
Root cause analysis of large scale application
testing results ?

Rūdolfs Opmanis, Paulis Ķikusts, and Mārtiņš Opmanis

Institute of Mathematics and Computer Science,University of Latvia
Rainis blvd. 29, Riga, LV1459, Latvia

rudolfs.opmanis@gmail.com paulis.kikusts@lumii.lv
martins.opmanis@lumii.lv

Abstract. In this paper we present a new root cause analysis algorithm
for discovering the most likely causes of the differences found in test-
ing results of two versions of the same software. The problematic points
in test and environment attribute hierarchies are presented to the user
in compact way which in turn allows to save time on test result pro-
cessing. We have proven that for clearly separated problem causes our
algorithm gives exact solution. Practical application of described method
is discussed.

Keywords: Root cause analysis, regression testing, hierarchy graphs.

1 Introduction

Testing results are important indicator of the overall application state regard-
less if it is in active development or maintenance. During the active development
phase testing results can help to understand if the current status is consistent
with the plan and manage required resources accordingly. However during main-
tenance phase testing results are necessary to verify if the application after in-
ternal or external changes still performs as expected. Software maintenance has
been identified as the most costly and difficult phase in the software life cycle
[1,2,3] so ability to measure quality of the application is critical for managing
cost and time.

One of basic principles of testing is “Any testing process should include a
thorough inspection of the results of each test” [4]. If application is small then
all testing results can be processed easily, but for large applications even test
result processing has to be automated, because large applications usually have
huge data sets of automatic and manual tests that needs to be run with different
frequencies and on various environments. Also not all failed test results are
equally important to the user, because tests that have been failing for the past
month and are known are not as important as a set of failed tests that started
failing after the most recent changes in application. For large data sets finding
? Supported by ERDF project 2014/0013/2DP/2.1.1.1.0/14/APIA/VIAA/034

and filtering the most interesting failed tests manually is very time consuming
so an automatic algorithm is required to perform necessary test result analyis.

Root cause analysis [5] is used to compare two testing results and to suggest
the most likely causes of the reported differences and may be used as part of
regression testing. Results produced by root cause analysis of the testing results
helps to present them to the user in compact way which in turn allows to save
time on manual processing of test results.

In this paper we present a new root cause analysis algorithm for test re-
sult processing. The algorithm is used in root cause identification phase [6] and
works with test hiearchies, attributed testing environments and test results that
are acquired by executing test cases on testing environments. Although test
organization in hierarchies is not mandatory, such organization will allow the
proposed algorithm to generalize problems by features. Similary, having multi-
ple attributes for testing environments are not necessary, but providing them
to the algorithm will let it to produce more compact results. Unlike [7] we are
not analyzing source code, but use only testing results which gives us the ability
to apply this knowleadge to any software development project independently of
programming language or software development mehodology as long as testing
is done reasonably frequently.

There are other approaches which help to reduce time and cost of application
maintenance like software impact analysis [8] that analyzes software to predict
affected items in order to estimate required effort, cost and time to implement
new feature or do some adjustment in existing software product, but this ap-
proach requires very thorough planning and continuous dependency management
which might not be available for big projects or projects that are handed over
between maintainers.

This paper is organized as follows: in Section 2 we define terms used in the
paper, in Section 3 we give data model and a very detailed description of the
algorithm along with proofs of two its properties. In Section 4 results of practical
application of our algorithm are discussed. Conclusions and directions of possible
future work are described in Section 5.

2 Preliminaries

Test is a smallest entity for software product or module testing. Execution of
software artefact in some environment using data from a particular test ends with
test execution status: value from a fixed nonempty set of available outcomes, e.g.
“successful”, “not completed”, “failed”, “predictably incorrect”, “inconclusive”,
“unclear”, “runtime error NNN”, “division by 0”, “crash”, etc.

To thoughtfully test some feature or software component, tests are grouped in
testgroups. Each testgroup may be either simple or composite. Simple testgroup
consists of one or more tests with similar characteristics for the testing of a
particular software component or feature.

A composite testgroup consists of one or more lower level testgroups and
during testing is considered as a single object. From the graph perspective test-

groups as nodes are organized in tree-like hierarchical structure and all together
constitutes a directed forest. Each simple testgroup is leaf in this forest and
each composite testgroup is in parent-child relation with each of its immediate
constituents. Further we use ‘simple testgroup’ and ‘leaf-testgroup’ as synonyms.

For example, in one leaf-testgroup there may be tests checking data import
from the XML source, in another there may be tests checking data import from
database and these testgroups may be included in higher level testgroup checking
data import in general. Such approach allows directly point to functional parts
of tested software when erroneous testgroup is found out.

Environments are parameterized objects characterized by various attributes,
e.g. operating system, and their values, e.g. ‘Windows’, ’Linux’, ’Mac OS’. For
web applications one of attributes may be browser, for mobile devices – appli-
cation, etc. We assume that the same attribute value is not used for more than
one attribute, therefore any attribute value is enough to identify the attribute.
Each environment is identified by attribute value set where each attribute is rep-
resented by at most one value. For different environments these attribute value
sets may be of different size. Any nonempty subset of environments attribute set
is called attribute bundle or bundle or subbundle for convenience.

Attribute bundles are organized hierarchically using relation be subset. In con-
trary to testgroups establishing forest, sets of environment attributes as nodes
constitutes more general structure – directed acyclic graph (DAG). Each at-
tribute bundle is in parent-child relation with each superset containing one more
attribute and each child may have several parents.

Hierarchy of testgroups and hierarchy of attribute bundles in this paper is
referenced as hierarchies and their elements as hierarchy objects.

Build is one particular version of the same software product to be tested.
Testrun is execution of a build using simple testgroup in specified testing

environment to obtain testrun result: tuple of number of tests having particular
status for each of available test outcomes.

We are interested in comparison of results of testruns of two chosen builds
called reference build and active build. Comparison makes sense just if testgroup
and environment are the same for both testruns. This requirement is satisfied in
regression testing. Each comparison may report deterioration – observation that
active build testrun result is worse than reference build testrun result. A simple
way is to report a deterioration if the number of failed tests increases.

Our purpose is to introduce measure of significance of deterioration for hier-
archy objects separately for each hierarchy and using this measure to recognize
deterioration objects. Such testgroups and/or attribute bundles must attract de-
veloper’s attention at the first and therefore we think unreasonable to report
large number of less significant deterioration objects. Instead we consolidate in-
formation about them into smaller number of resulting deterioration objects of
higher hierarchy levels. As result of proposed analysis two collections of resulting
deterioration objects – resulting deterioration testgroups and resulting deterio-
ration attribute bundles are provided.

3 Root cause analysis

Testing process is described by the following elements:

– sequence B of builds,
– set G of testgroups organized hierarchically,
– set E of environments,
– set R of testruns.

In addition we denote by L set of all leaf-testgroups; by avs(e) attribute
value set of environment e ∈ E ; by A =

⋃
e∈E

2avs(e)−∅ the set of all E subbundles

organized hierarchically.
For a chosen reference build b0 and active build b1 we consider two testrun

sets R0 and R1, where R0 ⊆ R is a set of testruns using b0 and subset of L×E ,
and R1 ⊆ R is a set of testruns using b1 and subset of L × E . Each testrun
is characterized by tuple (bld, grp, env, res), where bld is a build, grp is a leaf-
testgroup, env is an environment, res is the testrun result. Clearly, r.bld = bi
for each r ∈ Ri (i = 0, 1).

Results of every two coupled testruns r0 ∈ R0 and r1 ∈ R1 where r0.grp =
r1.grp and r0.env = r1.env are subjects of comparison which is performed by
specialized boolean function isDeterioration(r0.res, r1.res) returning true when
r1 result is worse than the result of r0. The basis of deterioration analysis is a
deterioration set D consisting of the testruns r1 ∈ R1, that with respect to the
corresponding element r0 ∈ R0 have isDeterioration(r0.res, r1.res) = true.

3.1 Algorithmic principles of deterioration analysis

As said before the hierarchies of testgroups and environment attribute bundles
are represented by DAGs and the aims of analysis are of similar kind, therefore
analysis of both hierarchies will be carried out in a similar manner:

– calculating the basic significance characteristics (Algorithm 1),
– thresholding the significance values (Algorithm 2),
– calculating the presentence of hierarchy objects within deterioration set,
– DAG-based two-stage filtering (sink refining and source refining).

Each step is described below in details.

3.1.1 Calculating the basic significance characteristics. For all test-
groups and attribute bundles we introduce two functions det and com calculated
by Algorithm 1 which iterates through leaf-testgroups and environments.

For each leaf-testgroup l ∈ L value of det(l) indicates how many times the
leaf-testgroup l occurs as constituent of the testruns of D and com(l) indicates
number of coupled testruns (r0 ∈ R0, r1 ∈ R1) where r1.grp = r0.grp = l.

If testgroup g ∈ G is not a leaf-testgroup, than the value det(g) is a recursive
sum of the values det of all g children g1, g2, ... : det(g) = det(g1) + det(g2) + ...,
and, analogously, com(g) = com(g1) + com(g2) + ...

In their turn, for each bundle a ∈ A value of det(a) indicates how many
times a occurs as subbundle of environment e attribute set avs(e) where e is a
constituent of the testrun of D. For each bundle a ∈ A value of com(a) indicates
number of coupled testruns (r0 ∈ R0, r1 ∈ R1) where a occurs as subbundle of
environment e attribute set avs(e) and r1.env = r0.env = e.

Based on parent-child relation let’s by predecessors(n) denote set of DAG
nodes being predecessors of node n together with n itself and by successors(n)
denote set of DAG nodes being successors of node n together with n itself. Let’s
say that node n2 is reachable from node n1 if n2 ∈ successors(n1), and node n
is reachable from node set N if n is reachable from some element of N .

Algorithm 1: Calculating the basic data: deterioration set D, values of
det and com

Input: the testgroup set G, the environment set E , the reference build b0
corresponding testrun set R0, the active build b1 corresponding testrun
set R1

Output: the deterioration set D, values of det and com
begin

D := ∅
for all G and A elements initialize det and com values to 0
foreach l in L do

foreach e in E do
r0 := a testrun of R0, built on the pair (l, e)
r1 := a testrun of R1 built on the pair (l, e)
if r0 exists and r1 exists then

foreach g ∈ predecessors(l) do increase com(g) by 1
foreach a ∈ predecessors(avs(e)) do increase com(a) by 1
if isDeterioration(r0.res, r1.res) then

add r1 to D
foreach g ∈ predecessors(l) do increase det(g) by 1
foreach a ∈ predecessors(avs(e)) do increase det(a) by 1

end if
end if

end foreach
end foreach

end

We rely on the consideration that the sources of deterioration should mani-
festing via hierarchy objects that appear most frequently in the testrun set D.
This consideration is fundamental for proposed deterioration analysis.

For a hierarchy object x its significance sig(x) is characterized by its amount
of deteriorations det(x), i.e. the number of the testruns it is involved with and
the deterioration occurs, relate to the entire number of comparisons com(x) it
is involved with: sig(x) = det(x)

com(x) (0, if com(x) = 0).

Of course, beside this consideration of a statistical nature, other considera-
tions of object significance may be taken in account. Say, importance of tests
for a customer or in comparison with allied program products. As well more
complicated expressions of already introduced functions like det(x)

com(x) ×
det(x)
|D| may

be useful. However, investigation of such alternatives is quite complicated and
out of scope of this paper.

3.1.2 Thresholding the significance values. Now when deterioration sig-
nificance values of objects of both hierarchies are found, we use them to locate
the most problematic points of the software tested.

Reasonably, problematic points are indicated by hierarchy objects with the
maximum sig value. However, usually there is just one or very few hierarchy
objects having maximum sig value and restricting our interest just to them we
neglect objects with values close to the maximum value. To maintain also such
cases as a base of analysis result we will use object collection having sig values not
lower than particular threshold value found by half-sum thresholding procedure
based on Algorithm 2 that finds dominating greatest values in non-decreasing
ordered sequence of values sig.

Algorithm 2: Calculating the dominating values of an ordered nonnegative
real number list

Input: A non-empty list L of non-decreasing nonnegative real numbers
Result: The index of the first dominating value
begin

kmax := length(L)
if kmax = 1 or (kmax = 2 and L[1] = L[2]) then

return 1
else

return the greatest index k satisfying
L[1] + L[2] + ...+ L[k–1] < L[k] + L[k + 1] + ...+ L[kmax]

end if
end

Fig. 1 illustrates bar diagram for 16 sig values: 0.077, 0.25, 0.294, 0.333, 0.357,
0.4, 0.467, 0.552, 0.563, 0.571, 0.573, 0.587, 0.613, 0.643, 0.647, 0.867. This is a
typical case with exactly one maximum sig value. On these data Algorithm 2
returns the index 11, so the corresponding threshold value is L[11] = 0.573 and
the result of half-sum thresholding procedure are six objects ensuring broader
view of the analyzed hierarchy than using just maximum.

There can be also thresholding approaches different from the described. One
of them is to look for the biggest increase between two consecutive values. In the
described example corresponding threshold value is L[16] which is the maximum
in the L. However, deeper analysis shows instability of such criterion – even in
this example close to be a threshold is value L[2] splitting the list only formally.

Another approach was histogram-inspired analysis – find longest subsequence
of consecutive close enough values and split right after it (or right before if

Fig. 1. Bar diagram of sig values for example from Fig. 2.

subsequence includes the greatest value). In the given example such value is
L[12], however, also this approach seemed not stable enough and to be relatively
complicated.

Executing selected thresholding procedure on a hierarchy, we get a thresh-
olded set of all hierarchy objects having sig value at least threshold value: G′

from testgroup hierarchy G and A′ from attribute bundle hierarchy A.
It turns out that the thresholded sets still may retain comparatively many

hierarchy objects sometimes providing redundant information. To obtain final
result, a specific refining procedure reducing redundancy and amount of reported
deterioration objects is performed.

3.1.3 Calculating the presentence of hierarchy objects within the de-
terioration set. Refining procedure consists of two consecutive graph filters.
The first one takes into account an important additional parameter covering
number : for hierarchy object x covering number cov(x) denotes number of de-
terioration objects without successors reachable from x. For testgroups g ∈ G′

function value cov(g) is number of g successors that belongs to the set G′ and are
leaf-testgroups. For attribute bundles a ∈ A′ function value cov(a) denotes num-
ber of A′ bundles that are attribute sets of environments from the deterioration
set D containing a as subbundle.

3.1.4 DAG-based two-stage filtering. The first, sink refining filter is de-
fined for the both thresholded sets by the following rules:

– if g1 ∈ G′ is parent of g2 ∈ G′ and cov(g1) = cov(g2), then g1 should be
excluded from G′.

– if a1 ∈ A′ is parent of a2 ∈ A′ and cov(a1) = cov(a2), then a1 should be
excluded from A′.

The meaning of these rules: if object x1 of a hierarchy is a predecessor of
object x2 of the same hierarchy and from x1 are reachable exactly the same
objects without successors as from x2, this relation alone is not a reason to

report x1 as deterioration object of the tested software because in this case
unnecessary generalization of deterioration object takes place. In other words,
object x2 is kept as more precise specialization if compared with x1.

The second, source refining filter is defined for the both thresholded sets by
the following rules:

– if testgroups g1 and g2 after applying the first filter still belongs to G′ and
g1 is a predecessor of g2 in G, then g2 should be excluded from G′.

– if bundles a1 and a2 after applying the first filter still belongs to A′ and a1
is a predecessor of a2 in A, then a2 should be excluded from A′.

The meaning of these rules: if object x2 from the hierarchy is successor of
object x1 from the same hierarchy, this relation alone is not a reason to report
x2 as deterioration point of the tested software because in this case unnecessary
specialization of deterioration point takes place. In other words, x1 is kept be-
cause it consolidates deterioration information about successor objects from the
same hierarchy. For attribute bundles it may be also explained as if intersection
of bundles is non-empty and is present in the same attribute bundle set, then
intersecting bundles are excluded and just intersection is retained.

From the graph perspective the first filter keeps sink objects of subgraphs
of the particular hierarchy determined by the equality classes of the function
cov. The second filter in its turn keeps source objects of hierarchy determined
by the hierarchy objects remaining after the first filter. So the corresponding
implementations are straightforward.

3.1.5 Justification of the proposed approach. In the next sections pro-
cessing of both hierarchies is discussed and proposed approach is justified by
formal proof for cases when deterioration sources are clearly located.

Clearly located sources are objects from some deterioration object set S that
is characterized by the following:

– for any coupled reference build testrun r0 and active build testrun r1 all cases
when value of isDeterioration(r0.res, r1.res) is true are caused by exactly
one deterioration object;

– each element of S belongs to distinct connected component of the same
hierarchy.

Under additional specified conditions depending on hierarchy type the set of
clearly located deterioration objects can be found precisely and this is formally
proved.

When these conditions are not satisfied, e.g. failure of a particular testrun is
caused by more than one object from the same hierarchy and individual reason
of failure can’t be discovered, our analysis algorithms work as heuristics.

3.2 Root cause analysis of testgroups

3.2.1 Processing of testgroup hierarchy. As stated above, testgroup is an
intrinsic element within the entire hierarchical structure of testgroup set G and is

characterized by its relationship with other testgroups via parent-child relations.
Each testgroup is identified by unique name. Every testgroup has exactly one
parent (if any), and some amount of children (if any).

In Fig. 2 example hierarchy of testgroups is shown. Testgroup names are
labels placed inside nodes. The values det, com, and sig are added from the left
above the corresponding nodes in the named order. Nodes of G′ testgroups are
supplemented with the forth parameter the covering number cov and are colored
gray.

Fig. 2. Example hierarchy of testgroups.

The bar diagram at the Fig. 1 illustrates all 16 sig values of the example
depicted in Fig. 2. The thresholding procedure based on Algorithm 2 returns
the index 11, so the found threshold value is L[11] = 0.573.

The final stage of processing procedure is two-stage filtering refining the set
G′.

In the example (Fig. 2) after applying the sink refining filter, the testgroups
that are excluded from G′ are g12 and g21. The testgroup g21 and its successor
g211 belongs to the initial G′ and cov(g21) = cov(g211) = 1. There is no reason
to blame testgroup g21, even more because it contains also testgroup g212, which
tests are performed relatively better. Likewise testgroup g12 and its successor
g122 belongs to thresholded set G′ and com(g12) = com(g122) = 1.

Further, after applying the source refining filter also g112 and g122 as suc-
cessors of g1 are excluded from G′. Therefore in the refined G′ there remain only
testgroups g1 and g211. This is a final result of analysis and in the Fig. 2 are
emphasized by bold frame.

We would like to add that in the first component of the example before
applying both refining filters testgroup g1 together with its successors g12, g122,
g112 were in the thresholded set G′, but analysis concludes that main attention
must be paid to tested software aspect tested by g1.

3.2.2 Justification of proposed procedure. Let leafs(g) = L ∩ succes-
sors(g) denotes the set of leaf-testgroups that are reachable from g, and for arbi-
trary testgroup set G ⊆ G denote by leafs(G) the set of leaf-testgroups reachable
from some element of G. By groups(D) denote the set of leaf-testgroups that
correspond to the testruns of the deterioration set D.

The following conditions are based on ones stated at 4.1.5. A set G ⊆ G is
set of clearly located testgroups iff

(1) all active build testruns r1 together with coupled testruns r0 have the
property isDeterioration(r0.res, r1.res) ↔ r1.grp is reachable from G. Note that
equivalent form of the right side is leafs(G) = groups(D);

(2) each element of G belongs to distinct connected component of G. Note
that for each two distinct elements g1, g2 ∈ G: predecessors(g1) ∩ predeces-
sors(g2) = ∅;

(3) all G elements are either leaf-testgroups or have at least two children.
Proposition 1. If for deterioration set D exists a testgroup set G satisfying

conditions (1), (2) and (3), then result of testgroup analysis procedure is exactly
G.

Proof.
Meaning of the fragment of Algorithm 1 calculating values of det and com

for leaf-testgroups may be expressed as:

r0 = a testrun of R0, built on the pair (l, e)
r1 = a testrun of R1 built on the pair (l, e)
if r0 exists and r1 exists then

increase com(l) by 1
if l is reachable from G then increase det(l) by 1

end if

Hence for all l ∈ leafs(G) is 0 ≤ det(l) ≤ com(l) . Moreover, for l not reachable
from G det(l) = 0 because increasing of det(l) is skipped. If l is reachable from G
then values com and det during calculations grow simultaneously, hence det(l) =
com(l).

Thus for the significance values sig of the l ∈ leafs(G) we have

sig(l) =

{
1, if l is reachable from G

0, otherwise.
(1)

Now determine the values of the function sig of composite testgroups.
If the testgroup g is not a leaf-testgroup, then it have children g1, g2, ..., and

from 4.1.1 det(g) = det(g1)+ det(g2)+ ..., and com(g) = com(g1)+ com(g2)+ ...
Hence

sig(g) =
det(g)

com(g)
=

det(g1) + det(g2) + ...

com(g1) + com(g2) + ...
. (2)

For each testgroup g the following cases are possible:

(a) g is reachable from some element of G,

(b) g is a predecessor of some element of G,
(c) g satisfies neither (a) nor (b).

In the case (a), when the testgroup g is reachable from some element of G,
the leaf-testgroups reachable from g are also reachable from this element of G,
hence all such leafs belong to leafs(G). If all children of g are leaf-testgroups,
then det(gi) = com(gi), i =1, 2, ..., and from (2) immediately follows sig(g) = 1.
Recursively backtracking in direction of g parents till the g ancestor from G, we
see that all testgroups on this predecessor path also have sig values equal to 1.

In the case (b) at least one leaf-testgroup is reachable from g and belongs to
leafs(G), so det(g) > 0, and hence sig(g) > 0.

And finally, in the case (c), when the testgroup g is not a successor nor a
predecessor of elements of G, then no leaf-testgroup from leafs(g) belongs to
leafs(G), and hence sig(g) = 0. So, summarizing all three cases we have:

sig(g) =


1, if g is reachable from some element of G
0 <...≤1, if g is a predecessor of some element of G
0, otherwise

(3)

Now, in accordance with the thresholding procedure based on Algorithm 2,
all testgroups with the sig value 1 are included into the set G′ and there are no
testgroups with the sig value 0.

Due to condition (2) in order to complete the proof, it is enough to examine
some separate connected component of G that contains at least one testgroup
with the sig value greater than 0. In any such component there exists exactly
one testgroup from G. Denote by C this component and consider the set G12 =
{g ∈ C | leafs(g) = leafs(C ∩ G′)} every element of which satisfies conditions (1)
and (2). Set G12 is non-empty because it contains G element having sig value
1 and so belonging to G′. Note that cov value of all G12 testgroups is the same
and maximum possible in C.

Let’s examine particular element g ∈ G12.
As in C ∩ G′ there are only testgroups with sig value greater than 0, every

of them belongs either to predecessors(g)/{g} or to successors(g).
For each testgroup ḡ ∈ C ∩ G′ if ḡ ∈ predecessors(g)/{g} then by definition

ḡ ∈ G12.
For number of g children three mutually exclusive cases must be distin-

guished:

– If g has exactly one child ḡ then cov(ḡ) = cov(g) and by definition ḡ ∈ G12.
During processing the first refining filter g will be excluded from G′.

– If g has at least two children, then for each child ḡ is a set leafs(ḡ) is proper
subset of leafs(g) hence cov(ḡ) < cov(g) and g is sink of G12.

– If g has no child, i.e. it is leaf-testgroup, then cov(g) = 1 and g is sink of
G12.

Thus G12 testgroups in C constitutes a path having unique sink g0 which is
also result of applying sink refining filter.

Since all other testgroups from C ∩ G′ are g0 successors, the sinks of the
subgraphs of C determined by cov values different from cov(g0) are reachable
from g0. As the testgroup g0 is the predecessor of all other sinks in C, the g0 is
kept as the unique result of the second refining filter in C.

By construction only g0 satisfies also condition (3) and is the only element
in C ∩G. �

Note that condition (3) was not used in reasoning as requirement. However,
this condition cannot be excluded because under just two first conditions there
could be more than one valid candidates for G and therefore Proposition 1
assertion would be false.

We end the chapter with some examples demonstrating the meaningfulness
of Proposition 1.

Example at Fig. 3 with the set G = {g11, g22} illustrates the case when all
conditions of Proposition 1 are satisfied. In this example threshold value for sig
is 1. Therefore for each g from the thresholded set all leafs(g) in G belongs to
leafs(G) and union of all leafs(g) is exactly leafs(G).

Fig. 3. Testgroup hierarchy with all conditions satisfied, G = {g11, g22}.

Example at Fig. 4 illustrates the case when also all conditions of Proposition
1 are satisfied and G = {g11}. In this case the g11 parent g1 though has the sig
value less than 1, nevertheless has got into the thresholded set G′, and therefore
cov(g1) = cov(g11). Only a part of the testgroup hierarchy is depicted: in the
entire graph the testgroup g11 has nine analogously attached predecessors.

Not always result of proposed analysis is clearly located testgroup set. Fig.
5 and Fig. 6 illustrates situations where clearly located testgroup set cannot be
found, as analysis result does not satisfy one of considered conditions.

In example at Fig. 5 result of analysis is a set {g1} and since leafs({g1})
= {g121, g122, g111, g112} differs from groups(D) = {g121, g111}, this is a
violation of condition (1). Despite to fact that found result formally is not clearly

Fig. 4. Testgroup hierarchy with all conditions satisfied, threshold 0.667, G = {g11}.

located, deterioration object g1 still is useful as least common testgroup covering
all leaf-testgroups pointing to problems.

Fig. 5. Testgroup hierarchy where result does not satisfy condition (1).

In example at Fig. 6 result of analysis is a set {g221, g222} and because
both elements are from the same connected component, this is a violation of
condition (2). Also in this case result of testgroup analysis formally is not clearly
located. However, g221 and g222 together covers all leaf-testgroups pointing to
problems and at the same time having no leaf-testgroup without deterioration
as constituent.

Fig. 6. Testgroup hierarchy where result does not satisfy condition (2).

Example at Fig. 7 demonstrates that without condition (3) besides result
of analysis {g2} also sets {g0} and {g1} satisfy the first two conditions, and
Proposition 1 assertion is false.

Fig. 7. Testgroup hierarchy illustrating necessity of condition (3).

3.3 Root cause analysis of environments

3.3.1 Processing of attribute bundle hierarchy. As stated above, envi-
ronment is characterized by attributes and attribute values where the same value
is not used for more than one attribute. Objects of our analysis are attribute
bundles, i.e. subsets of environment attribute sets constituting attribute bundle
hierarchy.

To illustrate such hierarchy we use the following abstract environment at-
tributes and their values: operating systems os1, os2; computer architectures
ar1, ar2; browsers br1, br2, br3. Based on these values consider the example en-
vironment set E with corresponding attribute value sets: {os1, br1}, {os2, ar2},
{os2, br2}, {os2, br1}, {os1, ar1, br1}, {os1, ar1, br2}, {os1, ar1, br3}, {os1, ar2,
br3}, {os2, ar1, br2}, {os2, ar1, br3}, {os2, ar2, br3}.

The purpose of analysis of environments is to point out those attribute bun-
dles that are common to the most significant deterioration. The pointed attribute
bundle can be a set of an existing environment attribute values or it can be a
subset of attribute values in any defined environments meaning that we are re-
ferring to a generalized environment which is not directly accessible for testing.
For example for attribute value sets {os1, ar1, br2}, {os2, ar1, br2}, {os2, ar1,
br3} attribute bundle {ar1} generalizes three attribute bundles into a single,
more general attribute bundle. So as an analysis result either attribute value
sets or some of their generalizations, i.e. subbundles may be reported.

The main structure of root cause analysis of environments is attribute bundle
hierarchy A. The bundles of our example are brought in Table 1 additionally
grouped by attribute count and are represented by ordered tuples where absent
attributes are marked by asterisks.

Table 1. Example attribute bundles.

(os1 * *) (os1 ar1 *) (os2 ar1 *) (os1 ar1 br1)
(os2 * *) (os1 ar2 *) (os2 ar2 *) (os1 ar1 br2)
(* ar1 *) (os1 * br1) (os1 * br2) (os1 ar1 br3)
(* ar2 *) (os2 * br1) (* ar1 br1) (os1 ar2 br3)
(* * br1) (os2 * br2) (* ar1 br2) (os2 ar1 br2)
(* * br2) (os1 * br3) (os2 * br3) (os2 ar1 br3)
(* * br3) (* ar1 br3) (* ar2 br3) (os2 ar2 br3)

The example hierarchy is illustrated in Fig. 8. Presence of asterisks in nodes
allows to easy follow the attribute bundle relations. Namely, substituting an
asterisk by the value of the corresponding attribute we directly get the respective

child of this bundle in the hierarchy. The nodes corresponding to the given
environments are depicted as rectangles: ordinary if deterioration is observed
and rounded if there is no deterioration. All other nodes are depicted as ovals.
Nodes are supplemented with some bundle parameters and some of them are
graphically highlighted, that is discussed further.

Fig. 8. Example attribute bundle hierarchy.

The values det, com, and sig are added from the left above the corresponding
nodes in the named order. Nodes of A′ bundles are supplemented with the forth
parameter the covering value cov and are colored gray. The bar diagram at the
Fig. 9 illustrates all 28 values of sig of example in Fig. 8. Threshold value found
by using Algorithm 2 is L[19] = 0.52.

Fig. 9. Bar diagram of sig values for example from Fig.8.

The final stage of processing procedure is two-stage filtering refining the set
A′. After applying the first refining filter bundle {br2} is excluded from A′

because bundle {br2} and its successor {ar1, br2} belongs to the initial A′ and
cov({br2}) = cov({ar1, br2}) = 2. Also bundles {os1, br2} and {ar1, br3} having
child nodes with equal cov value are excluded from A′.

Further, after applying the source refining filter also bundles {ar1, br2}, {os2,
ar1}, {os1, ar1, br2}, {os2, ar1, br2} and {os2, ar1, br3} as successors of ar1 are
excluded from A′. Therefore in the refined A′ there remain only attribute bundles
{ar1} and {os2, br1}. This is a final result of attribute bundle analysis and in
the Fig.8 corresponding nodes are highlighted by bold frames.

3.3.2 Justification of proposed procedure. The further needs some addi-
tional designations:

env(R) – the set of environments of the testrun set R;
avs(E) – the set of attribute value sets of the environment set E;
V = avs(env(D)) - the attribute value sets of the environments of the dete-

rioration set D.
The following conditions are based on ones stated at 4.1.5.
A set B ⊆ A is set of clearly located attribute bundles iff
(1) all active build testruns r1 together with coupled testruns r0 have the

property isDeterioration(r0.res, r1.res) ↔ avs(r1.env) is reachable from B. Note
that equivalent form of the right side is ∃b ⊆ avs(r1.env)(b ∈ B).

(2) each element of B belongs to distinct connected component of A.
(3) for all environment attribute sets having common subbundle b ∈ B, b is

intersection of these attribute sets.
Proposition 2. If for deterioration set D exists an attribute bundle set B

satisfying conditions (1), (2) and (3), then result of attribute bundle analysis
procedure is exactly B.

Proof.
The fragment of Algorithm 1 calculating values of det and com for attribute

bundles is:

r0 = a testrun of R0, built on the pair (l, e)
r1 = a testrun of R1 built on the pair (l, e)
if r0 exists and r1 exists then

foreach a ∈ predecessors(avs(e)) do increase com(a) by 1
if avs(e) is reachable from B then

foreach a ∈ predecessors(avs(e)) do increase det(a) by 1
end if

end if

Clearly for all a ∈ A is 0 ≤ det(a) ≤ com(a).
If a ⊆ avs(e) ⊆ V , i.e. from a is reachable some b ∈ V , then det(a) > 0 and

vice versa. Moreover, if additionally the bundle a is reachable from some b ∈ B,
i.e ∃b ∈ B(b ⊆ a), then det(a) = com(a), because for b ∈ B each bundle a with

b ⊆ a is subbundle of some element of V and for such bundles the values com
and det during calculations grow simultaneously.

Thus for the significance values sig of the attribute bundles of A we have

sig(a) =


1, if a is reachable from B

0 <...≤1, if some element of V is reachable from a

0, otherwise
(4)

Now, in accordance with the thresholding procedure based on Algorithm 2,
into the set A′ definitely get all bundles with the sig value 1, and definitely do
not get bundles with the sig value 0.

Due to condition (2), each element of B belongs to different connected com-
ponent of A. Thus, to complete the proof, it is enough to examine separate A
component comprising some bundle from B. Denote this component by C and
consider the set B12 = {b ∈ C | all attribute sets from C ∩ V) are reachable
from b, i.e. b is subset of all attribute sets from C ∩ V } every element of which
satisfies conditions (1) and (2).

Set B12 is non-empty because it contains B element having sig value 1 and
so belonging to C ∩A′. Let’s denote by b0 ∈ B12 intersection of all attribute sets
from C ∩ V . All other B12 elements are subsets from b0, hence b0 is reachable
from them.

We express cov(a) for arbitrary bundle a ∈ C as |{s ∈ C ∩ V | a ⊆ s}|. So
for all B12 bundles cov value is cov(b0) which is maximum possible cov value
in C. Since by B12 definition, there are no C elements with the same cov value
outside B12, so B12 constitutes equality class with b0 as unique sink in it. Thus
result of the sink refining filter contains b0 as only representative from B12.

For a ∈ C ∩ A′ and all b̄ ⊆ b0 holds cov(b̄ ∪ a) = cov(b0 ∪ a). Every equality
class of the function cov together with bundle a contains also the bundle b0 ∪ a
reachable from b0. So in C every sink of every equality class of the function cov
is reachable from b0. Hence all attribute bundles constituting the result of sink
refining filter are reachable from b0 which is kept as the unique result of the
second refining filter in C.

By construction only b0 satisfies also condition (3) and is the only element
in C ∩B. �

Note that condition (3) was not used in reasoning as requirement. However,
this condition is essential because under just two first conditions also b0 prede-
cessors would be valid candidates for B and therefore Proposition 2 assertion
would be false.

We end the chapter with some examples demonstrating the meaningfulness
of Proposition 2. Both the cases when all conditions of the Proposition 2 are
completely satisfied and the cases when individual conditions are violated are
presented.

Fig.10 demonstrates an example when all conditions of the Proposition 2 are
satisfied and B = {{os1}, {br1}} is clearly located attribute bundle set.

Fig. 10. Attribute bundle hierarchy with all conditions satisfied, B = {{os1}, {br1}}.

Example at Fig. 11 illustrates the case when also all conditions of Proposition
2 are satisfied and B = {{os1, br1}}. In this case the {os1, br1} parents {os1}
and {br1} though have the sig value less than 1, nevertheless have got into the
thresholded set A′, and therefore cov({os1}) = cov({br1}) = cov({os1, br1}).

Fig. 11. Attribute bundle hierarchy with all conditions satisfied, threshold 0.83, B =
{{os1, br1}}.

In example at Fig. 12 the only resulting deterioration attribute bundle is
{os2} and in this case result is not clearly located because condition (1) of
Proposition 2 is violated since environment attribute set {os2, ar1} which is not
deterioration attribute bundle is reachable from {os2}. However all attribute sets
from V are covered by {os2} and so pointing to it is reasonable.

In example at Fig. 13 the resulting deterioration attribute bundle set contains
two bundles {ar2} and {br1} violating the condition (2) of Proposition 2. Note
that {br1} itself is environment attribute set. Despite fact that result formally

Fig. 12. Attribute bundle hierarchy where result does not satisfy condition (1).

is not clearly located, found bundles are useful because they together covers all
deterioration environment attribute sets.

Fig. 13. Attribute bundle hierarchy where result does not satisfy condition (2).

In example at Fig. 14 sets {os1} and {ar1} satisfies conditions (1) and (2),
whilst result of analysis is set {os1, ar1}, so Proposition 2 assertion is false
without condition (3).

Fig. 14. Attribute bundle hierarchy illustrating necessity of condition (3).

4 Practical results

The proposed algorithm was tested both on generated and real data sets. In the
first case all data elements must be created from scratch and we are free to choose
their structure and size. Some simple generated examples illustrating various
aspects of our analysis are shown in the figures above. As small examples are not
sufficient to judge about such serious issue as performance of our algorithm, we
estimated performance theoreticaly and developed series of timing experiments
on an ordinary computer (4 core 2.10GHz Intel® Core™ i3-2310M CPU, 4GB
RAM).

For performance estimation we use homogenous structure of hierarchies. At
nL = |L| assuming that there are nA attributes with mA values each, for one
pair of builds rough estimation of analysis time is O(nL(mA)

nA(log(nL)+2nA)).
Impact of the parameters nL and nA for mA = 4 can be observed in Table 2
where cells without data denotes that result of analysis could not be obtained
within 1 minute.
Table 2. Time (in seconds) of analysis and number of randomly generated testruns
depending on nL leaf-testgroups and nA attributes (mA = 4).

nL nA
3 4 5 6 7

50 0.2 (6063) 0.7 (24339) 1.3 (97304) 4.7 (389412) 49.6 (1556676)
100 0.3 (12156) 0.7 (48461) 2.0 (194536) 13.4 (778629) –
150 0.3 (18229) 0.7 (72956) 2.5 (291953) 15.1 (1167687) –
200 0.4 (24336) 0.8 (97296) 3.1 (389404) 24.3 (1556590) –
250 0.4 (30403) 1.1 (121626) 3.9 (486705) – –
300 0.5 (36483) 1.2 (145950) 4.6 (583939) – –

We see that theoretical analysis time grows rapidly with growth of number
of attributes. Fortunately, the number of attributes in our real data is not so
large.

The origin of real data is testing process of the large scale application mainte-
nance and updating. These data were collected during longer period and were not
adjusted especially for our analysis needs. So, besides clearly technical work like
obtaining data from the original database, adapting of environment attributes
should be done.

In the used real data sets environment attributes were obtained from the
given environment descriptions and four attributes: operating system, operating
system version, architecture, and browser with corresponding number of values 6,
23, 2 and 3 were chosen. Such choice is not strictly predefined, as some attributes
may be merged together or splitted into smaller ones. However, it is unreasonable
to define attributes having just one value, because presence of such attributes
does not influence results of our analysis, just increasing volume of data to be
processed. Therefore number of attributes for real environments is limited and
our analysis does not suffer from exponential number of attribute bundles built

on attribute value sets. Moreover, some combinations of attribute values may be
incompatible or senseless, i.e. if such combination is not presented in any real
environment.

In the largest real data set used for our algorithm testing number of real
environment attribute value sets (18) is essentially less than number of possible
attribute value sets (6× 23× 2× 3 = 828). In total there were 6327 testruns, 57
builds, 163 testgroups, 145 leaf-testgroups, 18 environments. Depth of testgroup
forest is 3. Additional statistical characteristics of the used data set are given in
Table 3.

Table 3. Quantitative characteristics of the largest used real data set.

Description Minimum Maximum Average
Number of testruns containing a build 1 971 111.0
Number of testruns containing a leaf-testgroup 3 83 43.6
Number of testruns containing an environment 4 608 351.5
Number of testruns containing a pair of leaf-testgroup
and environment

1 35 5.8

Number of coupled testrun pairs for a pair of builds 1 853 26.0

Values of characteristic det for the observed data set were quite low, which is
not surprising because in the real software development process at mature phase
we cannot expect dramatic decrese of quality. As a result also sig values are
low (almost all values are 0 with very few less than 0.1) and despite we cannot
observe computational power of our algorithm in full strength, obtained results
are cogent.

Also performance was acceptable and for the data set discussed time of anal-
ysis for pair of builds did not exceeded 0.3 seconds, and in the terms of Table
2 characteristics of our data set lays in the top left corner giving hope that we
will be able to process also other real data sets. Moreover the real attribute
value distribution is far from homogenous so lowering total number of possible
combinations.

5 Conclusions

In this paper we present a new root cause analysis algorithm for discovering the
most likely causes of differences found in testing results of two versions of the
same software. The proposed algorithm works with hierarchies of testgroups and
attributes of testing environments. These hierarchies allow to generalize found
problems by tested features. Relevant assigning of attributes produces compact
analysis results and allows to decrease the duration of software development
cycle.

Obtained results of analysis reaches initial goal: direct one’s attention to most
problematic points without necessity to search inside huge amount of data for
any single test case with unexpected outcome. With appropriate vizualization

these results give insight into quality dynamics of the sequence of builds and
ensures solution to find main deterioration places by few clicks.

We emphasize that in general case when failure of a particular testrun is
caused by more than one object from the same hierarchy and individual reason
of failure can’t be discovered, our analysis algorithms work as heuristics. For
clearly separated problem causes we have proven that our algorithm gives exact
solution.

Our approach works with limited number of attributes and their values. How-
ever, practical application till now was not even close to these limits. So a part
of the future work could be improving the method allowing to use larger number
of attributes and values or ascertain that in real applications large number of
attributes would not show up. Another way to improve effectiveness is calculate
characteristics of composite testgroups in advance before analysis especially in
cases when structure of testgroup hierarchy evolves over time. Interesting ques-
tion is possibility to obtain exact result by the actual algorithm also if in the
Propositions the first requirement is substituted by a weaker one.

Proposed analysis algorithm may be used during software development phase
also even if we have testing results just for actual build: we can create mock
testing results in advance and compare our actual testing results to them. If mock
testing results describes test results according to the project plan then mock
and real testing result comparison allows for various groups of users (testers,
developers, managers) to see if development is happening according to the plan
and if not then which areas are falling back the most.

Acknowledgements

The authors thank Juris Strods for presenting the problem of root cause of
deterioration in large scale application testing results and Kārlis Podnieks for
valuable comments.

References

1. Lee, M.L.: Change impact analysis of object-oriented software. PhD thesis, George
Mason University (1998)

2. Li, W., Henry, S.: An empirical study of maintenance activities in two object-
oriented systems. Journal of Software Maintenance: Research and Practice 7(2)
(1995) 131–147

3. Schneidewind, N.F.: The state of software maintenance. IEEE Transactions on
Software Engineering (3) (1987) 303–310

4. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. 3 edn. John
Wiley and Sons, Inc. (2012)

5. Wilson, B.: The Rootisserie – RCA Resources. http://www.bill-wilson.net/
root-cause-analysis/rca-resources (2014) (Accessed August 19, 2015).

6. Rooney, J.J., Vanden Heuvel, L.N.: Root Cause Analysis For Beginners. Quality
Progress 37 (july 2004) 45–53

http://www.bill-wilson.net/root-cause-analysis/rca-resources
http://www.bill-wilson.net/root-cause-analysis/rca-resources

7. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings of
the 10th ACM SIGSOFT symposium on Foundations of software engineering, ACM
(2002) 1–10

8. Bohner, S., Arnold, R.: Software Change Impact Analysis. Wiley – IEEE Computer
Society Press (june 1996)

	Root cause analysis of large scale application testing results

