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Abstract

The concept of an M-approximate system is introduced. Basic properties of the category of M-approximate systems and in a
natural way defined morphisms between them are studied. It is shown that categories related to fuzzy topology as well as categories
related to rough sets can be described as special subcategories of the category of M-approximate systems.
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1. Introduction and motivation

In 1968, that is only three years after Zadeh has published his famous work “Fuzzy Sets” [56], thus laying down the
principles of what can be called Mathematics of Fuzzy Sets, his student Chang [5] introduced the concept of a fuzzy
topological space thus marking the beginning of Fuzzy Topology, the counterpart of General Topology in the context
of fuzzy sets. Now Fuzzy Topology is one of the most well developed fields of Mathematics of Fuzzy Sets, and there
are published dozens of fundamental works on this subject.

In 1982, Pawlak [34] has introduced the concept of a rough set which can be viewed as a certain alternative for the
concept of a fuzzy set for the study of mathematical problems of applied nature. Pawlak’s work was followed by many
other publications where rough sets and mathematical structures on the basis of rough sets were introduced, studied,
and applied.

Although at the first glance it may seem that the concepts of a fuzzy set, of a (fuzzy) topological space and of a rough
set are of an essentially different nature and “have nothing in common”, this is not the case. Probably, the first one to
start studying the intermediate relations between topologies, fuzzy sets and rough sets was Kortelainen [26,27], see also
paper by Kortelainen and Järvinan [28]. Further the study of different relations between fuzzy sets, rough sets and some
other related concepts was done in a series of papers by Yao (see e.g. [49,50]), Järvinen [20], Eklund and Galan [8]
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and other researchers, see also the monograph written by a group of Polish mathematicians [25]. Our short introduction
into the topic of relations between rough sets, fuzzy sets and fuzzy topology would be incomplete if we do not mention
the critical paper by Gutiérrez García and Rodabaugh, see [12].

The aim of this work is to present an alternative view on the relations between fuzzy sets, fuzzy topological spaces
and rough sets and to develop a framework allowing to generalize these concepts and corresponding theories. The tool
allowing to realize this aim is the concept of an M-approximate system. The concept of an M-approximate system was
first introduced in [46]; basic properties of M-approximate systems and their relations to some categories related to
fuzzy topology and rough sets were discussed in [47–49].

The structure of this work is as follows. After the Introduction, in Section 2 we discuss concepts which make
the context for our work. In Section 3 we define the basic concepts studied and used in this work: upper and lower
M-approximate operators, M-approximate systems, M-approximate spaces and some related notions. In Section 4
the lattice of M-approximate systems on a fixed lattice L is studied. In Section 5 we define the morphisms between
M-approximate systems thus coming to the category ASM of M-approximate systems. Properties of this category and
some of its subcategories are studied. In particular, it is shown that ASM is a topological category over the category
IDLop, where IDL of complete infinitely distributive lattices as objects and mappings preserving arbitrary sups and
infs as morphisms, with respect to the forgetful functor F : ASM → IDLop.

In Section 6 some important general subcategories of the category ASM are studied. In Section 7 different known
categories related to fuzzy topology are characterized as subcategories of ASM. In Section 8 the category of rough sets
is described in the terms of approximate systems. Also the concept of an L-rough set is introduced and characterized
by means of L-approximate system. In Section 9 the defuzzification L-approximate operators on the lattice LX of
L-subsets of a set X are introduced.

2. The context

In our work two lattices will play the fundamental role. The first one is an infinitely distributive lattice, that is a
complete lattice

L = (L,≤,∧,∨),

satisfying the infinite distributivity laws

a ∧
(∨

i∈I
bi

)
=
∨
i∈I

(a ∧ bi ) and a ∨
(∧

i∈I
bi

)
=
∧
i∈I

(a ∨ bi )

for all a ∈ L and for all {bi |i ∈ I} ⊆ L. The top and the bottom elements of L are denoted by 1L and 0L, respectively.
Sometimes we will assume that the lattice L is equipped with one of the following operations: a monotone mapping

c : L→ L or a binary operation ∗ : L× L→ L.
A lattice L = (L,≤,∧,∨,c ) will be called adjunctive if the pair (c, c) is an adjunction

(c, c) : L�Lop,

that is

a ≤ bc ⇐⇒ b ≤ ac, ∀a, b ∈ L,

cf. e.g. [9]. A lattice L = (L,≤,∧,∨,c ) will be called involutive if c : L→ L is an involution, that is if

(ac)c = a, ∀a ∈ L.

One can easily see that in an adjunctive involutive lattice involution c : L→ L is order reversing:

a ≤ b �⇒ bc ≤ ac, ∀a, b ∈ L,

and conversely, if c : L→ L is order reversing involution, then (c, c) : L�Lop is an adjunction.
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Remark. Note that, since adjunctive involution is order reversing, complete completely distributive adjunctive invo-
lutive lattices made the context for the approach to fuzzy topology developed by Hutton, see [16–18]. Further such
lattices called Hutton lattices or Hutton algebras where used by many researches. Note that in this work when speaking
about adjunctive involutive infinitely distributive lattices we do not assume that they are completely distributive.

Concerning the second, binary operation ∗ : L× L→ L (conjunction) it will be assumed that L = (L,≤,∧,∨, ∗) is
a commutative cl-monoid (see e.g. [2]), that is

• ∗ is commutative: a ∗ b = b ∗ a for all a, b ∈ L;
• ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ L;
• ∗ distributes over arbitrary joins: a ∗ (

∨
i∈I bi ) =

∨
i∈I (a ∗ bi ), ∀a ∈ L, ∀{bi |i ∈ I} ⊆ L;

• a ∗ 1L = a, a ∗ 0L = 0L for all a ∈ L.

It is well-known (see e.g. [2]) that in a cl-monoid there is a further binary operation � : L→ L (residuation) which is
related to conjunction ∗ by Galois connection:

a ∗ b ≤ c ⇐⇒ a ≤ b�c, ∀a, b, c ∈ L.

Explicitly residuation is given by

a�b =
∨
{c ∈ L|a ∗ c ≤ b}.

One can easily see that residuation is non-increasing by the first argument and non-decreasing by the second argument,
and that b ∗ (b�a) ≤ a ∀a, b ∈ L. In particular b ∗ (b�0) ≤ 0, and hence

b ≤ (b�0)�0, ∀b ∈ L.

This allows to conclude that by setting ac = a�0 we obtain an adjunction (c, c) : L�Lop. Indeed, if a ≤ b�0, then

b ≤ (b�0)�0 ≤ a�0.

A cl-monoid is called a Girard monoid [22] if

(a�0)�0 = a, ∀a ∈ L.

Hence in case L is a Girard monoid, residuation � induces an order reversing involution c : L→ L.
An important situation in our research will be the following. Let L = (L,≤,∧,∨) be a lattice and X be a set.

Then the L-powerset LX =: L becomes a lattice (L,≤,∧,∨) by pointwise extending the lattice structure from L to
L. Besides L is infinitely distributive whenever L was infinitely distributive. Moreover, if L = (L,≤,∧,∨,c ) is an
adjunctive (involutive) lattice then by pointwise extending operation c from L to L, an adjunctive (resp. involutive) lattice
L = (L,≤,∧,∨, c) is obtained. In case L = (L,≤,∧,∨, ∗) is a cl-monoid, by pointwise extension of ∗ : L × L→ L
to ∗ : L × L → L we obtain a cl-monoid L = (L,≤,∧,∨, ∗). Besides, if L is a Girard monoid, then L is a Girard
monoid as well.

The second lattice belonging to the context of our work is denoted by M. At the moment we assume only its
completeness, however, sometimes it will be requested that M is completely distributive. The bottom and the top
elements of M are 0M and 1M, respectively. An important case is when M is a two-point lattice 2. Note that as different
from the lattice L we do not exclude the case when M is a one-point lattice

M = {·M}
and hence in this case 0M = 1M. A one-point lattice M will be denoted by •.

The reader is referred to monographs [2] or [9] for the terms from Lattice Theory which are not defined here.
Concerning the terms related to Category Theory we follow [1]. If Cat is a category, then Ob(Cat) is the class of
objects of Cat and Mor (Cat) is the class of morphism of Cat. If Cat is a category, then by Catop the opposite category
is denoted.



A. Šostak / Fuzzy Sets and Systems 161 (2010) 2440 –2461 2443

3. Basic definitions

Definition 3.1. An upper M-approximate operator on L is a mapping u : L×M→ L such that

(1u) u(0L, �) = 0L, ∀� ∈M;
(2u) a ≤ u(a, �), ∀a ∈ L, ∀� ∈M;
(3u) u(a ∨ b, �) = u(a, �) ∨ u(b, �), ∀a, b ∈ L, ∀� ∈M;
(4u) u(u(a, �), �) = u(a, �), ∀a ∈ L, ∀� ∈M;
(5u) � ≤ �, �, � ∈M �⇒ u(a, �) ≤ u(a, �), ∀a ∈ L;
(6u) if 0M � 1M (that is M is not a one-point lattice), then u(a, 0M) = a, ∀a ∈ L.

Operator u is called (upper) semicontinuous from above (usca) if

(usca) u(a,
∧

i∈I �i ) =
∧

i∈I u(a, �i ), ∀a ∈ L, ∀{�i i ∈ I} ⊆M.

In case all elements of the lattice M are isolated from above, every upper M-approximate operator is semicontinuous
from above. In particular, every upper •-approximate operator and every upper 2-approximate operator are semicon-
tinuous from above.

Definition 3.2. A lower M-approximate operator on L is a mapping l : L×M→ L such that

(1l) l(1, �) = 1, ∀� ∈M;
(2l) a ≥ l(a, �), ∀a ∈ L, ∀� ∈M;
(3l) l(a ∧ b, �) = l(a, �) ∧ l(b, �), ∀a, b ∈ L, ∀� ∈M;
(4l) l(l(a, �), �) = l(a, �), ∀a ∈ L, ∀� ∈M;
(5l) � ≤ �, �, � ∈M �⇒ l(a, �) ≥ l(a, �), ∀a ∈ L, ∀� ∈M;
(6l) if 0M � 1M (that is M is not a one-point lattice), then l(a, 0M) = a, ∀a ∈ L.

Operator l is called (lower) semicontinuous from above (lsca) if

(lsca) l(a,
∧

i∈I �i ) =
∨

i∈I l(a, �i ), ∀a ∈ L, ∀{�i i ∈ I} ⊆M.

In case all elements of the lattice M are isolated from above, every lower M-approximate operator is semicontinuous
from above. In particular, every lower •-approximate operator and every lower 2-approximate operator are semicon-
tinuous from above.

Definition 3.3. A triple (L, u, l), where u : L ×M → L and l : L ×M → L are upper and lower M-approximate
operators on L, is called an M-approximate system. In case when X is a set, L is a lattice, L = LX and (L, u, l) is an
M-approximate system, the quadruple (X, L, u, l) is called an M-approximate space.

Definition 3.4. An M-approximate system (L, u, l) is called semicontinuous from above if both u and l are semicon-
tinuous from above.

Remark 3.5. Although in this work we are mainly interested in semicontinuity of upper and lower M-approximate
operators only from above, one can consider also the following alternative types of semicontinuity:

(uscb) Operator u is called semicontinuous from below if

u

(
a,
∨
i∈I

�i

)
=
∨
i∈I

u(a, �i ), ∀a ∈ L, ∀{�i i ∈ I} ⊆M.

(lscb) Operator l is called semicontinuous from below if

l

(
a,
∨
i∈I

�i

)
=
∧
i∈I

l(a, �i ), ∀a ∈ L, ∀{�i i ∈ I} ⊆M.
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(wuscb) Operator u is called weakly semicontinuous from below if

u(a, �i ) = ā, ∀�i , i ∈ I and � =
∨
i∈I

�i ,�⇒ u(a, �) = ā.

(wlscb) Operator l is called weakly semicontinuous from below if

l(a, �i ) = a0, ∀�i , i ∈ I and � =
∨
i∈I

�i �⇒ l(a, �) = a0.

Such properties of M-approximate are useful when considering some concrete M-approximate operators, see e.g.
Section 7.1 in this work. However, we do not intend to study in this paper M-approximate systems possessing such
properties.

In case L is equipped with a unary operation c : L→ L, an M-approximate system (L, u, l) is called self-dual if

u(ac, �) = (l(a, �)t)c and l(ac, �) = (u(a, �))c, ∀a ∈ L, ∀� ∈M.

Note that in case when (L,≤,∧,∨,c ) is an involutive infinitely distributive lattice, the system (L, u, l) is self-dual if
and only if

(u(ac, �))c = l(a, �) iff (l(ac, �))c = u(a, �), ∀a ∈ L, ∀� ∈M.

Remark 3.6. Sometimes we consider M-approximate systems in case of a one-point lattice M = • = {·}. Obviously,
in this case the use of the second argument in the notation of approximate systems is redundant and we write just u(a)
and l(a) instead of u(a, ·) and l(a, ·), respectively. Besides, in this case we use the terms upper and lower approximate
operators, approximate system, etc., omitting the prefix M. Note also that in case M = 2 is a two-point lattice
then, taking into account conditions (6u) and (6l) in Definitions 3.1 and 3.2, an M-approximate system (L, u, l) in an
obvious sense is equivalent to the •-approximate system (•, u′, l ′) where u′ : L → L and l ′ : L → L are defined by
u′(a) = u(a, 1M) and l ′(a) = l(a, 1M), respectively. (Compare with the usual practice of interpreting subsets A of a
set X as characteristic functions �A : X → {0, 1} or just identifying A and �A.)

4. Lattice of M-approximate systems on a lattice L

Let ASM(L) stand for the family of M-approximate systems (L, u, l) where L and M are fixed. We introduce an
order � on ASM(L) by setting

(L, u1, l1) � (L, u2, l2) iff u1 ≥ u2 and l1 ≤ l2.

To study the lattice structure of (ASM(L),�) we first need to relate with every upper M-approximation operator
u : L×M→ L a subset Cu ⊆ L×M:

Cu = {(a, �)|(a, �) ∈ L×M, u(a, �) = a}
and to relate with every lower M-approximate operator l : L×M→ L a subset Tl ⊆ L×M:

Tl = {(a, �)|(a, �) ∈ L×M, l(a, �) = a}.
One can establish the properties of families Cu and Tl collected in the following five lemmas. We omit the proofs of
the first four lemmas since they can be easily done patterned after the proofs of well known results about the relations
between closure operators and closed L-sets in L-topological spaces (in case of Lemmas 4.1 and 4.2 establishing
relations between an upper M-approximate operator u and the family Cu) and the relations between interior operators
and open L-sets in L-topological spaces (in case of Lemmas 4.3 and 4.4 establishing relations between an lower
M-approximate operator l and the family Tl ).

Lemma 4.1. For every upper M-approximate operator u : L×M→ L:

(1C) (0L, �) ∈ Cu, ∀� ∈M;
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(2C) (1L, �) ∈ Cu, ∀� ∈M;
(3C) (a, �), (b, �) ∈ Cu �⇒ (a, �) ∨ (b, �) ∈ Cu, ∀� ∈M, ∀a, b ∈ L;
(4C) (a�, �) ∈ Cu, ∀� ∈ � �⇒ (

∧
� a�, �) ∈ Cu, ∀� ∈M;

(5C) (a, �) ∈ Cu and � < �, �, � ∈M �⇒ (a, �) ∈ Cu .

Conversely, if a family C ⊆ L×M satisfies properties (1C)–(5C), then by setting

uC (a, �) =
∧
{b|(b, �) ∈ C, b ≥ a}

an upper M-approximate operator uC is defined. Besides uCu = u and CuC = C .

Lemma 4.2. Given two upper M-approximate operators u1 and u2:

u1 ≥ u2 �⇒ Cu1 ⊆ Cu2 .

Conversely, given two systems C1, C2 ⊆ L×M satisfying properties (1C)–(5C) from Lemma 4.1 we have

C1 ⊆ C2 �⇒ uC1 ≥ uC2 .

Lemma 4.3. For every lower M-approximate operator l : L×M→ L:

(1T) (1L, �) ∈ Tl , ∀� ∈M;
(2T) (0L, 1M) ∈ Tl , ∀� ∈M;
(3T) (a, �), (b, �) ∈ Tl �⇒ (a, �) ∧ (b, �) ∈ Tl ;
(4T) (a�, �) ∈ Tl , ∀� ∈ � �⇒ (

∨
� a�, �) ∈ Tl .

(5T) (a, �) ∈ Tl and � < � �⇒ (a, �) ∈ Tl .

Conversely, if we have a family T ⊆ L×M satisfying properties (1T)–(5T), then by setting

lT (a, �) =
∨
{b|(b, �) ∈ T, b ≤ a}

a lower M-approximate operator lT : L×M→ L is defined. Besides lTl = l and TlT = T .

Lemma 4.4. Given two lower M-approximate operators l1 and l2:

l1 ≤ l2 �⇒ Tl1 ⊆ Tl2 .

Conversely, given two systems T1, T2 ⊆ L×M satisfying properties (1T)–(5T) from Lemma 4.3

T1 ⊆ T2 �⇒ lT1 ≤ lT2 .

Lemma 4.5. An M-approximate system (L, u, l) is self-dual iff

Cu = {(a, �)|(ac, �) ∈ Tl}
and

Tl = {(a, �)|(ac, �) ∈ Cu}.

The proof can be done patterned after the proof of the well-known result about the relations between closed and
open L-sets on one hand and the relations between the corresponding closure and interior operators in an L-topological
space.

Now we can come to the main result of this section:

Theorem 4.6. (ASM(L),�) is a complete lattice.

Proof. Let

u�(a, �) = l�(a, �) = a, ∀a ∈ L, ∀� ∈M.
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It is easy to see that u� : L×M→ L and l� : L×M→ L are, respectively, the upper and the lower M-approximate
operators. Besides u� ≤ u for every upper M-approximate operator and l� ≥ l for every lower M-approximate
operator. Hence (L, u�, l�) is the top element in (ASM(L),�).

Further, let

u⊥(a, �) =

⎧⎪⎨
⎪⎩

1L if a � 0L and � � 0M,

0L if a = 0L,

a if � = 0M

and

l⊥(a, �) =

⎧⎪⎨
⎪⎩

0L if a � 1L and � � 0M,

1L if a = 1L,

a if � = 0M.

One can easily check that u⊥ : L ×M → L is an upper M-approximate operator and l⊥ : L ×M → L is a lower
M-approximate operator. Besides for any other upper M-approximate operator u : L ×M→ L and any other lower
M-approximate operator l : L×M→ L it holds u ≤ u⊥ and l ≥ l⊥. Hence the M-approximate system (L, u⊥, l⊥) is
the bottom element in the lattice (ASM(L),�).

Thus to show that (ASM(L),�) is a complete lattice now it is sufficient to show that every non-empty subset
S = {(L, ui , li )|i ∈ I} ⊆ ASM(L) has infimum in ASM(L) (see e.g. [9, Proposition 0-2.2 ]). Let

S = {(L, ui , li )|i ∈ I} ⊆ ASM(L).

For each i ∈ I according to our notations

Cui = {(a, �)|(a, �) ∈ L×M, ui (a, �) = a}.
We define C =⋂i∈I Cui . Thus

(a, �) ∈ C ⇐⇒ ∀i ∈ I, ui (a, �) = a.

One can easily notice that C satisfies properties (1C)–(5C) from Lemma 4.1, since all Cui satisfy these properties.
We define u0 : L×M→ L by setting

u0(a, �) =
∧
{(b, �)b ≥ a, (b, �) ∈ C}.

Since Cui ⊇ C for all i ∈ I, it follows that u0 ≥ ui . Besides, applying Lemmas 4.1 and 4.2, it is easy to notice that u0
is the smallest (≤) one of all upper M-approximate operators u such that u ≥ ui for all i ∈ I. Thus u0 is the supremum
of the family {ui |i ∈ I} in the lattice LL×M.

Further, for each i ∈ I let

Tli = {(a, �)|(a, �) ∈ L×M, li (a, �) = a}.
We define T =⋂i∈I Tui . Thus

(a, �) ∈ T ⇐⇒ ∀i ∈ I, li (a, �) = a.

One can easily notice that T satisfies properties (1T)–(5T) from Lemma 4.3, since all Tli satisfy these properties.
We define l0 : L×M→ L by setting

l0(a, �) =
∨
{(b, �)|b ≤ a, (b, �) ∈ T }.

Since Tli ⊇ T for all i ∈ I, it follows that l0 ≤ li for all i ∈ I. Besides, applying Lemmas 4.3 and 4.4, it is easy to
notice that l0 is the largest (≥) one of all lower M-approximate operators l such that l ≤ li for all i ∈ I. Thus l0 is the
infimum of the family {li |i ∈ I} in the lattice LL×M.
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Summarizing the above received statements we conclude that (L, u0, l0) is the infimum of the systemS = {(L, ui , li )|
i ∈ I} ⊆ ASM(L) in the lattice (ASM(L),�) and hence (ASM(L),�) is a complete lattice. �

The construction of the upper M-approximation operator u0 and the construction of the lower M-approximation
operator l0 for an M-approximate system (L, ui , li ) in the proof of the previous theorem is done levelwise and hence
semicontinuity from above will not be destroyed. Besides in case 0M is isolated from above in the lattice M the
M-approximate systems (L, u�, l�) and (L, u⊥, l⊥) defined above are semicontinuous from above. Hence we obtain
the following corollary from Theorem 4.6:

Theorem 4.7. In case 0M isolated from above, the family (SCA-ASM(L),�) of semicontinuous from above M-
approximate systems is a complete sublattice of the lattice (ASM(L),�).

Further, notice that, in case L is adjunctive involutive lattice, the M-approximate systems (L, u�, l�) and (L, u⊥, l⊥)
constructed in the proof of the above theorem are self-dual. Besides, if all M-approximate systems (L, ui , li ) ∈ S) are
self-dual, then applying Lemma 4.5 one can easily conclude that u0 and l0 are also self-dual. In the result we get the
following corollary from Theorem 4.6:

Theorem 4.8. If L is an adjunctive involutive infinitely distributive lattice, then the family (D-ASM(L),�) of self-dual
M-approximate systems is a complete sublattice of the lattice (ASM(L),�).

5. Category ASM of M-approximate systems

Let M be fixed and let ASM be the family of all M-approximate systems (L, u, l). To consider ASM as a category
whose class of objects are all M-approximate systems (L, u, l) we have to specify its morphisms. Since the ground of
our construction is an infinitely distributive lattice L we start with the category IDL of infinitely distributive lattices as
objects and mappings f : L1 → L2 between such lattices, preserving arbitrary infs and arbitrary sups as morphisms.

Now we are ready to define morphisms in the category ASM. Given (L1, u1, l1), (L2, u2, l2) ∈ Ob(ASM) by a
morphism

f : (L1, u1, l1)→ (L2, u2, l2)

we call a mapping f : L2 → L1 such that

(1m) f : L1 → L2 is a morphism in the category IDLop;
(2m) u1( f (b), �) ≤ f (u2(b, �)), ∀b ∈ L2, ∀� ∈M;
(3m) f (l2(b, �)) ≤ l1( f (b), �), ∀b ∈ L2, ∀� ∈M.

A morphism f : (L1, u1, l1) → (L2, u2, l2) is also referred to as a continuous mapping between the corresponding
M-approximate systems.

Theorem 5.1. ASM thus obtained is indeed a category.

Proof. Let f : (L1, u1, l1) → (L2, u2, l2) and g : (L2, u2, l2) → (L3, u3, l3) be continuous mappings and let g ◦ f :
L1 → L3 be their composition in IDLop. We have to verify that g ◦ f satisfies conditions (2m) and (3m) above. Since
it is sufficient to verify these conditions for a fixed � ∈M, to simplify the reasonings we omit the second argument in
the notation of the approximate operators. Let c ∈ L3. Then

u1( f (g(c))) ≤ f (u2(g(c))) ≤ f (g(u3(c))).

In a similar way we can show that f (g(l3(c))) ≤ l1(g( f (c))). Thus the composition g ◦ f : (L1, u1, l1)→ (L3, u3, l3)
is continuous whenever f and g are continuous. We conclude the proof by noticing that the identity mapping f :
(L, u, l)→ (L, u, l) is obviously continuous. �

Remark 5.2. Often we are interested in the categories ASM of M-approximate systems when M is a two-point or a
one-point lattice. We denote the corresponding categories, respectively, by AS2 and AS•.

In the sequel, when discussing categorical properties of ASM and other categories we refer to the monograph [1].



2448 A. Šostak / Fuzzy Sets and Systems 161 (2010) 2440 –2461

Theorem 5.3. Every source

fi : L1 → (Li , ui , li ), i ∈ I

has a unique initial lift

fi : (L1, u1, l1)→ (Li , ui , li ), i ∈ I.

Proof. Taking into account Theorem 4.6 it is sufficient to consider the case when the source contains only one morphism
f : L1 → (L2, u2, l2) in IDLop. Define an upper approximate operator u1 : L1 ×M→ L1 by

u1(a, �) =
∧
{ f (u2(b, �))| f (b) ≥ a}, ∀a ∈ L1, � ∈M.

Note first that the condition

u1( f (b), �) ≤ f (u2(b, �)), ∀b ∈ L2, ∀� ∈M

is obviously fulfilled. We verify that u1 thus defined is indeed an upper M-approximate operator. As in the previous
theorem in our reasoning we fix � ∈M and omit it in notation of approximate operators when verifying the properties
(1u)–(4u).

The first two properties are obvious from the definition of u1 and the corresponding properties of u2:

u1(0L1 ) = 0L1 and u1(a) ≥ a for all a ∈ L1.

To verify property (3u) let a1, a2 ∈ L1, then

u1(a1 ∨ a2)=
∧
{ f (u2(b))| f (b) ≥ a1 ∨ a2}

≤
∧
{ f (u2(b1 ∨ b2)) | f (b1) ≥ a1, f (b2) ≥ a2}

=
∧
{ f (u2(b1)) ∨ f (u2(b2))| f (b1) ≥ a1, f (b2) ≥ a2}

=
(∧
{ f (u2(b1))| f (b1) ≥ a1}

)
∨
(∧
{ f (u2(b2))| f (b2) ≥ a2}

)
= u1(a1) ∨ u1(a2).

The converse inequality is obvious and hence u1(a1 ∨ a2) = u1(a1) ∨ u1(a2).
To verify the fourth condition notice that

u1(u1(a))= u1

(∧
{ f (u2(b))| f (b) ≥ a}

)
≤
∧
{u1( f (u2(b)))| f (b) ≥ a} ≤

∧
{ f (u2(u2(b)))| f (b) ≥ a} = u1(a).

The converse inequality is obvious and hence u1(u1(a)) = u1(a).
To verify property (5u) for u1 note that the implication

� ≤ �, �, � ∈M �⇒ u1(a, �) ≤ u1(a, �)

is guaranteed by the analogous property of the operator u2 : L2 ×M → L2 and the definition of u1. The validity of
condition (6u) for u1 also obviously follows from its definition.

Coming to the lower M-approximate operator l1 : L1 ×M→ L1, we define it by the equality

l1(a, �) =
∨
{ f (l2(b, �))| f (b) ≤ a}, ∀a ∈ L1, ∀ � ∈M.

Notice first that from the definition it is clear that

f (l2(b, �)) ≤ l1( f (b), �), ∀b ∈ L2, ∀� ∈M.

We show that l1 : L1 ×M→ L1 thus defined is indeed a lower M-approximate operator. Again, we omit in notation
� when it can be fixed. The validity of the first two conditions follows from the definition of l1 and the corresponding
properties of l2:

l1(1L1 , �) = 1L1 and l1(a, �) ≤ a for all a ∈ L1, ∀� ∈M.
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To verify the third condition let a1, a2 ∈ L1. Then

l1(a) ∧ l1(a2)=
(∨
{ f (l2(b1))| f (b1)

)
≤ a1}) ∨

(∨
{ f (l2(b2))| f ((b2)) ≤ a2, }

)
=
∨
{ f (l2(b1)) ∧ f (l2(b2))| f ((bi )) ≤ ai , i = 1, 2}

≤
∨
{ f (l2(b1 ∧ b2)| f (b1) ∧ f (b2) ≤ a1 ∧ a2}

=
∨
{ f (l2(b))| f (b) ≤ a1 ∧ a2} = l1(a1 ∧ a2).

The converse inequality is obvious and hence l1(a1 ∧ a2) = l1(a1) ∧ l1(a2).
The idempotence of the operator l1 : L1 → L1 is established as follows: Given a ∈ L we have

l1(l1(a))= l1
(∨
{ f (l2(b))| f (b) ≤ a}

)
≥
∨
{l1 f (l2(b))| f (b) ≤ a}

≥
∨
{ f (l2(l2(b))| f (b) ≤ a} =

∨
{ f (l2(b))| f (b) ≤ a} = l1(a).

The opposite inequality is obvious and hence l1(l1(a)) = l1(a).
Finally, condition (5l), that is

� ≤ �, �, � ∈M �⇒ l1(a, �) ≥ l1(a, �)

and condition (6l) for l1 are guaranteed by the analogous properties of the operator l2 : L2 → L2 and the definition
of l1.

To complete the proof, let g : (L3, u3, l3)→ (L2, u2, l2) be a morphism in ASM and let h : L3 → L1 be a morphism
in IDLop such that f ◦ h = g.

(L3, u3, l3)
g ��

h
������������ (L2, u2, l2)

L1

f

������������

.

Then from the construction it is clear that

• u3(h(a), �) ≤ h(u1(a, �)), ∀a ∈ L1, ∀� ∈M;
• h(l1(a, �)) ≤ l3(h(a), �), ∀a ∈ L1, ∀� ∈M

and hence h : (L3, u3, l3)→ (L1, u1, l1) is a morphism in ASM:

(L3, u3, l3)
g ��

h ������������� (L2, u2, l2)

(L1, u1, l1)
f

�������������

.

Thus f : (L1, u1, l1)→ (L2, u2, l2) is indeed the initial lift of the source f : L1 → (L2, u2, l2). The uniqueness of the
lift is obvious. �

Let AIIDL denote the subcategory of the category IDL whose objects are adjunctive involutive lattices and whose
morphisms are involution preserving maps. 1

Theorem 5.4. Let L1, L2 be adjunctive involutive infinitely distributive lattices, let (L2, u2, l2) be an M-approximate
system and f : L1 → L2 be a morphism in AIIDLop. If M-approximate operators l2, u2 : L2×M→ L2 are self-dual,
then the M-approximate operators l1, u1 : L1×M→ L1 constructed in the proof of Theorem 5.3 are self-dual as well.

1 Recall that we assume that the morphisms in the category IDL preserve both arbitrary sups and arbitrary inf.
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Proof. Indeed, let (L2, u2, l2) be a self-dual M-approximate system and a ∈ L1. Then

l1(ac)=
∨
{ f (l2(b))| f (b) ≤ ac} =

(∧
{( f (l2(b)))c| f (b) ≤ ac}

)c

=
(∧
{ f (u2(bc))| f (b) ≤ ac}

)c

=
(∧
{ f (u2(bc))| f (bc) ≥ a}

)c =
(∧
{ f (u2(d))| f (d) ≥ a}

)c = (u1(a))c.

(Here in the proof again we omit the second coordinate � ∈M where it does not essentially influences the proof.)
In a similar way the equality u1(ac) = (l1(a))c can be established. �

Theorem 5.5. If an M-approximate system (L2, u2, l2) is semicontinuous from above, then the M-approximate system
(L1, u1, l1) constructed in the previous theorem is semicontinuous from above, too.

Proof. Indeed, if (L2, u2, l2) is a semicontinuous from above M-approximate system, then

u1

(
a,
∧

i

�i

)
=
∧{

f

(
u2

(
b,
∧

i

�i

))∣∣∣∣∣ f (b) ≥ a

}

=
∧{

f

(∧
i

(u2(b, �i ))

)∣∣∣∣∣ f (b) ≥ a

}
=
∧

i

∧
{ f (u2(b, �i ))| f (b) ≥ a} =

∧
i

u1(a, �i ),

l1

(
a,
∧

i

�i

)
=
∨{

f

(
l2

(
b,
∧

i

�i

))∣∣∣∣∣ f (b) ≤ a

}

=
∨{

f

(∨
i

(l2(b, �i ))

)∣∣∣∣∣ f (b) ≤ a

}
=
∨

i

∨
{ f (l2(b, �i ))| f (b) ≤ a} =

∨
i

l1(b, �i ),

thus the system (L1, u1, l1) is semicontinuous from above. �

Theorem 5.6. Every sink fi : (Li , ui , li )→ L2, i ∈ I has a unique final lift: fi : (Li , ui , li )→ (L2, u2, l2), i ∈ I.

Proof. Taking into account Theorem 4.6 it is sufficient to consider the case of the sink consisting of a single morphism
f : (L1, u1, l1)→ L2. We define an upper M-approximate operator u2 : L2 ×M→ L2 by

u2(b, �) =
∧
{c ∈ L2|c ≥ b, f (c) ≥ u1( f (b), �)}.

It is obvious that

u1( f (b), �) ≤ f (u2(b, �)), ∀ b ∈ L2, ∀� ∈M.

Further, from the definition of u2 and the corresponding properties of u1 it is clear that u2(0L2 , �) = 0L2 and b ≤
u2(b, �) for all b ∈ L2, � ∈M and hence u1 satisfies the first two requirements of Definition 3.1. Showing that the rest
of conditions of Definition 3.1 hold for u2 : L2 ×M → L2 we omit notation � in case of conditions (3u) and (4u),
since it can be fixed.

Let b1, b2 ∈ L2. Then

u2(b1) ∨ u2(b2) =
(∧
{c1 ∈ L2|c1 ≥ b1, f (c1) ≥ u1( f (b1))}

)
∨
(∧
{c2 ∈ L2|c2 ≥ b2, f (c2) ≥ u1( f (b2))}

)
=
∧
{c1 ∨ c2|ci ≥ bi , f (ci ) ≥ u1( f (bi )), i = 1, 2}

≥
∧
{c|c ≥ b1 ∨ b2, f (c) ≥ u1( f (b1)) ∨ u1( f (b2))}
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=
∧
{c|c ≥ b1 ∨ b2, f (c) ≥ u1( f (b1 ∨ b2))}

= u2(b1 ∨ b2).

Since the opposite inequality is obvious, we get u2(b1) ∨ u2(b2) = u2(b1 ∨ b2).
To verify the fourth condition note first that

u2(u2(b)) =
∧
{c|c ≥ u2(b), u1( f (u2(b))) ≤ f (c)}.

Since u2(b) is among the elements c satisfying the conditions on the right-hand side of the above inequality, we conclude
that u2(u2(b)) ≤ u2(b). The opposite inequality is obvious and hence u2(u2(b)) = u2(b).

The validity of properties (5u) and (6u) for the operator u2 is guaranteed by the analogous properties of the operator
u1 : L1 ×M→ L1 and the definition of u2.

We define the lower M-approximate operator l2 : L2 ×M→ L2 by

l2(b, �) =
∨
{c ∈ L2|c ≤ b, f (c) ≤ l1( f (b), �)}.

Note first that from the definition of l2 it is clear that

f (l2(b, �)) ≤ l1( f (b), �), ∀b ∈ L2, � ∈M.

Further, from the definition of l2 and the corresponding properties of l1 it is obvious that

l2(1L2 , �) = 1L2 and b ≥ l2(b, �) for all b ∈ L2 and � ∈M

and hence the first two conditions of Definition 3.2 for l2 : L2 ×M → L2 are valid. To verify the third property let
b1, b2 ∈ L2. Then we have the following chain of inequalities (again, we omit in notations � ∈M since it can be fixed):

l2(b1) ∧ l2(b2)

=
∨
{c1 ∧ c2|c1 ≤ b1, c2 ≤ b2, f (c1) ≤ l1( f (b1)), f (c2) ≤ l1( f (b2))}

≤
∨
{c1 ∧ c2|c1 ∧ c2 ≤ b1 ∧ b2, f (c1) ∧ f (c2) ≤ l1( f (b1)) ∧ l1( f (b2))}

≤
∨
{c|c ≤ b1 ∧ b2, f (c) ≤ l1( f (b1 ∧ b2))} = l2(b1 ∧ b2).

Since the opposite inequality is obvious we have l2(b1) ∧ l2(b2) = l2(b1 ∧ b2).
To show the fourth axiom note that

l2(l2(b)) =
∨
{c ∈ L2|c ≤ l2(b), f (c) ≤ l1( f (b))}

and since l2(b) is one of c appearing in the right-hand side of the above formula, it holds l2(l2(b)) ≥ l2(b). Since the
converse inequality is obvious we have l2(l2(b)) = l2(b).

The validity of properties (5l) and (6l) for l2 is guaranteed by the analogous properties of the operator l1 : L1×M→ L2
and the definition of l2.

To complete the proof, let g : (L1, u1, l1)→ (L3, u3, l3) be a morphism in ASM and h : L2 → L3 be a morphism in
IDLop such that h ◦ f = g.

(L1, u1, l1)
g ��

h
������������ (L3, u3, l3)

L2

f

������������

.

Then from the construction it is clear that

• u2(h(a), �) ≤ h(u3(a, �)), ∀a ∈ L1, ∀� ∈M;
• h(l2(a, �)) ≤ l3(h(a), �), ∀a ∈ L1, ∀� ∈M
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and hence h : (L2, u2, l2)→ (L3, u3, l3) is a morphism in ASM. Thus f : (L1, u1, l1)→ (L2, u2, l2) is indeed the final
lift of the sink f : (L1, u1, l1)→ L2:

(L1, u1, l1)
g ��

h ������������� (L3, u3, l3)

(L2, u2, l2)
f

�������������

.

The uniqueness of the lift is obvious. �

Theorem 5.7. If an M-approximate system (L1, u1, l1) is self-dual, and f : L1 → L2 is a morphism in the category
AIIDL of adjunctive involutive infinitely distributive lattices, then the M-approximate system (L2, u2, l2) constructed
in the proof of the previous theorem is self-dual.

Indeed, let a self-dual M-approximate system (L1, u1, l1) be given and let b ∈ L2. Then we have

(l2(b))c =
(∨
{d|d ≤ b, f (d) ≤ l1( f (b))}

)c

=
∧
{dc|d ≤ b, f (d) ≤ l1( f (b))} =

∧
{dc|dc ≥ bc, ( f (d))c ≥ (l1( f (b)))c}

=
∧
{dc|dc ≥ bc, f (dc) ≥ u1( f (bc))}

=
∧
{e|e ≥ bc, f (e) ≥ u1( f (bc))} = u2(bc),

that is (l2(b))c = u2(bc). In a similar way the equality (u2(b))c = l2(bc) can be proved.
One can easily establish also the following:

Theorem 5.8. If an M-approximate system (L1, u1, l1) is semicontinuous from above, then the M-approximate system
(L2, u2, l2) constructed in the proof of Theorem 5.6 is semicontinuous from above.

Proof. Indeed, if (L1, u1, l1) is a semicontinuous from above M-approximate system, then

u2

(
b,
∧

i

�i

)
=
∧{

c ∈ L2|c ≥ b, f (c) ≥ u1

(
f (b),

∧
i

�i

)}

=
∧{

c ∈ L2|c ≥ b, f (c) ≥
∧

i

u1( f (b), �i )

}

=
∧∧

i

{c ∈ L2|c ≥ b, f (c) ≥ u1( f (b), �i )} =
∧

i

u2(b, �i ),

l2

(
b,
∧

i

�i

)
=
∨{

c ∈ L2|c ≤ b, l1

(
f (c),

∧
i

�i

)
≤ f (b)

}

=
∨{

c ∈ L2|c ≤ b,
∨

i

l1( f (c), �i ) ≤ f (b)

}

=
∨∨

i

{c ∈ L2|c ≤ b, l1( f (c), �i ) ≤ f (b)} =
∨

i

l2(b, �i ).

Thus the system (L1, u1, l1) is semicontinuous from above. �
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From Theorems 5.3 and 5.6, we obtain the following important:

Corollary 5.9. Category ASM is topological over the category IDLop of infinitely distributive lattices with respect to
the forgetful functor F : ASM −→ IDLop.

Besides, taking into account Theorems 5.4, 5.7, 5.5 and 5.8 we have:

Corollary 5.10. The category D-ASM of self-dual M-approximate systems is topological over the category AIIDLop

with respect to the forgetful functor F : D-ASM −→ AIIDLop.

Let IDL0 denote the full subcategory of the category IDL of infinitely distributive lattices L for which the element
0L is isolated from above and let SCA0-ASM denote the full subcategory of the category of semicontinuous from above
M-approximate systems SCA-ASM with objects (L, u, l) such that L ∈ IDL0.

Corollary 5.11. The category SCA0-ASM is topological over the category AIIDL0
op with respect to the forgetful

functor F : SCA-ASM −→ IDLop
0 .

In the rest of this paper we shall describe several both new and known categories as subcategories of the category
ASM. Here we only define these subcategories and mention some of their properties. The detailed study of these
categories as subcategories of the category ASM which in the context of our research is viewed upon as the universal
one will be the subject of the consequent papers.

6. Some general subcategories of the category ASM

6.1. Category ASM(IDLSET)

An important subcategory of the category ASM is the category ASM(IDLSET). Its objects are L-powersets LX where
X ∈ Ob(SET) is an arbitrary set and L ∈ Ob(IDL) is an arbitrary infinitely distributive lattice. The morphisms in
ASM(IDLSET) are those morphisms from ASM which are induced by mappings of the corresponding sets X. 2 Here
are the details: Let the objects of ASM(IDLSET) be M-approximate systems (LX , u, l) where L ∈ Ob(IDL) and
X ∈ Ob(SET). Further, let the morphisms in ASM(IDLSET) be pairs

f = (F, �) : (LX1
1 , u1, l1)→ (LX2

2 , u2, l2),

where F : X1 → X2 is a mapping of sets, � : L2 → L1 is a morphism in IDL and the mapping F←� : L2 → L1
defined by

F←� (b) = � ◦ b ◦ F (= F−1(�(b))), ∀b : X2 → L2

is a morphism

F←� : (LX1
1 , u1, l1)→ (LX2

2 , u2, l2)

in the category ASM. The last condition means that the following two inequalities must hold for every b : X2 → L2
and every � ∈M:

u1(� ◦ b ◦ F, �) ≤ � ◦ u2(b, �) ◦ F,

� ◦ l2(b, �) ◦ F ≤ l1(� ◦ b ◦ F, �).

Remark 6.1. Note that the category thus defined is not the full subcategory of ASM: to get a full subcategory of ASM

with objects as in ASM(IDLSET) we had to take all morphisms between the corresponding M-approximate systems,
and not only those ones which are induced by mappings of the corresponding sets as it was done above.

2 Notice that the idea of considering category of such type can be traced in Rodabaugh’s papers, see e.g. [35,38]; cf. also Section 7.5 in this paper.
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6.2. Category ASM(LSET)

Let L be a fixed complete infinitely distributive lattice. We define the category ASM(LSET) as the subcategory
of ASM(IDLSET), whose objects are M-approximate systems (LX , u, l), and where for morphisms we take those
morphisms from ASM(IDLSET), in which � : L→ L is the identity mapping. So again, obviously, ASM(LSET) is not
a full subcategory of ASM(IDLSET).

An important special case is a two point lattice L = 2: in this case we come to the category of M-approximate
structures on ordinary sets (of course, for this one has to interpret a subset A of a set X as the characteristic function
�A : X → 2). In particular, if M is a two-point lattice 2 (or, equivalently, a one-point lattice •, cf. Remark 3.6) we
come to the concept of an approximation system as it was considered by some authors, see e.g. [49,50].

By taking different subclasses Set of the class SET of sets, we obtain corresponding full subcategories ASM(LSet)
of the category ASM(LSET). In particular, the category ASM(L•), where • is a one point set, is just the lattice ASM(L)
of M-approximate systems on the lattice L = L• viewed as the corresponding category.

6.3. Categories of ASM(Lat)- ASM(LatSet)-, P-ASM(Lat)- and P-ASM(LatSet)-types

Let Lat be some full subcategory of the category IDL. Then by restricting the class of objects of the category ASM

by those ones whose lattice belongs to Ob(Lat) and whose morphisms belong to Mor (Lat) we define a category
ASM (Lat). The category ASM(AIIDL) of M-approximate systems on adjunctive involutive infinitely distributive
lattices is an example of a category of such type.

By restricting in the category ASM(LSET) defined in Section 6.1 the class of objects whose lattices are taken from
Ob (Lat) and whose morphisms are from M or (Lat) we naturally come to a subcategory ASM(LatSet) of the category
ASM(IDLSET).

Note that given a fixed lattice L, the category ASM({L}) is not the same as the category ASM(L•) considered in the
previous subsection: the both categories have the same class of objects, but ASM({L}) has a wider class of morphisms
than ASM(L•).

Another way allowing to obtain important subcategories of ASM is to impose additional conditions P on the ap-
proximation operators u and l. Subcategories of such type will be denoted by P-ASM(Lat) and P-ASM(LatSet),
respectively. Categories D-ASM(AIIDL) and SCA-ASM which appeared in the previous sections are examples of such
type of subcategories of the category ASM.

7. Categories of fuzzy topologies as subcategories of ASM

7.1. Category of (L, M)-fuzzy topological spaces

We start by interpreting the category FTOP(L, M) of (L, M)-fuzzy topological spaces see e.g. [43,29,45,15] as a
subcategory of ASM. In this subsection M is assumed to be completely distributive and L is a fixed complete infinitely
distributive lattice.

Definition 7.1 (cf. Kubiak [29] and Šostak [43,44]). A mapping T : LX → M is an (L, M)-fuzzy topology on a set
X if

(1FT) T (0X ) = T (1X ) = 1;
(2FT) T (U ∧ V ) ≥ T (U ) ∧ T (V ), ∀U, V ∈ LX ;
(3FT) T

(∨
i∈I Ui

) ≥∧i∈I T (Ui ), ∀{Ui |i ∈ I} ⊆ LX .

A pair (X, T ) is called an (L, M)-fuzzy topological space and the value T (U ) is interpreted as the degree of openness of
a fuzzy set U ∈ LX . A mapping f : (X, TX )→ (Y, TY ) is called continuous if TX ( f −1(V )) ≥ TY (V ) for all V ∈ LY .

Following e.g. [30–32] we denote the category of (L, M)-fuzzy topological spaces by FTOP(L, M).
Let (X, T ) be an (L, M)-fuzzy topological space. By setting

int
T

(A, �) =
∨
{U ∈ LX |U ≤ A, T (U ) ≥ �},
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we define the interior operator intT : LX ×M→ LX (see e.g. [45]). The relations between (L, M)-fuzzy topologies
and lower M-approximate operators are described in the following theorem 3 :

Theorem 7.2. The interior operator intT : LX × M → M is a weakly semicontinuous from below lower
M-approximate operator on L = LX . Conversely, if l : LX ×M → LX is a weakly semicontinuous from below
lower M-approximate operator, then by setting

Tl (U ) =
∨
{�|l(U, �) ≥ �}

we obtain a mapping Tl : LX → LX satisfying conditions (1FT) and (3FT) of Definition 7.1. Besides TintT = T and
lTl = l.

Further, assume that L is an adjunctive involutive infinitely distributive lattice and let c : L→ L be the corresponding
involution. Then by setting

clT (A, �) =
∧
{B|B ≥ A, T (Bc) ≥ �}

a closure operator clT : LX ×M→ LX [45] is defined. One can easily show that clT is a weakly semicontinuous from
below upper M-approximate operator and prove a theorem establishing relations between weakly semicontinuous from
below upper M-approximate operators and (L, M)-fuzzy topologies via closure operators, analogous to Theorem 7.2:

Theorem 7.3 (see footnote 3). Let L be an adjunctive involutive infinitely distributive lattice. Then the closure operator
clT : LX ×M→ LX is a weakly semicontinuous from below upper M-approximate operator on L = LX . Conversely,
if u : LX ×M→ LX is a weakly semicontinuous from below upper M-approximate operator, then by setting

Tu(A) =
∨
{�|u(Ac, �) ≥ �}

we obtain a mapping Tu : LX → LX satisfying conditions (1FT) and (3FT) of Definition 7.1. Besides TuT = T and
uTu = u.

Theorem 7.4. The M-approximation system (LX , clT , intT ) constructed in Theorems 7.1 and 7.3 is self-dual.

Thus in case of an adjunctive involutive infinitely distributive lattice L an (L, M)-fuzzy topological space (X, T ) can
be interpreted as a weakly semicontinuous from below M-approximate self-dual system (L, cl, int) where
L = LX . This allows to identify the category FTOP(L, M) of (L, M)-fuzzy topological spaces with the full sub-
category DWSCB-ASM(LSET) of the category AS(M)(LSET) whose objects are self-dual weakly semicontinuous from
below M-approximate systems (LX , u, l). In this case we write the corresponding M-approximate system also in the
form (LX , cl, int).

7.2. Category of (L, M)-fuzzy bitopological spaces

Generalizing the previous situation let T 1 : LX → M and T 2 : LX → M be two (L, M)-fuzzy topologies on
the set X where L is an adjunctive involutive lattice. The triple (X, T 1, T 2) naturally could be called an (L, M)-fuzzy
bitopological space. Further, let FBTOP(L, M) be the category whose objects are (L, M)-fuzzy bitopological spaces
and whose morphisms are continuous mappings, that is mappings

f : (X, T 1
X , T 2

X )→ (Y, T 1
Y , T 2

Y )

such that

T i
X ( f −1(V )) ≥ T i

Y (V ), i = 1, 2, ∀V ∈ LY .

3 This result was first stated in [31]. The first statement of this theorem was essentially proved in [45]. The remaining part of the theorem will be
proved and discussed in our paper [32].
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Further, let u = clT 1 and l = intT 2 be the closure and interior operators induced by (L, M)-fuzzy topologies T1 and
T2, respectively. Then the category FBTOP(L, M) of (L, M)-fuzzy bitopological spaces can be identified with the
category WSCB-ASM(LSET) of weakly semicontinuous from below M-approximate systems.

7.3. Category of Chang–Goguen L-topological spaces

The first definition of a topological structure in the context of fuzzy sets was proposed by Chang [5] (in case
L = [0, 1]) and soon extended for the case of an arbitrary infinitely distributive lattice L (and actually for the case of
a cl-monoid L) by Goguen [10,11]. The corresponding objects according to the accepted now terminology are called
L-topological spaces. The continuity of mappings of L-topological spaces was also considered in these papers.

Starting from the concept of an (L, M)-fuzzy topological space, L-topological spaces as they are defined in the papers
by Chang [5] and Goguen [10] can be identified with (L, 2)-fuzzy topological spaces, that is when the second lattice
M is the two-point lattice. Then the continuity of mappings of L-topological spaces reduces to the continuity of the
corresponding (L, 2)-fuzzy topological spaces. Hence to characterize L-topological spaces by means of M-approximate
systems we restrict the construction developed in Section 7.1 by taking the two-point lattice 2 in the role of M. Thus the
category of Chang–Goguen L-topological spaces can be identified with the category D-AS2(LSET)—recall that in case
of a two-point lattice M every M-approximate system is semicontinuous both from above and from below. In particular
D-AS2(2SET) can be identified with the category TOP of ordinary topological spaces and continuous mappings.

By omitting the condition of self-duality of the 2-approximate system we obtain the category AS2(LSET) which can
be identified with the category of L-bitopological spaces (see e.g. [23] in case L = [0, 1] is the unit interval) and the
category AS2(2SET) which is essentially the classical category BTOP of bitopological spaces [24].

7.4. Category of L-fuzzifying topological spaces

The concept of an L-fuzzifying topological space and the corresponding category was originally defined by Höhle
[13]. Later (in case L = [0, 1]) it was independently rediscovered by Ying [52] by means of semantic analysis of the
classical topological axioms. Further the category of L-fuzzifying topological spaces which we denote F-TOP(L) was
studied by Höhle [14] and in a series of papers by Ying and his students, see e.g. [53–55,40,42].

Referring to the definition of an (L, M)-fuzzy topological space given in Section 7.1 the category of F-TOP(L)
of L-fuzzifying topological spaces can be described as the category FTOP(2, L) where L is an adjunctive involutive
infinitely distributive lattice. Now applying the construction developed in Section 7.1, the category of L-fuzzifying
topological spaces can be identified with the category D-ASL(2SET).

7.5. Category of Hutton fuzzy topological spaces

According to Hutton [16,17] a fuzzy topological space is a pair (L, �) where L is a completely distributive lattice
endowed with an order reversing involution c : L→ L (that is an adjunctive involutive lattice in our terminology) and
� ⊆ L satisfies the following conditions:

(1HT) 0L, 1L ∈ �;
(2HT) a, b ∈ � �⇒ a ∧ b ∈ �;
(3HT) ai ∈ �, ∀i ∈ I �⇒∨

i∈I ai ∈ �.

The morphisms f : (L1, �1) → (L2, �2) in the category H-TOP of Hutton fuzzy topological spaces are mappings
f : L2 → L1 such that f (�2) ⊆ �1.

The category H-TOP can be identified with the category of M-approximate systems D-AS2(AIIDL). In this case
a Hutton fuzzy topological space (L, �) is identified with the 2-approximate system (L, u, l) where upper and lower
2-approximate operators u : L× 2→ L and l : L× 2→ L are defined, respectively, by

u(a, 12) =
∧
{b|b ≥ a, bc ∈ �}, ∀a ∈ L,

u(a, 02) = a, ∀a ∈ L,

l(a, 12) =
∨
{b|b ≤ a, b ∈ �}, ∀a ∈ L,

l(a, 02) = a, ∀a ∈ L.
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7.6. Category of variable-basis fuzzy topological spaces

In [35], Rodabaugh has introduced the category FUZZ of variable-basis fuzzy topological spaces. Further the
category FUZZ of variable-basis fuzzy topological spaces and some other similarly defined categories were studied in
a series of papers by Rodabaugh, Eklund and other authors, see e.g. [6,7,37,38].

The objects of FUZZ are triples (X, L, �) where X is a set, L is a completely distributive lattice endowed with an
order reversing involution c : L→ L and � ⊆ LX satisfies the following axioms:

(1) 0L, 1L ∈ �;
(2) U, V ∈ � �⇒ U ∧ V ∈ �;
(3) Ui ∈ �, ∀i ∈ I �⇒∨

i∈I Ui ∈ �.

The morphisms in FUZZ are pairs

( f, �) : (X1, L1, �1)→ (X2, L2, �2),

where f : X1 → X2 is a mapping of sets, � : L1 → L2 is a morphism in the category AIIDLop and �( f←(�2)) ⊆ �1.
Now the category FUZZ of variable-basis fuzzy topological spaces can be characterized as the full subcategory
D-AS2(HSET) of the category AS2(AIIDLSET) whose objects are self-dual 2-approximate systems.

7.7. Category of variable-basis (L, M)-fuzzy topological spaces

Generalizing in a natural way category D-AS2(AIIDLSET) introduced in the previous subsection by replacing 2 with
an arbitrary completely distributive lattice M we obtain the category D-ASM(AIIDLSET) which can be identified with
the category of variable-basis (L, M)-fuzzy topological spaces first mentioned in [29].

8. Categories related to rough sets

8.1. Rough sets

Let 	 ⊆ X × X be a binary relation on a set X and let R(x) = {x ′|x	x ′} be the right 	-class of x ∈ X . Given A ∈ 2X

let operators u : 2X → 2X and l : 2X → 2X be defined, respectively, by

u(A) =: A� = {x |R(x) ∩ A �∅},
l(A) =: A� = {x |R(x) ⊆ A}.

In case 	 is reflexive, that is

x	x, ∀x ∈ X,

and transitive, that is

x	x ′, x ′	x ′′ �⇒ x	x ′′,

u : 2X → 2X and l : 2X → 2X satisfy, respectively, the axioms of Definitions 3.1 and 3.2. Thus they are, respectively,
an upper and a lower •-approximate operators on 2X = P(X ) (see e.g. [26–28].) As the result we interpret the triple
(2,� ,� ) as an •-approximate system while (X, 2,� ,� ) is viewed as an •-approximate space. Besides, one can easily
see that in case 	 is also symmetric, that is

x	x ′ ⇐⇒ x ′	x

the system (2X ,� ,� ) is self-dual:

Ac� = A�c,

where Ac = X \ A for any A ⊆ X , see e.g. [26,28]. Such operators and corresponding approximate spaces in case
when 	 : X × X is an equivalence relation (that is a reflexive, transitive, and symmetric relation) were first introduced
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by Pawlak [34] under the name “a rough set”. Further approximate operators induced by binary relations, either general
or satisfying additional properties, were studied by different authors, see e.g. [26–28,20,49,50]. Note, however, that in
case 	 is not reflexive or transitive, such operators may fail to be approximate operators in our sense.

In case when 	 is only reflexive, Järvinen and Kortelainen [28] along with operators l(A) = A� and u(A) = A�

consider also operators u′ : 2X → 2X and l ′ : 2X → 2X defined, respectively, by

u′(A) = A� = {x |R−1(x) ∩ A �∅}
and

l ′(A) = A� = {x |R−1(x) ⊆ A},
where R−1(x) = {x ′|x ′	x}, and show that the pair (u, l ′) and (u′, l) forms Galois connection:

u(a) ≤ b ⇐⇒ a ≤ l ′(b) and l(a) ≤ b ⇐⇒ a ≤ u′(b).

Thus in case 	 is also transitive, we obtain self-dual •-approximate systems

(2X ,� ,� ) and (2X ,� ,� ).

To consider rough sets as a category of approximate systems we have to specify its morphisms. Let REL be the category
whose objects are sets endowed with a reflexive and transitive relation, that is pairs (X, 	) and whose morphisms f :
(X, 	X )→ (Y, 	Y ) are mappings f : X → Y such that

x	X x ′ �⇒ f (x)	Y f (x ′), ∀ x, x ′ ∈ X.

Further let SREL be the full subcategory of REL whose objects are sets with symmetric relations. We define the
category AS•(2REL) as follows. The objects of AS•(2REL) are triples

(2(X,	), u = �, l = �)

defined as above; the morphisms in AS•(2REL) are backward operators [38]:

F = f← : (2(X1	1), u1 = �, l1 = �))→ (2(X2,	2), u2 = �, l2 = �)

induced by morphisms f : (X1, 	1)→ (X2, 	2) of the category REL. We show that AS•(2REL) thus obtained is indeed
a category of •-approximate system. To verify that

u1( f −1(B)) ⊆ f −1(u2(B)), ∀B ∈ 2X2

let x ∈ u1( f −1(B)), then there exists x ′ ∈ f −1(B) such that x	1x ′. However, this means that f (x ′) ∈ B and
f (x)	2 f (x ′). Therefore f (x) ∈ u2(B) and hence x ∈ f −1(u2(B)).

Now, to verify that

f −1(l2(B)) ⊆ l1( f −1(B)), ∀B ∈ 2X2 ,

let x ∈ f −1(l2(B)). Then f (x) ∈ l2(B) and hence R( f (x)) ⊆ B. However, this means that if x ′	1x , then, since
f (x ′)	2 f (x), it follows that f (x ′) ∈ B. Hence x ′ ∈ f −1(B). We conclude from here that R(x) ⊆ f −1(B) and hence
x ∈ l1( f −1(B)).

Thus we have a category of approximate systems AS•(2REL) which can be identified with the category of rough sets
ROUGH. In case we restrict to its full subcategory AS•2SREL determined by symmetric relations the corresponding
approximate systems are self-dual.

Along with the category AS•(2REL) one can consider the category

AS•(2REL�),

whose objects are self-dual approximate systems

(2(X,	), u = �, l = �)
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and the category AS•(2REL�

) whose objects are self-dual approximate systems

(2(X,	), u = �, l = �).

The morphisms of these categories are defined in the same way as in the category AS•(2REL).

8.2. L-rough sets

In this subsection we extend the construction of approximate systems induced by rough sets for the case when the
underlying set is equipped with an L-relation (see e.g. [51,3,4]). As an appropriate context for such construction we
consider the structure of a cl-monoid on L. Thus, let L = (L,≤,∧,∨, ∗) be a fixed cl-monoid and let X be a set.
An L-relation on a set X is a mapping R : X × X → L. An L-relation is called reflexive if

R(x, x) = 1 for all x ∈ X,

transitive, if

R(x, x ′) ∗ R(x ′x ′′) ≤ R(x, x ′′) for all x, x ′, x ′′ ∈ X,

and symmetric, if

R(x, x ′) = R(x ′, x) for all x, x ′ ∈ X.

Let REL(L) be the category whose objects are sets with L-relations, that is pairs (X, R) where X is a set and R :
X × X → L is an L-relation on it, and whose morphisms are mappings f : (X, RX )→ (Y, RY ) such that

RX (x, x ′) ≤ RY ( f (x), f (x ′)), ∀x, x ′ ∈ X.

Given a set X and a reflexive transitive L-relation R : X×X → L, for every x ∈ X we define a mappingRx : X → L by

Rx (x ′) = R(x, x ′) for all x ′ ∈ X.

We define operators u : LX → LX and l : LX → LX as follows: Given A ∈ LX , let

l(A)(x) = inf
x ′∈X

(R(x)(x ′)�A(x ′)),

u(A)(x) = sup
x ′∈X

(R(x)(x ′) ∗ A(x ′)).

One can show that (LX , u, l) is an L-approximate system where L = LX . We refer to L-approximate system of such
type as an L-rough system induced by the L-relation R. In case (L,∧,∨, ∗) is a Girard monoid, the system (LX , u, l)
is self-dual. Further, if L = 2 is a two-point lattice we come to the situation described in the previous subsection. In a
natural way we define morphisms for the category ROUGH(L) of L-rough systems and characterize it as a category of
M-approximate systems. The detailed study of L-approximate systems of such type will be the subject of a subsequent
paper.

9. Defuzzification approximate operators

Finally we sketch how the concept of an approximate systems can be applied for fuzzy sets themselves.
Let L = (L,∧,∨,≤) be a complete lattice, X be a set and L = LX . Define u : L × L → L and l : L × L → L as

follows: Given A ∈ LX let

u(A, �) = A ∨ 1A� ,

l(A, �) = �X ∧ A,

where A� = {x ∈ X |A(x) ≥ �} is the �-cut of the L-set A and �X is the constant function of X taking value �.
In this way we obtain L-approximate operators on the L-powerset L = LX of a set X which can be interpreted as,
respectively, upper and lower L-defuzzification operators and the corresponding L-approximate system (L, u, l) as an
L-defuzzification system.



2460 A. Šostak / Fuzzy Sets and Systems 161 (2010) 2440 –2461

Acknowledgements

The author would like to express his gratitude to three colleagues. The first one is Tomasz Kubiak from the University
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