨G .  I.e.  deriving  of F∨G from

F∨C and ¬C∨G is  "logically  correct",  and  it  is  called  Robinson's 
Resolution rule (J.A.Robinson proposed it in the above 1963 paper):

F∨C ,¬C∨G
F∨G

.

Taking into account the rule (of the classical logic) ¬ A∨B ↔(A→ B) , we 
can obtain an alternative form of the Resolution rule:

¬F →C ,C →G
¬F →G

.

In  the  classical  logic,  this  form  is  equivalent  to  the  Law  of  Syllogism 

http://cs.nyu.edu/cs/faculty/davism/early.ps
http://www.voronkov.com/
http://en.wikipedia.org/wiki/Martin_Davis
http://www.computational-logic.org/iccl/downloads/Robinson-CL2000.pdf
http://www.encspb.ru/en/
http://www.encspb.ru/en/
http://www.encspb.ru/en/article.php?kod=2804023792
http://www.mathsoc.spb.ru/pers/maslov/
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(transitivity of implication).

If F is empty, then this form derives G from C, C→G, i.e.  Resolution rule 
includes Modus Ponens as a special case.

If G is empty, then from ¬ F∨C ,¬ C  (i.e. F→C, ¬C), the Resolution rule 
derives ¬F, i.e. it includes Modus Tollens as a special case.

Exercise 5.5.1. Derive the Resolution rule in the constructive logic, i.e. prove 
that  [L1-L10,  MP]: C∨F ,¬C∨G ⊢ F∨G .  Verify  that  it  cannot  be 

proved in the minimal logic [L1-L9,  MP].  (Hint:  in  the positive part  – use 

Theorem 2.5.1(b) [L1, L2, L8, L10, MP]: F∨C ,¬C ⊢ F . In the negative 

part – verify that in the minimal logic, the Resolution rule allows proving of 
L10, see Section 2.5).

Thus, from the clauses (1) and (2), Robinson's Resolution rule allows deriving 
of the following clause:

¬ A1∨¬ A2∨...∨¬ Am∨¬ D1∨¬ D2∨...∨¬ Dp∨B1∨B2∨...∨Bn∨E1∨E 2∨...∨Eq

At first glance, this approach leads to nothing, because this formula seems to 
be much longer than (1), and than (2). Still, this is not 100% true, because, 
additionally,  we  can  reduce  the  repeating  atoms,  and,  finally,  the  set  of 
different atoms, used in a clause form, is fixed! If, in our set of clauses, there 
are  N  different  atoms,  then  none  of  the  clauses  (initial,  or  generated  by 
resolution) will contain more than N atoms (each with or without negation). 
And  the  total  number  of  different  clauses  will  never  exceed  3N (missing,  
without negation, with negation). Thus, repeated applications of the Resolution 
rule will "rotate" within this restricted "search space".

The  smart  idea  behind  Robinson's  Resolution  rule  is  as  follows:  it  is  a 
universal tool for deriving contradictions from inconsistent sets of clauses! 
No other axioms and rules of inference are necessary! More precisely, it  is 
universal, if used together with the following trivial rules of inference:

F∨C∨D∨G
F∨D∨C∨G

(permutation),

F∨C∨C∨G
F∨C∨G

 (reduction).

The permutation  rule  allows arbitrary reordering  of  atoms in  a  clause  (for 
example, moving C to right, and moving ¬C to left). The reduction rule allows 
reduction of repeating identical atoms.

Exercise 5.5.2. Derive these inference rules in the minimal logic [L1-L9, MP].

Theorem 5.5.1 (J. A. Robinson). In the classical propositional logic [L1-L11, 
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MP],  a  finite  set  of  propositional  clauses  is  inconsistent,  if  and  only  if 
Robinson's  Resolution  rule  (together  with  permutation  and reduction rules) 
allows for deriving of a contradiction from it.

Note. In some other texts, this fact is called "the refutation-completeness of 
the Resolution rule" for the propositional logic.

Proof. 1. As you have proved in the Exercises 5.5.1 and 5.5.2, all the formulas, 
derived from a  set  of  formulas  K1,  K2,  ...  ,  Ks by using  the  Permutation, 

Resolution and Reduction rules are consequences of K1, K2, ... , Ks. Hence, if 

these rules allow deriving a contradiction from this set of formulas, then it (the 
set) is inconsistent.

2. Now, let us assume that a set of propositional clauses K1, K2, ... , Ks is 

inconsistent, i.e. a contradiction A∧¬ A  can be derived from it:

[L1-L11, MP]: K1, K2, ... , Ks ⊢ A∧¬ A .

Then, under the classical truth tables, the conjunction K1∧K2∧...∧K s takes 
only false values (verify!). Let us mark one of the atoms (the atom C) in it. Let 
us denote:

- by C∨F i – the clauses containing C without negation, 

- by ¬C∨G j – the clauses containing C with negation, 

- by Hk – the clauses that do not contain C.

All  the  formulas  Fi,  Gj,  Hk are  disjunctions  of  atoms  (with  or  without 

negations) that do not contain the atom C.

Thus K 1∧K2∧...∧K s is equivalent to

conj(C∨F i)∧conj(¬ C∨G j)∧conj(H k ) .  (4)

Let us apply (the strange) one of the distribution rules (Theorem 2.3.1):

 [L1-L8, MP]  ⊢ (A∧B)∨C ↔(A∨C )∧(B∨C ) .

Hence, K1∧K2∧...∧K s is equivalent to

(C∨conj(F i))∧(¬C∨conj(G j))∧conj (H k ) .

If  C is  false,  then this  formula is  equivalent to conj( F i)∧conj (H k ) ,  i.e.
conj( F i)∧conj (H k ) takes  only  false  values.  If  C  is  true,  then  it  is 

equivalent  to conj (G j)∧conj (H k ) ,  i.e. conj (G j)∧conj (H k ) takes  only 
false values. Thus the disjunction

(conj (F i)∧conj(H k))∨(conj(G j)∧conj (H k )) (5)



210

also  takes  only false  values.  Now, let  us,  apply (the  "normal")  one of  the 
distribution rules (Theorem 2.3.1):

[L1-L8, MP] ⊢ (A∨B)∧C ↔(A∧C)∨(B∧C) ,

obtaining that (5) is equivalent to

(conj (F i)∨conj(G j))∧conj(H k ) . (6)

I.e. this formula also takes only false values. And – important note! – it does 
not contain the atom C.

Finally,  by  applying,  again,  (the  strange)  one  of  the  distribution  rules 
(Theorem  2.3.1)  we  can  conclude  that  (6)  is  equivalent  to

conj (conj( F i∨G j))∧conj( H k ) , i.e. to the set of clauses F i∨G j and Hk 
(where i, j, k run over their initial ranges). 

What  does  this  achievement  mean?  If  the  set  of  propositional  clauses  K1, 

K2,  ...  ,  Ks is  inconsistent,  then  there  is  a  set  of  clauses F i∨G j and Hk 
(where i, j, k run over their initial ranges), which is inconsistent as well, but 
which contains one atom less than K1, K2, ... , Ks.

Now, imagine, that, in the clause form (4), we have applied the Resolution rule 
for  the  atom  C in  all  the  possible  ways (before  applying,  apply  the 
permutation rule to reorder atoms moving C to right, and ¬C – to left):

F i∨C ,¬C∨G j

F i∨G j
.

After this, apply the permutation and reduction rules to reduce identical atoms. 
In this way we have obtained exactly the above-mentioned inconsistent set of 
clauses F i∨G j and Hk (where i, j, k run over their initial ranges).

Thus, if some set of propositional formulas K1, K2, ... , Ks is inconsistent, then 

the Resolution rule (togeher with the permutation and reduction rules) allows 
to  derive  from it  another  inconsistent  set  of  propositional  formulas,  which 
contains one atom less.

By iterating this process, at the end of it, we will have an inconsistent set of 
propositional formulas built of a single atom B. In a clause form, there can be 
only one such set – the set B, ¬B. This set represents a contradiction.

Q.E.D.

As an example, let us use Robinson's Resolution rule to prove that

B∨C , C → B , B → D ⊢ B∧D .

Let  us  add ¬(B∧D) to  the  premises B∨C ,C →B , B → D .  We  must 
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prove that  this  set  of  4  formulas  is  inconsistent.  First,  let  us  obtain clause 
forms:

B∨C in clause form is B∨C ,

C → B in clause form is ¬C∨B ,

B → D in clause form is ¬ B∨D ,

¬(B∧D) is equivalent to ¬ B∨¬ D .

Now,  let  us  apply  resolution  to  derive  a  contradiction  from this  set  of  4 
clauses: BvC, ¬CvB, ¬BvD, ¬Bv¬D:

From B∨C , ¬ C∨B we derive B, and have now 5 clauses:

B∨C ,¬C∨B ,¬ B∨D ,¬ B∨¬ D , B .

From ¬ B∨D ,¬ B∨¬ D we derive ¬B, and have now 6 clauses:

B∨C ,¬C∨B ,¬ B∨D , ¬ B∨¬ D , B ,¬ B .

We have derived a contradiction: B, ¬B. This proves that the formula B∧D  
follows from B∨C , C → B , B → D . Q.E.D.

Exercise 5.5.3. Use the Resolution rule to prove the following:

a) A→B, ¬A→B  B.⊢
b) (A→B)→A  A (Peirce's Law).⊢
c) B→(C→D), B→C  B→D (Axiom L⊢ 2).

d) B→D, C→D ⊢ B∨C → D . (Axiom L8).

e) A∨B∨C , B → A∨C , A→ C  C.⊢

From a Programmer's Point of View

Of course, when implementing the Resolution rule in a computer program, we 
do not need decorations like the permutation and reduction rules. In a program, 
we will  represent  each  clause ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn as  a 
pair of sets: negative atoms, N = {A1, A2, ... , Am}, and positive atoms, P = 

{B1, B2, ... , Bn}. Of course, the sets N, P do not intersect (if they do, then this 

clause contains ¬C∨C∨... , i.e. it can be dropped as "non-informative").

Resolution rule (non-refined version). If there are two clauses N1, P1 and 

N2, P2 such that P1 and N2 (or N1 and P2) contain a common atom C, then we 

can derive the clause N 1∪N 2−{C } ,P1∪P2−{C } .

Of course,  the set  union operation includes reduction of identical members 
automatically.
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The condition "P1 and N2 (or N1 and P2) contain a common atom C" can be 

expressed as C∈(P1∩N 2)∪(P2∩N 1) .

If,  in  the  resulting  clause,  the  sets N 1∪N 2−{C }, P1∪P2−{C } intersect, 
then we should ignore such result. Fortunately, this can be detected in advance. 
Indeed,

(N 1∪N 2)∩(P1∪P2)
= (N 1∩P1)∪( N 1∩P2)∪(N 2∩P1)∪(N 2∩P2) =

(P1∩N 2)∪(P2∩N 1) ,

because N 1∩P1 , N 2∩P2 are empty sets.  The set (P1∩N 2)∪(P2∩N 1) is 
exactly the set of all atoms C allowing application of the Resolution rule to 
clauses N1, P1 and N2, P2. Hence, the sets N 1∪N 2−{C }, P1∪P2−{C } will 

not  intersect,  if  and only if  the set (P1∩N 2)∪(P2∩N 1) contains exactly 
one atom C, i.e., if and only if there is exactly one atom allowing application 
of the Resolution rule.

Resolution rule (refined version). If there are two clauses N1, P1 and N2, P2 

such that the set (P1∩N 2)∪(P2∩N 1) contains exactly one atom C, then we 
can derive the clause N 1∪N 2−{C }, P1∪P2−{C } .

Now, let us try to design a program implementing the last step of "proving by 
resolution" – suppose, we have already the initial list of clauses, and we wish 
to apply the Resolution rule trying to derive a contradiction.

The main data storage will be a growing list of clauses (the main list):

(N1, P1), (N2, P2), ..., (Nk, Pk), ...

It will start as the initial list, and each application of the Resolution rule will 
append a new clause to it.

To guarantee a success, we must apply the Resolution rule in all the possible 
ways, i.e. we must scan all pairs of clauses (Ni, Pi)(Nj, Pj), where i = 1, 2, ...; j 

=  i+1,  i+2,  ...  To  achieve  this,  let  us  use  the  following  pair  enumeration 
process: 

(N1, P1)(N2, P2) – first, scan all pairs (i, j) with j=2, i<j.

(N1, P1)(N3, P3), (N2, P2)(N3, P3) – after this, scan all pairs (i, j) with j=3, i<j.

(N1, P1)(N4, P4), (N2, P2)(N4, P4), (N3, P3)(N4, P4) – after this, scan all pairs 

(i, j) with j=4, i<j.

Etc.

The process will stop, when we will arrive at the level j, and the main list will 
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contain less than j (in fact, j-1) clauses. For a set of n atoms, there are only 3n 

different  clauses.  For  example,  for  two  atoms  A,  B,  there  are  9  different 
clauses: ¬ A∨¬ B ,¬ A∨B , A∨¬ B , A∨B ,¬ A , A ,¬ B ,B ,  and  the  empty 
clause (representing contradiction). I.e., if we will prohibit duplicate clauses in 
the main list, then our process will always stop.

Thus, the following pseudo-code will do (no string processing, no expression 
parsing necessary!):

function propositional resolution (initial list) { of clauses }
begin
if initial list contains contradiction then return TRUE { contradiction found }
main list = eliminate duplicates (initial list)
for j = 2 by 1
begin
- if count (main list) < j then return FALSE { no contradiction derived }
- else
- for i = 1 to j−1 by 1
-- { consider i-th and j-th clauses in the main list: (Ni, Pi), (Nj, Pj) }

-- if (N i∩P j)∪(P i∩N j) contains exactly one element C then
-- begin
--- {apply resolution}
--- if ( N i∪N j−{C }, P i∪P j−{C } ) not in main list then
--- begin
---- add it to main list
---- if main list contains contradiction then return TRUE { contradiction 
derived }
-- end
--- end
end
end

Exercise  5.5.4 (optional). Develop  a  computer  program  implementing  the 
above pseudocode.

Note. See my version of such a program in C++: header file, implementation).

Warning!

Despite its beauty, resolution method cannot overcome the general complexity 
problem, mentioned at the end of  Section 4.2: in the classical propositional 
logic, the task of reasoning is “co-NP-complete”.  And a closer analysis shows 
that, in the worst possible case, given a set of formulas of total length n, the 
time  required  by  resolution  method  will  be  exponentional  –  about 2Cn

seconds. But in many practical situations, experience shows that resolution 
method  solves  its  task,  and  –  in  acceptable  time.  In  particular,  Prolog 

http://en.wikipedia.org/wiki/Prolog
http://podnieks.id.lv/mlog/kp_resolc.txt
http://podnieks.id.lv/mlog/kp_resolh.txt
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interpreters  are  using  resolution,  and  are  solving  many  practical  tasks  in 
acceptable time!

5.6. Herbrand's Theorem

Warning! The principal results of this Section are valid only for the classical 
logic!

Jacques Herbrand (1908-1931) "... After leaving Göttingen, Herbrand decided 
on a holiday in the Alps before his intended return to France. However he was 
never to complete his plans for he died in a mountaineering accident in the 
Alps only a few days after his holiday began. His death at the age of 23 in one 
of  the  tragic  losses  to  mathematics."  (according  to  MacTutor  History  of 
Mathematics archive).

Herbrand proved his famous theorem in 1929:

J.Herbrand. Recherches  sur  la  théorie  de  la  démonstration.  Ph.D.  Thesis, 
University of Paris, 1930 (approved in April 1929).

Unlike the proof presented below, the original proof of Herbrand's Theorem 
does  not  depend  on  Gödel's  Completeness  Theorem  (or  Model  Existence 
Theorem). Herbrand completed his Ph.D. thesis  in 1929. In the same 1929 
Gödel  completed  his  doctoral  dissertation  about  completeness  (see  Section 
4.3).  In  fact,  Herbrand's  method  allows  proving  of  Gödel's  Completeness 
Theorem, but he (Herbrand) "did not notice it". Why? See

Samuel R. Buss.  On Herbrand's Theorem.  "Lecture Notes in Computer Science", Vol.960, 
1995, Springer-Verlag, pp.195-209 (available online).

The  flavour  of  this  famous  theorem can  be  best  presented  in  its  simplest 
version. In this version, F(x) is a quantifier-free formula containing only one 
variable x. Then, Herbrand's Theorem says: 

The formula xF(x) is logically valid, if and only if there is a finite set of∃  
constant  terms  t1,  ...,  tn such  that  the  disjunction F ( t1)∨...∨F (t n) is 

logically valid.

Or, equivalently (via Gödel's Completeness Theorem),

The formula xF(x) is provable in the classical logic, if and only if there is a∃  
finite  set  of  constant  terms  t1,  ...,  tn such  that  the  disjunction 

F ( t1)∨...∨F (t n) is provable in the classical logic.

As we will see in the proof, Herbrand's Theorem is "caused" by the simple 

http://math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html
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"fact" that in any proof of xF(x) only a finite set of terms could be used.∃
Now, more precisely.

Let L be a predicate language, containing at least one object constant, and let F 
be a quantifier-free formula.

Idea #1 (author?). The formula p (c1)∧q(c2 , f (x )) is quantifie-free (c1, c2 
are object constants, f – a function constant, p, q – predicate constants). In a 
sense, any "closed" interpretation domain for this formula must contain objects 
denoted by the terms c1, c2, f(c1), f(c2), f(f(c1)), f(f(c2)),...

So, let us define the so-called Herbrand's universe of the formula F (let us 
denote it by HUF) as the minimum set of all constant terms such that:

a) If c is an object constant occurring in F, then c is in HUF.

b)  If  F does not contain object  constants,  then one of the constants of the 
language L is in HUF.

c) If terms t1, ..., tk are in HUF, and f is a k-ary function constant occurring in 

F, then the term f(t1, ..., tk) is in HUF.

Exercise 5.6.1. Verify that HUF is a non-empty finite or countable set (provide 

an algorithm generating the members of HUF).

Theorem 5.6.1 (Herbrand's Theorem – the simplest case). Let L be a predicate 
language, containing at least one object constant, and let F(x) be a quantifier-
free formula containing only one free variable x. Then the formula xF(x) is∃  
logically valid (i.e. provable in the classical predicate logic), if and only if 
there is  a  finite  set  of  terms t1,  ...,  tn from HUF such  that  the disjunction

F ( t1)∨...∨F (t n) is logically  valid (i.e.  provable  in  the  classical 
predicate logic).

Proof.  Let  us  assume  the  contrary  –  that  none  of  the  disjunctions
F ( t1)∨...∨F (t n) is logically valid (ti-s are terms from HUF). Idea #2 – then 

the following theory T is consistent:

T = { ¬F(t) | t is a term from HUF}.

Indeed, if  T would be inconsistent, then there would be a T-proof of some 
formula B&¬B. In this proof, only a finite set of the axioms ¬F(t) would be 
used, i.e. for some terms t1, ..., tn from HUF: 

[L1-L15, MP, Gen]: ¬F(t1), ..., ¬F(tn) ⊢ B∧¬ B .

Hence, by Deduction Theorem 2 (it is applicable here, because F(x) contains 
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only one free variable, and ti-s are constant terms, i.e. every ¬F(ti) is a closed 

formula): 

[L1-L15, MP, Gen]: ⊢ ¬ F (t 1)∧...∧¬ F (t n)  → B∧¬ B ,

[L1-L15, MP, Gen]:  ⊢ ¬(F ( t1)∨...∨F (t n))  → B∧¬ B ,

and thus,

[L1-L15, MP, Gen]: ⊢ F ( t1)∨...∨F (t n) .

I.e., F ( t1)∨...∨F (t n) is  logically  valid.  This  contradicts  our  assumption, 
that none of the disjunctions F ( t1)∨...∨F (t n) is logically valid. Hence, T is 
a consistent theory.

Idea #3 – if T is consistent, then, by the Model Existence Theorem, there is a 
model J of T. In this model, all the axioms of T are true, i.e. so are all the 
formulas ¬F(t) with t from the set HUF.

Idea #4 – let us restrict the domain of the model J to those elements of it, 
which are interpretations of terms from the set HUF,  and let  us restrict  the 

entire interpretation correspondingly. Let us denote this new interpretation by 
J1. Then,

a) All the formulas ¬F(t) (with t from the set HUF) are true in J1. Indeed, ¬F(t) 

contains only constant terms from HUF (idea #1 working!), and all of them 

have the same interpretations in J1 that they had in J. Thus, if ¬F(t) was true in 

J, it remains true in J1.

b) Hence, the formula x¬F(x) is true in J∀ 1 (because the domain of J1 consists 

only of those elements, which are interpretations of terms from the set HUF).

c) Hence, the formula xF(x) is false in J∃ 1.

This contradicts the logical validity of xF(x).∃
Q.E.D.

Exercise  5.6.2. Repeat  the  above  proof,  proving  a  more  general  form  of 
Herbrand's Theorem:

Theorem 5.6.2 (Herbrand's Theorem – the simplest case). Let L be a predicate 
language, containing at least one object constant, and let F(x1, ..., xm) be a 

quantifier-free  formula  containing  only  m  free  variables  x1,  ...,  xm.  The 

formula x∃ 1... x∃ mF(x1, ..., xm) is logically valid, if and only if there is a finite 



217

set  of  m-tuples  tt1,  ...,  ttn of  terms  from  HUF such  that  the  disjunction

F ( tt1)∨...∨F (tt n) is logically valid.

As you verified it in the Exercise 4.1.1, any formula G is logically valid, if and 
only if ¬G is unsatisfiable. Thus, x∃ 1... x∃ mF(x1, ..., xm) is logically valid, if 

and  only  if  x∀ 1... x∀ m¬F(x1,  ...,  xm)  is  unsatisfiable.  On  the  other  hand,

F ( tt1)∨...∨F (tt n) is  logically  valid,  if  and  only  if 
¬ F (tt1)∧...∧¬ F (ttn) is unsatisfiable. Now, let us replace F by ¬F, and we 

have proved 

Theorem 5.6.3 (Herbrand's Theorem – a more useful alternative form). Let L 
be  a  predicate  language,  containing  at  least  one  object  constant,  and  let 
F(x1,  ...,  xm)  be a  quantifier-free formula containing only m free variables 

x1,  ...,  xm.  The  formula  x∀ 1... x∀ mF(x1,  ...,  xm)  is  unsatisfiable (i.e. 

inconsistent  in the classical logic), if and only if there is a finite set of m-
tuples  tt1,  ...,  ttn of  terms  from  HUF such  that  the  conjunction 

¬ F (tt1)∧...∧¬ F (ttn) is  unsatisfiable (i.e. inconsistent in  the  classical 
logic).

Note. As you verified it in the Exercise 4.3.6, a set of formulas is inconsistent 
in the classical logic, if and only if it is unsatisfiable.

Why is this form "more useful"? Let us try applying this form of Herbrand's 
Theorem to sets of formulas in clause form.

1) The "meaning"of any set of closed formulas F1, ... , Fk is represented by 

their conjunction F1∧...∧F k .

2)  A clause  is  any disjunction  of  atomic  formulas  or  their  negations.  For 
example, ¬ p(c1)∨p (c2)∨q (x , f ( y )) ,  or p (x )∨¬ q( y , f ( z)) .  The 
"meaning" of a set of clauses is  represented by their  universally quantified 
conjunction. For example,

 ∀x∀y∀ z ([¬ p (c1)∨ p(c2)∨q( x , f ( y))]∧[ p( x)∨¬ q ( y , f (z ))]) .

3) As we know from the previous Section 5.4, the set F1, ... Fk can be reduced 

to  a  clause  from,  i.e.  there  is  a  set  of  clauses  S  such  that  F1,  ...  ,  Fk is 

unsatisfiable, if and only if S is unsatisfiable.

Now, let us apply the above form of Herbrand's Theorem (Theorem 5.6.3). If S 
contains m variables (of course, all of them are universally quantified), then S 
is unsatisfiable, if and only if there is a finite set of m-tuples tt1, ..., ttn of terms 

from HUS such that the conjunction S (tt1)∧...∧S ( ttn) is unsatisfiable.
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If we take a clause from S, and substitute some terms from HUS for all its 

variables, then we obtain a (so-called) ground clause of S. For example, if 

S = { ¬ p(c1)∨p (c2)∨q( x , f ( y)) ; p (x )∨¬ q( y , f (z )) },

then the substitution { c1 / x; c2 / y; f(c2) / z } yields the following two ground 

clauses:

¬ p(c1)∨ p (c2)∨q ( f (c1) , f (c2)) ,

p (c1)∨¬ q (c2, f ( f (c2))) .

Of  course,  the  conjunction S (tt1)∧...∧S (tt n) is  a  set  of  ground  clauses. 
Thus, if S is unsatisfiable, then there is an unsatisfiable finite set of ground 
clauses of S. And conversely?

If there is an unsatisfiable finite set C = {C1, ..., Cn} of ground clauses of S, 

then each Ci is generated by some substitution, which can be represented as an 

m-tuple tti of terms from HUS. If {C1, ..., Cn} is unsatisfiable, then {S(tt1), ..., 

S(ttn)}  –  as  a  super-set  of  the  former,  is  unsatisfiable,  too  ("even  more 

unsatisfiable").

Now, if S would be satisfiable, then (because all the variables of S are meant 
universally  quantified)  so  would  be  the  formula S (tt1)∧...∧S (tt n) . 
Contradiction. 

Thus, we have proved another form of Herbrand's Theorem.

Theorem 5.6.4 (Herbrand's Theorem – the most useful form. Author – Herbert 
B.Enderton?). Let L be a predicate language, containing at least one object 
constant, and let F1, ..., Fk be a set of closed formulas in L. Then this set is 

unsatisfiable, if and only if its clause form allows an unsatisfiable finite set 
of ground clauses.

Why is  this  form  "the  most  useful"?  Because  (let  us  ignore  performance 
problems), 

a) The clause form of F1, ..., Fk is a finite set S, generated by a simple (but a 

very slow) algorithm (see Sections 5.1-5.4).

b)  Herbrand's  universe  HUS is  a  finite  or  infinite  set  of  constant  terms, 

generated by a simple algorithm (see Exercise 5.6.1).

c) Thus, all the possible finite sets of ground clauses of S can be generated by 
a simple combination of the above two algorithms.

d) Unsatisfiability of each finite set of ground clauses can be detected by a 
simple (but a very slow) algorithm (see Lemma 5.6.5 below).

http://en.wikipedia.org/wiki/Herbert_Enderton
http://en.wikipedia.org/wiki/Herbert_Enderton
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Thus, we have here a  simple algorithm (but a very slow one)  for checking 
provability in the classical predicate logic.

Lemma 5.6.5. A finite set of ground clauses is unsatisfiable, if and only if the 
conjunction of these clauses is unsatisfiable under the classical truth tables.

Proof. In the above example of ground clauses: 

¬ p(c1)∨p (c2)∨q( f (c1) , f (c2)) ,

p (c1)∨¬ q (c2, f ( f (c2))) ,

we have 5 different atoms: p(c1), p(c2), q(f(c1), f(c2)), q(c2, f(f(c2))). Let us 

denote  these  atoms  by  Q1,  Q2,  Q3,  Q4.  Thus  we  obtain  the  following 

propositional formula

(¬Q1∨Q2∨Q3)∧(Q1∨¬ Q4) .

1. If this formula cannot be satisfied under the classical truth tables, then we 
cannot  assign  truth  values  to  predicates  p,  q  in  a  way  making  all  the 
corresponding clauses true. I.e. then the corresponding set of ground clauses 
also cannot be satisfied. Q.E.D.

2. If this formula can be satisfied under the classical truth tables, then we can 
find a truth value assignement making it true, for example:

Q1=false (this makes the first disjunction true),

Q4=false (this makes the second disjunction true).

Now, we can define the following interpretation J making the corresponding 
ground clauses true:

DJ = { c1, c2, f(c1), f(c2), f(f(c2) } (the set of all terms appearing in the clauses, 

i.e. a subset of the Herbrand universe);

p(c1)=false, q(c2, f(f(c2))=false (these assignements make both ground clauses 

true).

All the other truth values are irrelevant, so, we can define them, for example, 
as follows:

p(c2)=true, p(f(c1))=true, p(f(c2))=true, p(f(f(c2))=true;

q(x, y)=true, if x is not c2, or y is not f(f(c2).

Q.E.D.

...

To be continued.
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...

Further reading:

Michael Genesereth. Computational Logic (see at

http://logic.stanford.edu/classes/cs157/2005fall/cs157.html).

5.7. Resolution Method for Predicate Formulas

Warning! The principal results of this Section are valid only for the classical 
logic!

If we are interested only in deriving contradictions from inconsistent sets of 
formulas,  then  we  can  note  that  a  set  of  closed  predicate  formulas  is 
inconsistent (i.e. allows deriving a contradiction in the classical logic), if and 
only if  the  conjunction  of  these  formulas  is  unsatisfiable  (Exercise  4.3.6). 
Thus, instead of the initial set, we can analyze the set of clause forms of these 
formulas. Indeed, if we derive a contradiction from the set of clause forms, 
then this set is unsatisfiable, i.e., by Theorem 5.4.2, so is the initial set, and 
hence,  the  initial  set  is  inconsistent.  And  conversely,  if  the  initial  set  of 
formulas is consistent, then it is satisfiable, i.e. so is the set of clause forms, 
i.e. we will be not able to derive a contradiction from it.

The  next  step  forward  –  in  clause  forms,  we  can  drop  all  the  universal 
quantifiers.  Indeed,  if  we  derive  a  contradiction  from  a  set  universally 
quantified clause forms, then we can derive it from the corresponding non-
quantified set (we can apply the Gen inference rule F(x)  xF(x) to obtain the⊢∀  
quantified forms from the non-quantified ones). And conversely, if we derive a 
contradiction from a set of non-quantified clause forms, then we can derive it 
from  the  corresponding  universally  quantified  set  (apply  the  Axiom  L12: 

xF(x) → F(x) to obtain non-quantified forms from the quantified ones).∀
After dropping quantifiers, sets of clause forms become simply sets of clauses 
(conjunction of conjunctions is equivalent to a "joint" conjunction).

Thus, we can concentrate on sets of clauses that do not contain quantifiers, like 
as the one obtained in Section 5.4:

→ g (u1)> u1 ,
→ g (u2)> 1 ,

y> 1, z> 1, g (u3)= y∗z → .

Note  that  clauses  consist  of  atomic formulas  only,  and no  two  clauses 

http://logic.stanford.edu/classes/cs157/2005fall/cs157.html
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contain common variables. Thus, clauses are completely separated, and this 
separation will greatly simplify processing of clauses by means of substitution 
(see below).

Will  the  Robinson's  Resolution  rule  remain  a  universal  tool  for  deriving 
contradictions also from inconsistent sets of predicate formulas (i.e.  sets of 
non-quantified clauses, consisting of atomic formulas)?

Let us imagine,  we have derived the following two formulas (p is  a unary 
predicate constant, 0 – an object constant):

p (x1)∨F ( x1 , y1) , ¬ p(0)∨G (x2 , y2) .

To apply the Robinson's Resolution rule, we must first, in p(x1), substitute 0 

for x1:

p (0)∨F (0, y1) , ¬ p(0)∨G (x2 , y2) .

Now, we can apply the Resolution rule, obtaining the formula

F (0, y1)∨G( x2 , y2) .

Surprisingly, this simple idea of "unification by substitution" is sufficient to 
make Robinson's Resolution rule a universal tool for deriving contradictions 
also  from  inconsistent  sets  of  predicate  formulas!  And,  in  general,  the 
necessary  substitutions  are  not  much  more  complicated  than  in  the  above 
simplest example.

Note. In fact, unification is a very general phenomenon in human and computer reasoning – it  
appears as one of the main components in deductive, inductive and analogical reasoning as 
well. More – at the end of this Section.

The substitution rule allows, in some clause C, replacing of all occurrences of 
some variable x by any term t.

Theorem 5.7.1 (J. A. Robinson). In the classical predicate logic [L1-L11, L12-

L15,  MP,  Gen],  a  set  of  predicate  clauses  is  inconsistent,  if  and  only  if 

Robinson's  Resolution  rule (together  with  permutation,  reduction  and 
substitution rules) allows deriving a contradiction from it.

Note. In some other texts, this fact is called "the refutation-completeness of 
the Resolution rule".

Proof. 1. All the formulas, derived from a set of clauses K1, K2, ... , Ks by 

using  permutation,  reduction,  substitution  and  Resolution  rules,  are 
consequences  of  K1,  K2,  ...  ,  Ks.  Hence,  if  these  rules  allow  deriving  a 

contradiction from this set of clauses, then it (the set) is inconsistent.

2.  Now,  let  us  assume  that  the  set  of  clauses  S  =  {K1,  K2,  ...  ,  Ks}  is 
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inconsistent. Then it is unsatisfiable (Exercise 4.3.6). And then, by Herbrand's 
Theorem, it allows a finite unsatisfiable set of ground clauses C1, ..., Cn. Each 

Ci of these ground clauses is obtained from some clause in S by means of 

some substitution subi (of terms from the Herbrand universe HUS),  i.e.  by 

applying the substitution rule.

By  Lemma  5.6.5,  the  set  C1,  ...,  Cn is  unsatisfiable,  if  and  only  if  the 

conjunction C1∧...∧C n is unsatisfiable under the classical truth tables, i.e., 
if and only if the set C1, ..., Cn is inconsistent. And, by Theorem 5.5.1, a finite 

set  of  propositional  clauses  is  inconsistent;  if  and  only  if  Robinson's 
Resolution  rule  (together  with  permutation  and  reduction  rules)  allows 
deriving a contradiction from it.

Q.E.D.

Refinements – Step 1 (First of the Two Smart Ideas)

Let us examine once more the part two of the proof of Theorem 5.7.1, where a  
specific (hopeless!) "proof strategy" is used.

First, since two clauses Ki do not contain common variables, we can think that 

each of the substitutions subj is applied to a single clause, i.e. we can think, in 

fact, of a (finite) set of substitutions subij, where each subij is applied only to 

the  clause  Ki.  Let  us  denote  by  F.sub  the  result  of  application  of  the 

substitution sub to the formula F.

Second, to derive a contradiction from {K1, K2, ... , Ks}, we may apply, first, 

all the necessary substitutions (stage 1 – substitutions only!), and,  after this, 
all the necessary permutations, reductions and resolutions (stage 2 – no more 
substitutions!). This is exactly the above-mentioned specific (hopeless!) "proof 
strategy". Why hopeless? Because, before applying the substitutions subij, we 

must  find  them  among all  the  possible  substitutions of  terms  from the 
infinite set HUS. This is a performance problem that does not affect our above 

theoretical considerations, but could make their result useless. The smart ideas 
#1 and #2 introduced below, allow to restrict  the substitution search space 
considerably.

Imagine one of the resolutions of stage 2, where C1 is an atomic formula:

F1∨C1 ,¬C 1∨G1

F 1∨G1
.

If both premises F1∨C1 , ¬C1∨G1 are coming directly from stage 1, then 
they have been obtained from some initial  clauses F∨C , ¬ D∨G by two 



223

substitutions sub1 and sub2 such that:

F1 is F.sub1, C1 is C.sub1, ¬C1 is ¬D.sub2, G1 is G.sub2.

We can call such pair of substitutions a  unifier, because C.sub1 and D.sub2 
represent the same atomic formula (compare the example before the text of 
Theorem 5.7.1).

If one (or both) of the premises does not come directly from stage 1, then it is 
either an initial clause, or the result of a previous resolution. By putting an 
empty substitution (which does no change formulas) instead of sub1 or sub2 
(or both) we can still think of the premises as obtained by a unification.

And, finally, if, to derive a contradiction B, ¬B from K1, K2, ... , Ks, we do not 

need  resolution  at  all,  then  we  need,  nevertheless,  unifying  substitutions, 
converting two clauses B1 and ¬B2 into B and ¬B.

Thus (smart idea #1), to derive contradictions, we can do with one specific 
kind of the substitution rule – the unification rule:

a) Take two clauses, mark a positive atom C in the first clause, and a negative 
atom ¬D in the second one. Thus, we are considering two clauses: F∨C
and ¬ D∨G .

b) Try to find two substitutions sub1 and sub2 such that C.sub1 and D.sub2 
represent the same atom C1. And you do not need to introduce variables of the 

other  clauses!  If  you  succeed,  you  have  obtained  two  clauses:
F1∨C1 ,¬C1∨G1 , where C1 is C.sub1 (=D.sub2), F1 is F.sub1 and G1 is 

G.sub2.  Since  clauses  do  not  contain  common  variables,  the  union

sub1∪sub2 is a substitution (a unifier of C and D).

c) Apply resolution, obtaining the clause F1∨G1 .

We have proved the following refined version of Theorem 5.7.1:

Theorem 5.7.2 ( J.A.Robinson). In the classical predicate logic [L1-L11, L12-

L15,  MP,  Gen],  a  set  of  predicate  clauses  is  inconsistent;  if  and  only  if 

Robinson's  Resolution  rule (together  with  permutation,  reduction  and 
unification rules) allows deriving a contradiction from it.

Why is this refinement important? Because now, instead of trying out all the 
possible  substitutions  (of  terms  from  HUS for  clause  variables),  we  can 

concentrate on substitutions that unify two clauses. This allows to restrict the 
substitution search space considerably.

Refinements – Step 2 (Second of the Two Smart Ideas)
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Substitution "Algebra"

In general, each substitution involves a list of distinct variables x1, ..., xk and a 

list of terms t1, ...,tk. All occurrences of the variable xi are replaced by the term 

ti. Thus, this operation can be most naturally represented by the set of pairs { t1 
/ x1, ..., tk / xk }. The order of pairs ti / xi is irrelevant because of the following 

"anti-cascading"  condition:  the  new occurrences  of  the  variables  x1,  ...,  xk 
created by the substitution, are not replaced. The result of application of some 
substitution sub to some expression (term or formula) F, is usually denoted by 
F.sub.

For example, if F is p(x, f(y)) and sub = { f(z) / x, z / y }, then F.sub is p(f(z), 
f(z)).

The  empty  set  of  pairs  {}  represents  the  so-called  empty  substitution.  Of 
course, F.{} = F, for any expression F.

If the variable sets of two substitutions sub1 and sub2 do not intersect, and the 

terms of sub1 do not contain the variables of sub2, and the terms of sub2 do not 

contain  the  variables  of  sub1,  then  the  union sub1∪sub2 (of  two  sets  of 

pairs) defines a substitution. 

Still, the most important operation on substitutions is composition. If sub1 and 

sub2 are two substitutions, then sub1.sub2 denotes the composed substitution 

"apply first sub1, and after this, apply sub2". For example, if sub1 = { f(z) / x, z 

/ y } and sub2 = { f(w) / z }, then

sub1.sub2 = { f(f(w)) / x, f(w) / y, f(w) / z }.

Exercise 5.7.2. a) Verify that the substitution composition is associative and 
non-commutative (provide a counter-example), and that the empty substitution 
is the only "unit element" (i.e. {}.sub = sub.{} = sub for any substitution sub). 
b)  Is  there  any  algebraic  correlation  between  composition  and  union  of 
substitutions?

Most General Unifiers

How do behave unifiers in the substitution "algebra"? Assume, sub1 and sub2 
are two different unifiers of the same pair of expressions F and G. I.e.

F.sub1 = G.sub1, F.sub2 = G.sub2. 

If there would be a substitution sub such that sub2=sub1.sub, then we could 

say that sub1 is a no less general unifier than sub2. For example, let us try to 
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unify the first members of the following two formulas:

p (x1)∨F ( x1 , y1) , ¬ p( f ( x2))∨G( x2, y2) .

It would be natural to use the substitution sub1 = { f(z) / x1, z / x2 }, obtaining

p ( f (z ))∨F ( f (z ) , y1) , ¬ p( f (z ))∨G( z , y2) .

But, in principle, one could use also the substitution sub2 = { f(f(z)) / x1, f(z) / 

x2 }, obtaining

p ( f ( f (z )))∨F ( f ( f (z )) , y1) , ¬ p( f ( f ( z)))∨G( f (z ) , y2) .

Of course,  sub1 is  "better",  because sub2 = sub1.{  f(z)  /  z  }.  Why? If  our 

purpose was unifying p(x1) with p(f(x2)), then sub1 performs this (as well as 

sub2),  but  it  "leaves  more  space"  for  subsequent  substitutions  (than  sub2). 

Indeed,  to  continue after  sub1,  instead of sub2 = sub1.{  f(z)  /  z },  we can 

choose also sub3 = sub1.{ g(z) / z } etc. Thus, using a more general unifier is 

preferable.

So, let us call a unifier sub of two expressions F and G a most general unifier 
(mgu) of F and G, if and only if it is no less general than any other unifier of F 
and G (i.e. if and only if,  for any other unifier sub' of F and G, there is a 
substitution sub'' such that sub' = sub.sub'').

Lemma 5.7.3. If two expressions lists FF and GG are unifiable, then there 
exists an mgu of FF and GG. 

Proof (long, but easy). Let us define the total length of an expression list as 
follows: a) (atomic expressions) the total length of a constant or of a variable 
is 1, b) the total length of the expression list e1, ..., en is the sum of the total 

lengths of the members e1, ..., en, c) (composite expressions) the total length of 

the expression f(t1, ..., tn) (where f is function constant or predicate constant), 

is the total length of the expression list t1, ..., tn plus 1.

Let us prove our Lemma by induction using

 min(total_length(FF), total_length(GG))

 as the induction parameter.

1)  Induction  base. The  total  length  of  FF  or  GG  is  1.  Let  us  assume 
total_length(FF)=1.

a) FF is a constant c. Then FF and GG are unifiable, if and only if GG is the 
same constant c. Then, empty substitution is the only possible mgu (verify).
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b) FF is a variable x. Then, FF and GG are not unifiable, if: b1) GG is a list of 

more than one expression, or, b2) GG is a composite expression that contains x 

(then any substitution of t for x makes GG longer than t). And, FF and GG are 
unifiable, if and only if GG is a variable, or GG is a composite expression that 
does not contain x.

If GG is the variable x, then the empty substitution is the only possible mgu 
(verify).

If GG is a variable y (other than x), then all unifications of FF and GG have 
the form { t / x, t / y, ... }, where t is any term. Among them, mgu-s are { z / x,  
z / y }, where z is any variable (verify).

If GG is a composite expression that does not contain x, then all unifications 
of FF and GG have the form { GG.sub /  x, ...  } U sub, where sub is  any 
substitution that does not substitute for x (verify). Among them, mgu-s are 
{  GG.sub  /  x}U  sub,  where  sub  substitutes  distinct  variables  for  distinct 
variables (verify).

This completes the induction base.

2) Induction step. Assume, min(total_length(FF), total_length(GG))=n, where 
n>1. If FF and GG are unifiable, then, as lists, they contain the same number 
of members.

2a)  FF and GG contain are  single expressions.  Since min(total_length(FF), 
total_length(GG))>1, both are composite expressions – suppose, FF is f(s1, ..., 

sm)  (where  f  is  function  constant  or  predicate  constant,  and s1,  ...,  sm are 

terms),  and  GG is  g(t1,  ...,  tn)  (where  g  is  function  constant  or  predicate 

constant, and t1, ..., tn are terms). FF and GG are unifiable, if and only if a) f 

and g represent the same constant, and b) the lists s1, ..., sm and t1, ..., tn are 

unifiable. Thus, the unifiers of FF and GG coincide with the unifiers of lists. 
Since min(total_length(s1, ..., sm), total_length(t1, ..., tn))<n, by the induction 

assumption, Lemma 5.7.3 holds for the lists, i.e. it holds also for FF and GG.

2b) FF and GG contain two or more members. If FF and GG are unifiable, 
then so are their first members ("heads") F1 and G1. Let us denote by FF2 and 

GG2 the  rests  of  lists  ("tails").  Since  min(total_length(F1), 

total_length(G1))<n, by the induction assumption, there exists at least one mgu 

of F1 and G1. The same is true also for FF2 and GG2.

Let us denote by mgu1 an arbitrary mgu of F1 and G1

Now, let us consider an arbitrary unifier u of FF and GG. It must unify also F1 
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with  G1,  and  FF2 with  GG2.  Hence,  u  =  mgu1.sub1,  where  sub1 is  some 

substitution. We know that F1.mgu1 = G1.mgu1. 

But what about FF2.mgu1 and GG2.mgu1? Let us apply sub1 to both: 

FF2.mgu1.sub1 = FF2.u

GG2.mgu1.sub1 = GG2.u

Since u unifies FF2 with GG2, 

FF2.mgu1.sub1 = GG2.mgu1.sub1,

i.e.  sub1 unifies  FF2.mgu1 with  GG2.mgu1.  Let  us  denote  by  mgu12 an 

arbitrary mgu of FF2.mgu1 and GG2.mgu1. Then, sub1 = mgu12.sub12, where 

sub12 is some substitution, and

mgu1.mgu12.sub12 = mgu1.sub1=u.

Thus, we have established that for an arbitrary unifier u of FF and GG there is 
a  substitution  sub12 such  that  mgu1.mgu12.sub12 =  u.  Of  course,  the 

composition mgu1.mgu12 unifies FF with GG (since it unifies F1 with G1, and 

FF2 with GG2). Hence, mgu1.mgu12 is an mgu of FF and GG.

Q.E.D.

Unification Algorithm

How could we determine, can two atomic formulas C and D be unified, or not? 
This  problem  can  be  solved  by  the  following  simple  pseudo-code 
GetMostGeneralUnifier, which follows the above proof of Lemma 5.7.3, and 
where expression lists are defined in the LISP style:

1)  Each  variable,  constant,  function  constant  and  predicate  constant  is  an 
expression list (consisting of a single member).

2) If s1, ..., sn are expression lists, then the list of s1, ..., sn is an expression list 

(consisting of members s1, ..., sn). The first member s1 is called the head of the 

list, and the list of s2, ..., sn – the tail of the list.

Thus, instead of, for example, f(t1, .., tn), we use simply the (LISP style) list f, 

t1, .., tn. This simplifies the recursion interface.

This program detects, are two expression lists unifiable, or not, and, if they 
are, it returns one of their most general unifiers.
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function GetMostGeneralUnifier (expression_list1, expression_list2)
begin
if length(expression_list1) > 1 and length(expression_list2) > 1 then
begin
--- h1 = head(expression_list1);
--- h2 = head(expression_list2);
--- subH = GetMostGeneralUnifier(h1, h2);
--- if subH = false then return false; {unification impossible}
--- t1 = tail(expression_list1).subH;
--- t2 = tail(expression_list2).subH;
--- subT = GetMostGeneralUnifier(t1, t2);
--- if subT = false then return false; {unification impossible, note that subH is 
a mgu!}
--- return subH.SubT; {this composition unifies expression_list1 and 
expression_list2}
end
{now, expression_list1, or expression_list2 consists of a single member: m1 or 
m2}
if length(expression_list1) = 1 and m1 is variable then
begin
--- if m1 = expression_list2 then return {}; {empty substitution}
--- if m1 occurs in expression_list2 then return false; {unification impossible 
– verify!}
--- return {expression_list2 / m1}; {substitute expression_list2 for m1}
end
if length(expression_list2) = 1 and m2 is variable then
begin
--- if m2 = expression_list1 then return {}; {empty substitution}
--- if m2 occurs in expression_list1 then return false; {unification impossible 
– verify!}
--- return {expression_list1 / m2}; {substitute expression_list1 for m2}
end
{now, expression_list1, or expression_list2 consists of a single member that is 
not variable}
if expression_list1 = expression_list2 then return {}; {empty substitution}
return false; {unification impossible – verify!}
end

Exercise  5.7.3. Verify  that  this  program  detects,  are  two  expression  lists 
unifiable, or not, and, if they are, it returns one of their mgu-s. (Hint: repeat the 
proof of Lemma 5.7.3.)

Smart idea #2:

To derive contradictions, we can do with even more specific kind of the 
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unification rule – the mgu-rule:

a) Take two clauses, mark a positive atom C in the first clause, and a negative 
atom ¬D in the second one. Thus, we are considering two clauses: FvC and 
¬DvG.

b) Try to find any mgu of C and D. If you succeed, you have obtained two 
clauses: F.mgu∨C1 ,¬ C1∨G.mgu , where C1 is C.mgu (=D.mgu).

c) Apply resolution, obtaining the clause F.mgu∨G.mgu .

Theorem 5.7.4 (J. A. Robinson). In the classical predicate logic [L1-L11, L12-

L15,  MP,  Gen],  a  set  of  predicate  clauses  is  inconsistent;  if  and  only  if 

Robinson's  Resolution rule (together with permutation, reduction and  mgu-
rules) allows deriving a contradiction from it.

Why is this (second!) refinement important? Because now, instead of trying 
out all the possible unifications, we can concentrate on mgu-s that unify two 
clauses.  This  allows  to  further  restrict  the  substitution search  space (when 
compared with Theorem 5.7.2).

The hard part of the proof is inventing of the following

Lemma 5.7.5. Any proof K1, K2, ... , Ks  K (all K-s are clauses), where only⊢  

permutation,  reduction,  substitution and  Resolution  rules  are  used,  can  be 
converted into a proof K1, K2, ... , Ks  K' such that: a) in the proof, only⊢  

permutation,  reduction, mgu and  Resolution  rules  are  used;  b)  K  can  be 
obtained from K'  by a  single  (possibly empty)  substitution,  followed by a 
chain of permutations and reductions.

Proof  of  Theorem  5.7.4. Assume,  the  set  of  clauses  K1,  K2,  ...  ,  Ks is 

inconsistent. Then, by Theorem 5.7.1, there are two proofs K1, K2, ... , Ks  B,⊢  

K1, K2, ... , Ks  ¬B, where where only permutation, reduction, ⊢ substitution 

and Resolution rules are used. From clauses, these rules allow deriving only of 
clauses. Hence, B is an atomic formula.

By Lemma 5.7.5, both proofs can be converted into proofs K1, K2, ... , Ks ⊢ 

B1,  K1,  K2,  ...  ,  Ks  ¬B⊢ 2 such  that:  a)  in  the  proofs,  only  permutation, 

reduction, mgu and Resolution rules are used; b1) B can be obtained from B1 
by a single (possibly empty) substitution (permutations and reductions do not 
apply to atomic formulas), b2) B can be obtained from B2 by a single (possibly 

empty) substitution. 

Thus, B1 and B2 are unifiable. Let us take their  mgu, and apply it.  As the 
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result, we obtain a contradiction B', ¬B', where B' is B1.mgu (= B2.mgu). And 

we have obtained this contradiction from the clauses K1, K2, ... , Ks by using 

only permutation, reduction, mgu- and Resolution rules. Q.E.D.

Proof  Lemma 5.7.5..  Induction by the  "height  of  the resolution tree" (see 
below).

1. Induction base – no resolutions applied in the proof K1, K2, ... , Ks  K.⊢  

Then K is obtained from some Ki by a chain of permutations, reductions and 

substitutions. Add to this fact an "empty" proof K1, K2, ... , Ks  K⊢ i. And let us 

compose all the substitutions into a single substitution. Q.E.D.

2. Induction step. Assume, we have the proof K1, K2, ... , Ks  K, containing at⊢  

least one resolution. Imagine the last resolution in this proof (C is an atomic 
formula):

F∨C ,¬C∨G
F∨G

.

Then  K is  obtained from the  formula F∨G by a  chain  of  permutations, 
reductions and substitutions.

The  proofs  of  the  formulas F∨C , ¬C∨G possess  a  "height  of  the 
resolution tree" less than the one of the proof K1, K2, ... , Ks  K. Thus, by⊢  

induction assumption, we can convert these proofs into permutation-reduction-
mgu-resolution  proofs  of  some  formulas F1∨C1∨F 2 , G1∨¬ C2∨G 2 such 
that:

a) F∨C can be obtained from F1∨C1∨F 2 by a single (possibly empty) 
substitution sub1, followed by a chain of permutations and reductions. Under 

sub1, the atomic formula C1 is converted into C.

b) ¬C∨G can  be  obtained  from G1∨¬ C2∨G 2 by  a  single  (possibly 
empty) substitution sub2, followed by a chain of permutations and reductions. 

Under sub2, the atomic formula C2 is converted into C.

Since  the  clauses F1∨C1∨F 2 , G1∨¬ C2∨G 2 do  not  contain  common 
variables, the substitutions sub1 and sub2 do not intersect, hence, their union 

sub1Usub2 is a substitution sub (a unifier of C1 and C2) such that:

a1) F can be obtained from (F 1∨F 2) .sub by a chain of permutations and 

reductions.

b1) G can be obtained from (G1∨G2) . sub by a chain of permutations and 
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reductions.

As we know from the above, the atomic formulas C1 and C2 are unifiable. Let 

us take their mgu, and apply it to the formulas F1∨C1∨F 2 , G1∨¬ C2∨G2 . 
Let us denote by C' the formula C1.mgu (it is equal to C2.mgu). Thus, we have 

two formulas F1.mgu v C' v F2.mgu and G1.mgu v ¬C' v G2.mgu, and, by 

permutation and resolution, we can obtain the formula

(F 1∨F 2) . mgu∨(G1∨G2) . mgu .

Thus,  for  the  formula (F 1∨F2). mgu∨(G 1∨G2). mgu ,  we  have  a 
permutation-reduction-mgu-resolution  proof.  It  remains  to  show that,  from 
this formula, F∨G can be obtained by a single substitution, followed by a 
chain of permutations and reductions.

Since the substitution sub is a unifier of C1 and C2, then, by the definition of 

mgu, sub=mgu.sub', where sub' is some substitution. Hence,

a2) F can be obtained from (F 1∨F 2) . mgu by the substitution sub', followed 

by a chain of permutations and reductions.

b2) G can be obtained from (G1∨G 2) . mgu by the substitution sub', followed 

by a chain of permutations and reductions.

Thus, F∨G can be obtained from (F 1∨F2). mgu∨(G 1∨G2). mgu by the 
substitution sub', followed by a chain of permutations and reductions. Q.E.D.

Warning!

Despite  its  beauty,  the  resolution  method  cannot  overcome  the  general 
complexity problem, mentioned at the end of Section 4.3: by Church-Kalmar 
Theorem,  in  the  classical  predicate  logic,  the  task  of  reasoning  is  not 
algorithmically solvable.   And  a  closer  analysis  shows  that  all  computer 
programs implementing resolution method run into loop in many situations, 
when the formula to be proved is, in fact, unprovable. But in many practical 
situations, experience shows that resolution method solves its task, and – in 
acceptable time. In particular, Prolog interpreters are using resolution, and are 
solving many practical tasks in acceptable time!

Further reading:

Logic. Part 2 by Giorgio Ingargiola

Rajjan Shinghal.  Formal Concepts in Artificial Intelligence. Fundamentals. 
Chapman&Hall, 1992, 666 pp.

Handbook of Automated Reasoning, ed. by J. A. Robinson and A. Voronkov, 

http://www.voronkov.com/
http://www.cis.temple.edu/~ingargio/
http://www.cis.temple.edu/~ingargio/cis587/readings/logic2.html
http://en.wikipedia.org/wiki/Prolog
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Elsevier and MIT Press, 2001, vol. I, II.

Larry Wos's home page

About the ubiquity of the above-mentioned unification operation in human and 
computer reasoning:

John F. Sowa, Arun K. Majumdar. Analogical Reasoning. In:  Conceptual  
Structures for Knowledge Creation and Communication, Proceedings of ICCS 
2003, LNAI 2746, Springer-Verlag, Berlin, 2003, pp. 16-36. (available online).

http://www.jfsowa.com/pubs/analog.htm
http://www.jfsowa.com/pubs/index.htm
http://www-unix.mcs.anl.gov/~wos/
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6. Miscellaneous

6.1. Negation as Contradiction or Absurdity

The idea behind this approach is as follows: let us define ¬B (i.e. "B is false") 
as "B implies absurdity". So, let us add to our first order language a predicate 
constant f (meaning "false", or "absurdity"),  and let us replace all negation 
expressions  ¬F  by  F→f.  Then,  the  three  negation  axioms  will  take  the 
following forms:

L9: (B→C)→((B→¬C)→¬B), 

L9': (B→C)→((B→(C→f))→(B→f)), 

L10: ¬B→(B→C),

L10': (B→f)→(B→C),

L11: B∨¬ B ,

L11': B∨(B → f ) .

After this, surprisingly, the axiom L9' becomes derivable from L1-L2! Indeed,

(1) B→C Hypothesis.

(2) B→(C→f) Hypothesis.

(3) B Hypothesis.

(4) C→f By MP, from (2) and (3)

(5) C By MP, from (1) and (3)

(6) f By MP, from (4) and (5)

Hence, by Deduction Theorem 1,

 [L1, L2, MP]  (B→C)→((B→(C→f))→(B→f)).⊢

Second observation. The axiom L10': (B→f)→(B→C) can be replaced simply 

by f→C. Indeed, if we assume f→C, then L10' becomes derivable:
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(1) B→f Hypothesis.

(2) B Hypothesis.

(3) f By MP, from (1) and (2)

(4) f→C f→C

(5) C By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, f→C, MP]  (B→f)→(B→C).⊢

Third  observation.  As  we know from Theorem 2.4.9:  [L1,  L2,  L9,  MP]  ⊢ 

¬B→(B→¬C), in the minimal logic we can prove 50% of L10: "Contradiction 

implies that all is wrong". After our replacing negations by B→f the formula 
(B→f)→(B→(C→f) becomes derivable from L1-L2. Indeed,

(1) B→f Hypothesis.

(2) B Hypothesis.

(3) f By MP, from (1) and (2)

(4) f→(C→f) Axiom L1

(5) C→f By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, MP]  (B→f)→(B→(C→f)).⊢

Thus, we see that L1 (and not L9!) is responsible for the provability of the 50% 

"crazy"  formula  ¬B→(B→¬C).  Is  L1 50% as  "crazy"  as  L10?  Yes!  Let  us 

compare:

L10: ¬B→(B→C) states that "Contradiction implies anything". 

L1: B→(C→B) states that "If B is true, then B follows from anything".

Let us remind our "argument" in favour of L10 in  Section 1.3: "...we do not 

need to know, were C "true" or not, if ¬B and B were "true" simultaneously. 
By assuming that "if ¬B and B were true simultaneously, then anything were 
true" we greatly simplify our logical apparatus."

Now, similarly: if B is (unconditionally) true, then we do not need to know, 
follows B from C or not. By assuming that "if B is true, then B follows from 
anything" we greatly simplify our logical apparatus.
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In  a  sense,  the  axiom L9 "defines"  the  negation  of  the  minimal  logic,  the 

axioms L9 and L10 "define" the negation of the constructive logic, and L9-L11 
"define" the negation of the classical logic. Is our definition of ¬B as B→f 
equivalent to these "definitions"? Yes!

Theorem 6.1.1. For any formula F, let us denote by F' the formula obtained 
from F by replacing all  sub-formulas ¬G by G→f. Then, for any formulas 
B1, ..., Bn, C: 

[L1-L9, MP]: B1, ..., Bn  C, if and only if [L⊢ 1-L8, MP]: B'1, ..., B'n  C'.⊢

Proof. 

1) →.

Let us consider a proof of [L1-L9, MP]: B1, ..., Bn  C. In this proof:⊢

− let us replace each formula G by its "translation" G',

− before each instance of L9, let us insert a proof of the corresponding instance 

of L'9 in [L1, L2, MP] (see above).

In this way we obtain a proof of [L1-L8, MP]: B'1, ..., B'n  C'. Indeed,⊢

a) If some formula B is an instance of L1-L8, then B' is an instance of the same 

axiom (verify!).

b) (B→D)' is B'→D', hence, if the initial proof contains a conclusion by MP 
from B and B→D to D,  then,  in  the  derived proof,  it  is  converted  into  a 
conclusion by MP from B' and B'→D' to D'.

c)  If  the  initial  proof  contains  an  instance  of  L9,  then  the  derived  proof 

contains the corresponding instance of L'9 preceded by its proof in [L1, L2, 

MP].

Q.E.D.

2) ←.

Let us remind the above translation operation: for any formula F, we denoted 
by F' the formula obtained from F by replacing all sub-formulas ¬G by G→f. 
Now,  let  us  introduce  a  kind  of  a  converse  operation  –  the  re-translation 
operation: for any formula F, let us denote by F" the formula obtained from F: 
a) by replacing all sub-formulas G→f by ¬G, and after this, b) by replacing all 
the  remaining  f's  (f  means  "false"!)  by  ¬(a→a),  where  a  is  some  closed 
formula of the language considered. 

Of course, for any formula F, (F')" is F (verify).
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Note. Replacing f by a formula preceded by negation, is crucial – it will allow 
applying of Theorem 2.4.9: [L1-L9, MP]: ¬B→(B→¬C) instead of the Axiom 

L10: ¬B→(B→C).

Now, let us consider a proof of [L1-L8, MP]: B'1, ..., B'n  C'. In this proof, let⊢  

us replace each formula G by its re-translation G". Then C' becomes C, and 
B'1,  ...,  B'n become  B1,  ...,  Bn,  but  what  about  the  remaining  formulas 

contained in the proof?

a) Instances of the axioms L1-L8.

L1: B→(C→B)

If B is not f,  then (B→(C→B))" is B"→(C"→B"), i.e.  re-translation yields 
again an instance of L1.

If B is f, then (f→(C→f))" is ¬(a→a)→¬C". This formula is provable in [L1-

L9, MP]. Indeed,

(1) ¬(a→a) Hypothesis.

(2)  ¬(a→a)→((a→a)→¬C")⊢ Theorem 2.4.9, [L1-L9, MP].

(3)  a→a⊢ Theorem 1.4.1 [L1-L2, MP].

(4) ¬C" By MP, from (1), (2) and (3).

Thus, re-translation of any instance of L1 is provable in [L1-L9, MP].

L2: (B→(C→D))→((B→C)→(B→D))

If C and D are not f, then re-translation yields again an instance of L2.

If C is f, and D is not, then re-translation yields

 (B"→(¬(a→a)→D"))→(¬B"→(B"→D")). 

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→(¬(a→a)→D") Hypothesis.

(2) ¬B" Hypothesis.

(3) B" Hypothesis.

(4) ¬(a→a)→D" By MP, from (1) and (3).
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(5)  ¬B"→(B"→¬(a→a))⊢ Theorem 2.4.9 [L1-L9, MP].

(6) ¬(a→a) By MP, from (2), (3) and (5).

(7) D" By MP, from (4) and (6).

Hence, by Deduction Theorem 1,

 [L1-L9, MP]  (B"→(¬(a→a)→D"))→(¬B"→(B"→D")).⊢

If D is f, and C is not, then re-translation yields

 (B"→¬C")→((B"→C")→¬B").

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→¬C" Hypothesis.

(2) B"→C" Hypothesis.

(3) ¬B" By MP, from Axiom L9.

Hence, by Deduction Theorem 1,

 [L1-L9, MP] (B"→¬C")→((B"→C")→¬B").⊢

If C and D both are f, then re-translation yields

 (B"→¬¬(a→a))→(¬B"→¬B").

 This formula is provable in [L1-L9, MP]. Indeed,

(1)  ¬B"→¬B"⊢ Theorem 1.4.1 [L1-L2, MP].

(2)
 ⊢

(¬B"→¬B")→(X→(¬B"→¬B"
))

Axiom L1, X is B"→¬¬(a→a).

(3)  X→(¬B"→¬B")⊢ By MP, X is B"→¬¬(a→a).

Thus, re-translation of any instance of L2 is provable in [L1-L9, MP].

L3: B∧C → B

If B is not f, then re-translation yields again an instance of L3.

If  B  is  f,  then  re-translation  yields  via ¬( f ∧C)  the  formula
¬(¬(a→ a)∧C ) . This formula is provable in [L1-L9, MP]. Indeed,
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(1) ¬(a →a)∧C →¬(a→ a) Axiom L3.

(2) ¬¬(a →a)→¬(¬(a→ a)∧C )
From (1), by the Contraposition 
Law.

(3)  (a→a)→¬¬(a→a)
Theorem 2.4.4: [L1, L2, L9, MP]  ⊢
A→¬¬A

(4)  a→a Theorem 1.4.1 [L1-L2, MP].

(5) ¬(¬(a→ a)∧C ) By MP, from (3), (4) and (2).

Thus, re-translation of any instance of L3 is provable in [L1-L9, MP].

L4: B∧C →C

Similarly to L3 – re-translation of any instance of L4 is provable in [L1-L9, 

MP].

L5: B →(C → B∧C )

Re-translation yields again an instance of L5.

L6: B → B∨C

Re-translation yields again an instance of L6.

L7: C → BvC

Re-translation yields again an instance of L7.

L8: (B → D)→ ((C → D)→ (B∨C → D))

If D is not f, then re-translation yields again an instance of L8.

If D is f, then re-translation yields ¬ B →(¬C →¬( B∨C )) . By Theorem 
2.4.10(b), this formula is provable in [L1-L9, MP] .

Thus, re-translation of any instance of L8 is provable in [L1-L9, MP].

Hence, re-translations of all (i.e. L1-L8) axiom instances are provable in [L1-

L9, MP]. What about applications of MP in the initial proof? If the initial proof 

contains  a  conclusion  by MP from B and B→D to  D,  then  the  following 
situations are possible:

a) If B and D are not f, then, in the derived proof, this conclusion is converted 
into a conclusion by MP from B" and B"→D" to D".
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b)  If  B  is  f,  and  D  is  not,  then,  in  the  derived  proof,  this  conclusion  is 
converted into a conclusion by MP from ¬(a→a) and ¬(a→a)→D" to D".

c)  If  D  is  f,  and  B  is  not,  then,  in  the  derived  proof,  this  conclusion  is 
converted into three formulas: B", ¬B", ¬(a→a). To derive ¬(a→a) from B" 
and ¬B", we can use MP and Theorem 2.4.9:

 [L1-L9, MP]  ¬B"→(B"→¬(a→a)).⊢

d)  If  B  and  D  are  both  f,  then,  in  the  derived  proof,  this  conclusion  is 
converted into three formulas: ¬(a→a), ¬¬(a→a), ¬(a→a). Simply drop the 
third formula from the proof.

Thus, the re-translation operation, when applied to all formulas of a proof of 
[L1-L8, MP]: B'1, ..., B'n  C', yields a sequence of formulas that are provable⊢  

in [L1-L9, MP] from hypotheses B1, ..., Bn. Hence, so is C.

Q.E.D.

This completes the proof of Theorem 6.1.1.

Corollary 6.1.2. a) A formula C is provable in the minimal propositional logic 
[L1-L9, MP], if and only if [L1-L8, MP]  C'.⊢

b) A formula C is provable in the constructive propositional logic [L1-L10, 

MP], if and only if [L1-L8, f→B, MP]  C'.⊢

c) A formula C is provable in the classical propositional logic [L1-L11, MP], if 

and only if [L1-L8, f→B, L'11, MP]  C'.⊢

Proof. a) Consider an empty set of hypotheses in Theorem 6.1.1.

b) If [L1-L10, MP]  C, then [L⊢ 1-L9, MP]: B1, ..., Bn  C, where hypotheses⊢  

are instances of the axiom L10. By Theorem 6.1.1,

 [L1-L8, MP]: B'1, ..., B'n  C'.⊢

 As established above, B'1, ..., B'n can be proved by using the axiom schema 

f→B, i.e. [L1-L8, f→B, MP]  C'. Q.E.D.⊢

Now, if [L1-L8, f→B, MP]  C', then, ⊢

c) If [L1-L11, MP]  C, then [L⊢ 1-L9, MP]: B1, ..., Bn  C, where hypotheses⊢  

are instances of the axioms L10 and L11. Return to case (b). Q.E.D.

Corollary 6.1.3. a) A formula C is provable in the minimal predicate logic 
[L1-L9, L12-L15, MP, Gen], if and only if [L1-L8, L12-L15, MP, Gen]  C'.⊢
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b) A formula C is provable in the constructive predicate logic [L1-L10, L12-

L15, MP, Gen], if and only if [L1-L8, f→B, L12-L15, MP, Gen]  C'.⊢

c) A formula C is provable in the classical predicate logic [L1-L11, L12-L15, 

MP, Gen], if and only if [L1-L8, f→B, L11', L12-L15, MP, Gen]  C'.⊢

Exercise 6.1.1. Prove the Corollary 6.1.3.
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