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ANNOTATION

The thesis introduces forecasting of the temporal and geospatial patterns of pollen
season in Europe (including influencing factors and daily concentration of pollen)
through complex, multi-step transformation of data and parametric statistical analysis
for model development and validation. Simulations were performed for several plant
taxa at various (local, regional) spatial scales.

The first part of the thesis develops a local flowering model for Riga. It is based
on 12 years of observational data and aims at predicting the concentration of pollen in
the air using the data from meteorological forecast. The model accuracy exceeds 80%.

The second model is developed for regional-scale predictions of seasonal pollen
index (SPI) — for the region covering Finland, Sweden, Lithuania, Latvia, Belarus,
partly Russia and Norway. The SPI model is designed to be universally applicable to
the entire region and has an accuracy of 65% in south-eastern part of the region, and up
to 92% in the northern part of the region.

The third part of the doctoral thesis describes an optimised ensemble built over
simulations of six models for olive pollen over Europe in 2014. The optimization
procedure included observations of previous days and was shown to noticeably
improve the accuracy of the pollen forecasts generated by the individual models and
simple ensembles (mean and median) built over their predictions.

The result of doctoral thesis demonstrates the possibility to predict the amount of
pollen in the air at different temporal and spatial scales using historical and forecasted
meteorological information and past-time pollen counts. Forecasts are important for
allergic people, as well as for agricultural purposes (potential crop production), and
in phenological research. Practically applicable methodologies were constructed for
the regional seasonal pollen index predictions, daily pollen forecasts in Riga, and
European-scale ensemble fusion.



LIST OF ABBREVIATIONS

CAMS — Copernicus Atmospheric Monitoring Service

EAS — European Aerobiology Society

ECMWF — European Centre for Medium-Range Weather Forecast

IAA — International Association for Aerobiology

MACC — Monitoring Atmospheric Composition & Climate

SILAM - System for Integrated Modelling of Atmospheric Composition
WHO — World Health Organisation

DD — degree day — the unit of Heat Sum
H — The amount of accumulated heat, Heat Sum

SPI — Seasonal Pollen Index — integral of pollen concentrations over the season,
numerically equal to the sum of daily pollen concentration during the pollen season

Season — refers to the period associated with the presence of pollen in the air, originating
partly from local sources, and partly as a result of pollen long range transport

Predictor — input parameter for statistical analysis influencing the value of predictant

Predictant — variable to be predicted
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INTRODUCTION

Studies of pollen and spores in the air have been carried out in Europe since the
second half of XX century. The motivation of the studies was associated with several
factors: (i) allergenicity of many pollen and spores (Newson et al., 2014; Ring et al.,
2012); (ii) phenological and agricultural needs (Aguilera and Ruiz-Valenzuela, 2014;
Orlandi et al., 2005).

During the last 30 years, the prevalence of airborne allergy and asthma in Europe
has increased fourfold, reaching 15—40% of population. The World Health Organization
underlined the problem of continuously increasing number of people suffering from
respiratory disease caused by pollen and spores (Huynen et al., 2003). According to the
European Federation of Allergy and Airway Diseases Patients Associations, 80 million
(24.4%) of adults living in Europe are allergic; the allergy prevalence in children
is 30-40% and increasing (Laatikainen et al., 2011; Ronmark et al., 2009). Socio-
economic impact of these allergies was emphasized by European Academy of Allergy
and Clinical Immunology (Muraro and et al., 2015).

The cost of asthma in Europe is estimated at € 33.9 billion a year, the productivity
loss due to poor asthma control is € 14.4 billion a year (ERS, White Book, 2013, http://
www.erswhitebook.org).

Asthma and allergy prevalence are among the major public concerns, with 87% of
Europeans seeing it as a serious or very serious problem — on par with cardiovascular
and respiratory diseases. Pollen allergy, being a widespread cause of quality of life
deterioration, has one of the strongest potentials for citizens actively participating in
their health management and reduction of acute cases. Several studies, such as ISAAC
and ECRHS, (Pearce et al., 2007; Sunyer et al., 2004), show large variations among
the European countries (Laatikainen et al., 2011). Among the possible reasons of the
contrast are variations in the pollen features, differences in lifestyle and in susceptibility
due to co-exposure to chemical and aerosol pollutants.

The burden of allergic disease is recognised by a Written Declaration of the
European Parliament (Declaration, 2014). The Declaration has been followed by
the creation of the Allergy Interest Group of European Parliament. Pollen forecasting
has been taken as a new breakthrough development in Copernicus Atmospheric
Monitoring Service (CAMS).

Topicality of the study

The allergic reactions, even those caused by natural allergens, such pollen and
spores, can be noticeably reduced by forehanded treatment, which needs to be initiated
before the before the appearance of allergens in the air. That brings about the challenge
of allergenic pollen forecasts.

There are around 300 monitoring sites in Europe, providing regular observational
and forecasted data on pollen and spore concentration in the air (Figure 1.1). Being
of vital importance for mere existence of aerobiological forecasts, the observations



are available with a delay of 1-2 weeks or more, which makes their direct usage for
the model-based forecasting highly problematic. Automatic real-time pollen monitors,
potentially capable of revolutionising aerobiology, are still too expensive for massive
deployment. Therefore, the main attention currently is dedicated to forecasting models
that do not use observations in daily routine, being only calibrated and evaluated
against them in offline mode.
Two types of forecasting models are the most popular: regional-to-continental
dispersion models and local-scale statistical models. Dispersion models (Helbig et al.,
2004; Prank et al., 2013; Sofiev et al., 2015, 2012, 2006; Zink et al., 2013, 2012)
are capable of predicting the pollen distribution over large areas but their accuracy
strongly varies in space and depends on available information on plant distribution
(Siljamo et al., 2012; Sofiev et al., 2015).
The local-scale statistical models exploit empirically established relations between
the predicted quantity (predictant, such as pollen concentration) and independent
predictors (meteorological factors and historical pollen concentrations) (Rodriguez-
Rajo, 2000, as referred by Castellano-Méndez et al., 2005). The ways of establishing
these relations vary widely (see Paper I and references therein).
One of the most-important parameters quantifying the strength of an allergenic
pollen season is a Seasonal Pollen Index, SPI, which is defined as a sum of all daily-
mean pollen concentrations, i.e. a season-long integral of pollen concentrations. It was
related to:
a. severity of human allergy (Bastl et al., 2016; D’Amato et al., 2007; Huynen
et al., 2003);

b. used as an indicator of the productivity of trees, such as olives (Galan et al.,
2014; Myszkowska, 2013; Orlandi et al., 2005a; Oteros et al., 2013b; Prasad
et al., 1999);

c. used as predictive parameter for grape and wine (Cunha and Ribeiro, 2015) or

olives (Dhiab et al., 2016) production;

d. used as a bio indicator of plant reaction to the on-going climate change

(Hatfield and Prueger, 2015; Hedhly et al., 2009; Storkey et al., 2014; Zhang
et al., 2014);

e. used in numerous pollen forecasting models as a scaling factor determining
the predicted pollen concentrations (Helbig et al., 2004; Prank et al., 2013;
Puc, 2012; Ranta et al., 2008; Ritenberga et al., 2016; Siljamo et al., 2012;
Sofiev et al., 2012; Stach et al., 2008; Toro et al., 1998; Veriankaité et al.,
2009; Zhang et al., 2013; Ziello et al., 2012).

The SPI is known to change substantially from year to year depending on
combination of meteorological factors and physiology of the plant (Masaka, 2001;
Ranta and Satri, 2007), see also a review of Dahl et al. (2013). Its prediction, therefore,
is crucial for accurate intra-seasonal forecasts.

Scientific novelty

The thesis develops missing components of an over-arching model for pollen
season, at all scales from local to continental (Figure 1).



The thesis is built along three lines bringing the following innovative elements —
1. For local intra-seasonal short-term predictions of pollen concentrations:

a. A novel methodology of constructing linear regression models accounting
for non-stationarity, non-normality and non-linearity of the problems was
developed for pollen based on approaches suggested for local AQ now-
casting;

b. This methodology has been applied to Latvian pollen observational dataset
constructing and evaluating the first short-term pollen model for Riga.

2. For regional inter-seasonal pollen load forecasting:

a. A novel methodology of constructing models predicting the next-year SPI for
large regions is developed further expanding the principles of non-linear data
transformations suggested for intra-seasonal model;

b. Efficiency of the methodology is demonstrated by constructing the first SPI-
predicting model universally applicable over Fennoscandia and Baltic States.

—
Fusion ensemble
Paper | of models Paper lll
Local statistical European
model | deterministic models
| 1
1:“- Daily variations
Paper Il
‘ L Regional SPI
|r 1I - == )
Predictors from Year Predictors from Year , Year ,;

Figure 1. Components, spatial and temporal scales of pollen forecasting models

3. For European-scale ensemble of deterministic pollen forecasts:
a. For the first time, the data-fusion ensemble treatment, which creates the
optimal-ensemble model using the observations over preceding days for
optimal combination of the ensemble members, is suggested and evaluated.

Hypotheses of the thesis

Along the above three research directions, the following working hypotheses were
formulated:
1. For the local-scale intra-seasonal model, it was suggested that poor performance
of most local statistical models constructed for pollen this-far originates from
violation of the basic assumptions behind the linear regression methods applied in
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practically all such models. A series of non-linear transformations applied to input
data should ensure the consistency of the data features and requirements of the
statistical procedures used for the model construction.

2. For the inter-season SPI model, we assume that the SPI is a regional parameter
determined by the synoptic-scale meteorological processes, i.e. a few hundreds of
kilometres. The corresponding temporal scale from several days up to 1-2 weeks
characterizes the maximum temporal resolution of input data. Absolute values of
the SPI are not important: spatial and temporal variations inside these scales are
separable and can be homogenized via normalisation. It should thus be possible
to construct a statistical model for the SPI variation over such regions taken as
“boxes”, i.e. not resolving individual stations.

3. For European-scale fusion ensemble of deterministic forecasting, it was assumed
that lasting improvement of the ensemble forecasting skills can be obtained via
fusion methods. Unlike the standard data assimilation, which loses its skills
within a few hours, the past-time model weighting coefficients should maintain
applicability over several days in the future with minor losses of efficiency.

Aim of the thesis

To develop universal and easy-to-use forecasting models with a high accuracy for
predicting the concentration of different type of pollen on local-to-European spatial
scales and temporal forecasting horizon spanning from days for intra-seasonal and
months for inter-seasonal predictions.

Tasks of the thesis

The above main aim of the study was decomposed into the following tasks:

1. To define meteorological and environmental parameters influencing short and
long — term changes of pollen concentration.

2. To construct a local forecasting model that depicts the seasonal parameters of
the pollen (i.e., beginning, end, seasonal variations) based on meteorological
observations and short-term meteorological forecast data.

3. To construct regional model for next-year SPI based on meteorological and pollen
data from current year.

4. To find the best combination of models for olive pollen concentration forecast in
South-European region.

Publications

The doctoral thesis consists of three consecutive articles, reflecting the essence
of the problem and offering a methodology for solving problems at different levels —
local (Paper I) and regional (Paper II and Paper III), by applying statistical (Paper I,
Paper II, Paper I1I) and deterministic (Paper III) modelling methods. Sequential original
publications have been published or accepted for publication in high-ranking journals
with a JIF from 4.6 to 5.7 (2016) during the last 2 years (2015-2017):
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1. Paper L. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., Genikhovich, E.
(2016). Statistical modelling of non-stationary processes of atmospheric pollution
from natural sources: example of birch pollen. Agricultural and Forest Meteorology,
226-227, 96-107.

2. Paper II. Ritenberga, O., Sofiev, M., Siljamo, P., Saarto, A., Dahl, A., Ekebom, A.,
Sauliene, 1., Shalaboda, V., Severova, E., Hoebeke, L., Ramfjord, H. (2017).
A statistical model for predicting the inter-annual variability of birch pollen
abundance in Northern and North-Eastern Europe. Science of the Total Environment
(Accepted).

3. Paper III. Sofiev, M., Ritenberga, O., Siljamo, P., Albertini, R., Arteta, J.,
Belmonte, J., Bonini, M., Damialis, T., Elbern, H., Friese, E., Galan, C., Hrga, I.,
Kouznetsov, R., Plu, M., Prank, M., Robertson, L., Selenc, S., Thibaudon, M.,
Segers, A., Stepanovich, B., Valdebentino, A.M., Vira, J., Vokou, D. (2017). Multi-
model ensemble simulations of olive pollen distribution in Europe in 2014; current
status and outlook. Atmospheric Chemistry and Physics (Accepted).

Author’s contribution

All the tasks regarding the Paper I, including (i) pollen monitoring for data
collection (years 2006-2016); (ii) sample processing and data analysis; (iii) model
construction and evaluation were performed by the author of the current thesis. The
author’s contribution of Paper II consists of: (i) pollen monitoring for Riga site; (ii)
data analysis and regional model construction and evaluation. As to the third part of
the study (Paper III) dedicated to assessing the performance of the existing model
ensemble based on the olive pollen season in 2014, the author’s contribution is
construction and evaluation of statistical fusion model for the ensemble.

Pollen monitoring has been performed under the supervision of Assoc. Prof.
Laimdota Kalnina, modelling — under the supervision of Prof. M. Sofiev (Finnish
Meteorological Institute) and the consultations with Prof. Y. Genikhovich (Voeikov
Main Geophysical Observatory).

Approbation of the results

Approbation of constructed models has been performed on the European level by
Copernicus Atmospheric Monitoring Service, using methodology from constructed
regional model for Seasonal Pollen Index (Paper II) forecast, as well as model ensemble
(Paper 11I) as a tool for increase of forecast accuracy. It is planned to use local model
for pollen forecast in Riga, as well as to adopt the local model output as an input for
regional deterministic models (i.e., SILAM) as a substitute for the non-existing real-
time observational data resolving the problem of observational delay.
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Related articles

Three related articles were published in journals with JIF of over 2,5 (2016):

. Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., Bergmann, K.-C.,

Chéroux, F., Elbern, H., Friese, E., Galan, C., Gehrig, R., Khvorostyanov, D.,
Kranenburg, R., Kumar, U., Marécal, V., Meleux, F., Menut, L., Pessi, A.-M.,
Robertson, L., Ritenberga, O., Rodinkova, V., Saarto, A., Segers, A., Severova, E.,
Sauliene, I., Siljamo, P., Steensen, B.M., Teinemaa, E., Thibaudon, M., and
Peuch, V.-H. 2015. MACC regional multi-model ensemble simulations of birch
pollen dispersion in Europe, Atmos. Chem. Phys., 15, 8115-8130. DOI:10.5194/
acp-15-8115-2015.

. Kasprzyk, 1., Rodinkova, V., Sauliene, I., Ritenberga, O., Grinn-Gofran, A.,

et al. 2015. Air pollution by allergenic spores of the genus Alternaria in the air of
central and Eastern Europe. In: Environmental Science and Pollution Research.
DOI 10.1007/s11356-014-4070-6.

. Sikoparija, B., Skjeth, C.A., Celenk, S., Testoni, C., Abramidze, T., Alm Kiibler, K.,

Belmonte, J., Berger, U., Bonini, M., Charalampopoulos, A., Damialis, A., Clot, B.,
Dahl, A., de Weger, L., Gehrig, R., Hendrickx, M., Hoebeke, L., Ianovici, N.,
Seliger, A.K., Magyar, D., Manyoki, G., Milkovska, S., Myszkowska, D., Paldy, A.,
Pashley, C.H., Rasmussen, K., Ritenberga, O., Rodinkova, V., Rybnicek, O.,
Shalaboda, V., Saulien¢, I., Séevkova, ., Stjepanovi¢, B., Thibaudon, M.,
Verstraeten, C., Vokou, D., Yankova, R., Smith, M. 2016. Spatial and temporal
variations in airborne Ambrosia pollen across Europe. In: Aerobiologia.
DOI:10.1007/s10453-016-9463-1.

The total number of articles in international and local scientific journals is 11.

Selected international conference proceedings

1.

Ritenberga, O., Sofiev, M. Forecasting of inter- annual variability of Olive
seasonal pollen load. Mediterranean Palynology Symposium 4—6 September 2017,
Barcelona, Spain.

. Ritenberga, O., Sauliene, I., Berger, U., Sofiev, M. Towards developing Personal

Allergy Symptom Forecasting System in Baltic States. Congress of the European
Academy of Allergy and Clinical Immunology 17-21 June 2017, Helsinki, Finland.

. Ritenberga, O., Siljamo, P., Sofiev, M. Modelling of intra-seasonal fluctuation

and Inter-annual variability of birch pollen concentration: Example of Latvia and
Finland. European Symposium of Aerobiology 18-22 July 2016, Lyon, France.

. Ritenberga, O., Kalnina, L. Temporal changes of ragweed (4. artemisiifolia,

A. trifida, A. psilostachya) pollen concentration in Latvia. European Symposium of
Aerobiology 18-22 July 2016, Lyon, France.

. Ritenberga, O., Sofiev, M., Genikhovich, E. Towards developing of short-term

statistical model for birch pollen forecast. European Aerobiology Network and
European Aerobiological Society Symposium, 10-11 November, 2014. Vienna,
Austria.
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Latvia, 13—15 April 2011.

The total number of international conference proceedings is 26.

European Institutions interested in the pollen research development
in Latvia:

Supporting letters from the presidents of EAS — European Aerobiological Society,

IAA — International Association on Aerobiology was received in 2015 and 2017. The
author received two grants from European Aerobiological Society (in 2012 and 2016)
for the excellent pollen research. The best presentation award was given by Russian
Geographical Society in 2016 during the congress of Young Geographers.

A highly interested and powerful institutional user is Copernicus programme, in

particular, Copernicus Atmospheric Monitoring Service (CAMS). The study of the
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paper I1I is directly inspired by CAMS, whereas the results of Paper I will be used for
predicting the next-year SPI map as one of the inputs to the CAMS European pollen
forecasts.

Projects during the doctoral thesis preparation

1. “Statistical modelling of non-stationary processes of atmospheric pollution
from natural sources: example of birch pollen” (2015) Science-based funding of
Latvian Ministry of Education and Science via “Attraction of Human Resources to
Development of Scientific Study in the area of Earth and Environmental Sciences”
programme. 2016. Completed.

2. National research programme “Sustainable climate policy and effective
energotechnological solutions”. 2015-2017. Researcher.

3. Performance-based funding of University of Latvia “Climate change and sustainable
use of natural resources” programme. Researcher 2016—-2018. Researcher.

4. EU ECMWF Copernicus Atmospheric Monitoring Service Personal Allergy
Symptom Forecasting system (PASYFO), leader of Latvian group. Ongoing,
2017-2019.

Current doctoral thesis consists of Summary in English and Latvian languages and
three sequential scientific publications — parts of the thesis.

Summary of the thesis consists of annotation, introduction, two main chapters,
conclusions and list of references.
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1. DATA AND METHODS

The modelling of aerobiological (i.e. aeropalinological) processes is based on
pollen and/or spore bi-hourly, daily or seasonal data analysis. Bi-hourly data was used
in the first part of the study (Paper 1), daily data in regional study for Southern Europe
(Paper III) and, finally, seasonal data was presented in Paper II. There are different
geospatial scales used — from the local (Paper 1), to the regional (Paper II, III), — and
types of analysed pollen — birch and olives.

Pollen from different plants usually is observed during seven month in Latvia —
from the end of February (alder, hazel) to the end of September (mugwort, nettle).
Within seven months, there are about 3540 types of pollen in airflows that are mostly
from anemophylous plants.

Pollen grains differ by shape, size, composition, aerodynamic properties and effect
on human health. The presence of pollen in the air depends on distribution of plant
(influences emission) and meteorological situation, which regulates dispersion and
accumulation mechanisms.

In the Northern and North-Eastern Europe, the most common cause of pollen allergy
is birch and grasses (Bastl et al., 2016; D’Amato et al., 2007; Huynen et al., 2003).
In the Central part of Europe, about 25% of people are sensitive to ragweed pollen
(Sikoparija et al., 2016), while the plant itself is harmful to agriculture and is able to
adapt quickly to different growth conditions. Olive pollen is one of the most important
causes of respiratory allergies in the Southern Europe and Northern Africa (D’ Amato
et al., 2007). High rates of sensitization to olive pollen have been documented: 44%
in Spain and 20% in Portugal (Pereira et al., 2006), 31.8% in Greece (Gioulekas et al.,
2004), 21.6% in Turkey (Kalyoncu et al., 1995), and 15% in France (Spieksma, 1990).
At the same time olive is one of the most extensive crops and its oil is one of the major
economic resources in Southern Europe. The bulk of olive habitation (95% of the total
area worldwide) is concentrated in the Mediterranean basin (Barranco et al., 2008).

1.1. Data for model development

1.1.1. Aerobiological data

The thesis is focused on birch (Northern Europe) and olive pollen (Southern
Europe) data analysis and modelling.

Aerobiological data analysis consists of regular, continuous air monitoring during
growing season for several years. The longest data series used in the analysis come
from Finland (Figure 1.1) for the period from 1974 to 2015. Aerobiological monitoring
in Riga was started in 2003, and the length of data series is sufficient (Figure 1.1) to
generate short-term local forecast based on bi-hourly and daily pollen concentration
data (Paper I).
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Data acquisition was carried out in accordance with the requirements developed by
data quality control group (Galan et al., 2014; Oteros et al., 2013a), who formulated
the recommendations for devices, substances, sample and data analysis.

Aerobiological monitoring was performed by using Hirst type 7-day Burkard
pollen-spore trap (Hirst, 1954) (Paper 1), whose specifications make at least a one-week
delay in observational data. Seven days are needed for data collection and at least one
day for manual microscopic analysis of pollen samples. Automatic pollen monitoring
trials have begun at several European monitoring stations (Scheifinger et al., 2013), but
for the time being, its accuracy is far behind the manual monitoring accuracy. Pollen
recognition and counting was performed in UL GZZF Quaternary laboratory using
Primo Star Light Microscope under x 400 magnification by choosing vertical counting
method — 12 vertical traverses (Carinanos et al., 2000) with the distance of 2 mm, thus,
covering daily sample of 14x48 mm.

For the regional studies, aerobiological data were taken from the European
Aecroallergen Network database (Figure 1.1), in agreement with the representatives of
the countries. The requirements for data in case of birch SPI study (Paper II) was at least
11 continuous years of observations. In case of olive ensemble model construction — at
least 30 consecutive observation days, where at least 10 days with pollen concentration
exceeded 3 pollen/m?® (Paper 11).
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Figure 1.1. EAN monitoring stations and geometric mean of birch SPI [pollen day/m?] (output
of SILAM model)



17

1.1.2. Meteorological and air quality data

Aerobiological processes have been explained by meteorological (air temperature,
short wave solar radiation, wind speed and direction, cloud cover, relative humidity of
air, precipitation rate) and CO, concentrations in the air.

For local model construction (Paper I) hourly and daily data from Latvian
Centre of Geology Environment and Meteorology (LVGMC) observational station
Riga-Universitate were used. For the local model verification, data were taken from
operational archives of ECMWF.

As the most common factors describing SPI, temperature and precipitation from
different time periods are usually mentioned (Dahl and Strandhede, 1996; Latatowa
et al., 2002; Yli-Panula et al., 2009). It was decided to use additional related parameters,
such as short-wave solar radiation and amount of accumulated heat. 3-hours mean
meteorological data were taken from European Re-analysis ERA-Interim data (Dee
et al., 2011; Simmons et al., 2010) for the period of 1980-2015.

Carbon dioxide (CO,) is one of the factors possibly influencing the annual amount
of pollen from various taxa (Albertine et al., 2014). Carbon dioxide has a well-
expressed positive trend during at least last 40 years, somewhat resembling the trends
in the birch pollen abundance. The CO, data used for the analysis were downloaded
from the NOAA Earth System Research Laboratory (ESRL) public archive (http://
www.esrl.noaa.gov/gmd/ccgg/) for the period from 1980 to 2015.

1.2. Basic methods for statistical pollen modelling

Three parts of the pollen forecasting models were defined as separated tasks of
pollen forecasting modelling:

1. Determination of the start and end of the pollen season (Paper I, Paper III );

2. Season propagation (Paper I, Paper III), i.e. inter-seasonal daily variation of

pollen concentration;

3. Seasonal pollen index calculation (Paper II) — each part is affected by different

processes.

Aerobiological processes should be studies in a complex in order not to lose
the interactions between different factors. At the same time, at a certain stage of
the study they need to be separated (in essence, the model needs to be linearized)
for identification of influencing parameters. Following this approach, the influencing
factors were identified for (i) productivity (i.e. SPI influencing factors (Paper II); (ii)
factors influencing emission and dispersion (Paper I, Paper III); (iii) accumulation-
related parameters (Paper I, Paper III). All the aforementioned parameters were
identified using multi-linear regression analysis.

The data used for statistical analysis should comply with several requirements: be
normally distributed, represent stationary and ergodic process and have linear (or near-
linear) dependences between predictor and predictant.

The distribution function of daily mean pollen concentrations is closer to a log-
normal than to a normal distribution (Limpert et al., 2008; Toro et al., 1998). The most
common method for data transformation applied in the literature is the log-transform of
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pollen concentrations (Masaka, 2001; Méndez et al., 2005) as a precaution against
log-normally distributed data. It was used in case of local birch pollen model and
regional SPI model. Non-stationarity was reduced by using normalization and
temporal homogenization by replacing the astronomic time-scale with the heat sum
scale. Relations between the main predictors and daily mean pollen concentrations
are by no means linear. Linearization of dependences was achieved by projection of
meteorological variables on pollen scale.

1.2.1. Heat sum calculation

For the calculation the start and the end of pollen season (Paper I, II, III), the
idea of G. Linsser (1867) of accumulated heat sum was used. It states that the trees
are capable to accumulate the heat, and timing of phenological phases is regulated
by the accumulated heat sum. This function in a differential form has been used for
construction of birch and olive source terms in the European scale SILAM model
(Sofiev et al., 2012):

H(d) = 2 [T()=T._,]. (1)

Here, H is temperature sum (heat sum), d is day, d_is starting day of the heat
accumulation, 7(d) is daily temperature, T is cut-off temperature (temperatures
below this threshold are not summed up), [x], equals 0 for x<0 and x for x>0 (it
excludes the temperatures below the cut-off level).

Equation (1) has two adjustable parameters, which have to be identified for every
specific location: cut-off temperature 7' and start day of accumulation D .
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The parameters were found simply by testing the different dates — 20.02, 01.03,
and 10.03 — and the cut-off temperatures from 0°C to 5°C with a step of 0.5 degrees.
The criterion was the smallest standard deviation at three levels of the accumulated
pollen sum (a fraction of SPI): 0.2, 0.5 and 0.95 of the SPI for all years (horizontal
lines in Figure 1.2).

As a result, the start date of the 1% of March and the cut-off temperature of 3.5°C
were identified as the best combination for the heat sum calculation — for Riga.
Interestingly, these values are identical to the parameters calculated from phenological
data for the Europe-wide birch source term of SILAM.

Having the parameters of the heat sum formula identified, the thresholds for the
start and end of the season were estimated from the SPI 5-95% criterion (Nilsson
and Persson, 1981): 70 degree day and 200 degree day respectively in Riga (Paper I).
Interestingly, these thresholds were not optimal for some of the years, with one of the
explanations being the impact of long-distance pollen transport or unusually early or
late flowering of birch in the region.

This method with little modifications was used in every part of the thesis.

1.2.2. Temporal homogenization of pollen data

Heat sum was used for the reduction of temporal inhomogeneity as well. One
of the problems in aerobiological modelling relates to the temporal variability of
perennial data — i.e. the season start, duration and end are all different in different
years. Astronomic time is, therefore, an inconvenient variable. It should be replaced by
a variable that is clearly associated with the astronomic time but organized so that the
start, duration and end of the pollen season would be the same throughout the years.
The accumulated amount of heat meets these criteria; it is a monotonous function in a
time easily computed from the temperature data. Replacing the temporal scale against
the heat scale leads to temporally homogeneous data set.

Several studies have shown that SPI largely depends on the meteorological
conditions of the previous year (Introduction of Paper II). Astronomical time sets
a significant shift of phenological phases in case of SPI, as well. In order to make
comparable year-to-year variations, heat sum was selected as a variable for time axes.

The challenge of the regional consideration is that even expressed via heat-sum,
the phenological phases still occur at different moments: the further to the north, the
less heat is needed for the season progression (Sofiev et al., 2012). To overcome this
difficulty, we express the time scale in % of the total heat accumulated during the
whole year, normalized to its long-term mean value, at each station (Paper II). Heat
sum differs by up to a factor of two between the aerobiological stations within the
region, whereas, e.g., the heat sum threshold for flowering expressed in relative terms
is nearly constant.
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1.2.3. Reducing of non-stationarity: normalization

Productivity of the plants strongly varies from year to year (Figure 1.3.) depending
on several long-term and large-scale parameters, such as the previous-year intensity of
flowering, the environmental conditions in winter, pre-seasonal spring conditions, etc.
(Dahl and Strandhede, 1996; Linkosalo et al., 2006; Stach et al., 2008).
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Figure 1.3. Local (left) and regional (right) birch SPI

Characteristic temporal scales of these processes are completely different from
the local short-term meteorological and biological processes such as the intensity of
flowering the previous year. Such scale separation allows for splitting of the problem:
(1) determination of the general flowering intensity characterized by the SPI, (ii) intra-
seasonal development of daily mean pollen concentrations.

In practice, these problems can be separated by a simple normalization of the daily
concentration C (d) with the SPI of the corresponding year, for each considered year 7,
thus obtaining multi-annual concentration time series ¢ (d), which sum up to unity for

each season (2). (@)

)
> C.(d)

dei

Ci(d):

In case of regional model, the SPI. of each station i for the particular year Y should
be normalized with its multi-annual geometric mean SP/#°"“" taken over the whole
observed period of the station:

. SPI,(Y)
SPII"™ (V)= — Lo
1 (n SP]lgeomean

3)

thus eliminating the dependence on local birch abundance and making all sites
within the region comparable.
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2. RESULTS AND DISCUSSION

2.1. Statistical modelling of non-stationary processes — local intra-
seasonal forecasts: example of Latvia

Paper I. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., Genikhovich, E.
(2016). Statistical modelling of non-stationary processes of atmospheric
pollution from natural sources: example of birch pollen. Agricultural and
Forest Meteorology, 226227, 96-107

Local model for short-term daily birch pollen concentration forecast is presented.
The model is constructed on the basis of observed meteorological data taken as
predictors.

The author’s contribution includes data analysis, model construction and
verification.

The novelty of the study is twofold:

a. A novel methodology of constructing linear regression models accounting
for non-stationarity, non-normality and non-linearity of the problems was
developed for pollen based on approaches suggested for local AQ now-
casting.

b. This methodology has been applied to Latvian pollen observational dataset,
constructing and evaluating the first short-term pollen model for Riga.

The result of data transformation is the significant improvement of efficiency of
statistical procedures and increase of the model accuracy. Transformed data sets were
used for constructing a model through linear regression. For model application in
Riga, nine years of data were used for the model construction and 3 years of data were
retained for the model verification. The model evaluation showed an accuracy of over
80% and odds ratio of 30.

The transformations of the input data were performed, as follows:

The mean seasonal propagation of pollen concentration was related to accumulated
heat sum, whereas the intra-seasonal concentration variations were associated with the
deviations from the mean seasonal curve. Then the dependences between predictors and
predictant were linearized by projecting the meteorological data to deviations from the
mean seasonal curve of pollen concentration (Figure 2.1). The whole range of the input
parameters (relative humidity in Figure 2.1) was split to sub-ranges and for each of
those, a mean value of pollen concentrations was computed. The obtained dependence
was then used as a lookup table replacing the actual value of relative humidity with the
corresponding mean pollen concentration.

Statistically significant (p > 0.05) predictors and their weighting coefficients
were determined by multilinear regression analysis: Independent (0.03); daily mean
temperature of air (0.65), daily mean cloud cover (1.05), sum of daily precipitation
(0.53), wind component u (0.68).
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Model evaluation consisted of two parts:

1. Ability of model to predict seasonal parameters as start, end, propagation.

2. The ability of model to reproduce the above-threshold episodes.

The accuracy of the model was about the same for both learning and control data
sets. The overall model accuracy is 5% lower for the control data set, while the OR and
other parameters (POD, FAR — described in the annex of Paper I), were even slightly
higher. The differences are related to the uncertainty of the model control: the control
data set includes 70 days with a concentration above the threshold, about half of the
cases were reproduced; 170 days where the concentration was lower than threshold and
were reproduced in 97% of cases (Table 2 of Paper I).
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Figure 2.1. Linearization of dependences between relative humidity and deviations from mean
seasonal pollen concentration curve

Comparison of the model results with existing models is problematic, as it is
the first model for Riga and only a few models in Europe are able to forecast pollen
concentrations day-by-day. One can, however, note some important similarities and
differences of the new model and other approaches. A quite common practice in short-
term forecasting models is to “nudge” them towards observations via auto-regression
methods: the forecast is taken as a function of the observed previous-day concentrations,
see (Inatsu et al., 2014) for birch and (Stach et al., 2008) for grasses. The current model
does not use the nudging because of two reasons: (i) the birch season in Riga is short
with very strong day-to-day variability; (ii) pollen data for “today” are never available
when the forecast for “tomorrow” is to be generated. However, despite the exclusion of
this strong predictor, the temporal correlation of the new model — with all reservations
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against this parameter — is within the same range from 0.64 to 0.94 as the scores of
(Inatsu et al., 2014) — from 0.6 up to 0.9—and (Stach et al., 2008) — from 0.6 to 0.7.

One can also compare the current scores with those of SILAM (Table 3 of Paper I).
Expectedly, the new Riga model showed noticeably better performance — as one
would expect for the strictly localized statistical development. The difference between
the models can be illustrated via their comparison for 2014, one of the control years
(Figure 2.2.). Since the models are based on completely different principles, their joint
application to the forecasting has a certain potential for further improvement of the
forecast accuracy.

Complicated data transformations implemented in the current study is a requirement
of statistical methods used for training and evaluation of the model. The normality
of the data distribution, stationarity of the time series, ergodicity and near-linear
dependencies of the variables are necessary for the model construction — in theory. One
can, of course, formally apply the multi-linear regression to non-transformed datasets
and still obtain a “technically-working” model with some forecasting skills
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Figure 2.2. Evaluation of accuracy of local and regional (SILAM) models vs. observed birch
pollen concentration in 2014

Its performance, however, will be substantially worse, penalized for every
transformation step skipped (Table 4 in Paper I). A separate issue is that the inverse
transformations, being inevitable for practical use of the forecasts, also introduce errors.
Indeed, the regression model is built and optimized in the transformed space of both
predictors and predictants. Returning to the physical space for concentrations is a non-



24

linear transformation, which may not preserve the optimality of the solution. Therefore,
the scores for the transformed concentrations are higher than for concentrations after
the inverse transformations to the physical space. A similar effect was noticed by (Toro
et al., 1998).

It was not possible to include the current year SPI calculation in the construction
of a local model, so, at the beginning of the season, knowing only a meteorological
forecast, the constructed model allows to predict the normalized daily pollen
concentrations. In order to de-normalize and express concentrations in absolute values,
the development of a separate, regional SPI model was required.

2.2, Statistical modelling of SPI for Northern and North-Eastern
Europe

Paper II. Ritenberga, O., Sofiev, M., Siljamo, P., Saarto, A., Dahl, A,
Ekebom, A., Sauliene, ., Shalaboda, V., Severova, E., Hoebeke, L., Ramfjord,
H. (2017). A statistical model for predicting the inter-annual variability of
birch pollen abundance in Northern and North-Eastern Europe. Science of the
Total Environment (Accepted)

The paper suggests a methodology for predicting next-year seasonal pollen index
(SPI, a sum of daily mean pollen concentrations) over large regions and demonstrates
its performance for birch in Northern and North-Eastern Europe. A statistical model
is constructed using meteorological, geophysical and biological characteristics of the
previous year. We built the model for the northern cluster of stations, which covers
Finland, Sweden, Baltic States, part of Belarus, and, probably, Russia and Norway,
where the lack of data did not allow for conclusive analysis.

The thesis author’s contribution includes data analysis, model construction and
verification.

Birch pollen SPI has well expressed bi-annual periodicity (Figure 2.3) (Zink et al.,
2013) and a positive trend (Spieksma et al., 2003) noticeable since at least 1974.

It was assumed that the SPI is a regional parameter determined by the synoptic-
scale meteorological processes, i.e. a few hundreds of kilometres. It should therefore
be possible to identify the regions that react synchronously and demonstrate similar
patterns of the SPI year-to-year variations. Moreover, absolute values of the SPI are
of essentially no importance: they are decided by vegetation density in proximity to
the station, which is a static parameter. Therefore, spatial and temporal variations
inside these regions are separable. With the above assumptions, it should be possible to
construct a statistical model for the SPI variation over these regions taken as “boxes”,
i.e. not resolving individual stations but taking each region as a single entity with the
normalized SPI averaged over the region.

The primary goal of the study was to build the unified model suitable for applications
over large regions, thus demonstrating the feasibility of spatial generalization of the
SPI predictions using large-scale meteorological features as the controlling parameters.
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The bulk of previous studies concentrated on a single or a few closely-located stations
(Introduction of Paper II)

The second principal difference of the suggested approach is that we applied
a series of non-linear transformations of the input data and changed the governing
variable from time to normalized heat sum, thus eliminating spatial variability of SPI
and reducing spatial variability of year-to-year variation after that, construction of the
predictive models followed standard procedures for multi-component optimal model
fitting. Predictors from the previous year Y-/ showed a greater influence on the SPI
of the year Y than those from the year Y. Thus, six main influencing parameters were
identified:

- precipitation Pr,,

accumulation

- temperature 7, ; for the period 0.13-0.25, of the annual heat sum accumulation

- temperature T, for the period 0.25 to 0.45 of the annual heat sum

accumulation

- short wave solar radiation SW, for the period from 0 to 0.05 of the annual

heat sum accumulation

- SPL,

- €O,y

The bootstrap included 15 iterations, one for each of 15 station datasets withheld
from both regional SPI and regional meteorological averaging. The SPI data and
meteorological parameters for the remaining stations were averaged over the region.
After that, the multilinear regression was calculated obtaining the model coefficients
for the regional time series with one site excluded. The fitting coefficients were
averaged across the iterations, finally obtaining the mean regression coefficients and
their standard deviation (Table 3 of Paper II).

During the data analysis, it was realized that it is possible to build the model
using only available meteorological data and the trend-describing variable CO, v,
This opportunity allows predicting the SPI relative deviation from the long-term
mean knowing neither this mean level nor the previous-year SPI. The model becomes
detached from the SPI observations and applicable also in places with no aerobiological
observations whatsoever.

The regional formula for ASPI™¢(Y) of the year Y based on meteorological data
and data of CO, of the previous year Y-/ is:

, for the period 0.13-0.25 of the annual heat sum

ASPI™®9(Y) = ag + aco,CO2y—1 + apyPry13 + agyswo + ar, . To13 + ag,,. To2s %)

Adding SPI,, as a predictor still significantly increases the quality of the model.
The final formula includes the same meteorological parameters as the meteo-only
model, CO, and SPI from the previous year

For the regional SPI model evaluation, same parameters as in Paper I were used.
(1) Odds Ratio as a measure of differentiating between the high and low seasons, (ii)
Model Accuracy and (iii) a fraction of the SPI predictions that fall within the factor
2 from the observations were considered. Behaviour of individual stations inside the
region differs somewhat but the regional formula tends to work better for the stations
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with longer time series, i.e. those, which contributed mostly to the model identification
(Turku, Kuopio, etc.). The limited size of the dataset and high scores of the models
resulted in just few cases of the predictions being wrong. For several sites, the low-
high differentiation appeared always correct during the observed years. The sample OR
for such sites is infinitely high (Figure 3a from Paper II).

Since the suggested models are first in their class, direct comparison with published
studies is quite difficult. However, certain conclusions can be derived. The most direct
comparison is possible with the study of (Ranta and Satri, 2007), who built three local
models for Turku, Kuopio and Oulu stations.
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Figure 2.3. Regional SPI model result for Vaasa (left) and Riga (right)

Temporal correlation of these models however trails significantly behind the
current unified model: it was 0.59 vs. 0.82 for Turku and 0.61 vs. 0.77 in Oulu. Only
in Kuopio, both models scored to 0.65. Similar predicting capacity to that of (Ranta
and Satri, 2007) was reported by (Dahl and Strandhede, 1996) but direct comparison
is not possible due to sqrt-transformed values reported in that paper. An important
difference of that work was that the predictors were taken as heat sums rather than the
mean temperature over some period, which potentially can further improve the model’s
accuracy.

Quite high correlations of the local SPI and several meteorological drivers were
reported for Poznan by (Grewling et al., 2012) but no predictive model was built.
The authors also pointed out that they found no parameters capable of explaining the
break points in the bi-annual cycle. This study has succeeded but Poznan is outside the
current region and the developed models are not directly applicable there.

Considering the relative importance of various parameters, one can see that the
meteo-only model, albeit quite good, trails behind the full-input model, thus suggesting
that the biological processes also significantly contribute to the SPI — in agreement with
(Dahl and Strandhede, 1996). In particular, the dynamic range of the SPI variability is



27

the largest in the observations, closely followed by the full-input model, whereas the
meteo-only model is more conservative. One can argue then that the plant response
serves as an amplifier for the meteorological signals. This also corroborates with
conclusions of the biological model (Dahl et al., 2013) that stressed the importance of
the combination of meteorological and biological parameters for adequate next-season
prediction.

Finally, the meteo-only model reproduces both the bi-annual cycle and the years
when it breaks down, also strongly suggesting that such behaviour of birch is at
least inspired by the regional-scale weather phenomena. The suggested models were
made for a large but still limited region in the north of Europe. Since the climatic
conditions and plant response to the stress change gradually along north-south and
west-east directions, the models score lower in Lithuania and southern Sweden, which
delineate the southern border of the region. Outside the region, the time series are
still quite good for the years with pronounced bi-annual cycle but large errors show
up when this cycle breaks down. Such “unusual” years also become more frequent,
especially in Brussels, where the bi-annual cycle is practically non-existent. It indicates
a presence of some un-accounted factors, which control the SPI in temperate climate I,
for example, precipitation and winter-time chilling.

2.3. Model ensemble for pollen forecast in Southern Europe

Paper III. Sofiev, M., Ritenberga, O., Siljamo, P., Albertini, R., Arteta, J.,
Belmonte, J., Bonini, M., Damialis, T., Elbern, H., Friese, E., Galan, C.,
Hrga, 1., Kouznetsov, R., Plu, M., Prank, M., Robertson, L., Selenc, S.,
Thibaudon, M., Segers, A., Stepanovich, B., Valdebentino, A.M., Vira, J.,
Vokou, D. (2017). Multi-model ensemble simulations of olive pollen
distribution in Europe in 2014; current status and outlook. Atmospheric
Chemistry and Physics (Accepted)

The thesis author’s contribution is construction and evaluation of the statistical
optimization procedure and its application to ensemble of CAMS six deterministic
models. The performance of the obtained fusion ensemble was compared with simple
ensemble treatments and with individual members.

The aim of the study was to present the first Europe-wide ensemble-based
evaluation of the olive pollen dispersion during the season of 2014. The first modelling
experiment of the European-scale olive pollen dispersion analyses the quality of the
predictions and outlines the research needs. A 6-models (EMEP, EURAM-IM, LOTOS-
EUROS, MATCH, MOCAGE, SILAM) strong ensemble of Copernicus Atmospheric
Monitoring Service (CAMS) was run through the season of 2014 computing the olive
pollen distribution. The study followed the approach of the multi-model simulations
for birch (Sofiev et al., 2015) with several amendments reflecting the peculiarity of
olive pollen distribution in Europe. Further steps towards fusion of model predictions
and observations and demonstration of its value in the forecasting regime were made,
as well.
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One of possible ways to improve the quality of model predictions without direct
application of data assimilation is to combine them with observations via ensemble-
based data fusion methods (Potempski and Galmarini, 2009). Their efficiency has been
demonstrated for air quality problems (Johansson et al., 2015 and references therein)
and climatological models (Genikhovich et al., 2010) but the technology has never
been applied to pollen.

Three ENSEMBLE models were generated by (i) arithmetic average, (ii) median
and (iii) optimal combination of the 6 model fields. Averaging and median were taken
on hourly basis, whereas optimization was applied at the daily level following the
temporal resolution of the observational data. For the current work, we used simple
linear combination € (5) of the models ¢, m = I..M minimizing the regularized
RMSE J (6) of the optimal field:

M
s jokot, T, A) = ay(0)+ D a,(T)c, (i, j.k,1), A=[a,.a,], a,>0Ym (5)

m=1

o

J(t,7) = sqrt BZ(C@, (i, ),k 1,7, A) —co(t))z} +
o=1

M 2 Iy (6)
aZ(am(r)—ij + B Z(am(r—l)—am(r))z, r={d ,.d,}

Here, i, j, k, t are indices along the X, y, z, and time axes, M is the number of
models in the ensemble, O is the number of observation stations, 7 = {d ,:d,} is the
time period of k+/ days covered by the analysis window, starting from &, until d,,
-1 is the previous-day analysis period -/ = {d, :d ,}, ¢, is concentration of pollen
predicted by the model m, ¢ is observed pollen concentration, a, is time-dependent
weight coefficient of the model m in the ensemble, a, is time-dependent bias correction.

In the Eq. (5), the first term represents the RMSE of the assimilated period z, the
second term limits the departure of the coefficients from the homogeneous weight
distribution, the third one limits the speed of evolution of the a  coefficients in time.
The scaling values o and f decide on the strength of regularization imposed by these
two terms.

Eq. (6) requires three parameters to prescribe: the regularization scaling parameters
o and B, and length of the assimilation window 7. For the purposes of the current
feasibility study, several values for each of the parameters were tested and the robust
performance of the ensemble was confirmed with very modest regularization strength
and for all considered lengths of the analysis window — from 1 to 15 days. Finally,
a=0.1, =0.1, T=5 days were selected.

The ensemble was constructed mimicking the forecasting mode. Firstly, the analysis
is made using data from the analysis period z. The obtained weighting coefficients «,
are used over several days forwards from day d: from d, until d_ > which constitute the
forecasting steps. The performance of the ensemble is evaluated for each length of the
forecast, from / to n ., days.
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The optimized ensemble showed that each of the 6 models had substantial
contribution over certain parts of the period prior to and after the main season,
concentrations were very low and noisy, so the regularization terms of Eq.(6) took over
and pushed the weights to a-priori value of 1/6.

Comparison with other forecasts expectedly shows that the optimized ensemble
not only has significantly better skills than any of the individual models, but is up to
25-30% better than mean and median of the ensemble (Figure 2.4.).

A stronger competitor was the “persistence forecast” when the next-day(s)
concentrations are predicted to be equal to the last observed daily value. The one-day
persistence appeared to be the best-possible “forecast”, which showed at the beginning
of May almost twice lower RMSE than the one-day forecast of the optimal ensemble
(Figure 2.4).

Strong performance of the one-day persistence forecast is not surprising and,
with the current standards of the pollen observations, has no practical value: the data
are always late by more than one day (counting can start only the next morning and
become available about mid-day).

RMSE for individual models and ensemble forecasts, ens-aver. 5 days for persistence and ensemble forecasts, ens-aver. 5 days

RMSE, pollen/m3
RMSE, pollen/m3

3
g

May 01 Jun 01 Jul 01 May 01 Jun 01 Jul 01

Figure 2.4. RMSE of the of individual models against the ensemble mean (left) against
persistence-based forecasts (right)

The second problem of the persistence forecast is that it needs actual data, i.e.
the scarcity of pollen network limits its coverage. Thirdly, persistence loses its skills
very fast: already day+2 forecast has no superiority to the optimal ensemble, whereas
day+3 and +4 persistence-based predictions are useless. Finally, at local scale, state-of-
art statistical models can outperform it — see the discussion in (Paper I).

The most-evident issue highlighted by the exercise is the shift of the pollen
season in some key regions, which is similar in all the models suggesting some
unresolved inconsistencies between the heat-sum calculations of the source term and
the features of the temperature predictions by the weather model. The issue suggests
some factor(s) currently not included or misinterpreted in the source term. One of
the candidate processes is the chilling-sum accumulation suggested by some studies,
e.g., (Aguilera et al., 2014). A switch to different types of phenological models with
genetic differentiation of the populations following Chuine and Belmonte, (2004) is



30

another promising option. The set of questions refers to the pollen load prediction, i.e.
a possibility to forecast the overall season severity before it starts. Several statistical
models have been presented in the literature, e.g., (Dhiab et al., 2016) for total
annual load and (Chuine and Belmonte, 2004) for relative load. Their evaluation and
implementation in the context of dispersion models is important.

The first steps towards ensemble-based fusion of the model forecasts and pollen
observations showed a strong positive effect. Further development of these techniques
combined with progress towards near-real-time pollen data has a very high potential
for improving the forecasts.
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CONCLUSIONS

Three studies on statistical pollen modelling were chosen as parts for doctoral
thesis — one local, one regional (Northern Europe) and one of European scale.

Each of constructed models are formulated in generic terms, thus, its methodology
is applicable for any location and different pollen types. Such extrapolation, however,
will require full re-parameterization and applicability verification because statistically
established relations may or may not hold outside the area and time period where/when
they were identified.

The local intra-seasonal model demonstrated solid performance and stability with
the model accuracy MA exceeding 80% and the odds ratio OR = 30.

The inter-annual variability of the regional birch seasonal pollen index is
synchronized over large regions of Europe with significant correlations holding at
the distances associated with the synoptic spatial scale. This open the possibility to
generate comparatively simple linear statistical models valid within such regions.

The best-performing regional SPI predicting model was based on combination of
the meteorological, CO, data and aerobiological data from the preceding season. All
the constructed models successfully reproduced both bi-annual cycle of the SPI and the
years when this cycle breaks down. In particular, the model with only meteorological
input captured the bi-annual cycles and its breaking years, which highlights the key
role of meteorology in formation of this cycle. The dynamic range of the variations is,
however, under-stated by this model, pointing out the importance of the plant response
to the meteorological stress.

For the large-scale deterministic models, it was shown that their forecasts can be
improved via statistical fusion algorithms applied to the multi-model ensemble.

An optimal linear combination of the individual ensemble models showed strong
skills, routinely outperforming all individual models and simple ensemble approaches

Two of three constructed models are already in use of Copernicus Atmospheric
Monitoring Service.

Future challenges

A specific future challenge is to construct the European model for the SPI
predictions. At the current stage, there are two possibilities for constructing it: (i) increase
the number of parameters and allow for strong non-linearities in the dependencies
(possible, as shown in Paper 1), (ii) construct different model(s) for Central and Eastern
Europe as it was done, for instance, for the olive season timing forecasting by (Aguilera
et al., 2014). Each approach has its advantages and drawbacks. The first approach,
being clearly preferable from the user standpoint, faces a wide variety of interplay of
the governing parameters, which have to be identified and quantified, expansion will
require different treatment of meteorology, since the area will be much larger than the
synoptic scale, i.e. the homogenity assumption with regard to the meteorological input
will no longer be valid. The multi-model approach, albeit being easier in each region,
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leads to discontinuities of the parameterizations at the borders of the delineated areas,
where also none of the models is good.

One of the strengths of continental-scale dispersion models is their ability to
predict long-range transport events. However, local models are usually more accurate
at their locations than the European-scale dispersion models. Therefore, combination
of large-scale deterministic and regional/local statistical models may prove a good way
to increase the overall forecast accuracy. Specific ways of combining these approaches
can vary but separation of the scales between them (local-to-regional for statistical
models and regional-to-continental for transport models) is probably the main
watershed. Technologically, the link can be implemented via data assimilation into the
transport models or via fusion technique as done in the Paper III. The strengths and
weaknesses of each approach are not fully understood yet.
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ANOTACIJA

Promocijas darbs ir pétijums par temporalo un geotelpisko puteks$nu sezonas pro-
gnoz&Sanu (ieskaitot gaitu, ietekmé&josos faktorus un putekSpu diennakts koncentra-
ciju), izmantojot sarezgitu datu transformaciju un vienkarSus statistiskus panémienus
modela veidoSana un validacija. Modelgsana tika veikta vairakiem puteksnu veidiem
un dazados telpiskos m&rogos (lokala un regionala). P&étijuma rezultati atspoguloti tris
rakstos augsti indeksétos (JIF > 4,6) starptautiskos zurnalos.

Pétfjuma sakuma péc 12 gadu diennakts datiem tika izveidots lokals modelis Rigai
(Raksts I), lai, izmantojot meteorologiskas prognozes datus, noteiktu bérza puteksnu
koncentraciju gaisa. Izveidota lokala modela precizitate parsniedz 80%.

Otrs pétijums (Raksts IT) izveidots p&c regionalajiem datiem — icklaujot Somijas,
Zviedrijas, Lietuvas, Latvijas, Baltkrievijas, dal&ji Krievijas un Norvégijas datus —, lai
veiktu nakama gada sezonala puteks$nu indeksa (SPI) prognozésanu. SPI modelis ir
veidots ka universals visam regionam, un ta precizitate ir robezas no 65% (DA dala)
lidz 92% (regiona ziemelu dala).

Promocijas darba tresa dala veltita modelu ansambla izveidei ar Eiropas parklajumu
(Raksts IIT) uz olivkoka puteksnu bazes. Pieradits, ka seSu esoSo deterministisko CAMS
modelu ansamblis darbojas ievérojami labak par katru atsevisku modeli.

Secinats, ka ir iesp&jams prognozet puteksnu daudzumu gaisa dazados temporalos
mérogos — péc noteikta gada meteorologiskas situacijas aprékinat nakama gada
sezonalo putek$nu indeksu un péc lokalas meteorologiskas prognozes datiem prognozgt
diennakts putek$nu koncentraciju noteikta vieta. Prognozu rezultati izmantojami, lai
risinatu putek$nu alergijas problému, lai noteiktu razas apjomus lauksaimnieciba, un
augu fenologijas p&tijumiem.
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SAISINAJUMU UN PASKAIDROJUMU
SARAKSTS

CAMS - Kopernika Atmosféras monitoringa serviss (Copernicus Atmosphere
Monitoring Service)

EAS — Eiropas Aerobiologijas biedriba (European Aerobiology Society)

ECMWF - Eiropas Vidgja méroga prognozu centrs (European Centre for Medium-
Range Weather Forecast)

TAA — Starptautiska Aerobiologu asociacija (International Association for Aerobiology)

MACC - atmosféras sastava un klimata monitorings (Monitoring Atmospheric
Composition & Climate)

SILAM — swistéma atmosferas sastava integrétai model&Sanai (System for Integrated
modelLling of Atmospheric coMposition)

WHO - Pasaules Veselibas organizacija (World Health Organisation)

DD — gradu diena (degree day) — uzkrata siltuma daudzuma (Heat Sum) mérvieniba
H — uzkratais siltuma daudzums (Heat Sum)

SPI — sezonalais putekspu indekss (Seasonal Pollen Index) — puteksnpu diennakts
koncentraciju summa gada

Sezona — promocijas darba — periods, kas saistits ar puteksnu klatbiitni gaisa plasmas,
kur tie nonak dalgji lokalas zied€Sanas, dalgji putekSnu talas parneses rezultata

Prediktors — ietekm&josais faktors, kas nosaka prediktanta vertibas

Prediktants — prognozg&jamais mainigais, ko raksturo prediktori
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IEVADS

Sakot ar 20. gs. otro pusi, Eiropa aktivi tiek veikti putekSpu un sénu sporu
petijumi gaisa plismas. P&tljumu iemesls ir saistits ar to, ka: (I) putekSni un sporas
izraisa elpcelu alergiju (Kasprzyk et al., 2015; Newson et al., 2014; Ring et al., 2012);
(I) pétijumu rezultati ir nozimigi lauksaimnieciba un fenologija (Aguilera and Ruiz-
Valenzuela, 2014; Orlandi et al., 2005b).

Pasaules Veselibas organizacija (WHO) uzsver, ka péd&jo 30 gadu laika cilvéku
skaits, kas paklauti putek$pu alergijai un astmai, pieaudzis Cetras reizes un veido
15-40% no Eiropas iedzivotaju skaita (Huynen et al., 2003). P&c Eiropas Alergiju un
elpcelu slimibu pacientu asociacijas (AADPA) datiem, 80 milj. (24,4%) picauguso
Eiropa ir alergiski, bet ap 30-40% bérnu alergijai ir tendence palielinaties (Laatikainen
et al.,, 2011; Ronmark et al., 2009). Eiropas Alergijas un kliniskas imunologijas
akadémija (EAACI) uzsver alergijas socialekonomisko ietekmi (Muraro and et al.,
2015). Alergijas un astmas izmaksas Eiropa veido 33,9 miljardus eiro gada (ERS,
White Book, 2013, http://www.erswhitebook.org).

Nemot véra, ka astma un alergija ievérojami pasliktina dzives kvalitati, probléma
ir jarisina starptautiska limeni. Alergijas probléma tika atzita Eiropas Parlamenta, par
ko liecina rakstiska deklaracija, Eiropas Parlamenta Alergijas intere$u grupas izveide
(Molnér et al., 2015) un putekSnu prognozesanas ieklausana Kopernika Atmosferas
monitoringa servisa (CAMS).

Pétijuma aktualitate

Cilvéka organisma alergiskas reakcijas var ievérojami samazinat, veicot laicigu
profilaktisku arstéSanu, kas ir nepiecieSama vismaz divas ned€las pirms alergénu
paradiSanas gaisa. Tas ir izaicinajums putekSnu koncentracijas prognostiskajai mo-
delésanai.

Eiropa ir ap 300 monitoringa vietu, kas regulari sniedz informaciju par puteksnu
koncentraciju gaisa (1.1. att€ls). Aerobiologisko novérojumu dati ir piecjami ar
1-2 nedglu nobidi, kas padara problematisku datu tieSu izmantoSanu prognozgSanas
vajadzibam. Automatiskais reala laika putek$nu monitorings eventuali var€tu ieviest
globalas izmainas aerobiologijas pétijumos, bet pagaidam ta precizitate ieveérojami
atpaliek no manualas un iericu izmaksas ir parak lielas, lai nodroSinatu monitoringa
tiklu visa Eiropa. Lidz ar to paslaik uzmaniba tiek pievérsta tiem prognozgSanas
modeliem, kuros novérojumu dati tiek izmantoti tikai kalibracijai un modela precizitates
novertésanai bezsaistes reZima.

Putek$nu pétfjumos parsvara tiek izmantoti divu veidu prognozgéSanas modeli:
regionalie — kontinentalie dispersijas modeli un vietgjie (lokalie) statistikas modeli.
Dispersijas modeli (Helbig et al., 2004; Prank et al., 2013; Sofiev et al., 2015, 2012,
2006; Zink et al., 2013, 2012) ir spgjigi prognozet puteksnu izkliedi lielas teritorijas,
bet to precizitate ir mainiga un loti atkariga no informacijas par auga (t. i., emisijas
avota) izplatibu (Siljamo et al., 2012; Sofiev et al., 2015). Vietgja meroga statistiskie



38

modeli izmanto empiriski noteiktas sakaribas starp prediktantu (piem&ram, puteksnu
koncentraciju) un neatkarigajiem predikotoriem (meteorologiskajiem, vides faktoriem
un ieprieksgjo gadu puteksnu informaciju) (Rodriguez-Rajo, 2000, p&c (Castellano-
Meéndez et al., 2005)). Mingto sakaribu noteikSanas metodes ir dazadas, ko labi
atspogulo publikacijas (sk. Rakstu I un ta bibliografiju).

Viens no parametriem, kas kvantitativi nosaka alergisko puteksnu sezonas stiprumu,
ir sezonalais puteksnu indekss (SPI), kas tiek definéts ka diennakts vidgjas puteksnu
koncentracijas sezonala summa, t. i., putek$nu koncentracijas integrals sezonas garuma.
SPI ir saistits ar alergisko reakciju stiprumu (Bastl et al., 2016; D’Amato et al., 2007,
Huynen et al., 2003) un tiek izmantots ka indikators auglu koku (pieméram, olivkoku)
produktivitates noteikSanai (Dhiab et al., 2016; Orlandi et al., 2005a; Oteros et al., 2013;
Prasad et al., 1999), ka vinogu (lidz ar to vina) produkcijas prognozesanas parametrs
(Cunha and Ribeiro, 2015) un ka biologiskais indikators auga reakcijai uz klimata
parmainam (Hatfield and Prueger, 2015; Hedhly et al., 2009; Storkey et al., 2014).
Puteksnu prognozesanas modelos SPI tiek izmantots ka meérogosanas koeficients, jo tas
raksturo kop€jo prognozeto putek$nu daudzumu (Prank et al., 2013; Puc, 2012; Ranta
et al., 2008; Ritenberga et al., 2016; Siljamo et al., 2012; Sofiev et al., 2012; Stach
et al., 2008; Toro et al., 1998; Veriankaité et al., 2009; Ziello et al., 2012).

SPI vértibas ievérojami mainas gadu no gada atkariba no meteorologisko faktoru
kombinacijas un auga fiziologijas (Dahl et al., 2013; Masaka, 2001; Ranta and Satri,
2007), tadel ta prognozesanai ir izskirosa loma intrasezonalo putek$nu prognozeSanas
modelu veidoSana.

Zinatniska novitate
Promocijas darba tika defingtas un izveidotas puteksnu koncentracijas prognostisko
modelu triiksto$as komponentes no vietgja 1idz regionalajam Iimenim (1. attéls).

Modelu
Raksts | ansamblis
1 » Raksts Il
Lokalais statistiskais Eiropas deterministiskie
modelis modeli
Ti-—- Diennakts izmainas l
Raksts Il ‘
Regionalais SPI
f \
| | _ . )
lepriek3aja gada prediktori (Gads,,) $i gada prediktori Gads , Gads ,,

1. attels.  Prognostisko puteksnu modelu telpiska un temporala méroga komponentes
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Promocijas darbs sastav no tris dalam un apvieno $adus novatoriskus elementus:

1. Vietgjais intrasezonalais putek$nu koncentracijas islaicigo prognozu modelis:

a) tika izstradata jauna metode linearas regresijas modela izveidei, kas nem véra
puteksnu koncentracijas datu nestacionaritates un nelinearitates problémas un
pamatojas uz gaisa kvalitates prognozesana izmantoto pieeju;

b) izstradata metodika tika izmantota pirma puteks$nu koncentracijas prognostiska
modela izveidei Latvija.

2. Regionalais intersezonalais putek$nu koncentracijas modelis SPI prognozésanai:

a) tika izstradata jauna metode nakama gada SPI prognozé$anai regionala liment,
izmantojot intrasezonala modela datu transformacijas panémienus;

b) metodikas efektivitati apliecinaja pirmais universalais SPI prognozgSanas
modelis Ziemeleiropai un Ziemelaustrumeiropai.

3. Eiropas méroga deterministisko putekSnu koncentracijas prognozéSanas modelu
ansamblis:

a) pirmo reizi tika izveidots un novertéts esoso deterministisko modelu optima-
lais ansamblis, izmantojot iepriek$gjo dienu novérojumus optimalas ansambla
modelu kombinacijas aprékinasanai.

Hipoteze

Lidzas iepriek§ mingtajiem trijiem petijumu virzieniem formul@tas promocijas

darba hipot&zes.

L.

Lokala méroga intrasezonalajam modelim:

tika pienemts, ka iemesls, kapec linearas regresijas izmantoSana putekSnpu mo-
delésana nav efektiva, ir ievaddatu neatbilstiba statistisko metozu izmantoSanas
principiem un ka lietota datu transformacija nodrosinas datu atbilstibu statistisko
procediiru prasibam, uzlabojot modela precizitati.

Regionala méroga SPI modelim:

tika pienemts, ka SPI ir regionalais parametrs, ko kontrolé sinoptiska mé&roga
meteorologiskie procesi. Tie$i tapéc ir iesp&jams identificét regionus, kas reage
sinhroni un parada lidzigas SPI intersezonalas izmainas. Modelim nav svarigas
SPI absolutas vertibas, tas ir iesp&jams izlidzinat (homogenizet) ar normalizacijas
palidzibu, tatad SPI universala modela izveide ir iesp&jama visam regionam, nevis
atseviskam monitoringa stacijam.

Eiropas méroga deterministisko modelu ansamblim:

tika izteikta hipotéze, ka putekSnu prognozeSanas gadijuma modela ansambla
precizitati var paaugstinat, izmantojot optimalo ansambli ar regularizacijas koefi-
cientiem no ieprieksgjo dienu simulacijam. Lidz ar to, atSkiriba no standarta datu
asimilacijas, modela ansamblis nezaud@s precizitati dazu stundu laika.
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Darba merkis

Izstradat un izvertét universalus, viegli lietojamus, augstas precizitates progno-
z&€Sanas modelus dazada veida putek$nu koncentracijas prognozesanai gaisa no vietgja
lidz regionalajam geotelpiskajam m&rogam un ar temporalo izskirtsp&ju no diennakts
(intrasezonalais modelis) lidz sezonalajam (intersezonalais modelis) [Tmenim.

Uzdevumi mérka sasniegSanai

1. Noverteét bérza koncentracijas islaicigas un ilglaicigas izmainas, saistit tas ar
meteorologiskajiem parametriem, klimatu, CO, koncentraciju un LAL

2. lzstradat vienkarSu, lokalu modeli, kas atveido putekSnu sezonas parametrus (t. i.,
sakumu, beigas, intrasezonalas variacijas), balstoties uz meteorologisku novéro-
jumu un Tslaicigu prognozu datiem.

3. Izstradat universalu regionalu modeli, kas péc noteikta gada b&rza SPI un meteoro-
logiskajiem datiem var&tu aprékinat nakama gada SPI.

4. Atrast optimalo ansambli oltvkoku puteksnu intrasezonalajai prognozesanai Dien-
videiropas regiona.

Publikacijas

Promocijas darbs ir sadalits tiTs secigos rakstos, kuri atspogulo problémas biitibu un
piedava metodiku problému risinajumam lokala limeni (Raksts I) un regionala liment
(Raksts II un Raksts III), izmantojot statistiskas (Raksts I, Raksts II, Raksts III) un
deterministiskas (Raksts III) modelésanas metodes. Originalpublikacijas ir publicétas
vai pienemtas public€Sanai augsta ranga zurnalos ar JIF 4,6-5,7 (2016) p&dgjo divu
gadu laika (2015-2017).

Raksts I. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., Genikhovich, E.
(2016). Statistical modelling of non-stationary processes of atmospheric pollution
from natural sources: example of birch pollen. Agricultural and Forest Meteorology,
226-227, 96-107.

Lokala Iimena pétijums, veltits diennakts puteksnu koncentraciju prognozeésanai
puteksnu sezonas laika, nosakot putek$nu daudzumu gaisa ietekm&josos meteorolo-
giskos faktorus un parametrizéjot modeli, lai to varétu izmantot bérza puteks$nu
prognoz&sanai Riga. Modelis ietver vairakas stadijas, ieskaitot daudzpakapju sarezgito
aerobiologisko un meteorologisko datu transformaciju, iegtistot homogénu datu kopu,
novertg§jot datu kopas normalsadalfjumu, lineariz€jot sakaribas starp prognozeto
vertibu un ietekmgjoSiem parametriem. legitais daudzsolu transformacijas rezultats
ir statistisko parametru ievérojama uzlabosSana, statistisko procediiru efektivitates
uzlabosana un modela precizitates paaugstinasana.

Rakststs II. Ritenberga, O., Sofiev, M., Siljamo, P., Saarto, A., Dahl, A.,
Ekebom, A., Sauliene, I., Shalaboda, V., Severova, E., Hoebeke, L., Ramfjord,
H. (2017). A statistical model for predicting the inter-annual variability of birch
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pollen abundance in Northern and North-Eastern Europe. Science of the Total

Environment (Pienemts publicéSanai).

Regionala limena p&tijums, veltits bérza putek$nu produktivitates periodiskuma
skaidro$anai ar meteorologisko procesu interpretaciju. P&tijums ietvéra 300 Eiropas
gaisa monitoringa staciju datu analizi laika no 1974. lidz 2015. gadam. Izmantojot
klasteranalizi, tika nodalits homogéns regions, ko reprezentgja 15 monitoringa vietas
sesas valstis. Tika veikta datu transformacija, un prediktoru noteiksanai tika izvéleta
linearas regresijas analize. Rezultata ieglita universala formula ar konstantiem
koeficientiem SPI noteik$anai defingtaja regiona.

Raksts III. Sofiev, M., Ritenberga, O., Siljamo, P., Albertini, R., Arteta, J.,
Belmonte, J., Bonini, M., Damialis, T., Elbern, H., Friese, E., Galan, C., Hrga, I.,
Kouznetsov, R., Plu, M., Prank, M., Robertson, L., Selenc, S., Thibaudon, M.,
Segers, A., Stepanovich, B., Valdebentino, A. M., Vira, J., Vokou, D. (2017). Multi-
model ensemble simulations of olive pollen distribution in Europe in 2014; current
status and outlook. Atmospheric Chemistry and Physics (Pienemts publicgsanai).
Regionala limena pétijums veltits 2014. gada olivkoku puteks$nu sezonas analizei
Eiropa. Piedavats risindjums optimala modela ansambla izveidei, lai palielinatu
puteksnu prognozes precizitati. SeSu deterministisko modelu simulaciju rezultati tika
izmantoti par ievaddatiem optimala ansambla izveidei.

Autores ieguldijums

Pirmaja pétijjuma icklautais (Raksts I), ieskaitot (I) putekSnu monitoringu no
2006. Iidz 2016. gadam, (II) paraugu apstradi un datu analizi, (III) prognostisko
modelu izstradi un novertéSanu, ir autores darbs. Autores ieguldijums promocijas
darba regionala SPI modela izstradé (Raksts IT) ietver: (I) putek$nu monitoringu Rigas
stacija, (II) datu analizi un regionala modela izstradi no pamatiem Iidz ta verifikacijai.
Promocijas darba tresaja dala (Raksts III) autores ieguldijums ir optimala modelu
ansambla izveide, statistiskas dalas izstrade un ansamb]a darbibas novértésana.

Rezultatu aprobacija

Izveidoto modelu aprobacija tiek veikta Eiropas limeni, jo regionala SPI modela
metodologija (Raksts II) un modelu ansambla (Raksts III) metodologija tiek lietota
Kopernika Atmosféras monitoringa dienesta (CAMS) putekSnpu prognozes, lai
paaugstinatu to precizitati. Ir planots izmantot lokalo modeli dazada veida puteksnu
prognozesanai Riga. Lokala modela prognozes tiks izmantotas arT par deterministisko
(t. i., SILAM) modelu ievaddatiem neeksist&joso reala laika novérojumu datu vieta, lai
atrisinatu novérojumu datu kavesanas problému.

Saistitas publikacijas
Tris saistiti petijumi ir publicéti zurnalos ar JIF virs 2,0 (2016), palielinot
analiz€jamo dalinu dazadibu, mainot p&tfjjuma objektu no putek$niem uz sporam. Dala
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saistito petijjumu rezultati publicéti arT Latvijas izdevumos. Kopgjais publikaciju skaits
ir 14.

1. Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., Bergmann, K.-C.,
Chéroux, F., Elbern, H., Friese, E., Galan, C., Gehrig, R., Khvorostyanov, D.,
Kranenburg, R., Kumar, U., Marécal, V., Meleux, F., Menut, L., Pessi, A.-M.,
Robertson, L., Ritenberga, O., Rodinkova, V., Saarto, A., Segers, A., Severova, E.,
Sauliene, 1., Siljamo, P., Steensen, B. M., Teinemaa, E., Thibaudon, M., and
Peuch, V.-H. 2015. MACC regional multi-model ensemble simulations of birch
pollen dispersion in Europe, Atmos. Chem. Phys., 15, 8115-8130. DOI:10.5194/
acp-15-8115-2015.

2. Kasprzyk, I., Rodinkova, V., Sauliene, 1., Ritenberga, O., Grinn-Gofran, A.,
et al. 2015. Air pollution by allergenic spores of the genus Alternaria in the air
of central and eastern Europe. In: Environmental Science and Pollution Research.
DOI 10.1007/s11356-014-4070-6.

3. Sikoparija, B., Skjeth, C. A., Celenk, S., Testoni, C., Abramidze, T., Alm Kiibler, K.,
Belmonte, J., Berger, U., Bonini, M., Charalampopoulos, A., Damialis, A., Clot, B.,
Dahl, A., de Weger, L., Gehrig, R., Hendrickx, M., Hoebeke, L., lanovici, N.,
Seliger, A. K., Magyar, D., Manyoki, G., Milkovska, S., Myszkowska, D., Paldy, A.,
Pashley, C. H., Rasmussen, K., Ritenberga, O., Rodinkova, V., Rybnicek, O.,
Shalaboda, V., Saulien¢, L., S&evkova, J., Stjepanovi¢, B., Thibaudon, M.,
Verstraeten, C., Vokou, D., Yankova, R., Smith, M. 2016. Spatial and temporal
variations in airborne Ambrosia pollen across Europe. In: Aerobiologia.
DOI:10.1007/s10453-016-9463-1.

Izveletas starptautiskas konferences

1. Ritenberga, O., Sofiev, M. Forecasting of infer- annual variability of Olive
seasonal pollen load. Mediterranean Palynology Symposium 4—6 September 2017,
Barcelona, Spain.

2. Ritenberga, O., Sauliene, 1., Berger, U., Sofiev, M. Towards developing Personal
Allergy Symptom Forecasting System in Baltic States. Congress of the European
Academy of Allergy and Clinical Immunology 17-21 June 2017, Helsinki, Finland.

3. Ritenberga, O., Siljamo, P., Sofiev, M. Modelling of intra-seasonal fluctuation
and Inter-annual variability of birch pollen concentration: Example of Latvia and
Finland. European Symposium of Aerobiology 18-22 July 2016, Lyon, France.

4. Ritenberga, O., Kalnina, L. Temporal changes of ragweed (4. artemisiifolia,
A. trifida, A. psilostachya) pollen concentration in Latvia. European Symposium of
Aerobiology 18-22 July 2016, Lyon, France.

5. Ritenberga, O., Sofiev, M., Genikhovich, E. Towards developing of short-term
statistical model for birch pollen forecast. European Aerobiology Network and
European Aerobiological Society Symposium, 10—-11 November, 2014. Vienna,
Austria.
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10.

11.

12.

13.

14.

15.

16.

. Ritenberga, O., Veselova, A., Kalnina, L., Ustupe, L. The result of 10-year

aerobiological monitoring of early spring allergenic pollen in Riga (Latvia).
9t Pollen Monitoring Programme. Prague. Czech Republic, 26-30 August, 2013.

. Ritenberga, O., Kalnina, L., Rodinkova, V., Sofiev, M., Vill, M., Korgmaa, V.,

Shalaboda, V. Regional differences and comparison of observed and modelled
birch pollen data. 14" Nordic Aerobiology Society Symposium. Riga, Latvia,
19-21 August, 2013.

. Veselova, A., Ritenberga, O., Ustupe, L., Kalnina, L. Influence of meteorological

parameters on Alnus and Corylus pollen concentration in Latvia. /4" Nordic
Aerobiology Society Symposium. Riga, Latvia, 19-21 August, 2013.

. Kalnina, L., Ritenberga, O., Sauliene, 1., Sukiene, L., Severova, E. Character of

Betulaceae pollen season in Riga and their comparison with Vilnius and Moscow.
14" Nordic Aerobiology Society Symposium. Riga, Latvia, 19-21 August, 2013.
Ritenberga, O., Kalnina, L., Gudovicha, M. Influence of meteorological
parameters on Artemisia pollen concentration in Latvia in the period 2003-2011.
5" European Symposium on Aerobiology. Krakow, Poland, 3—7 September 2012.
Kalnina, L., Sauliene, I., Ritenberga, O. Variability of grass pollen concentration
during the 9 year period (2003-2011). 5" European Symposium on Aerobiology.
Krakow, Poland, 3—7 September 2012.

Ritenberga, O., Kalnina, L., Gudovicha, M. Three ragweed species in Latvia.
Second International Ragweed Conference, Lyon, France, 28-29 March 2012.
Ritenberga, O., Kalnina, L. Development of Aerobiological Monitoring in Latvia.
The conference of European Integration and Baltic Sea Region: Diversity and
Perspectives. Riga, Latvia, 2627 September 2011.

Ritenberga, O., Kalnina, L. Seasonal fluctuations of the airborne pollen
concentration in Latvia. Pollen Monitoring Program (PMP) 8" International
Meeting. University of Tartu, Tartu, Estonia, 20-22 May 2011.

Ritenberga, O. Aerobiology as geographer’s field of research. Next generation
insights into geosciences and ecology. Tartu, Estonia, 12—15 May 2011.
Ritenberga, O. Airborne pollen concentration in Riga (Latvia) 2003-2010.
53" International Scientific Conference of Daugavpils University. Daugavpils,
Latvia, 13—15 April 2011.

Par pétijumu rezultatiem ir zinots 27 starptautiskajas konferences.

Eiropas nozaru institiiciju interese par rezultatiem

EAS (European Aeobiological Society) un 1AA (International Association on

Aerobiology) prezidentu véstules par nepiecieSamibu attistit nozari Latvija un Eiropa
tika sanemtas 2015. un 2017. gada rudeni. Promocijas darba izstrades laika divas
reizes (2012. un 2016. gada) tika sanemti Eiropas Aerobiologijas asociacijas granti par
izcila pétijuma izstradi putek$nu monitoringa, analizes un model&Sanas joma regulari
organiz€jamos simpozijos un Krievijas Geografijas biedribas augstakais novertgjums
jauno zinatnieku sasniegumu konkursa (2016. gada).



44

Ipasi ieintereséta par pétijuma rezultatiem ir ietekmiga institiicija — Kopernika

Atmosferas monitoringa serviss (CAMS). Modelu ansambla izveides nepiecieSamiba
(Raksts III) ir icteikta tiesi CAMS, savukart regionala SPI (Raksts II) rezultati tick
izmantoti par ievaddatiem CAMS puteks$nu prognozes Eiropai.

Projekti promocijas pétijuma laika

1.

“Biologiska gaisa piesarnojuma statistiska modelé$ana: bérza putek$nu piemers”
(2015) Izglitibas un zinatnes ministrijas bazes finansgjums “Cilvékresursu piesaiste
zinatnei Zemes un Vides zinatnes joma”, p&tniece. Noslédzies.

Valsts pétijumu programmas projekts “Ilgtspejiga klimata politika un inovativi,
energoefektivi tehnologiski risinajumi (KPIET)”, p&tniece.

VPP projekts ,,Energoefektivi un oglekla mazietilpigi risinajumi drosai, ilgtsp€jigai
un klimata mainitbu mazinoSai energoapgadei (LATENERGI)”, pétniece.
Nosledzies (2014-2017).

EU ECMWF Copernicus Atmospheric Monitoring Center Personal Allergy
Symptom FOrecasting system (PASYFO), Latvijas grupas vaditaja (2017-2019).

Promocijas darbs sastav no kopsavilkuma anglu un latvieSu valoda un tris secigiem

rakstiem — promocijas darba dalam.

Kopsavilkums ietver anotaciju, ievadu, metozu un rezultatu dalu, secindgjumus un

izmantotas literaturas sarakstu.
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1. DATI UN PETIJUMA METODOLOGIJA

Aerobiologisko (t. s. aeropalinologisko) procesu modeléSana balstas uz puteksnu
un/vai sporu divu stundu, diennakts, sezonu padzilinato datu analizi. Promocijas darba
izmantoti dati, sakot no divam stundam (Raksts I), ieskaitot diennakti (Raksts III) un,
visbeidzot, parejot uz sezonu (Raksts II) Iimeni. P&tijuma dalas atskiras geotelpiskais
mérogs — no lokala (Raksts I), Iidz regionalajam (Raksts II, IIT).

Latvija dazadu augu puteksSni gaisa pliismas atrodas vismaz septinus ménesus — no
februara beigam (alksna un lazdas puteksni), 1idz septembra beigam — oktobra sakumam,
(vibotnes un natru puteksni). Septinu menesu laika gaisa ir sastopams ap 35-40 dazadu
puteksnu veidu, kas parsvara nak no anemofiliem augiem. Puteksni atSkiras p&c formas,
izm@ra, sastava, aerodinamiskajam sp&am un ietekmes uz alergisku cilvéku organis-
mu. PutekSnu atrasanas gaisa plismas ir atkariga gan no auga izplatibas, kas ietekmé
emisiju, gan no meteorologiskas situacijas, kas nosaka atrasanas ilgumu gaisa plismas.

Ziemeleiropa un Ziemelaustrumeiropa visbiezak alergiju izraisa bérza (Bastl
et al.,, 2016; Huynen et al., 2003) un graudzalu puteksni. Tas saistits gan ar plasu
bérza izplatibas arealu un ar Tpatsvaru mezos, gan ar putekSnu sastavu — tajos ietilpst
agresivas alergiju izraisos$as olbaltumvielas.

Centraleiropa bistamakie putek$ni, kas izraisa alergijas, ir vérmellapu ambrozijas
puteksni (Sikoparija et al., 2016), savukart paSa auga sp&ja atri pielagoties dazadiem
augSanas apstakliem kaite lauksaimniecibai.

Dienvideiropas regiona bistamakais augs, kas izraisa putekS$nu alergijas, ir
olivkoks (D’Amato et al., 2007), augsti sensibilitates raditaji registréti Spanija (44%)
un Portugalé (20%) (Pereira et al., 2006), Griekija (31,8%) (Dimitrios Gioulekas et al.,
2004), Italija (24%) (Negrini et al., 1992) u. c. Vidusjiras regiona valstis. Taja pasa
laika olivella ir viens no galvenajiem ekonomiskajiem resursiem Dienvideiropa, lielaka
dala olivkoku platibu (ap 95%) koncentréjas Vidusjiras regiona (Barranco et al., 2008).

1.1. Dati modelu izstradei

1.1.1. Aerobiologiskie dati

Promocijas darba uzmaniba veltita bérza puteksnu (Ziemeleiropa) un olivkoku
puteksnu (Dienvideiropa) datu apstradei un analizei.

Aerobiologisko datu analize sakas ar datu ieglisanu, t. i., regularu, nepartrauktu
gaisa monitoringu vegetacijas sezonas laika vairaku gadu garuma. Garakas pétjjuma
izmantotas datu rindas nak no Somijas (1.1. att€ls) par laika posmu no 1974. Iidz
2015. gadam. Riga aerobiologiskais monitorings tika sakts 2003. gada, un datu apjoms
ir pietieckams, lai veidotu Tslaicigas lokalas prognozes, balstoties uz divu stundu un
diennakts puteksnu koncentracijas vertibam (Raksts I).

Datu iegtiSana noritgja atbilstosi datu kvalitates kontroles izstradatajam vadlinijam
(Galan et al., 2014; Oteros et al., 2013a), kur ir atrunats viss, sakot no ieri¢u un vielu
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izmantoSanas monitoringa, ieskaitot mikroskopiskas analizes nianses un prasibas datu
analizei.

Acrobiologiskaja monitoringa tika izmantots Hirsta tipa (Hirst, 1954) septinu dienu
Burkard putek$nu—sporu uztvergjs, kura specifikacijas paredz vismaz vienu ned€lu
nobidi novérojumu datu iegfisana. Tas saistits ar nepiecieSamibu ievakt (septinas
diennaktis) un manuali apstradat (vienu dienu) putek$nu paraugus. Automatizeta
putek$nu monitoringa izm&ginajumi ir sakusies vairakas Eiropas monitoringa stacijas
(Scheifinger et al., 2013), bet pagaidam ta precizitate ievérojami atpaliek no manuala
monitoringa precizitates.

Putek$nu atpazisana un uzskaite tika veikta LU GZZF kvartarvides laboratorija,
izmantojot Primo Star gaismas mikroskopu x400 palielinajuma un izvéloties vertikalo
skaitiS8anas metodi (Carinanos et al., 2000), t. i., 12 vertikalas Iinijas 2 mm attaluma
cita no citas, lai pilniba parklatu diennakts paraugu 14x48 mm.

Regionalo pétijumu veikSanai aerobiologiskie dati tika nemti no Eiropas
Aecroalergénu tikla EAN pieejamam monitoringa stacijam (1.1. att€ls), vienojoties
ar attiecigo valstu parstavjiem par kopigu pétijumu veikSanu. Bérza SPI gadijuma
(Raksts II) nosactjums bija vismaz 11 novérojumu gadi; olivu putek$nu modeléSanas
datu ansambla nosacijums bija vismaz 30 secigas noverojumu dienas, kur vismaz
10 dienu laika putek$nu koncentracija parsniedz 3 putek3nus/m?® (Raksts 11II).
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1.1.2. Meteorologiskie un vides kvalitates dati

Promocijas darba aerobiologiskie procesi tiek skaidroti ar meteorologiskajiem
apstakliem (gaisa temperatiira, Tsvilpu saules radiacija, gaisa relativais mitrums,
nokriSnu summas) un CO, koncentraciju gaisa.

Lokala modela uzbtvei (Raksts I) tika izmantoti Latvijas Vides, geologijas un
meteorologijas centra stundu un diennakts meteorologiskie dati no meteorologiskas
stacijas ,,Riga-Universitate”. Lokala modela verifikacijai izmantoti meteorologiskas
prognozes dati no operativa ECMWF arhiva.

Visbiezak minétie SPI raksturojosie meteorologiskie faktori ir temperatira un
nokri$nu daudzums (Dahl and Strandhede, 1996; Latalowa et al., 2002; Yli-Panula
et al., 2009) dazados laika posmos. Bez min&tajiem tika izvéleti vél divi faktori — Tsvilpu
saules radiacija un akumuléta siltuma daudzums. Tris stundu vidéjie meteorologiskie
dati tika ieglti no European Re-analysis ERA-Interim datiem (Dee et al., 2011;
Simmons et al., 2010). Meteorologiskie dati ir pieejami par periodu no 1980. lidz 2015.
gadam, kas ierobezoja datu izlasi lidz 36 gadiem.

Oglekla dioksids ir viens no parametriem, kas, iesp&jams, ietekmé& puteksnu
daudzumu gaisa (Albertine et al., 2014). Analizei izmantotie CO, dati tika lejupieladeti
no NOAA Zemes sisttmu pé&tniecibas laboratorijas (ESRL) publiska arhiva (Ed
Dlugokencky un Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ /ccgg/trends/))
par laika posmu no 1980. lidz 2015. gadam.

1.2. Pamata metodes nestacionaritates reducésanai un datu
homogenizacijai

Precizaka prognozesanas modela izveidei atkariba no temporala méroga ir jadefiné
un janodala laika posmi, kuriem atbilst dazadas augu attistibas fazes, lai varétu veikt
ripigaku ietekm&juso faktoru analizi.

Tris pamata dalas putek$pu prognozeSanas modela uzblve tiek defindtas ka
atseviski uzdevumi, izstradajot prognostiskos puteksnu modelus:

1) putekspu sezonas sakuma un beigu posma noteikSana (Raksts I, Raksts I1I);

2) sezonas gaita (Raksts I, Raksts III) jeb intrasezonalas putek$nu koncentracijas

variacijas;

3) sezonalais puteksnu indekss (Raksts II).

Katru dalu ietekm@ loti atSkirigi procesi.

Aerobiologiskie procesi japeta kompleksi. Taja pasa laika noteikta p&tijuma stadija
tie janoskir, jo katru etapu ietekmé atskirigi faktori vai to kombinacija. Atseviskos
posmos tika nodaliti faktori, kas nosaka produktivitati, t. i., SPI (Raksts II); faktori,
kas nosaka emisiju un parnesi; izgulsné$anos kontrolgjosie procesi (Raksts I, Raksts
I1). Mingtie parametri tika izmantoti, par prediktoriem nosakot putek$nu koncentraciju
ietekm&josos faktorus ar daudzpakapju linearas regresijas palidzibu.

Datiem, kas tiek izmantoti linearas regresijas analizg, jaatbilst vairakiem
krit€rijiem: jaatbilst normalsadalijumam, jareprezent€ stacionari un ergodiski procesi
un prediktoriem un prediktantam javeido linearas sakaribas.
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1.2.1. Uzkrata siltuma aprekinasana

Puteksnu sezonas sakuma un beigu posma noteikSanai (Raksts I) tika izmantota G.
Linsser (1867) ideja, t. 1., kokiem piemit sp&ja uzkrat siltumu, un to attistibas fazes ir
tiesi atkarigas no uzkrata siltuma daudzuma (1.2. attéls).

Heat sum versus accumulated pollen sum for 2003-2012
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1.2. attels. Uzkrata siltuma daudzums pret akumuléto puteksnu daudzumu desmit bérza
putek$nu sezonam Riga

Promocijas darba (Raksts I, II, IIT) tika izmantota modificéta un attiecigajam
regionam pielagota uzkrata siltuma aprékinasanas formula (Sofiev et al., 2012):

H(d)= Z[@—um,

kur A ir temperatiiru summa jeb uzkrata siltuma daudzums, d ir diena, d_—
sakuma diena siltuma akumulacijai, 7(d) — diennakts vidgja temperatura
T — slickSna temperatiira, zem kuras nenotiek siltuma uzkrasanas, [x],
vienads ar 0, ja x < 0 un X, ja X > 0 (neieklauj temperatiiras zem slieksna
vertibas).

Sis vienadojums prasa divas konstantas vértibas — sakuma dienu siltuma
akumulacijai (d ) un sliekSna vertibu dienas vid€jai temperatiirai (7, ), virs kuras notiek
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siltuma uzkrasanas. Ming&tas vertibas tika piemekl&tas, analizgjot 10 bérza puteksnu
sezonas Riga pret uzkrata siltuma daudzumu, secigi parbaudot datumus no 20.02.
Iidz 10.03. un sliek$na temperatiiras no 0 °C Iidz 5 °C ar 0,5 °C soli. Par optimalo
kombinaciju tika izv€leta ta, kuras standartnovirze tris kumulativo putekSnu summu
Iimenos ir minimala (1.2. attels).

Ta par sakuma dienu siltuma akumulacijai tika noteikts 1. marts, un par sliek$na
temperatiru 3,5 °C. Mingtas vertibas sakrit ar tam, ko izmanto regionalaja modeli
SILAM.

Nemot veéra, ka par noteiktu puteksnu veidu sezonu tiek uzskatits periods, kad
90% puteksnu atrodas gaisa, tika noteiktas uzkrata siltuma robezas, kas ietver 90%
puteksnu daudzuma no ikgadgja SPI. Tiek uzskatits, ka 5% putek$nu sezonas sakuma
un beigas ir saistiti ar puteksnu talo parnesi, bet 90% — lielakoties ar lokalo zied&Sanu
(Jato et al., 2006).

ST metode ar nelielam modifikacijam tika izmantota par pamatu tris promocijas
darba pétijumos.

1.2.2. Temporalas neviendabibas mazinasana putek$nu datos

Uzkrata siltuma daudzums tika izmantots ne tikai sezonas sakuma un beigu posma
noteikSanai, bet arl temporalas neviendabibas mazinaSanai. Viena no problémam
aerobiologiskajos pétijumos saistita ar daudzgadigo datu temporalo mainigumu — t. i.,
sezona sakas, ilgst un beidzas dazados laikos.

Kalendarais laiks ir ne@rts mainigais statistiskaja analize. Tas tika aizvietots ar
mainigo, kas ir neparprotami saistits ar kalendaro laiku ta, lai puteks$nu sezonas sakums,
ilgums un beigas biitu vienadi visos p&tamajos gados. Uzkrata siltuma daudzums
atbilst Siem kriterijiem, jo ta ir monotona funkcija laika, kas vienkarsi aprékinama no
diennakts vid€jas temperatiiras datiem.

Nomainot temporalo skalu pret siltuma skalu, tika iegiita temporali homogéna
datu kopa. Pieméram, lokala modela (Raksts I) gadijuma, uzkrata siltuma daudzumam
sasniedzot 70 vai 200 gradu dienas, tiek konstatéts attiecigi sezonas sakums vai beigas.

Vairaki petijumi liecina, ka SPI lielakoties ir atkarigs no ieprieksgja gada
meteorologiskajiem apstakliem noteikta laika posma (Raksts 11, ievads). Astronomiskais
laiks parada ievérojamas nobides attieciba uz fenologisko fazu iestasanas laikiem arl
SPI analizes gadijuma. Lai noteiktie periodi sezonas un gada griezuma biitu salidzinami
péc fenologiskajam fazém, atkal tika izvéléts uzkrata siltuma daudzums ka fenologiski
nozimigs laika ass mainigais.

Regionala limenT pat péc siltuma skalas ievieSanas astronomiska laika vieta tika
konstatétas sezonu iestasanas laika atSkiribas, tas saistits ar augu spgju pielagoties —
ziemelos fenologiskas fazes iestdjas, ja ir mazaks uzkrata siltuma daudzums neka
definéta regiona dienvidu dala.

Mingtas problémas risinasanai temporala skala tika izteikta procentos no gada uz-
krata siltuma daudzuma (Raksts II), normalizgjot ar katras stacijas ilglaicigo vidgjo
uzkrata siltuma daudzumu. Ikgadg€ja uzkrata siltuma daudzums varié ar divkarsu koefi-
cientu definéta regiona robezas, turpreti relativas vienibas vértibas ir loti lidzigas.
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1.2.3. Nestacionaritates mazinasana puteks$pu datos: normalizacija

Augu sarazoto puteksSnu daudzums un lidz ar to SPI ir loti mainigs gadu no gada
(1.3. attels). Tas ir atkarigs no vairakiem ilglaicigiem un liela méroga procesiem, ka,
piem@ram, iepriek$§&jo gadu zied€Sanas intensitates, meteorologiskajiem un vides
apstakliem ziemas méneSos, pirmssezonalajiem apstakliem pavasarl utt. (Dahl and
Strandhede, 1996; Linkosalo et al., 2006; Stach et al., 2008).

Birch pollen SPI 2003-2014 for Riga SPI for Fennoscandia and Baltic states

60000
|

/

—— FIKUOP L
— FIHELS SEVAES
FIOULU BYMINS

50000
|

—— FIVAAS i

FIROVA  —— LVRIGA
SESTOC

40000
|
13
80000 100000 120000
1

Pollen concentration
30000
|
SPI
60000
1

20000

|

s ST
40000

L

10000
|
20000
I

0
I

0
|

\n\./ °\/"\_/\--‘ | LN

T T T T T T
2004 2006 2008 2010 2012 2014 1980 1990 2000 2010

years Years

1.3. attéls. Lokalas (kreisaja pus€) un regionalas (labaja pus€) bérza SPI izmainas

Nemot véra to, ka (I) intrasezonalas puteksnu variacijas ir saistitas ar Tslaicigam
meteorologiskajam izmainam un ka (IT) nav iespgjams izveidot pilnvértigu SPI modeli,
balstoties tikai uz lokaliem datiem, bija nepiecieSams mazinat sezonalas SPI atskiribas,
padarot dazadas sezonas savstarp€ji salidzinamas. Intrasezonalo un intersezonalo
procesu nodaliSanai tika piem@rota normalizacija, t. i., diennakts puteksnu koncentracija
C/(d) tika dalita ar attieciga gada SPI katram aplikotajam gadam i, tad€jadi iegiistot
savstarpgji salidzinamas diennakts relativas vertibas (2).

C,(d)
> C.(d)

dei

¢, (d) = 2

Lai iegttu sezonalas relativas vertibas (SP/5"") un SPI prognozeSanu varetu
model&t regionala Iimeni, katra novérojumu punkta ;i katram gadam Y SPI tika
normaliz&ts ar vidgjo geometrisko SPI visam analiz&jamam periodam SP/se""

SPL,(Y)
SPIT™"(Y) = — o
1 (Y) SPI?eon1ean

Tadgjadi tika ierobezota viet€jas ziedéSanas ietekme, padarot analiz&jamas moni-
toringa stacijas regiona savstarpgji salidzinamas.
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2. REZULTATI UN DISKUSIJA

2.1. Nestacionaro procesu statistiskd modeléSana — lokalas
intrasezonalas prognozes: Latvijas piemers

Raksts I. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., Genikhovich,
E. (2016). Statistical modelling of non-stationary processes of atmospheric
pollution from natural sources: example of birch pollen. Agricultural and
Forest Meteorology, 226227, 96—107.

Lokala limena pétijums, veltits diennakts putekSnu koncentraciju prognozeésanai
puteksnu sezonas laika, nosakot putek$nu daudzumu gaisa ietekmé&joSos meteorologiskos
faktorus un parametriz&jot modeli, lai to var€tu izmantot bérza putek$nu prognozesanai
Riga.

Autores ieguldijums pétijuma ir: (I) putek$nu monitoringa veikSana no 2006. lidz
2016. gadam; (I1I) paraugu apstrade un datu analize; (III) prognostisko modelu izstrade
un novertésana; (IV) rezultatu sagatavosana public€Sanai.

P&tfjuma izmantota novatoriska pieeja linearas regresijas modela izveidei, kas npem
veéra un risina putekS$nu koncentracijas datu ne-normala sadalfjuma, nestacionaritates
un nelinearitates problémas ar datu transformacijas palidzibu. Metode pirmo reizi tika
piemérota puteksnu koncentracijas prognozesanai, un tika izveidots pirmais puteksnu
koncentracijas prognostiskais modelis Latvijai (Rigai).

Datu daudzsolu transformacijas rezultats ir statistisku procediiru efektivitates
uzlabosana un modela precizitates paaugstinasana.

Vidgjo sezonas gaitu izskaidro uzkrata siltuma daudzums (Raksts I), savukart
intrasezonalo putek$nu koncentracijas izmainas iespg&jams prognozet, analizgjot no-
virzes no vidgjiem sezonas raditajiem.

Tika veikta sakaribu linearizacija (Raksts I) starp prediktoriem (meteorologiskie
parametri) un prediktantiem (putek$pu koncentracijas novirzes). Linearizacija tika
veikta, projicgjot meteorologiskus datus uz putek$nu koncentracijas datiem (2.1. attéls).
Devinu gadu dati par katru prediktoru tika sadaliti intervalos, un katram intervalam
tika aprékinata vidgja putekspu koncentracijas novirzu vertiba (relativa gaisa mitruma
piemérs 2.1. attela). Turpmak analizé izmantotas lineariz&tas prediktoru vertibas.
Minéta transformacija minimize nelinearas sakaribas un lauj izmantot linearo regresiju
prediktoru kombinacijas noteiksanai.

Statistiski nozimigi (p > 0,05) prediktori un to koeficienti noteikti ar daudzsolu
linearo regresiju: brivais loceklis (0,03), diennakts vidgja temperatara (0,65), diennakts
vidgjais makonainums (1,05), diennakts nokrisnu summa (0,53), v&ja u-komponente
(0,68).

Modela novértésana sastav no divam dalam:

1) modelu sp&ja uzradit sezonas parametrus — sakumu, maksimalo koncentraciju,

beigas, intrasezonalas variacijas, dienas ar izteikti zemu vai augstu putekSnu
koncentraciju utt;
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2) Modela spgja atveidot praktiski nozimigas robezvertibas sasnieg$anu.

Kopgja modelu precizitate MA ir zemaka par 5% kontroles datu kopai, toties OR
un citi parametri POD, FAR (Raksts I, pielikums) ir pat nedaudz augstaki. Atskiribas
ir saistitas ar modela kontroles procediiras nenoteiktibu: kontroles datu kopa ietvéra
70 dienas ar putek$nu koncentraciju virs robezlieluma, aptuveni puse gadijjumu tika
atveidota; 170 dienas bija zemaka putek$nu koncentracija par robezlielumu, un tie tika
atveidoti 97% gadijumu (Raksts I, 2. tabula).

Relative humidity prejected on deviations from seasenal "hat’
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2.1. attéls. Relativa mitruma un novirzu no SPI linearizacijas piemérs Rigai (Raksts I)

Modela rezultatu salidzinajums ar esosajiem modeliem ir problematisks, jo tas ir
pirmais modelis Rigai un tikai dazi modeli Eiropa ir sp&jigi prognozet ikdienas pu-
teksnu koncentraciju. Tomer jaatzimé modela Iidzibas un atskiribas: Tslaicigo puteksnu
prognozu veidosana ir izplatita prakse izmantot autoregresijas metodes — t. i., prognoze
ir ieprieksgjo dienu koncentracijas funkcija, piem&ram, bérzam (Inatsu et al., 2014) vai
graudzalém (Stach et al., 2008). Rigas gadijuma autoregresiju nav iesp&jams lietot, jo
dienu no dienas ir noverotas krasas puteksnu koncentracijas izmainas, “Sodienas” pu-
teksnu dati “ritdienas” prognozei nav iesp&jami, jo monitoringa specifika paredz 7 die-
nu nobidi. Kaut gan $ads spécigs prediktors netiek ieklauts modeli, modela precizitate
pec korelacijas koeficienta ir 0,64—0,94, savukart autoregresijas modeliem — 0,6-0,9
bérzam Japana (Inatsu et al., 2014) un 0,6-0,7 graudzalém Polija (Stach et al., 2008).

Modela rezultati tika salidzinati ar regionala modela SILAM prognozém, un tie
uzradija ieverojami labakus rezultatus (2.2. att€ls). Japiever§ uzmaniba tam, ka lokalais
modelis precizi atveidoja dienas ar maksimalo koncentraciju 2014. gada sezona,
savukart SILAM labak atveidoja Iknes dalu, kas ir saistita ar puteks$nu talo parnesi. Ta
ka modeliem ir atskirigi darbibas principi, janem véra, ka to kopiga izmantoSana paver
iesp&jas uzlabot regionalo prognozu precizitati.
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Sarezgita datu transformacija, kas piedavata $aja petijuma, ir nepiecie$ama modela
izstradé un novertésana, lai padaritu iesp&jamu statistisko metozu izmantoSanu.
Datu normalizacija, nestacionaritates reduc€Sana, linearizacija ir vajadzigas —
teorctiski. Protams, ir iespgjams méginat izmantot daudzsolu linearo regresiju bez
datu transformacijas (Raksts I, 4. tabula). Netransformé&ts datu komplekts uzradija
ievérojami zemaku modela precizitati.

IepriekSmingta datu transformacija un daudzsolu lineara regresija veido modeli,
kas prognozg normalizéto putek$nu koncentraciju novirzes no daudzgadigas vidgjas
sezonalas liknes un uzkrata siltuma skalas.

Modelled vs observed birch pollen data 2014

—— Modelled season 2014
—— Observations season 2014
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2.2. attéls. Modelu darbibas salidzingjums ar novérojumu datiem 2014. gada bérza puteksnu
sezona (Raksts I)

Inversa transformacija ir nepiecieSama lietiskai prognostiska modela izmantoSanai.
Regresijas modelis tika veidots transformé&tai datu kopai — t. i., gan transformétiem
prediktoriem, gan prediktantiem. AtgrieSands pie netransform&tiem datiem sekmé
modela precizitates samazinasanos. Lidzigs efektu aprakstija Toro et al. (1998).

Lokala modela izstradé nav iespg&jams ieklaut tekosa gada SPI aprékinu, tatad
sezonas sakuma, zinot vienigi meteorologisko prognozi, ir iespgjams prognozet
normaliz&tas diennakts putekSnu koncentracijas. Lai koncentracijas denormaliz&tu
un parrékinatu absolutas vertibas, ir nepiecieSama atseviSka, regionala SPI modela
izstrade.
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2.2. SPI statistiska modeleSana Ziemeleiropa un
Ziemelaustrumeiropa

Raksts II. Ritenberga, O., Sofiev, M., Siljamo, P., Saarto, A., Dahl, A.,
Ekebom, A., Sauliene, I., Shalaboda, V., Severova, E., Hoebeke, L., Ramfjord,
H. (2017). A statistical model for predicting the inter-annual variability of
birch pollen abundance in Northern and North-Eastern Europe. Science of the
Total Environment (Pienemts public€sanai).

Petfjuma rezultata tika izstradata metode puteksnu sezonas indeksa aprékinasanai
licliem regioniem, balstoties uz Ziemeleiropas un Ziemelaustrumeiropas regiona
piemeru un ietverot Somijas, Zviedrijas, Baltijas valstu, Baltkrievijas teritoriju, savukart
Krievijas un Norvégijas ieklausanu analiz€ ierobezoja datu trikums. Statistiskais
modelis tika izveidots, izmantojot meteorologiskos, geofiziskos un biologiskos
raksturlielumus gadam Y-1, lai prognozétu gada Y sezonalo puteksnu indeksu.

Autores ieguldfjums pétijuma ieklauj (I) datu iegiiSanu — putekSnu monitoringu
Latvija, sakot ar 2006. gadu; (II) datu analizi; (II) modela izveidi un novertésanu.

Ir zinams, ka b&rza SPI ir noverojams divu gadu periodiskums (2.3. att€ls) (Zink
et al., 2013) un augSupejosais trends (Spieksma et al., 2003), sakot vismaz no 1974.
gada.
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2.3. attéls. Regionala SPI modela salidzindjums ar novérojumu datiem stacijas Vasa, Somija
(kreisaja pus€), un Riga (labaja pusg)

Tika izteikta hipotéze, ka SPI ir regionalais parametrs, ko kontrol& sinoptiska
meroga, t. i., daZzu simtu km, meteorologiskie procesi. Tiesi tapéc batu jabut iesp&jai
identificét regionus, kas reageé sinhroni un parada Iidzigas SPI starpsezonalas izmainas.
Modelim nav svarigas SPI absoliitas vertibas, jo to nosaka tas, cik tuvu uztvérgjam
augs atrodas. Tatad, nosakot regionu, tas biitu jauzskata par “kasti”, nedalot atseviskas
monitoringa stacijas, tadél regiona homogenizacija tika lietota SPI normalizacija
(Raksts II).



55

Pétfjuma primarais mérkis bija uzbuivét universalu modeli, kas biitu piem&rojams
lieliem regioniem, demonstr&jot SPI telpiskas visparinaanas iesp&jamibu. Lidz §im
lielaka dala ieprieksgjo pétijjumu koncentrgjas uz vienu vai dazam tuvuma izvietotam
stacijam (sk. Raksta II ievadu).

Otra galvena piedavatas pieejas atSkiriba ir saistita ar datu transformaciju —
izlidzinot uzkrata siltuma atkiribas regionala griezuma un ierobezojot SPI telpiskas
variacijas. Talak prediktoru noteikSanai tika izmantota daudzsolu lineara regresija.
Par prediktoriem izvel&ti parametri no seSiem intervaliem (Raksts II). Ar regresijas
palidzibu tika noteikti teko$a gada parametri, kas ietekmé nakama gada SPI regiona:

- nokriSnpu summa Pr, . par periodu 0,13-0,25 no gada akumuléta siltuma
daudzuma;

- vidgja temperatura 7, . par periodu 0,13-0,25 no gada akumuléta siltuma
daudzuma;

- vidgja temperatira 7, ,; par periodu 0,25-0,45 no gada akumuléta siltuma
daudzuma;

- Tsvilpu saules radiacija SW, par periodu 0-0,05 no gada akumuléta siltuma
daudzuma;

- SPI

- CO,y, -

Lai noteiktu regionalas SPI formulas prediktoru koeficientus, tika piemérota
bootrstrap metode. Analiz€jama regiona atrodas 15 monitoringa stacijas, tadg] ar
bootstrap metodi tika veikti 15 atkartojumi 15 datu kopam, lai atrastu prediktoru
koeficientus. Katram prediktoram tika atrastas 15 vértibas, no tam iegistot vid&jos
regresijas koeficientus un standartnovirzi (Raksts 11, 3. tabula).

Modela (4) izveides laika tika konstatéts, ka, izmantojot tikai un vienigi
meteorologiskos datus un CO, (bez ieprieksgja gada SPI), ir iesp&jams atveidot bérza
SPI divgadigo ciklu. Papildus tika izveidots meteorologiskais modelis. ST iesp&ja lauj
prognozét nakama gada SPI, zinot tikai teko$a gada meteorologiskos datus, un Sis
modelis var&tu bat piem&rojams vietas, kur netiek veikti acrobiologiskie novérojumi.

Regionala sezonala putek$nu indeksa ASPI"*¢(Y) formula gadam Y, balstoties uz
iepriek3gja Y-/ gada meteorologiskajiem un CO, datiem:

0,13

Y-172

ASPIT@Q(Y) = Qy + acoz COZ,Y—I + aprPT'O.13 + Ay, SWy + aT0_13 T0.13 + aTO.ZS T0.25 (4)

SPI, , pievienoSana prediktoriem ieverojami palielina modela kvalitati. Galiga
formula ietver visus min&tos prediktorus ar konstantiem koeficientiem visam regionam.

Regionala modela darbibas novértésana tika izmantotas lidzigas metodes ka lokala
modela novertésana (Raksts I), t. i., OR, MA, F2, atskiribu noverteésana starp augsto un
zemo sezonu skaitu — virs vai zem ilggadgjas vid€jas sezonas (metozu aprékinasanas
aprakstu sk. Raksts I, pielikums). Atseviskas stacijas rezultati var ievérojami atskirties,
modelim ir tendence labak stradat stacijas ar garakam datu rindam (piem., Turku,
Kuopio). Modelis pareizi aprékina zemds sezonas, un tikai dazos gadijumos prognozes
bija nepareizas augstajiem gadiem. OR vértibas ir nepartraukti augstas (Raksts I,
3a attgls).
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Salidzinasana ar citiem modeliem ir problematiska, jo 1idzigi modeli lidz $im v&l
nav veidoti. Vistuvakais piemérs ir aprakstits Somijas pétijumos (Ranta and Satri,
2007), kur tika veidoti trTs lokalie modeli Turku, Kuopio un Oulu monitoringa stacijam.

Salidzinot korelacijas koeficientus, regionalais SPI uzradija lielaku modela pre-
cizitati 0,82 pret 0,59 Turku gadijuma, 0,77 pret 0,61 Oulu gadijuma. Lidziga Turku
un Oulu prognoz€Sanas precizitate tika sasniegta Zviedrijas pétijumos (Dahl and
Strandhede, 1996). Salidzinosi augsti korelacijas raditaji, raksturojot SPI, sasniegti
Polija, Poznana (Grewling et al., 2012), bet prognostiskais modelis netika veidots.
Tika lietota metode, lai aprékinatu divgadiga SPI cikla lazumu, bet Poznana ir arpus
analizjama regiona, tapec regionalais modelis nav tie§i izmantojams salidzinasanai.

Jauzsver, ka izmantotas metodes ievérojamas atskiribas no citiem modeliem ir sais-
titas ar salidzinosi labu modela sp&ju prognozet nakama gada SPI tikai p&c tekosa gada
meteorologiskajiem parametriem un CO,, t. i., nenemot vera ieprieksgjo gadu SPI. Me-
teorologiska modela kvalitate ir zemaka neka modelim ar pilnu prediktoru komplektu,
un tas liecina par butisku biologiska signala nozimi prognozgs. Taja pasa laika meteo-
rologisko pediktoru modelis spgj atveidot divgadigu SPI ciklu un uzradit cikla lazuma
gadus — t. i., divgadigais cikls tiek kontrol&ts ar regionala méroga laikapstakliem. Defi-
néta regiona dienvidu dala (Zviedrijas dienvidos, Lietuva) universala regionala modela
precizitate sak sarukt. Tas saistits augu reakciju uz klimatiskajiem apstakliem un to
pakapenisku nomainu ziemelu—dienvidu un rietumu—austrumu virziena.

Arpus definéta regiona stacijas Belgija (Brisel€), Krievija (Maskava) un Norvégija
(Tronheima) modelis ir precizs un darbojas labi gadiem ar izteiktu divgadigu ciklu, bet,
ciklam mainoties, modela precizitate samazinas.

B&rza SPI prognozesanai dienvidu regionos nepiecieSams veidot atsevisku modeli —
tas saistits ar citu meteorologisko parametru nozimi SPI veido$ana — pieméram, lielaku
nozimi iegist nokrisnu daudzums un uzkrata augstuma daudzums ziemas ménesos,
veidojot prediktoru un prediktantu nelinearas sakaribas.

2.3. Modelu ansambla izveide putekSnu prognozém Dienvideiropa

Raksts III. Sofiev, M., Ritenberga, O., Siljamo, P., Albertini, R., Arteta, J.,
Belmonte, J., Bonini, M., Damialis, T., Elbern, H., Friese, E., Galan, C.,
Hrga, 1., Kouznetsov, R., Plu, M., Prank, M., Robertson, L., Selenc, S.,
Thibaudon, M., Segers, A., Stepanovich, B., Valdebentino, A. M., Vira, J.,
Vokou, D. (2017). Multi-model ensemble simulations of olive pollen
distribution in Europe in 2014; current status and outlook. Atmospheric
Chemistry and Physics (Pienemts publicéSanai).

Autores ieguldijums pétfjuma ir optimala modelu ansambla izveide, statistiskas
optimizacijas procedira un tas pieméroSana seSu CAMS deterministisko modelu
ansamblim. Tika veikta individualo modelu, to vidgjo veértibu un medianas analize, lai
atrastu optimalu prediktoru kombinaciju multimodelu ansamblim.

P&tijuma mérkis bija izstradat un prezent&t olivkoku putek$nu (spécigako alergiju
izraisitaju Vidusjuras regiona) izkliedes pirmo model&Sanas eksperimentu Eiropas
meroga.
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Kopernika Atmosfeéras monitoringa servisa seSu modelu (EMEP, EURAM-IM,
LOTOS-EUROS, MATCH, MOCAGE, SILAM) ansamblis tika veidots 2014. gada
sezonai, rekinot olivkoku puteksnu izplatibu. Peétijuma dalgji izmantota multimodelu
ansambla pieeja berza putekSnu prognozeSanas simuléSanai (Sofiev et al., 2015)
ar izmainam, kas attiecas uz olivkoku putek$nu izplatibu un modela rezultatu
demonstraciju prognozu rezZima.

Viens no variantiem, ka uzlabot mode]u kvalitati, ir izmantot eso$o modelu
kombinaciju — t. i., modelu ansambli (Potempski and Galmarini, 2009). Ansambla ideja
dazados veidos izmantota gaisa kvalitates problému risinasanai (Johansson et al., 2015)
un klimatiskajiem modeliem (Genikhovich et al., 2010), bet lidz Sim ta nav lietota
puteksnu prognozu veidosanai.

Tris ansambli tika veidoti pec (I) vidgja aritmétiska, (II) medianas un (III) sesu
modelu optimalas kombinacijas. Vidgjas vertibas un mediana tika rékinata péc stundu
datiem, bet optimizacija piemérota diennakts Iimeni. Optimala ansambla izveidei
izmantota prediktoru (modelu ¢ , m = [.M) lineara kombinacija Cop (5) ta, lai
minimiz&tu optimala lauka RMSE J (6):

M
Cop (s ], k2,7, A) =ao(z')+Zam(r)cm(i,j,k,t), A=[a,.a,], a,=0Vm (5)

m=l1

o

J(t,7) = sqrt EZ(C@, (i), k. t,7,A)—c, (z))z} +

aZ(am(r)—i) + B> (a,(r-D)-a,(0)), t=1{d,.d,} ©),

kur i, j, k, t — indeksi gar x, y, z un laika astm, M — modelu skaits ansambli, O —
monitoringa staciju skaits, 7 = {d :d } — laika posms k+/ dienam, kas ieklauts analize,
sakums no d, 1idz d, ,z-1 — ieprieksejas dienas analizes periods z-1={d , :d }, ¢ —
modela m prognozeta putekSnu koncentracija, ¢, — noverota putekSnu koncentracija,
a, —no laika atkarigs modela m koeficients ansambli, a, —no laika atkarigs sistematiskas
novirzes (bias) labojums.

Vienadojuma (6) pirmais mainigais rada vidgjo kvadratisko kladu RMSE par
asimilacijas periodu (logu) 7, otrais notur koeficientu novirziSanos no vienmeériga
sadalljuma, treSais ierobezo koeficienta a  izmaigas atrumu. Svara vertibas o un
nosaka regularizacijas stiprumu.

Petijuma pirmo reizi tiek piedavata modela ansambla optimizacijas metode,
izmantojot line@ro regresiju. Vienadojums (6) prasa tris parametru noteikSanu — regu-
larizacijas parametrus o un £ un asimilacijas logu 7. Tika parbauditas vairakas vertibas
katram parametram un analizes periodiem no | Iidz 15 dienam. Par optimaliem tika
izveletia = 0,1 f = 0,1, T =5 dienas.

Ansamblis tika veidots, imit&jot prognozeSanas rezimu. Pirmkart, analize tika
veikta, izmantojot datus no analiz&jama perioda 7. legiitie koeficienti @, izmantoti vai-
rakas dienas péc kartas: no d, Iidz d, " kas veido prognozesanas posmus. Ansambla
veikums tika novertéts katram prognozes garumam no 1 lidz n ., dienam.
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Optimalais ansamblis rada, ka ikkatrs no seSiem modeliem ir atbildigs par noteikta
perioda precizu atveidoSanu, savukart pirms un p&c pamata sezonas, kad puteksnu
koncentracijas ir loti zemas, regularizacijas parametri (6) kontrolé sezonas gaitu,
pazeminot vertibas Iidz apriori 1/6.

Ansambla prognozgsanas sp&jas parbaudes laika tika secinats, ka tam ir ievérojami
labaki rezultati par jebkuru individualo modeli un par 25-30% labaki neka ansambla
medianai vai vidgjam raditajam (4.1. attels).

Specigakais konkurents prognozu kvalitates zina izradas vienas dienas persistence
prognoze — nakamas dienas koncentracija biis vienada ar pedgjas noverotas dienas
vertibu (2.4. attels).

RMSE for individual models and ensemble forecasts, ens-aver. 5 days RMSE for persistence and ensemble forecasts, ens-aver. 5 days
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2.4. attels. Individualo modelu RMSE un optimala ansambla prognoze pret ansambla vidgjo
aritmetisko (kreisa puse) un pret persistence prognozi (laba puse)

Labs rezultats vienas dienas persistence prognozei ir saprotams, bet, nemot véra
Eiropas monitoringa sistému (dati ienak ar 7-10 dienu nokavés$anos), mingtais modelis
nav praktiski izmantojams. Nakama $ada veida prognozes probléma saistita ar to,
ka modelis spgj darboties tikai monitoringu staciju vieta, jo ir nepiecieSami precizi
noverojumu dati, un, visbeidzot, prognozei atri ziid kvalitate, skatoties laika griezama —
persistence labi strada ar vienas dienas starpibu, bet, tiklidz to m&gina izmantot +2 vai
+3 dienas prognozem, ta precizitate ir loti vaja, turklat lokala ItmenTt ievérojami labak
strada vienkarsie statistiskie modeli (Raksts I).

Nozimiga individualo deterministisko modelu darbiba ir sezonala nobide, kas
parada uzkrata siltuma daudzuma metodes nepilnibas. Dienvidu regionos uzkrata
siltuma formula jabtt implementetam uzkrata augstuma parametram, kas aprakstits,
piem&ram, (Aguilera et al., 2014), un nav aktuals ziemelu regionos. V&l viens variants
ir parieSana uz fenologiskajiem modeliem (Chuine and Belmonte, 2004), nemot véra
putek$nu genétisko diferenciaciju.

lespgja izstradato metodi ieklaut dispersijas modelos ir nakamais solis modelu
precizitates un prognozu uzlabosana.
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SECINAJUMI

Promocijas darba tika veikti tiTs secigi originalp&tijumi putekSnu koncentracijas
prognozesanai Eiropa:

- lokalais modelis diennakts putek$nu koncentracijas prognozéSanai,

- regionalais statistiskais modelis SPI prognozésanai,

- regionalais deterministisko modelu ansamblis olivkoku putek$nu koncen-

tracijas prognoz&sanai Vidusjiras regiona.

Katrs modelis ir formul&ts visparigos terminos, tadél modela metode ir piem&rojama
jebkura aerobiologiska monitoringa veikSanas vieta un dazadiem putek$nu veidiem.
Modelu izmanto$anai citos regionos ir nepiecie$ama to reparametrizacija.

Lokala intrasezonala modela precizitaite MA uzradija lidz Sim labako rezultatu,
parsniedzot 80%, koeficients OR = 30.

Regionala SPI modela gadijuma tika demonstréts, ka bérza SPI intersezonalas
izmainas ir sinhroniz&tas lielu regionu méroga — tas paver iesp&jas veidot saméra
vienkarSus prognoze$anas modelus defingtos regionos.

Labakais intersezonala modela rezultats panakts, kombing&jot iepriek$gja gada
meteorologiskos parametrus, CO, vertibas un iepriek$€ja gada SPI. Modelis veiksmigi
sp&j noteikt divgadiga SPI ciklu un atveidot cikla liizuma gadus. Jauzsver, ka modelis,
kurd par ievaddatiem tika izmantoti meteorologiskie parametri un CO,, tapat spgj
atveidot divgadigu ciklu un cikla lazuma gadus — tas liecina par meteorologijas
parametru lielo nozimi minéta cikla veidos$ana.

Regionala méroga deterministisko modelu prognozésanas precizitati var uzlabot,
modelu ansamblim lietojot statistikas datu sapliiSanas algoritmus.

Modela ansambla optimalas linearas kombinacijas bija ievérojami precizakas par
standarta ansambla pieejam un individuala modela prognozeésanas spg&jam.

Divi no trs petijumiem aktivi tiek izmantoti Kopernika Atmosféras monitoringa
servisa putekSnu prognozu precizitates uzlabosanai Eiropa.

Turpmakie pétijuma izaicinajumi

Vienota modela izstrade SPI prognozésanai Eiropa ir nakamais solis puteksnu
prognozu attistiba. Pastav divas iesp€jas: (I) izveidot vienotu modeli, palielinot
prediktoru skaitu, un at/aut nelinearas sakaribas (iesp&jams, izmantojot metodes no
Raksts I); (II) izveidot atseviskus modelus Centraleiropai un Austrumeiropai, ka,
piem@ram, tika darits olivkoku intrasezonala modela gadijuma (Aguilera et al., 2014).
Katram variantam ir savi plusi un minusi — pirma pieeja ir izdevigaka potencialajiem
modela lietotajiem, ta lauj vari€t ar prediktoriem, savukart multimodelu pieeja, kaut
ari ir vienkar$aka katra atseviska regiona, toties ir nepreciza regionu robezas, tade] to
drizak var€tu izmantot ka starpposmu vienota modela izstradg.

Nakamais solis ir puteksnu prognozu uzlabosana Eiropas Itmeni. Dispersijas modelu
prieksrocibas ir saistitas ar iesp&ju prognozet puteksnu talo parnesi, savukart lokalie
modeli ir ievérojami precizaki noteiktas vietas puteks$nu koncentracijas prognozesana.
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Mingéto modelu apvienoSana var€tu ievérojami uzlabot prognozu kvalitati Eiropa.
Pieejas modelu apvienoSanai var bt dazadas, bet liclakais izaicinajums ir geotelpiska
méroga atSkiribas. Domajams, ka modelus var savienot, izmantojot lokalo modelu
datu asimilaciju dispersijas modelos vai sapliiSanas (fusion) metodes, kas tika lietotas
Raksta I1I. Katras pieejas stipras un vajas puses tiks izvertetas turpmak.

PATEICIBAS

Velos pateikties gimenei — vecakiem un braliem, Tpas$i mammai Jelenai — par to,
ka iemacija saprast nemitigas attistibas nepiecieSamibu, paldies par sirsnigu atbalstu
vienmér un visur. Paldies délam Robertam par sapratni un pacietibu, paldies braliem
Antonam, Pavelam, Robertam, Nikolajam par atbalstu un motivaciju pabeigt uzsakto.
Paldies bralenam Nikolajam Casnikovam par tehnisko palidzibu promocijas darba
sagatavoSana.

Milzigs paldies Somijas meteorologijas institita SILAM komandai un TIpasi
profesoram Mihailam Sofievam par iedvesmu, riipe€m, atsaucibu, atbalstu un uzraudzibu.
Liels paldies Voeikova Galvenas geofizikas observatorijas profesoram Jevgénijam L.
Genihovi¢am par to, ka licis notic&t saviem spekiem.

Paldies Latvijas Universitates Geografijas un Zemes zinatpu fakultates
macibspékiem, kolégiem, kursabiedriem, Tpasi bakalaura, magistra un promocijas darba
vaditajai asoc. prof. Laimdotai Kalninai par gridienu pareiza virziena, par noderigiem
padomiem un sirsnibu.

Ipass paldies kolégei Antrai Diilei par sapratni un atsaucibu.



61

REFERENCES / LITERATURAS SARAKSTS

Aguilera, F., Fornaciari, M., Ruiz-Valenzuela, L., Galan, C., Msallem, M., Dhiab, A., Ben,
la Guardia, C.D. de, del Mar Trigo, M., Bonofiglio, T., Orlandi, F., 2014. Phenological
models to predict the main flowering phases of olive (Olea europaea L.) along a
latitudinal and longitudinal gradient across the Mediterranean region. Int. J. Biometeorol.
59, 629-641. doi:10.1007/s00484-014-0876-7

Aguilera, F., Ruiz-Valenzuela, L., 2014. Forecasting olive crop yields based on long-term
aerobiological data series and bioclimatic conditions for the southern Iberian Peninsula.
Spanish J. Agric. Res. 12, 215-224. doi:10.5424/sjar/2014121-4532

Albertine, J.M., Manning, W.J., Da Costa, M., Stinson, K.A., Muilenberg, M.L., Rogers, C.A.,
2014. Projected carbon dioxide to increase grass pollen and allergen exposure despite
higher ozone levels. PLoS One 9, 1-6. doi:10.1371/journal.pone.0111712

Barranco, D., Fernandez-Escobar, R., Rallo, L., 2008. El Cultivo del olivo (8* Ed). Madrid.

Bastl, K., Kmenta, M., Pessi, A.M., Prank, M., Saarto, A., Sofiev, M., Bergmann, K.C.,
Buters, J.T.M., Thibaudon, M., Jager, S., Berger, U., 2016. First comparison of symptom
data with allergen content (Bet v 1 and Phl p 5 measurements) and pollen data from
four European regions during 2009-2011. Sci. Total Environ. 548-549, 229-235.
doi:10.1016/j.scitotenv.2016.01.014

Carinanos, P., Emberlin, J., Galan, C., Dominguez-Vilches, E., 2000. Comparsion of two
pollen counting methods of slides from a hirst type volumetric trap. Aerobiologia
(Bologna). 16, 339-346.

Castellano-Méndez, M., Aira, M.J., Iglesias, 1., Jato, V., Gonzdlez-Manteiga, W., 2005.
Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the
air. Int. J. Biometeorol. 49, 310-6. doi:10.1007/s00484-004-0247-x

Chuine, 1., Belmonte, J., 2004. Improving prophylaxis for pollen allergies: Predicting the
time course of the pollen load of the atmosphere of major allergenic plants in France and
Spain 43, 65-80. doi:10.1080/00173130410019163

Cunha, M., Ribeiro, H., 2015. Pollen-based predictive modelling of wine production:
Application to an arid region. Eur. J. Agron. doi:10.1016/j.eja.2015.10.008

D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, 1., Behrendt, H., Liccardi,
G., Popov, T., Van Cauwenberge, P., 2007. Allergenic pollen and pollen allergy in
Europe. Allergy Eur. J. Allergy Clin. Immunol. 62, 976-990. doi:10.1111/j.1398-
9995.2007.01393.x

Dahl, A., Galan, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., Vokou, D., 2013. The
onset, course and intensity of the pollen season, in: Sofiev, M., Bergmann, K.-C. (Eds.),
Allergenic Pollen. A Review of the Production, Release, Distribution and Health Impacts.
Springer, Dordrecht, Heidelberg, New York, London, pp. 29-70. doi:10.1007/978-94-
007-4881-1

Dahl, A., Strandhede, S.-O., 1996. Predicting the intensity of the birch pollen season.
Aerobiologia (Bologna). 12, 97-106.

Dee, D.P., Uppala, S.M., Simmons, A.J.,, Berrisford, P., Poli, P.,, Kobayashi, S.,
Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M.,
van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J.,
Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P.,



62

Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The
ERA-Interim reanalysis: configuration and performance of the data assimilation system.
Q. J. R. Meteorol. Soc. 137, 553-597. doi:10.1002/q;j.828

Dhiab, A.B., Dominguez-Vilches, E., Dhiab, A.B., Mimoun, M.B., Oteros, J., Garcia-mozo, H.,
2016. Modeling olive-crop forecasting in Tunisia. doi:10.1007/s00704-015-1726-1

Galan, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot,
B., Brandao, R., 2014. Pollen monitoring: minimum requirements and reproducibility of
analysis. Aerobiologia (Bologna). 30, 385-395. doi:10.1007/s10453-014-9335-5

Genikhovich, E., Pavlova, T.V., Kattsov, V.M., 2010. On complexing the ensemble of climate
models (In Russian: O komplexirovanii ansamblya klimaticheskih modelej). Proc.
Voeikov Main Geoiphysical Obs. 7, 28-46.

Gioulekas, D., Balafoutis, C., Damialis, A., Papakosta, D., Gioulekas, G., Patakas, D., 2004.
Fifteen years’ record of airborne allergenic pollen and meteorological parameters in
Thessaloniki, Greece. Int. J. Biometeorol. 48, 128-36. doi:10.1007/s00484-003-0190-2

Gioulekas, D., Papakosta, D., Damialis, A., Spicksma, F.T.M., Giouleka, P., Patakas, D.,
2004. Allergenic pollen records (15 years) and sensitization in patients with respiratory
allergy in Thessaloniki, Greece. Allergy 174—184.

Grewling, L., Jackowiak, B., Nowak, M., Uruska, A., Smith, M., 2012. Variations and trends
of birch pollen seasons during 15 years (1996-2010) in relation to weather conditions
in Poznan (Western Poland). Grana 51:4, 280-292. doi:10.1080/00173134.2012.700727

Hatfield, J.L., Prueger, J.H., 2015. Temperature extremes: Effect on plant growth and
development. Weather Clim. Extrem. 10, 4-10. doi:10.1016/j.wace.2015.08.001

Hedhly, A., Hormaza, J.I., Herrero, M., 2009. Global warming and sexual plant reproduction.
Trends Plant Sci. 14, 30-36. doi:10.1016/j.tplants.2008.11.001

Helbig, N., Vogel, B., Vogel, H., Fiedler, F., 2004. Numerical modelling of pollen dispersion
on the regional scale. Aerobiologia (Bologna). 3, 3—19.

Hirst, J.M., 1954. An automatic volumetric spore trap. Ann. Appl. Biol. 39, 257-265.

Huynen, M., Menne, B., Behrendt, H., Bertollini, R., Bonini, S., Brandao, R., Clot, B.,
D’Ambrosio, C., De Nuntiis, P., Ebi, K., Emberlin, J., Orbanne, E., Galan, C., Jager, S.,
Kovats, S., Mandrioli, P., Martens, P., Menzel, A., Nyenzi, B., Rantio-Lehtimiki, A.,
Ring, J., Rybnicek, O., Traidl-Hoffmann, C., Van Vliet, A., Voigt, T., Weiland, S.,
Wickman, M., 2003. Phenology and Human Health: Allergic Disorders, World Health
Organisation.

Inatsu, M., Kobayashi, S., Takeuchi, S., Ohmori, A., 2014. Statistical Analysis on Daily
Variations of Birch Pollen Amount with Climatic Variables in Sapporo. Sola 10,
172-175. doi:10.2151/s0la.2014-036

Jato, V., Rodriguez-Rajo, F.J., Alcazar, P., De Nuntiis, P., Galan, C., Mandrioli, P., 2006. May
the definition of pollen season influence aerobiological results? Aerobiologia (Bologna).
22, 13-25. doi:10.1007/s10453-005-9011-x

Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wanner, L., Vrochidis, S.,
Bassoukos, A., Kukkonen, J., Kompatsiaris, I., 2015. Fusion of meteorological and air
quality data extracted from the web for personalized environmental information services.
Environ. Model. Softw. 64, 143—155. doi:10.1016/j.envsoft.2014.11.021

Kalyoncu, A., Qoplii, L., Selguk, Z., Emri, A., Kolagan, B., Kocabas, A., 1995. Survey of
the allergic status of patients with bronchial asthma in Turkey: a multicenter study.
Allergy 50, 451-456.



63

Kasprzyk, 1., Rodinkova, V., Sauliene, L., Ritenberga, O., Grinn-Gofron, A., Nowak, M.,
Sulborska, A., Kaczmarek, J., Weryszko-Chmielewska, E., Bilous, E., Jedryczka, M.,
2015. Air pollution by allergenic spores of the genus Alternaria in the air of central
and eastern Europe. Environ. Sci. Pollut. Res. 22, 9260-9274. doi:10.1007/s11356-014-
4070-6

Laatikainen, T., Von Hertzen, L., Koskinen, J.P., Mikeld, M.J., Jousilahti, P., Kosunen, T.U.,
Vlasoff, T., Ahlstrom, M., Vartiainen, E., Haahtela, T., 2011. Allergy gap between
Finnish and Russian Karelia on increase. Allergy Eur. J. Allergy Clin. Immunol. 66,
886—-892. doi:10.1111/j.1398-9995.2010.02533.x

Latatowa, M., Mietus, M., Uruska, A., 2002. Seasonal variations in the atmospheric Betula
pollen count in Gdansk (southern Baltic coast) in relation to meteorological parameters.
Aecrobiologia (Bologna). 18, 33-43.

Limpert, E., Burke, J., Galan, C., Trigo, M.D.M., West, J.S., Stahel, W.A., 2008. Data, not
only in aerobiology: how normal is the normal distribution? Aerobiologia (Bologna). 24,
121-124. doi:10.1007/s10453-008-9092-4

Linkosalo, T., Hékkinen, R., Hénninen, H., 2006. Models of the spring phenology of
boreal and temperate trees: Is there something missing? Tree Physiol. 26, 1165-1172.
doi:10.1093/treephys/26.9.1165

Linsser, G., 1867. Die periodischen Erscheinungen des Pflanzenlebens in ihrem Verhéltniss
zu den Warmeerscheinungen. Mem. 1’ Acad. Imp. d. sc. St. Petersbg. XI, 1-44.

Masaka, K., 2001. Modelling the Masting Behaviour of Betula platyphylla var. japonica using
the Resource Budget Model. Ann. Bot. 88, 1049—1055. doi:10.1006/anbo.2001.1547

Méndez, J., Comtois, P., Iglesias, 1., 2005. Betula pollen: One of the most important
aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia
(Bologna). 21, 115-124. doi:10.1007/s10453-005-4181-0

Molnar, C., Borzan, B., Childers, N., Miriam, D., Renate, S., Katefina, K., Estefania, T.M.,
Lynn, B., Mich¢le, R., 2015. Written declaration: Rule 136 of the Rules of Procedure on
allergic diseases in the European Union. Ugeskr. Laeger 0068/2015.

Muraro, A., et al., 2015. The European Academy of Allergy and Clinical Immunology
(EAACI) Advocacy Manifesto Tackling the Allergy Crisis in Europe — Concerted Policy
Action Needed.

Myszkowska, D., 2013. Prediction of the birch pollen season characteristics in Cracow,
Poland using an 18-year data series. Aerobiologia (Bologna). 29, 31-44. doi:10.1007/
$10453-012-9260-4

Negrini, A.C., Ariano, R., Delbono, G., Ebbli, A., Quaglia, A., Arobba, D., Allergologia, A.,
Paolo, O.S., Ligure, P, Sv, I.-P.L., 1992. Incidence of sensitisation to the pollens of

Urticaceae (Parietaria), Poaceae and Oleaceae (Olea europaea) and pollen rain in Liguria
(Italy). Aerobiologia (Bologna). 8, 355-358.

Newson, R.B., van Ree, R., Forsberg, B., Janson, C., Lotvall, J., Dahlén, S.-E., Toskala, E.M.,
Baelum, J., Brozek, G.M., Kasper, L., Kowalski, M.L., Howarth, P.H., Fokkens, W.J.,
Bachert, C., Keil, T., Krdmer, U., Bislimovska, J., Gjomarkaj, M., Loureiro, C.,
Burney, P.G.J., Jarvis, D., 2014. Geographical variation in the prevalence of sensitization
to common aeroallergens in adults: the GA(2) LEN survey. Allergy. doi:10.1111/
all. 12397

Nilsson, S., Persson, S., 1981. Tree pollen spectra in the stockholm region (Sweden),
1973-1980. Grana 20, 179-182. doi:10.1080/00173138109427661



64

Orlandi, F., Romano, B., Fornaciari, M., 2005a. Relationship between pollen
emission and fruit production in olive (Olea europaea L.). Grana. 44, 98-103.
doi:10.1080/00173130510010440

Orlandi, F., Ruga, L., Romano, B., Fornaciari, M., 2005b. An integrated use of aerobiological
and phenological data to analyse flowering in olive groves. Grana. 44, 51-56.
doi:10.1080/0017313051001043 1

Oteros, J., Galan, C., Alcazar, P., Dominguez-Vilches, E., 2013a. Quality control in bio-
monitoring networks, Spanish Aerobiology Network. Sci. Total Environ. 443, 559-565.
doi:10.1016/j.scitotenv.2012.11.040

Oteros, J., Garcia-Mozo, H., Hervas, C., Galan, C., 2013b. Biometeorological and
autoregressive indices for predicting olive pollen intensity Biometeorological and
autoregressive indices for predicting olive pollen intensity. Int. J. Biometeorol. 307-316.
doi:10.1007/s00484-012-0555-5

Oteros, J., Garcia-Mozo, H., Vazquez, L., Mestre, A., Dominguez-Vilches, E., Galan, C.,
2013. Modelling olive phenological response to weather and topography. Agric. Ecosyst.
Environ. 179, 62-68.

Pearce, N., Ait-Khaled, N., Beasley, R., Mallol, J., Keil, U., Mitchel, E. et al., 2007.
Worldwide trends in the prevalence of asthma symptoms: phase III of the International
Study of Asthma and Allergies in Childhood (ISAAC). Thorax 62, 758-766.

Pereira, C., Valero, A., Loureiro, C., Davila, 1., 2006. Iberian study of Aeroallergens
sensitization in allergig rhinitis. Eur. Ann. Allergy Clin. Immunol. 38, 186—194.

Potempski, S., Galmarini, S., 2009. Est modus in rebus: analytical properties of multi-model
ensembles. Atmos. Chem. Phys. 9, 9471-9489.

Prank, M., Chapman, D.S., Bullock, J.M., Belmonte, J., Berger, U., Dahl, A., Jager, S.,
Kovtunenko, 1., Magyar, D., Niemeld, S., Rantio-Lehtiméki, A., Rodinkova, V., Sauliene,
L., Severova, E., Sikoparija, B., Sofiev, M., 2013. An operational model for forecasting
ragweed pollen release and dispersion in Europe. Agric. For. Meteorol. 182—183, 43-53.
doi:10.1016/j.agrformet.2013.08.003

Prasad, P.V.V,, Craufurd, P.Q., Summerfield, R.J., 1999. Fruit number in relation to pollen
production and viability in groundnut exposed to short episodes of heat stress. Ann. Bot.
84, 381-386. doi:10.1006/anbo.1999.0926

Puc, M., 2012. Artificial neural network model of the relationship between Betula pollen
and meteorological factors in Szczecin (Poland). Int. J. Biometeorol. 56, 395-401.
doi:10.1007/s00484-011-0446-1

Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A., 2008.
Male flowering of birch: Spatial synchronization, year-to-year variation and relation
of catkin numbers and airborne pollen counts. For. Ecol. Manage. 255, 643—650.
doi:10.1016/j.foreco.2007.09.040

Ranta, H., Satri, P., 2007. Synchronized inter-annual fluctuation of flowering intensity
affects the exposure to allergenic tree pollen in North Europe. Grana 46, 274-284.
doi:10.1080/00173130701653079

Ring, J., Akdis, C., Behrendt, H., Lauener, R.P., Schippi, G., Akdis, M., Ammann, W.,
de Beaumont, O., Bieber, T., Bienenstock, J., Blaser, K., Bochner, B., Bousquet, J.,
Crameri, R., Custovic, A., Czerkinsky, C., Darsow, U., Denburg, J., Drazen, J.,
de Villiers, E.M., Fire, A., Galli, S., Haahtela, T., zur Hausen, H., Hildemann, S.,
Holgate, S., Holt, P., Jakob, T., Jung, A., Kemeny, M., Koren, H., Leung, D., Lockey, R.,
Marone, G., Mempel, M., Menné, B., Menz, G., Mueller, U., von Mutius, E., Ollert, M.,
O’Mahony, L., Pawankar, R., Renz, H., Platts-Mills, T., Roduit, C., Schmidt-Weber, C.,



65

Traidl-Hoffmann, C., Wahn, U., Rietschel, E., 2012. Davos declaration: allergy as a
global problem. Allergy 67, 141-3. doi:10.1111/j.1398-9995.2011.02770.x

Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., Genikhovich, E., 2016. Statistical
modelling of non-stationary processes of atmospheric pollution from natural sources:
example of birch pollen. Agric. For. Meteorol. 226227, 96-107. doi:10.1016/j.
agrformet.2016.05.016

Ronmark, E., Bjerg, A., Perzanowski, M., Platts-Mills, T., Lundbick, B., 2009a. Major
increase in allergic sensitization in school children from 1996 to 2006 in Northern
Sweden. J. Allergy Clin. Immunol. 124, 1-19. doi:10.1016/j.jaci.2009.05.011

Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-
Mozo, H., Gehrig, R., Grewling, L., Halley, J.M., Hogda, K.-A., Jager, S., Karatzas, K.,
Karlsen, S.-R., Koch, E., Pauling, A., Peel, R., Sikoparija, B., Smith, M., Galan-
Soldevilla, C., Thibaudon, M., Vokou, D., de Weger, L., 2013. Monitoring, Modelling
and Forecasting of the Pollen Season, in: Sofiev, M., Bergmann, K.-C. (Eds.), Allergenic
Pollen. p. 247.

Sikoparija, B., Skjeoth, C.A., Celenk, S., Testoni, C., Abramidze, T., Alm Kiibler, K.,
Belmonte, J., Berger, U., Bonini, M., Charalampopoulos, A., Damialis, A., Clot, B.,
Dahl, A., de Weger, L.A., Gehrig, R., Hendrickx, M., Hoebeke, L., Ianovici, N.,
Kofol Seliger, A., Magyar, D., Manyoki, G., Milkovska, S., Myszkowska, D.,
Paldy, A., Pashley, C.H., Rasmussen, K., Ritenberga, O., Rodinkova, V., Rybnicek, O.,
Shalaboda, V., Saulieng, L., S¢evkova, J., Stjepanovi¢, B., Thibaudon, M., Verstraeten, C.,
Vokou, D., Yankova, R., Smith, M., 2016. Spatial and temporal variations in airborne
Ambrosia pollen in Europe. Aerobiologia (Bologna). doi:10.1007/s10453-016-9463-1

Siljamo, P., Sofiev, M., Filatova, E., Grewling, L., Jager, S., Khoreva, E., Linkosalo, T., Ortega
Jimenez, S., Ranta, H., Rantio-Lehtimiki, A., Svetlov, A., Veriankaite, L., Yakovleva, E.,
Kukkonen, J., 2012. A numerical model of birch pollen emission and dispersion in
the atmosphere. Model evaluation and sensitivity analysis. Int. J. Biometeorol. e-pub.
doi:10.1007/s00484-012-0539-5

Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W., Dee, D.P., 2010. Low-frequency
variations in surface atmospheric humidity, temperature, and precipitation: Inferences
from reanalyses and monthly gridded observational data sets. J. Geophys. Res. Atmos.
115, 1-21. doi:10.1029/2009JD012442

Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., Bergmann, K.-C.,
Chéroux, F., Elbern, H., Friese, E., Galan, C., Gehrig, R., Khvorostyanov, D.,
Kranenburg, R., Kumar, U., Marécal, V., Meleux, F., Menut, L., Pessi, A.-M.,
Robertson, L., Ritenberga, O., Rodinkova, V., Saarto, A., Segers, A., Severova, E.,
Sauliene, I., Siljamo, P., Steensen, B.M., Teinemaa, E., Thibaudon, M., Peuch, V.-H.,
2015. MACC regional multi-model ensemble simulations of birch pollen dispersion in
Europe. Atmos. Chem. Phys. 15, 8115-8130. doi:10.5194/acp-15-8115-2015

Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., Rantio-
Lehtimaki, A., Severova, E., Kukkonen, J., 2012b. A numerical model of birch pollen
emission and dispersion in the atmosphere. Description of the emission module. Int.
J. Biometeorol. doi:10.1007/s00484-012-0532-z

Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimaki, A., 2006. Towards numerical forecasting
of long-range air transport of birch pollen: theoretical considerations and a feasibility
study. Int. J. Biometeorol. 50, 392—402. doi:10.1007/s00484-006-0027-x

Spieksma, F.T., 1990. Pollinosis in Europe: New observations and developments. Rev.
Palaeobot. Palynol. 64, 35-40.



66

Spicksma, F.T.M., Corden, J.M., Detandt, M., Millington, W.M., Nikkels, H., Nolard, N.,
Schoenmakers, C.H.H., Wachter, R., de Weger, L.A., Willems, R., Emberlin, J., 2003.
Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus,
Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe.
Aerobiologia (Bologna). 19, 171-184. doi:10.1023/B:AER0.0000006528.37447.15

Stach, A., Emberlin, J., Smith, M., Adams-Groom, B., Myszkowska, D., 2008. Factors that
determine the severity of Betula spp. pollen seasons in Poland (Poznan and Krakow)
and the United Kingdom (Worcester and London). Int. J. Biometeorol. 52, 311-21.
doi:10.1007/s00484-007-0127-2

Stach, A., Smith, M., Prieto Baena, J.C., Emberlin, J., 2008. Long-term and short-term forecast
models for Poaceae (grass) pollen in Poznan, Poland, constructed using regression
analysis. Environ. Exp. Bot. 62, 323-332. doi:10.1016/j.envexpbot.2007.10.005

Storkey, J., Stratonovitch, P., Storkey, J., Stratonovitch, P., Chapman, D.S., Vidotto, F.,
Semenov, M.A., 2014. A Process-Based Approach to Predicting the Effect of Climate
Change on the Distribution of an Invasive Allergenic Plant in Europe A Process-Based
Approach to Predicting the Effect of Climate Change on the Distribution of an Invasive
Allergenic Plant in Eu. PLoS One 1-7. doi:10.1371/journal.pone.0088156

Sunyer, J., Jarvis, D., Pekkanen, J., Chinn, S., Janson, C., Leynaert, B., 2004. Geographic
variations in the effect of atopy on asthma in the European Community Respiratory
Health Study. J. Allergy Clin. Immunol. 114, 1033—-1039.

Toro, F., Recio, M., Trigo, M.D.M., Cabezudo, B., 1998. Predictive models in aerobiology:
data transformation. Aerobiologia (Bologna). 14, 179-184.

Veriankaite, L., Siljamo, P., Sofiev, M., Sauliené, 1., Kukkonen, J., 2009. Modelling analysis of
source regions of long-range transported birch pollen that influences allergenic seasons
in Lithuania. Aerobiologia (Bologna). 26, 47—62. doi:10.1007/s10453-009-9142-6

Yli-Panula, E., Fekedulegn, D.B., Green, B.J., Ranta, H., 2009. Analysis of Airborne Betula
Pollen in Finland; a 31-Year Perspective. Int. J. Environ. Res. Public Heal. 6, 1706—-1723.
doi:10.3390/ijerph6061706

Zhang, Y., Bielory, L., Georgopoulos, P.G., 2014. Climate change effect on Betula (birch)
and Quercus (0ak) pollen seasons in the United States. Int. J. Biometeorol. 58, 909-919.
doi:10.1007/s00484-013-0674-7

Zhang, Y., Isukapalli, S., Bielory, L., Georgopoulos, P., 2013. Bayesian Analysis of Climate
Change Effects on Observed and Projected Airborne Levels of Birch Pollen. Atmos.
Environ. (1994). 68, 64-73. doi:10.1016/j.atmosenv.2012.11.028

Ziello, C., Sparks, T.H., Estrella, N., Belmonte, J., Bergmann, K.C., Bucher, E., Brighetti, M.A.,
Damialis, A., Dedandt, M., Galan, C., Gehrig, R., Grewling, L., Guiterrez Bustillo, A.M.,
Hallsdottir, M., Kockhans-Bieda, C., Linares, C., Myskowska, D., Paldy, A., Sanches, A.,
Smith, M., Thibaudon, M., Travaglini, A., Uruska, A., Valencia Berra, R.M., Vokou, D.,
Wacher, R., de Weger, L.A., Menzel, A., 2012. Changes to Airborne Pollen Counts
across Europe. PLoS One 7 (4). doi:10.1371/journal.pone.0034076

Zink, K., Pauling, A., Rotach, M.W., Vogel, H., Kaufmann, P., Clot, B., 2013. EMPOL 1.0:
a new parameterization of pollen emission in numerical weather prediction models.
Geosci. Model Dev. 6, 1961-1975. doi:10.5194/gmd-6-1961-2013

Zink, K., Vogel, H., Vogel, B., Magyar, D., Kottmeier, C., 2012. Modeling the dispersion
of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int.
J. Biometeorol. 56, 669-80. doi:10.1007/s00484-011-0468-8



67

|

Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L.,
Genikhovich, E.

Statistical modelling of non-stationary
processes of atmospheric pollution
from natural sources:
example of birch pollen

Agricultural and Forest Meteorology 226-227 (2016) 96-107






69

Agricultural and Forest Meteorology 226-227 (2016) 96-107

. . . . m  Agricultural
Contents lists available at ScienceDirect

Forest Meteorology

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Statistical modelling of non-stationary processes of atmospheric
pollution from natural sources: example of birch pollen

@ CrossMark

Olga Ritenberga®*, Mikhail Sofiev®, Victoria Kirillova®, Laimdota Kalnina?,
Eugene Genikhovich®
2 University of Latvia Faculty of Geography and Earth Sciences, Rainis bvld 19, Riga LV-1586, Latvia

b Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560, Helsinki, Finland
© Voeikov Main Geophysical Observatory, Karbysheva street 7, St.Petersburg, 194021, Russia

ARTICLE INFO ABSTRACT

Article history:

Received 16 November 2015

Received in revised form 19 May 2016
Accepted 22 May 2016

A statistical model for predicting daily mean pollen concentrations during the flowering season is con-
structed and its parameterization and application to birch pollen in Riga (Latvia) are discussed. The model
involves several steps of transformations of both meteorological data and pollen observations, aiming
at a normally distributed homogeneous stationary dataset with linearized dependencies between the
transformed meteorological predictors and pollen concentrations. The data transformation includes nor-
malization of daily mean birch pollen concentrations, a switch of the independent axis from time to heat
sum, a projection of governing parameters to pollen concentrations, and a reduction of non-stationarity
via removal of the mean pollen season curve. These transformations resulted in a substantial improve-
ment of statistical features of the data and, consequently, a higher efficiency of statistical procedures and
better scores of the model. The transformed datasets are used for the model construction via multi-linear
regression. For the application in Riga, the model coefficients were calculated using 9 years of birch pollen
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showed robust model performance with the overall Model Accuracy exceeding 80% and Odds Ratio =30.
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1. Introduction

Prevalence of sensitization to aeroallergens in Europe has con-
tinuously risen in recent decades (Ring et al., 2012) and presently
exceeds 20% (Bauchau and Durham, 2004; Newson et al., 2014).
The main aeroallergens in northern Europe are birch and grasses
(D’Amato et al., 2007; Huynen et al., 2003) but hazel, alder, and
mugwort, are also important (Akdis et al., 2014; D’Amato et al.,
2007; Gadermaier et al.,, 2008). Adverse health effects of aller-
gens can be significantly reduced by pre-emptive medication and
behavioural adaptation. However, their planning requires reli-
able forecasts of expected pollen concentrations a few days ahead
(Huynen et al., 2003).

Monitoring of atmospheric concentrations of pollen usually pro-
vides, with one-to-two weeks’ delay, information about pollen in
the air, which is used for pollen information and forecasting ser-
vices in many European countries. Integrated pollen samplers allow

* Corresponding author.
E-mail addresses: olga.ritenberga@lu.lv (O. Ritenberga), mikhail.sofiev@fmi.fi
(M. Sofiev), ego@main.mgo.rssi.ru (E. Genikhovich).
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0168-1923/© 2016 Elsevier B.V. All rights reserved.

collection of near-real-time data but they are expensive and so far
not commonly used (Scheifinger et al., 2013).

Arguably, the most important parameter of the pollen season,
from a practical point of view, is its starting date. It is followed by
the season end date and the season-long sum of daily mean pollen
concentrations — the seasonal pollen index (SPI). Determination
of the start/end dates is not straightforward and several criteria
were formulated (Jato et al., 2006). For instance, the season start
(end) can be defined as a date when cumulative daily mean pollen
concentration reaches 5% (95%) of the SPI (Taylor and Andersen,
2009). Specific numbers vary between the studies (Andersen, 1991;
Emberlin et al., 2007; Pathirane, 1975; Smith et al., 2009; Stach
etal., 2008b). However, this approach does not allow determination
of the season start date until it already ends and the SPI is known,
which makes it unsuitable for forecasting and real-time assessment
purposes.

Two types of forecasting models are the most popular: regional-
to-continental dispersion models and local-scale statistical models.
Dispersion models (Helbig et al., 2004; Prank et al., 2013; Sofiev
etal, 2015, 2012, 2006; Zink et al., 2013, 2012) are capable of pre-
dicting the pollen distribution over large areas but their accuracy
strongly varies in space and depends on available information on
plant distribution (Siljamo et al., 2012; Sofiev et al., 2015).
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The local-scale statistical models exploit empirically estab-
lished relations between the predicted quantity (predictant, such
as pollen concentration) and independent predictors (meteorolog-
ical factors and historical pollen concentrations) (Rodriguez-Rajo
2000, as referred by Castellano-Méndez et al., 2005). The ways of
establishing these relations vary widely and include: (i) artificial
neural networks (Castellano-Méndez et al., 2005; Puc, 2012); (ii) dis-
criminant linear analysis (Sanchez Mesa et al., 2005); (iii) multiple
regression analysis (Inatsu et al., 2014); (iv) autoregressive integrated
moving average (Rodriguez-Rajo et al., 2006; Garcia-Mozo et al.,
2014); (v) Gamma, Gaussian, or logistic distribution models (Kasprzyk
and Walanus, 2014).

Such statistical models commonly predict the start of season
(Emberlin et al., 2002; Frei and Gassner, 2008; Laaidi, 2001; Laaidi
et al., 2003; Siniscalco et al., 2014), its peak and duration (Ribeiro
et al., 2007), 10-day mean concentrations (Makra et al., 2011), etc.
The “classical” task of forecasting the daily/hourly pollen concen-
trations a few days ahead is less common (Chapter 7 of Sofiev and
Bergman, 2013).

A common methodological difficulty of statistical models is
stringent requirements to features of the analysed data: (i) the
least-square-error and correlation quality criteria are justified only
for normally distributed stochastic processes; (ii) averaging- and
correlation- based methods require the processes to be station-
ary and ergodic, so that the averaging over a statistical ensemble
of realizations can be substituted with averaging over time; (iii)
(multi-) linear regressions imply near-linear dependencies of the
predicted quantity (predictant) and independent predictors. None
of these assumptions is fulfilled in case of pollen modelling. Indeed,
the mere existence of the start and the end of the season makes
the process both non-stationary and non-ergodic. The distribution
function of daily mean pollen concentrations is closer to a log-
normal than to a normal distribution (Limpert et al., 2008; Toro
et al,, 1998). And relations between the main controlling param-
eters (temperature, humidity, precipitation, etc) and daily mean
pollen concentrations are by no means linear. Finally, models are
usually developed with observed meteorological data as an input,
whereas their forecasting applications have to use weather model
predictions. Consequences of such substitution are rarely analysed
despite known limited accuracy of the meteorological models.

The most common method for data transformation applied
in the literature is the log-transform of pollen concentrations
(Masaka, 2001; Méndez et al., 2005) as a precaution against log-
normally distributed data. A similar effect, albeit with thinner
theoretical ground, is sometimes obtained via square root function
(Toroetal., 1998) or employing the SPI as shown by Moseholm et al.
(1987). Other difficulties have not been considered in the studies
we are aware of.

The current study aims to construct a local statistical forecast-
ing model that takes the above peculiarities of the pollen time
series into account. The objective is to predict the daily mean pollen
concentrations using only basic meteorological parameters. For this
purpose, we shall modify the methodology developed at Voeikov
Main Geophysical Observatory for urban air pollution (Berlyand,
1991; Genikhovich et al., 2004). The model will be applicable to
any monitoring site location and any taxa, whose flowering is con-
trolled by accumulated heat. For illustrative purposes, we shall use
birch pollen observations obtained in Riga (Latvia).

2. Materials and methods

2.1. Study area

Pollen monitoring was conducted in the central part of Riga
(N56°57'02", E24°06'57", Fig. 1). Due to its location next to the Gulf

of Riga (Baltic Sea), the city has temperate (humid continental) cli-
mate with frequent rain. Mean annual temperature of air in Riga
is 6.9°C and annual precipitation is 708 mm. The monitoring site
is located in the centre of the city and surrounded by parks. The
coastline is 12 km NW of the site.

2.2. Pollen sampling

Birch pollen monitoring was performed with a Burkard 7-day
pollen spore trap of the Hirst design (Hirst, 1954) from March to
September during the period 2003-2014. The sampler was situated
at a height of 23 m agl. Pollen was collected with an airflow rate of
101min~1, airflow rate controlled with an external flow meter G
1.6. BK Premagas. Pollen counting was done by using Primo Star
light microscope with a magnification of x 400 over 12 full vertical
traverses. The method with 12 vertical traverses produces compa-
rable results to other commonly used counting methods, such as 4
horizontal traverses (Carinanos et al., 2000), and can produce both
daily average and bi-hourly values. It also examines the whole tra-
verses of the slide rather than the central parts where most of the
pollen is deposited, thereby avoiding overestimation (Carinanos
etal., 2000; Kapyld and Penttinen, 1981). However, it can, in theory,
miss short peaks in pollen concentrations if they fall between the
counted transects (Carinanos et al., 2000; Comtois et al., 1999)

Birch (Betula spp) pollen in Latvia comes from more than 31
species, however widely distributed are only four of them — B. nana
L., B. pendula Roth, B.humilis Schrank and B.pubescens Ehrh. Birch
tree contribution within the forests near Riga is about 14.6%, it is
the second largest taxon after Scots pine tree (73.3%). The major
forests are located about 40 km NE of Riga (Fig. 1).

Due to similar characteristics, birch pollen from different species
are not distinguishable by light microscopy. Therefore, all pollen
grains were counted jointly as one general birch group Betula spp.

From the 12-year-long data set, we have randomly picked 9
years for the model construction and withheld 2009 (typical-to-
low pollen season), 2012, and 2014 (both high pollen seasons) for
its evaluation (Figs. 2 and 3 left-hand panel)

2.3. Meteorological information

Meteorological data for the years 2006-2014 included daily
mean and maximum values of air temperature, relative humidity,
wind speed and direction, atmospheric pressure a.s.l.,, cloud frac-
tion, visibility, and daily sum of precipitation. They were extracted
from the meteorological station “Riga- LU”, as provided by Latvian
Environment, Geology and Meteorology Centre. Meteorological
observations were divided into two parts:

(i) data on wind speed and direction, visibility, precipitation and
cloud fraction came from the same place where the aerobiolog-
ical monitoring was performed;

(ii) data on air temperature, relative humidity of air, atmospheric
pressure came from the second part of the monitoring station
located at about 1 km distance but also in downtown Riga.

The meteorological parameters for the early years 2003-2005
came from another meteorological station in Riga, located about
9 km from the aerobiological monitoring site.

For modelling purposes, wind speed and direction were recal-
culated to longitudinal wind component U and latitudinal one V.

2.4. Sensitivity study and comparison with other approaches
To mimic the application of the developed model in the

forecasting regime, a sensitivity study has been performed: the
meteorological observations were replaced with the forecasted
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Fig. 2. Left-hand panel: Birch seasonal pollen index (SPI) for Riga 2003-2014. Right-hand panel: Seasons 2003-2012 presented in heat sum vs cumulative relative daily
pollen concentration axes. The example is for cut-off temperature 3.5 °C and start of accumulation on 1 March (optimal parameters for Riga). Vertical lines correspond to 70
and 200 degree days (DD).

data. The weather forecasts for the years 2006-2010 were taken For comparison with a deterministic pollen-forecasting model,
from operational archives of European Centre for Medium-Range we used the Europe-wide predictions of System for Integrated mod-
Weather Forecast ECMWEF. Importantly, the statistical model itself eLling of Atmospheric coMposition (SILAM, Sofiev et al., 2012).
was not refitted, only the pollen forecasts were re-created.
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3. The model construction

3.1. The main components of the local-scale statistical forecasting
model

We distinguished three separate parts of the local-scale short-
term pollen forecasting model:

(i) Season timing model that includes calculation of the start and
end of the season, and the season propagation from start to
end. Outside the season, the daily mean pollen concentrations
are assumed to be negligibly low.

(ii) Intra-seasonal model for daily mean pollen concentrations. The
model predicts the daily mean pollen concentrations normal-
ized with SPL

(iii) Seasonal birch productivity model for predicting the SPI.

This division corresponds to a significant temporal separation
of the processes and driving factors controlling each of the parts:
the season start is almost completely decided by the current year’s
pre-season meteorology; the intra-season concentration variation
is completely determined by the actual environmental conditions;
the SPI is largely (although not completely) controlled by the pre-
vious year situation (Sofiev, submitted).

Below, we shall develop parts (i) and (ii), which are compar-
atively tightly connected, and outline the direction towards the
more independent model part (iii) leaving its realization outside
the current paper.

3.2. Season timing model

The current model for the season timing is based on the
thermal-time approach, more specifically, on the double-threshold
temperature model of Linkosalo et al. (2010). This model assumes
adirectly proportional relation between accumulated temperature
sum and season stage. This function in a differential form has been
used for construction of birch and olive source terms in the Euro-
pean scale SILAM model (Sofiev et al., 2012):

D
H(d) =) "[T(d) - Te-o]. 1

d=ds

Here, H is temperature sum (heat sum), d is day, d; is starting day of
the heat accumulation, T(d) is daily temperature, Tc-, is cut-off tem-
perature (temperatures below this threshold are not summed up),
[x]+ equals O for x<0 and x for x > 0 (it excludes the temperatures
below the cut-off level).

Eq. (1) has two adjustable parameters, which have to be identi-
fied for every specific location: cut-off temperature T¢-, and start
day of accumulation Ds. Two heat sum thresholds describe the start
and end of the flowering season: Hs, He. Specific values of these four
parameters for Riga were selected in two steps.

At the first step, the cut-off temperature and accumulation start
were identified from the requirement that the difference between
the seasons taken as functions of heat sum must be minimal. In
particular, the season propagation in different years should be sim-
ilar, when considered as pollen count vs heat sum axes. In practice,
the parameters were found simply by testing the different dates
—20.02, 01.03, 10.03 — and the cut-off temperatures from 0°C to
5°C with a step of 0.5°. The criterion was the smallest standard
deviation at three levels of the accumulated pollen sum (a fraction
of SPI): 0.2, 0.5 and 0.95 of the SPI for all years (horizontal lines
in Fig. 2 right-hand panel). As a result, the start date of the 1st of
March and the cut-off temperature of 3.5 °C were identified as the
best combination for the heat sum calculation — for Riga. Interest-

ingly, these values are identical to the parameters calculated from
phenological data for the Europe-wide birch source term of SILAM.

Having the parameters of the heat sum Formula (1) identified,
the thresholds for the start and end of the season were estimated
from the SPI 5%-95% criterion (Nilsson and Persson, 1981): 70
degree days (DD) and 200 DD day, respectively, in Riga. Interest-
ingly, these thresholds were not optimal for some of the years, with
one of the explanations being the impact of long-distance pollen
transport or unusually early or late flowering of birch in the region.

3.3. Season propagation model

The intra-seasonal forecasting model was parameterized using
a multi-linear regression procedure, which relates the indepen-
dent meteorological variables to the dependent daily mean pollen
concentrations. The main efforts have been put into preparation
of the input data and pollen concentrations, in order to eliminate
or reduce the violations of the assumptions behind the fitting pro-
cedure (data inhomogeneity, non-ergodicity, non-stationarity, and
non-linearity of the dependencies). These transformations are con-
sidered further one-by-one (Fig. 3).

REDUCTION

ELIMINATION

e E———

Fig. 3. Steps of the data transformation procedure used for constructing the intra-
seasonal forecasting model.

3.3.1. Separation of productivity and intra-seasonal models:
normalization of pollen concentration data

Productivity of the plants strongly varies from year to year (Fig. 2
left-hand panel) depending on several long-term and large-scale
parameters, such as the previous-year intensity of flowering, the
environmental conditions in winter, pre-seasonal spring condi-
tions, etc (Dahl and Strandhede, 1996; Linkosalo et al., 2006; Stach
etal.,, 2008a).

Characteristic temporal scales of these processes are completely
different from the local short-term meteorological and biological
processessuch as the intensity of flowering the previous year. Such
scale separation allows for splitting of the problem: (i) determina-
tion of the general flowering intensity characterized by the SPI, (ii)
intra-seasonal development of daily mean pollen concentrations.

In practice, these problems can be separated by a simple nor-
malization of the daily concentration C;(d) (Fig. 4 left-hand panel)
with the SPI of the corresponding year, for each considered year i,
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Fig. 5. Example of the time axis transformation of the pollen time series in Riga for 2012. Left-hand panel: original pollen data and heat sum as functions of time. Right-hand

panel: same pollen time series as a function of the heat sum.

thus obtaining multi-annual concentration time series c¢;(d), which
sum up to unity for each season (Fig. 4 right-hand panel):

Gi(d)

> ca

dei

a(d) = @)

3.3.2. Homogenization of the annual data sets: switching the time
axis to heat sum

One of the problems of the pollen data is the temporal inhomo-
geneity of the multi-annual time series: the season start, duration,
and end are all different in different years (Fig. 4 right-hand panel).
Therefore, the calendar time (day of year) is an inconvenient
variable. It should be replaced with a variable, which: (i) is unam-
biguously connected with calendar time, (ii) is easy to calculate,

(iii) encapsulates the main processes driving the flowering, so that
the season start, end, and duration would be the same in all years.

The heat sum Eq. (1) satisfies all these requirements. It is a
monotonic function of time, i.e. its inverse exists (except for very
cold days, see the Discussion section). It can be trivially calculated
from daily temperatures. As shown by Linkosalo et al. (2010), it
controls the season propagation, whereas the connection to birch
phenological phases was noted more than a century ago (Linsser,
1867).

From now on, all meteorological and pollen data are presented
as functions of heat sum. For instance, all seasons have the same
start and end: Hs and He. (for Riga, 70 and 200 DD-days, respec-
tively).
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An example of this transformation for the 2012 season is shown
for Riga in Fig. 5.

3.3.3. Reducing the non-stationarity in pollen data and
smoothing the intra-seasonal fluctuations

The primary source of non-stationarity of the pollen time series
is the development of daily mean pollen concentrations from the
start of the season towards its maximum and gradual fading out
towards the end, as well as the tails before the start and after the
end of the season.

Limiting the analysis within the Hs — H, range removes the
tails. The remaining non-stationarity was removed by subtracting
the multi-annual mean seasonal curve from the individual time
series. There were three methods tested for generating this mean
curve: arithmetic average, maximum, and median. The correspond-
ing propagation curves were calculated from 9 years of pollen
data. After that, each of the calculated mean-season curves was
smoothed by (i) an “envelope” approximation, i.e. a convex curve
enveloping the season curve, (ii) a beta-distribution approximation.
An example for the arithmetic-average mean-season curve and its
envelope is shown in Fig. 6, left-hand panel (red and green curves,
respectively). The mean-season envelopes were subtracted from
the actual concentrations, each year resulting in three data sets.
The obtained pollen time series contained the pollen concentra-
tions as deviations from the corresponding mean seasonal curves,
as functions of heat sum (Fig. 6, right hand panel). These deviations
are to be predicted from the meteorological parameters.

3.3.4. Linearization of relations between the independent and
dependent variables

The last step of the data transformation before applying
the multi-linear regression analysis was related to connection
between pollen and meteorological data sets. Their relationship
was linearized by projecting all meteorological data on pollen con-
centration:

m-—me: me(m;)=c(H,m e m;) 3)

Here m is the input meteorological quantity (temperature, wind
speed, etc), m; is a set of discrete ranges of m, for which the mean
pollen concentration mc is calculated. Each range m; of actual val-
ues of m is associated with the pollen concentrations that were
observed for meteorological conditions falling in this range. As a
result, the set of m¢(m;) values represent the same meteorological
quantity in terms of pollen concentrations (Fig. 7). As an example,
in Riga the range of temperature 10-12 °C corresponds to —0.27 of
deviation of the normalized daily mean pollen concentration from
the multi-annual mean season, i.e. this temperature range corre-
sponds to cold conditions and the pollen concentration during such
days are usually low. Similarly, relative humidity ranging from 45%
up to 70% (Fig. 7, right-hand panel) also corresponds to lower pollen
concentrations.

Such transformation accommodates the bulk of non-linearity
in the dependence of the pollen concentrations on the particular
meteorological variable.

3.3.5. Computation of the regression coefficients

At the final phase of the model construction, the multiple
regression analysis was made between the dependent variable
(transformed pollen data) and the independent predictants (mete-
orological data projected to pollen concentration).

To limit the impact of the possible problem of multicollinearity,
stepwise multiple regression analysis was used. This method was
preferred over the standard multiple regression due to its inher-
entrobustness to correlated and non-informative predictors, which
are not included in the final regression equation. This method also

automatically accounts for the local peculiarities of the predictor-
predictant relationships, which might be overshadowed by noise
if all predictors are involved at once. As any automated procedure,
it also has its limitation: the parameters are selected on a formal
basis with no relation to their physical meaning or dependencies.

For the transformed variables, the multiple regression model
reads:

c(M)=ao+ Y _ajme;(m;), @

Jj=1

where c is normalized pollen concentration; agp, q; are regression
coefficients, M; = {m,»j,j =1, n} is a set of n meteorological vari-
ables considered at the regression step, i is the range index of each
variable according to Eq. (3).

We used a step-wise forward method of multi-linear regression,
which starts with no variables in the model and sequentially adds
the variables that improve the model result by the largest incre-
ment at each step. The process ends when all possible variables are
tested and no expansion gives further model improvement.

3.4. Inverse transformation of the predicted quantity

The above data transformations and the multi-linear regression
create the forecasting model, which predicts the deviations of the
normalized pollen concentrations from the multi-annual mean sea-
sonal curve, as a function of the forecasted heat sum. The inverse
transformation to the time axis and the absolute pollen concentra-
tions includes three steps:

- Step 1. Conversion of the predicted deviations to the normalized
concentrations.

- Step 2. Switch the argument from heat sum back to time.

- Step 3. De-normalization of the pollen concentrations

Step 1 is just a summation of the predicted deviations and the
mean season propagation curve derived in section 3.3.3.

Step 2 requires conversion from heat sum to time, which is a
discrete inverse of the Eq. (1) defined by the list of calendar days
during the specific season and the heat sum value for each day.
We are interested exclusively in periods of active flowering, in the
case of Riga, the heat sum range from 70 to 200 DD. Outside this
interval, the predicted pollen concentrations are set to zero. For the
days when mean temperature is above the cut-off limit, the task is
to find the day when the heat sum was below the given value at
00:00 and turned above it by 24:00. For cold days with the mean
temperature below the cut-off limit, the model does not provide
any predictions: their contribution to heat sum growth is zero and
the strict monotonicity of the time — heat sum relation breaks. As a
simple common-sense patch, one can put zero pollen predicted for
such days. A more accurate way is to create the below-cut-off tem-
perature range mg and project it to pollen concentrations following
the Eq. (3). The obtained mean concentration will be the unbiased
forecast for such days.

As the last step of the inverse transformation, the normalized
concentration predictions should be multiplied with the predicted
SPI for the pollen season, finally obtaining the absolute pollen con-
centrations predicted for the specified day.

4. Calculations

In this section, we finalize the application of the above generic
procedure to the birch pollen observations in Riga and evaluate the
obtained model against the control dataset of three years that were
withheld from the model training.
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4.1. Outcome of multi-linear regression

As stated in the section 3.3.3, we tested three possible ways of
generating the mean-season propagation curve: arithmetic average
with envelope smoothing, median with envelope smoothing, and
beta-function. The best-performing approach for Riga appeared to
be the arithmetic average, which showed the highest coefficient of
determination of 0.44 for the 9 years used for the model training
(Table 1).

Statistically significant (p<0.05) influencing factors defined
by linear regression are daily mean air temperature, daily mean
cloud cover, daily sum of precipitation, and u-component of wind
direction. The coefficients of the multi-linear regression for these
parameters are shown in Table 2.

4.2. Evaluation against the control years

The model evaluation consists of two parts: (i) verification of
the model ability to show the main seasonal characteristics — start,
peaks, and end of pollen season, intra-seasonal variability, days of
particularly high/low concentrations, etc; (ii) ability of the model to
reproduce the exceedances of a practically relevant concentration
threshold following Siljamo et al. (2012) — see Appendix A for the
selected statistics.

During the model development, two randomly selected years
were withheld from the model training procedure (2009 and 2012).
In addition, the data of the 2014 season became available during the
study — and were also used for evaluation.
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Table 1

Results of the step-wise forward multi-linear regression for Riga.
Residuals
Min 1Q Median 3Q Max
—0.102049 —0.026 —0.0037 0.024 0.130
Coefficients

Estimate  Std.Error  tvalue Pr(>]t])

(Intercept) 0.073 0.023 321 0.002 -
Cloud cover 0.937 0.302 3.10 0.002 -
Dew point temperature 0.302 0.283 1.07 0.289
Pressure tendency 0.936 0.908 1.03 0.305
Sum of precipitation 0.580 0.170 3.42 0.0009 A
Relative humidity 0.358 0.299 1.20 0.235
Daily mean temperature 0.454 0211 215 0.034 *
Visibility 0.405 0.485 0.84 0.406
Wind dir (U component)  0.501 0.203 247 0.015 =
Wind dir (V component)  0.078 0.588 0.13 0.895
Daily mean wind speed 0.443 0.293 1.51 0.134

Significance: ***' < 0.001 **' < 0.01 * < 0.05 *.’ < 0.1. Residual standard error: 0.043
on 105 degrees of freedom; Multiple R? = 0.44, Adjusted R?: = 0.38; F-statistics 8.18
on 10 and 105 DF, p-value: 1.14e-09.

Table 2
The regression coefficient Eq. (4) for the transformed independent variables.
variable/significance coefficient

Ao Intercept +0.034
ajc(Xy) Cloud cover projected on pollen +1.057
ac(X2) Sum of precipitation projected on pollen +0.535
a3¢(X3) Mean daily temperature projected on pollen +0.658
a4¢(Xs) U wind component projected on pollen +0.680

A summary of the model scores for the training and evaluation
sets are shown in Table 3. It also contains the scores of the SILAM
model (Sofiev et al., 2012, 2015), which was run for the same years
over Europe, with subsequent extraction of the model predictions
for Riga. The scores can also be compared with the European SILAM
evaluation for 2006 (Siljamo et al., 2012).

As seen from Table 3, the model scores do not deteriorate from
the learning set of years to the control one. The overall Model Accu-
racy (MA) is ~5% lower for the control dataset, whereas the Odds
Ratio (OR) and other parameters were even slightly better. These
differences are within the uncertainty of the evaluation procedure:
the whole control dataset included only 70 days with concentration
exceeding 50 pollen m~3, about half of them reproduced correctly.
About 170days were below the threshold, 97% reproduced cor-
rectly.

The predicted and observed time series for 2009 and 2012
are shown in Fig. 8. The year 2009 appears to be a typical year,
which is reproduced very well: with all the ambiguity of correla-
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tion coefficient for pollen time series, r = 0.94 still confirms accurate
prediction of both season timing and intra-seasonal developments.
For other years — 2012 and 2014-the correlation coefficient was
0.64 in both cases, which rather illustrates the model robustness to
unusual years: both 2012 and 2014 were exceptionally high with
regard to the SPL.

5. Discussion
5.1. Comparison with other models

Comparison of the scores of the new model with the existing
instruments is not straightforward: this is the first local model for
Riga. Comparing the models made for different locations makes
little sense due to local specifics of the pollen season and large
variation of the model accuracy from year to year (Fig. 8). The
second difficulty is that only few models aim to forecast pollen
concentrations day by day. One can, however, note some important
similarities and differences of the new model and other approaches.

A quite common practice in short-term forecasting models is to
“nudge” them towards observations via auto-regression methods:
the forecast is taken as a function of the observed previous-day con-
centrations, see Inatsu et al. (2014) for birch in Sapporo, Japan, and
Stach et al. (2008b) for grass in Poznan, Poland. The current model
does not use the nudging for two reasons: (i) the birch season in Riga
is short with very strong day-to-day variability; (ii) pollen data for
“today” are never available when the forecast for “tomorrow” is to be
generated. However, despite the exclusion of this strong predictor,
the temporal correlation of the new model — with all reservations
against this parameter — is within the same range from 0.64 to 0.94
as the scores of Inatsu et al. (2014) — from 0.6 up to 0.9-and Stach
et al. (2008b) — from 0.6 to 0.7.

One can also compare the current scores with those of SILAM
(Table 3). Expectedly, the new Riga model showed noticeably bet-
ter performance — as one would expect for the strictly localized
statistical development. The difference between the models can
be illustrated via their comparison for 2014, one of the control
years (Fig. 9). One can see that the season was long, with the tail
originating from long-range transport and naturally missed by the
local model but reproduced by SILAM. Conversely, the local model
captured the main season with two strong peaks (albeit under-
predicting both), whereas SILAM results were not so accurate: only
one peak was predicted, shifted by one day from the actual one.
Since the models are based on completely different principles, their
jointapplication to the forecasting has a certain potential for further
improvement of the forecast accuracy.

Table 3

Model scores in dichotomous classification task (probability of exceeding a threshold).?
Data set/model MA POD FAR POFD OR
Training years (2003-2008, 2010- 2011), observed meteorology 0.86 0.77 0.23 0.05 13.32
Control years (2009, 2012, 2014), observed meteorology 0.83 0.87 0.13 0.03 29.81
SILAM (2003-2012, 2014), forecasted meteorology 0.86 0.72 0.28 0.09 7.73
Forecasted meteorology (years 2006-2010) 0.89 0.70 0.30 0.08 8.21

4 Model accuracy (MA), Probability of Detection (POD), False Alarm Ratio (FAR), Probability of False Detection (POFD), Odds Ratio (OR).

Table 4
Comparison of scores of the model formally built using the non-transformed or partly transformed pollen time series for Riga.
Data used for MLR analysis R? p-value Parameters for model
Pollen and meteo data without any transformation 0.24 3e-06 T mean*, wind speed **
Homogenized data set (heat sum scaled data) 0.27 1e-03 Heat sum *, wind U **
Data set after full transformation (section 4) 0.44 1e-09 Cloud cover**, precipitation***, T mean*, wind U*

Signif. Codes: 0 “**",0.001 ***, 0.01 **,0.05 " 0.1 *".
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Fig. 9. Time series of birch pollen observations and predictions of the current sta-
tistical model and SILAM.

5.2. Do we need this complexity?

Complicated data transformations implemented in the current
study is a requirement of statistical methods used for train-
ing and evaluation of the model. The normality of the data
distribution, stationarity of the time series, ergodicity and near-
linear dependencies of the variables are necessary for the model
construction — in theory. One can, of course, formally apply
the multi-linear regression to non-transformed datasets and still
obtain a “technically-working” model with some forecasting skills.
Its performance, however, will be substantially worse, penalized
for every transformation step skipped (Table 4).

A separate issue is that the inverse transformations, being
inevitable for practical use of the forecasts, also introduce errors.
Indeed, the regression model is built and optimized in the trans-

formed space of both predictors and predictants. Returning to the
physical space for concentrations is a non-linear transformation,
which may not preserve the optimality of the solution. Therefore,
the scores for the transformed concentrations are higher than for
concentrations after the inverse transformations. A similar effect
was noticed by Toro et al. (1998).

5.3. Forecasted meteorological parameters

The model presented in the above sections was parameterised
using the actual meteorological observations while its aim is to
forecast the pollen concentrations. It puts a major limitation: the
model cannot use any observations from the day to predict. In the
case of pollen observations, this has been resolved by completely
disregarding the pollen data from the regression model. For mete-
orology, it has to rely on Numerical Weather Prediction (NWP)
forecasts. This requirement can potentially be a roadblock because
the uncertainty of the weather forecast will add to the uncertainty
of the pollen model itself and, in case of significantissues, disqualify
the pollen prediction.

A test of model robustness with regard to the input data type
was performed by providing the ECMWF meteorological forecasts
as meteorological input for the years 2006-2010. Using the same
model coefficients (Table 2) and transformations, these meteoro-
logical forecasts were used for predicting pollen concentrations
following the above procedure (sections 3.3.4 and 3.4).

The test shows certain degradation of performance caused by
replacing the observed meteorological data with the modelled ones
(Fig. 10). This is also confirmed by the formal scores (Table 3, last
row).

Comparison of the scores shown by various models and model
setups in Table 3, as well as qualitative analysis of the time series
Fig. 10, suggests that the main contributor to the somewhat lower
scores of the model with the forecasted meteorology come from
the slightly different predictions of the season timing. Indeed, even
a half-degree bias between the predicted grid-cell average temper-
ature and its point observation downtown of Riga would result in
a few days of a shift of the season. Since the model was calibrated
with the observed temperature, this shift manifests itself via higher
uncertainties for the forecasted meteorology case. Importantly, the
overall accuracy stays essentially the same (MA> 0.8 for all cases)
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Fig. 10. Predicted pollen concentration based on actual and forecasted meteorological data from the years 2009 (left panel) and 2010 (right panel).

and only the False Alarm Ratio grows, by ~50%, reflecting the out-
of-season time mis-predicted to be inside the flowering period. This
also affects the OR, which is still high (OR >8) and comparable with
the scores for the learning years (OR>13).

One has to keep in mind that utilization of point-wise meteoro-
logical observations leads to a disarray in the spatial scales of the
observations and the pollen model. Indeed, in case of Riga, coastal
and urban effects limit the representativeness of the downtown
meteorological observations by just a few km (i.e., size of the city
and distance to the shore). Conversely, pollen concentrations are
largely decided by the birch forests around the city, at a distance
up to a few tens of km or even more. The point meteorological
observations downtown do not conform to such a non-local prob-
lem. In that sense, meteorological forecasts with spatial resolutions
of ~15 km (the IFS resolution in 2006-2010) may be better.

The above model configurations are evidently not the only
ones imaginable. For instance, one can perform a model fit using
the above NWP model dataset, which would allow the regression
to compensate for some of the meteorological model uncertain-
ties. Alternatively, one can consider the lagging-data model, which
would use today’s meteorological observations as input for tomor-
row’s pollen forecast. It is also possible to include SILAM pollen
forecast as one of predictors, and/or the lagging pollen observations
(even week-old pollen data might still appear useful). One can also
generate the so-called “hindcast” by predicting the pollen concen-
trations for the current day using either meteorological analysis or
short-term forecasts. Each of these configurations has its own area
of application and a set of uncertainties that will be inherited by the
model. The list can be continued and it is not the purpose of this
paper to explore all of these possibilities. The goal here is to present
the methodology, which makes the day-by-day pollen forecast pos-
sible, and to provide an example of the most-basic case when the
input meteorological predictors are taken from the local observa-
tions of the same day as the predicted pollen concentration. Other
combinations of input data and predicted variables can be explored
following the procedure presented in the previous sections.

5.4. Towards the SPI prediction model

The only part of the model left outside this paper is the predic-
tion of the multi-annual variability of the seasonal pollen index.

According to the publication mainstream, such models can be suc-
cessfully developed following similar statistical procedures applied
to monthly and annual data. One such formula was developed in
Japan (Masaka, 2001) and adapted to Finland by Ranta et al. (2005).

Unfortunately, the 12 years of data available for Riga is not suf-
ficient for training the model: it requires a longer time series. As an
illustration, the SPI in Riga (Fig. 2) suggests a sudden step-change
during the last years. However, consideration of longer series for
Finland shows that, apart from 2012 and 2014, years with very high
SPI were also observed before 2000, so that 2012 and 2014 highs
are by no means a principal shift in the pollen pattern — but rather
the very inter-annual variability that needs to be predicted.

With long time series existing in several European countries, the
work will be continued as a joint effort of a multi-national team.

6. Conclusions

The current paper presents a local-scale statistical model for
pollen forecasting. The model is formulated in generic terms and
its methodology is applicable at any location. Specific application
is demonstrated for Riga, Latvia.

The model construction is based on the multi-step transforma-
tions of the input meteorological data. This ensures compliance
with the requirements of the applied statistical methods: normally
distributed homogeneous stationary data with linearized depen-
dencies between the transformed meteorological predictors and
pollen concentrations. Being important for success of the regression
coefficients identification, this procedure has never been developed
for aerobiological data previously.

The pollen data transformations include normalization, homog-
enization, censoring, and reduction of the non-stationarity. The
meteorological data were also projected to the pre-selected pollen
concentration ranges, thus sharply reducing the non-linearity of
their dependencies. The transformed datasets were supplied to the
multi-step regression procedure, which determined the regression
coefficients, thus concluding the model training.

The developed model was applied in Riga in several configura-
tions and its scores were compared with those of other approaches
reported in the literature for other locations, as well as with the
SILAM performance for Riga. The model demonstrated solid perfor-
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mance and stability in the control years, with the model accuracy
MA exceeding 80% and the odds ratio OR = 30.

Replacement of the observed data with weather forecasts
resulted in a limited deterioration of the scores, primarily due to
a few days of shift in the season timing (MA >80% and OR > 8). This
experiment highlighted the importance of the model calibration
with regard to the input data representing the real-life application
conditions.
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Appendix A.

Following Siljamo et al. (2012), the model accuracy was quan-
tified using two ranks: concentrations below and above 50 pollen
m~—3. For these two ranks, Ny _jo,, and Nit_nigh are the number of daily
observations with mean model-predicted concentration below and
above 50 grains m—3, respectively. Similarly, No jo and No_pjgp are
the number of daily observed concentrations below and above
50 pollen m—3, respectively. Finally, Ny_jow_0_ow NM_tow_0_high-
N _high_0_tow» NM_high_o_nigh T€present all combinations of the rela-
tion between the model predictions and observations, and Ny is
the total number of observed days.

Based on the above notations, the performance of the model was
quantified using the following quality criteria:

An overall model accuracy (MA) represents the fraction of cor-
rect forecasts:

MA — NMan,OJow + NMJIiglLOJIigh ( Al)
Neotal

Hit Rate (also called Probability of Detection POD) is the fraction
of “high” forecasts appeared to be correct:

NM_high-0_high (A2)

POD, HR =
NM_igh_0_tow + NM_nigh_0_high

False alarms can be represented by two quantities: the False
Alarm Ratio (FAR), i.e., the fraction of the “high” forecasts that
appear to be incorrect:

N, .
FAR — 'M_high_O_low , (A3)
NM_high_0_tow + NM_nigh_0_high

and a Probability of False Detection, which shows the fraction
of low-concentration days predicted as “high”:

NM_high_0_low (Ad)

POFD =
NMJn‘gILOan + NMJaw,OJow

Finally, the Odds Ratio shows how much higher are the chances
to get the “high” than “low” day if the model prediction is “high”:

_ POD
~ POFD
A similar quantity is the difference POD-POFD known also as

the Hansen-Kuiper or True Skill Score. However, its meaning is the
same and below we shall use the OR.

(A5)
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1. Introduction

One of the most-important parameters quantifying the strength of
an allergenic pollen season is a Seasonal Pollen Index, SPI, which is de-
fined as a sum of all daily-mean pollen concentrations, i.e. a season-
long integral of pollen concentrations. It was related to severity of
human allergy (Bastl et al., 2016; D'Amato et al., 2007; Huynen et al.,
2003), used as an indicator of the productivity of trees, such as olives
(Galan et al.,, 2014; Myszkowska, 2013; Orlandi et al., 2005; Oteros
etal,, 2013; Prasad and Craufurd, 1999), as well as predictive parameter
for the wine (Cunha and Ribeiro, 2015) or olives (Dhiab et al., 2016)
production and as a bio indicator of plant reaction to the on-going cli-
mate change (Hatfield and Prueger, 2015; Hedhly et al., 2009; Storkey
et al, 2014; Zhang et al., 2014). Apart from that, the SPI is used in nu-
merous pollen forecasting models as a scaling factor determining the
predicted pollen concentrations (Helbig et al., 2004; Prank et al., 2013;
Puc, 2012; Ranta et al., 2008; Ritenberga et al., 2016; Siljamo et al.,
2012; Sofiev et al., 2012; Stach et al, 2008; Toro et al., 1998;
Veriankaité et al., 2009; Zhang et al., 2013; Ziello et al., 2012).

The SPI is known to change substantially from year to year depend-
ing on combination of meteorological factors and physiology of the
plant (Masaka, 2001; Ranta and Satri, 2007), see also a review of Dahl
et al. (2013). Such variability, for some trees (e.g., birch), exhibits a
quasi-bi-annual behaviour (a strong year is followed by a weak one
and vice versa), which however, is broken in some years (Dahl and
Strandhede, 1996; Detandt and Nolard, 2000; Grewling et al., 2012;
Hattestrand et al., 2008; Jato et al., 2007; Latatowa et al., 2002). This be-
haviour was attributed by Dahl and Strandhede (1996) to a combina-
tion of meteorological and physiological factors, who suggested that
neither meteorology nor the innate biannual behaviour is decisive, but
rather a combination of both. Indeed, since catkin development is ex-
pensive, their abundance takes a large toll of carbohydrates from the an-
nual shoot and impedes the expansion of leaves, thus limiting the
amount of photosynthesis products available for development of the
next year catkins. This cycle can be interrupted if weather is, for in-
stance, strongly favourable allowing the smaller leaves to assimilate ef-
ficiently. Then flowering can be strong for two years in a row.

The same variability tends to occur synchronously in several plants,
such as birch, alder and hazel, and over large regions (Ranta and Satri,
2007; Sauliené et al., 2014). Such synchronization also suggests strong
influence of meteorology as the only common factor for different plants
distributed over large areas.

Apart from the strong inter-annual variability, several wind pollinat-
ed trees, such as birch, olives, oak, etc. have positive long-term trend of
the SPI (Garcia-Mozo et al., 2014; Yli-Panula et al., 2009; Prank et al.,
2013; Severova and Volkova, 2016; Spieksma et al., 2003, 1995).
These trends were attributed to changing climatic conditions and/or to
increasing abundance of the plants. Among measurable indicators of
these factors, one can consider the growing level of CO, in the atmo-
sphere and trends in the regional leaf area index. Thus, several studies
showed that with higher level of CO,, plants tend to produce more pol-
len (Ladeau and Clark, 2006; Zhang et al., 2015; Ziska et al., 2001; Ziska
and Beggs, 2012).

Among the meteorological factors affecting the intensity of the trees
flowering, temperature and precipitation amount of the preceding year
are the most-commonly mentioned (Yli-Panula et al., 2009). One can
therefore expect that the regional synchronization of the SPI behaviour
takes place at least at synoptic scale, i.e. 10>~10% km and this very scale
should be considered when developing models for the SPI. However,
most of studies consider it at shorter scales using one or few closely-
located sites (Corden et al., 2002; Dahl and Strandhede, 1996;
Grewling et al., 2012; Severova and Volkova, 2016).

Many of the above studies completed the analysis of the SPI inter-
annual behaviour with statistical models aiming at predicting the
next-year SPI using the previous-year SPI and meteorology. The proce-
dure of constructing such models usually started from log- or square-

root (sqrt-) transform of the SPI followed by multi-linear regression
fitting. The input parameters usually included in the analysis are mean
temperature of various time intervals (one study took heat sum over
certain periods) and the previous-year SPI. However, no systematic
pre-processing of the input parameters was performed, and all models
were built for individual locations, even if the study was considering
several sites.

The current study addresses the above-outlined omissions and aims
at construction of a predictive model for birch SPI over large regions in
Europe. We will propose a simple procedure for delineating such areas
and build the model for the northern region.

2. The working hypotheses

We assume that the SPI is a regional parameter determined by the
synoptic-scale meteorological processes, i.e. a few hundreds of
kilometres. It should therefore be possible to identify the regions that
react synchronously and demonstrate similar patterns of the SPI year-
to-year variations. The corresponding temporal scale is from several
days up to 1-2 weeks - this will be the maximum temporal resolution
of the input data, i.e. we shall not be interested in individual meteoro-
logical events.

Secondly, absolute values of the SPI are of essentially no importance:
they are decided by vegetation density in proximity to the station,
which is a static parameter. Therefore, spatial and temporal variations
inside these regions are separable.

With the above assumptions, it should be possible to construct a sta-
tistical model for the SPI variation over these regions taken as “boxes”,
i.e. not resolving individual stations but taking each region as a single
entity with the normalised SPI averaged over the region.

3. Materials and methods
3.1. Study area

The study was focused over the region between the latitudes 50°N
and 70°N and longitudes from 5°E to 40°E, Birch pollen data from 15
aerobiological sites were included in the analysis.

The analysed region has moderate maritime climate with cold win-
ters and moderate summers. Birch fraction reaches up to 30% of the total
forest coverage (see maps in (Ritenberga et al., 2016; Sofiev et al.,
2006)).

3.2. Airborne pollen concentrations

Birch pollen data were extracted from the database of European
Aeroallergen Network (EAN). Pollen sampling was performed using
Burkard or Lanzoni 7-days volumetric trap (Hirst, 1954). Pollen
was identified with optical microscopy, using country-specific
(random, vertical, horizontal traverses) counting technique but
generally following the aerobiological standards (Galan et al.,
2014). For each year, the SPI was computed as an integral of
concentrations over the whole observed period. The length of time
series varied from station to station, reaching 40 years (1974-
2015) for a few sites. The varying length of observations created
evident challenges for processing and interpretation of the obtained
results. However, under the assumption of internal homogeneity of
the SPI variation within the region, verified in the next section, all
stations are normalised and averaged into the regional mean, thus
reducing the problem to a different sampling volume in different
years. Additionally, all time series shorter than 11 years were filtered
out (Table 1). No other thinning of the dataset was possible due to
the limited number of sites (15, as shown in Table 1 and Fig. 1).
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3.3. Meteorological data, CO, and LAl

Awide list of parameters potentially governing the regional birch SPI
was created based on literature analysis and general considerations.

3.3.1. Meteorological information

The most-frequently mentioned meteorological factors influencing
the seasonal pollen index are temperature and precipitation rates
(Dahl and Strandhede, 1996; Yli-Panula et al., 2009; Latatowa et al.,
2002). It was decided to use also related parameters, such as solar
short wave radiation and accumulated heat amount (heat sum), with
care taken against mutual correlation of these parameters as descried
in the next section. The meteorological data were taken from the
European Re-analysis ERA-Interim dataset (Dee et al., 2011; Simmons
et al., 2010). Temporal resolution of the data was 3 h with spatial grid
of 0.72° x 0.72°. The meteorological data covered the period from
1980 to 2015, which thus limited the analysed period to these
36 years. As seen from Table 1, the sampling network of the region
was limited during 1980s to 4 locations, expanding over 10 sites only
after 2000.

Heat sum (1) is calculated from daily mean temperature following
the approach of the SILAM model (Sofiev et al., 2012), which suitability
for local-scale computations was confirmed by modelling in Riga
(Ritenberga et al., 2016).

D

Hd)=>"

> [T(e)~Teo] (1)

Here, H is temperature sum (heat sum), with units of degree day (C°/
day); d is the day of H calculation; d - starting day of the heat accumu-
lation - 1st of March in this case; T(d) - daily temperature, °C; T, - cut-
off temperature (temperatures below this threshold are not summed
up), °C, [x]. is the function that equals O for x <0 and 1 for x > 0 (it ex-
cludes the temperatures below the cut-off level).

The same cut-off temperature of 3.5 °C was used for the heat sum
calculations for all monitoring sites in the region (Sofiev et al., 2012),
justification for accepting a value of 3.5 °C is described by Ritenberga
et al. (2016) and Siljamo et al. (2012).

Table 1
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3.3.2. Leaf area index

Leaf area index (LAI) was included in the data analysis as one of pos-
sible predictors for the SPI. It was hypothesised that there could be a re-
lationship (straight or inverse) between the annual production of pollen
and the LAL An indirect support of this consideration is that the pollen
data are used for the LAI reconstruction in palynological studies
(Williams et al., 2008). Data of the LAI were taken from a global reanal-
ysis of the vegetation phenology (Stckli et al., 2011), which contains
daily 1°x1° LAI maps for the whole study period. For our purposes,
they were aggregated to monthly level.

3.3.3. Carbon dioxide

Carbon dioxide (CO,) is one of the factors, possibly influencing the
annual amount of pollen from various taxa (Albertine et al., 2014). Car-
bon dioxide has a well-expressed positive trend during at least last
40 years, somewhat resembling the trends in the birch pollen abun-
dance. The CO, data used for the analysis were downloaded from the
NOAA Earth System Research Laboratory (ESRL) public archive (Ed
Dlugokencky and Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/
ccgg/trends/) for the years from 1980 to 2015.

3.3.4. Seasonal pollen index
The SPI (Y-1) of the preceding year was included to account for the
plant state and behaviour in the past.

4. Model construction
4.1. Region selection

The SPI time series observed at EAN stations with >11 years of data
(taken both from within the target region and from the stations outside)
were correlated with each other and clustered with regard to the pair-
wise correlation coefficient r. Despite not satisfying the rigorous defini-
tion of distance, this parameter has two vital features: (i) it does not de-
pend on absolute SPI values at the stations, and (ii) it is of correct
monotonicity, i.e. shows the stations with similar inter-annual varia-
tions as close ones.

The clustering procedure also requires definition of the reference
point, against which all other stations are positioned. We used the
Turku station in Finland, which: (i) possesses one of the longest time

Availability of birch pollen data for analysis of Northern, North-Eastern Europe regional data set sites (grey - data available; black - data suitable for analysis).
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Fig. 1. A map of station characteristics for the Northern, North-Eastern Europe regional cluster. Color represents the geometrical mean of the SPI, the dot size is proportional to the length of

the time series, provided in Table 1.

series in EAN fully covering the study period, (ii) is conveniently located
in the middle of the region with comparatively dense pollen network,
(iii) shows strong SPI variability, (iv) shows high absolute birch pollen
concentrations, thus making the problem important from allergological
point of view, (v) is located in the climate-sensitive area: the tempera-
ture rise in Finland due to climate change is much higher than the global
average (Hartmann et al.,, 2013), which can have its fingerprints in the
SPI trends.

The correlation matrix was analysed and only site pairs with > 0.85
and p <0.01 were retained in the cluster (Table 2). The resulting cluster
of stations, hereinafter referred as the Northern, North-Eastern Europe
regional data set, included aerobiological stations of Finland (Helsinki
(FIHELS), Kangasala (FIKANG), Kuopio (FIKUOP), Oulu (FIOULU),
Rovaniemi (FIROVA), Turku (FITURKU), Vaasa (FIVAAS)), Lithuania
(Klaipeda (LTKALI), Siauliai (LTSIAU), Vilnius (LTVILN)), Latvia (Riga
(LVRIGA)), Belarus (Minsk (BYMINS)), Sweden (Stockholm (SESTOC),

Malmé (SEMALM), Vaestervik (SEVAES)), totally 15 stations with
>11 years of data (Fig. 1). Long- term observations are available from
Finland (data from 7 stations) and Sweden (3 stations), whereas the
stations from Belarus, Lithuania, and Latvia have from 11 up to
20 years of data.

As a result of this procedure, the area of the region for analysis gets
clear: it covers the above countries and possibly extends further to the
east, where no stations are available all the way down to Moscow,
which is outside the cluster. Western border is also somewhat unclear:
in Norway, only NOTRON in central part of the country satisfies the re-
quirement on the time series length - and is outside the cluster, proba-
bly because of strong dominance of Atlantic Ocean in the weather
pattern.

As shown in Table 1, sampling of the region evolves with time, with
its southern part practically not represented in early years. However,
the existing time series are sufficient for establishing the statistically

Table 2
Correlation matrix of SPI for the Northern, North-Eastern Europe regional data set.
BYMINS ~ FIHELS ~ FIKANG ~ FIKUOP  FIOULU FIROVA  FITURK FIVAAS  LTKLAI ~LTSIAU LTVILN LVRIGA SEMALM  SESTOC  SEVAES

BYMINS 1 0.66 0.95 0.61 0.74 0.84 08 0.69 0.78 0.70 0.69 0.49 0.79 0.87 0.95
FIHELS 1 091 0.87 0.90 0.83 0.93 0.89 091 0.97 0.89 0.83 0.87 0.85 0.69
FIKANG 1 0.92 091 0.84 0.96 0.79 0.99 0.78 0.97 0.67 0.80 0.92 0.84
FIKUOP 1 0.85 0.85 0.76 0.86 0.87 091 0.88 0.94 0.75 0.77 0.66
FIOULU 1 0.89 08 0.79 0.94 0.86 0.95 0.83 0.78 0.79 0.71
FIROVA 1 0.90 0.81 0.82 0.79 0.80 0.80 0.73 0.77 0.75
FITURK 1 0.92 0.86 0.89 0.86 0.79 0.84 0.86 0.85
FIVAAS 1 0.86 0.94 0.85 0.87 0.67 0.83 0.74
LTKLAL 1 0.96 0.96 0.82 0.92 0.94 0.79
LTSIAU 1 0.94 0.85 0.88 0.89 0.72
LTVILN 1 0.83 091 0.93 0.78
LVRIGA 1 0.60 0.70 0.57
SEMALM 1 0.82 0.72
SENORR 091 0.78
SESTOC 1 0.93

SEVAES

1
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significant high correlation between all sites in the region, which jus-
tifies the consideration of the “regional mean SPI variability”, unified
over the whole period. The next section describes the transformations
used to obtain the single 36-years-long regional time series set for fur-
ther analysis.

4.2. Target variable transformation: Normalization of the SPI distribution,
regionalization

The raw pollen data have several features, which make construction
of an efficient statistical model problematic - see discussion in
Ritenberga et al. (2016). Integration over the season towards SPI re-
duces some of the problems, e.g., the non-stationarity of the time series.
However, several data pre-processing steps are still required prior to the
model construction.

The SPI; of each station i for the particular year Y should be normal-
ised with its multi-annual geometric mean SPE*°"“" taken over the
whole observed period of the station (represented by color in the Fig.
1), thus eliminating the dependence on local birch abundance and mak-
ing all sites within the region comparable (Fig. 2, panels a and b):

SPI;(Y)

SPIF™(Y) = Spygeomean
i

)

Since the distribution density of the SPI/*"™ is closer to log-normal
than to normal, we applied logarithmic transformation, finally arriving
at the deviation ASPIN(Y) of the normalised annual SPJ; for each year Y
from its long-term geometric mean value (Fig. 2, panel c).

According to the working hypothesis supported by the correlation
analysis above, the same processes control the SPI behaviour at all sta-
tions within the selected region. Therefore, one should consider their
SPI series ASPIN(Y) as realizations of the single stochastic process —
the regional time series ASPI"#(Y), — which effective and unbiased es-
timation is arithmetic mean over the cluster.

4.3. Input data transformation

Upon turning the SPI time series into normally-distributed devia-
tions from the long-term mean levels, corresponding transformations
should be applied to the input data as well: they should be converted
into deviations with near-normal distribution type, the approach analo-
gous to (Ritenberga et al,, 2016) but with the SPI as the target variable.

0. Ritenberga et al. / Science of the Total Environment 615 (2018) 228-239

4.3.1. Selection of the time axis

According to the above-mentioned studies, only meteorological con-
ditions during specific phenological phases affect the next-year SPI. One
needs therefore to delineate the corresponding periods. Astronomical
time used in those studies is an inconvenient variable since it ignores
difference between the years and thus tends to mix-up the phenological
phases. It also ignores the difference in the flowering time across the re-
gion. Therefore, again following (Ritenberga et al., 2016) approach, we
selected the heat sum as the phenologically-relevant variable for the
time axis.

The challenge of the regional consideration is that even expressed
via heat sum, the phenological phases still occur at different moments:
the further to the north the less heat is needed for the season progres-
sion (Sofiev et al., 2012). To overcome this difficulty, we express the
time scale in % of the total heat accumulated during the whole year, nor-
malised to its long-term mean value, at each station. Annual heat sum
differs by up to a factor of two between the aerobiological stations with-
in the region, whereas, e.g., the heat sum threshold for flowering
expressed in relative terms is nearly constant - see (Supplementary ma-
terial 1 - “Annual_cumulative_heat_sum_in_2010") of (Sofiev et al.,
2012) with the data source of ERA-Interim and degree day as unit. The
idea of this transformation goes back to (Linsser, 1867), who demon-
strated it for pine.

For the normalised heat sum, the year was split to 6 periods
representing different fractions of the annual heat sum: 0-0.05 (pre-
season before the flowering starts); 0.05-0.13 (flowering season); the
three post-season intervals: 0.13-0.25; 0.25-0.45; the whole post-
flowering period with shorter end 0.13-0.4; and the whole period
from start of heat sum accumulation until the end of active vegetation
was taken as a single time slot 0.0-0.45. The selection of the periods
was based on preliminary calculations of the heat scale for Turku and
Riga.

4.3.2. Conversion of the input meteorological data into deviations

The deviation of the regional ASPI"4(Y) from its long-term mean
should be related to the normalised meteorological variables, also
taken as deviations. The transformation was made station- and
variable- wise and included:

(i) calculation of variable deviation from the long-term mean value,
for each year, each site, during each of the above heat sum inter-
vals; Since this step does not involve pollen data there is no lim-
itations due to the data availability. The meteorological data are
taken from ERA-Interim and the whole period 1980-2015 is
used without omissions;
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Fig. 2. Transformation of the SPI observations for the stations in the Northern, North-Eastern Europe regional data set.
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(ii) spatial averaging of deviations across the region, for each year. As
in the step (i), all years 1980-2015 were taken into consider-
ation. As a result, we obtain the regional set of predictors: region-
al deviations of the environmental parameters from their long-
term average, for each of the six heat sum intervals during each
year.

4.3.3. Physical parameters describing the long-term trends

No transformations were applied to of CO, and LAl in order to pre-
serve their properties: CO, has a well-expressed trend during the last
40 years and LAl reflects the annual changes in the vegetation of the re-
gion (Supplementary material 2, Supplementary material 3). Both pa-
rameters monthly data were simply averaged for each year.

4.4. Construction of predictive SPI model

Very limited size of the dataset (only one regional time series com-
prised of 15 individual time series of varying length) did not allow split-
ting the stations to learning and control datasets. Therefore, the
regional-model coefficients were obtained using bootstrap method
and multi linear regression (MLR).

At the first step, MLR was made against a complete set of meteoro-
logical parameters listed above, taken for all 6 time intervals during
the year Y (the year to predict) and the year Y-1 (previous year), in
order to identify statistically significant predictors. Expectedly, predic-
tors from the previous year Y-1 showed larger influence on the SPI of
the year Y than those from the year Y. From 21 predictors (6 different
periods for temperature, solar radiation, precipitation; CO,; LAI; SPI -
all for the year Y-1), the following parameters from Y-1 were identified
as potentially useful:

precipitation Pry 13 for the period 0.13-0.25 of the annual heat sum
accumulation

- temperature Ty ;3 for the period 0.13-0.25, of the annual heat sum
accumulation

temperature Ty s for the period 0.25 to 0.45 of the annual heat sum
accumulation

short wave solar radiation SWj, for the period from 0 to 0.05 of the
annual heat sum accumulation

— SPly4

- 02y

All further analysis uses only these 6 parameters.

The bootstrap included 15 iterations, one for each of 15 station
datasets withheld from both regional SPI and regional meteorological
averaging. The SPI data and meteorological parameters for the remain-
ing stations were averaged over the region. After that, the multilinear
regression was calculated obtaining the model coefficients for the re-
gional time series with one site excluded.

The fitting coefficients were averaged across the iterations, finally
obtaining the mean regression coefficients and their standard deviation.

The procedure was repeated with and without previous-year SPly_;
in the list of possible predictors.

5. Results: models for SPI in Northern, North-Eastern Europe
5.1. Model with meteo-only input

During the data analysis, we realized that it is possible to build the
model using only available meteorological data and the trend-
describing variable CO»y.1. This opportunity allows predicting the SPI
relative deviation from the long-term mean knowing neither this
mean level nor the previous-year SPI. The model becomes detached
from the SPI observations and applicable also in places with no aerobi-
ological observations whatsoever.

The regional formula for ASPI"#(Y) of the year Y based on meteoro-
logical data and data of CO, of the previous year Y-1 is:

ASPI™®(Y) = ag + Aco,CO2y—1 + prProas + AswsWo + ar,,, To.13
+ a1, To2s (3)

The mean values of the intercept ay and other coefficients are shown
in Table 3, first row.

The obtained model is not perfect (see evaluation section) but its in-
dependence from pollen observations makes it a very important instru-
ment for assessment of the SPI variability.

5.2. Model with full set of variables; accounting for the different statistical
significance

Adding SPly.; as a predictor significantly increases the quality of the
model. The final formula includes the same meteorological parameters
as the meteo-only model, CO, and SPI from the previous year (Table 3,
second row).

There are two parameters of Eq. (3) with noticeably lower statistical
significance than the others (p-value 0.05-0.1): precipitation Pr and
Tos. Their importance was evaluated by removing them from the
data set and constructing the model based only on predictors of high
statistical significance (Table 3, last row).

5.3. Evaluation of the constructed models

The evaluation of the three models of the Table 3 followed several
pathways and was performed for both entire region (i.e. the learning
dataset) and for each station in the cluster. There are several parameters
used for the evaluation, including both “standard” statistics and
threshold-based ones. Efficiency of the standard statistics was however
hampered by the limited size of the dataset and strongly non-normal
distribution of the values. The evaluation approach also took into ac-
count the way these models will be applied: for forecasting the next-
year SPJ, in particular determining whether it will be high or low year
and for forecasting the absolute SPI needed for the modelling.

5.3.1. Statistics over the whole observed periods

We consider: (i) Odds Ratio (OR, Fig. 3a) as a measure of differenti-
ating between the high- and low- seasons, (ii) Model Accuracy (MA, Fig.
3b) and (iii) a fraction of the SPI predictions that fall within the factor 2
from the observations (F2, Fig. 3c).

Behaviour of individual stations inside the region differs somewhat
but the regional formula tends to work better for the stations with lon-
ger time series, i.e. those, which contributed mostly to the model iden-
tification (Turku, Kuopio, etc.). The limited size of the dataset and high
scores of the models resulted in just few cases of the predictions being
wrong. For several sites, the low-high differentiation appeared always
correct during the observed years. The sample OR for such sites is infi-
nitely high, shown as OR = 30 in Fig. 3a.

The fraction of the predictions falling within the factor of 2 from ab-
solute observations (F2, Fig. 3c) allowed formulating the static
persistence-based estimate: the mean SPI at each station (yellow bars
in Fig. 3c). The F2 generally stays within 40%-70% being lower only
close to the southern edge of the domain. Similarly to other quality mea-
sures, the full-parameters and significant-only models showed the
highest F2 levels, with meteo-only model staying somewhat behind.
The suggested models demonstrated similar or better skills than the
persistence approach. One can also see that the northern-most sites
FIKEVO and FIROVA tend to be exceptional: at FIROVA, the meteorolog-
ical information alone was sufficient for good predictions, while FIKEVO
was the only site with the highest skills showed by the persistence ap-
proach. The reasons for the unusual behaviour of the models are
discussed in the next section.
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Table 3
Coefficients (with standard deviation) for regional formula of SPI forecast based on SPI_;, CO, and meteorological set.
[ Acoz apr Asw aro.13 aro.25 Aspr
Only meteo and CO, -2 5x1073 6x1072 2x107° 3x107! 3x107" -
(£8x107") (£2x1073) (£7x1073) (£6x1077) (£3x1072) (£3x1072%)
All predictors —4 9x1073 —5x1072 2x107° 2x107" 1x107! —5x107"
(£7x1071) (£1x1073) (£5%107%) (£7x107°%) (£1x1072) (£1x1072 (£3%x107?)
Only highly significant predictors —4 9x1073 - 2x107° 2x107! - —5x107"
(£7x107") (£9%x1072) (£7x107%) (£1x1072) (£3x107%)

- was not included in model.

5.3.2. Prediction for 2016

The year 2016 was not included into the model fitting, thus serving
for additional, albeit limited, evaluation mimicking the way the model
will actually be used: to forecast the next-season severity. The predic-
tions of the models for this year are shown in Fig. 4 (blue, red and yellow
columns) together with the long-term mean for each station (shaded
area, geometric mean of observed SPI at the site over al years available)
and the observed SPIin 2016 (dark green columns). A few stations were
excluded from the analysis: FIHELS was moved a few km inland from its
historical location, thus making absolute-SPI analysis impossible,
whereas the data of FIKANG were not available.

As one can see, 2016 was mostly high-or-normal year over the re-
gion: low SPI was recorded only at SEMALM (south-western edge of
the region) and LTKLAI (southern edge, near the coast). The meteo-
only model was predominantly suggesting moderately-low year,
whereas the models including the previous-year SPI suggested high
year, in agreement with the observations. The long-term average was
a worse predictor than the full-parameters models but evidently was a
better than the meteo-only model at the sites where that one predicted
low season.

6. Discussion

The primary goal of the study was to build the unified model suitable
for applications over large regions, thus demonstrating the feasibility of
spatial generalization of the SPI predictions using large-scale meteoro-
logical features as the controlling parameters. As pointed out in the in-
troduction, the bulk of previous studies concentrated on a single or a
few closely-located stations.

The second principal difference of the suggested approach is that we
applied a series of non-linear transformations of the input data and
changed the governing variable from time to normalised heat sum.
These transformations aimed at two targets: (i) sharply reduce the
year-to-year variability of temperature accumulation, thus making the
seasonal propagation and flower/leaves/seed maturation curves similar
for all years; (ii) eliminate also the spatial variability of these curves,
thus making them similar for all locations over the considered domain.
After that, construction of the predictive models followed standard pro-
cedures for multi-component optimal model fitting.

6.1. Comparison with other approaches

Since the suggested models are first in their class, direct comparison
with published studies is quite difficult. However, certain conclusions
can be derived. The most-direct comparison is possible with the study
of (Ranta and Satri, 2007), who built three local models for Turku, Kuo-
pio and Oulu stations. Temporal correlation of these models however
trails significantly behind the current unified model: it was 0.59 vs
0.82 for Turku and 0.61 vs 0.77 in Oulu. Only in Kuopio, both models
scored to 0.65. The most-probable reason for the higher scores of the
current approach is the more comprehensive set of transformations of
the data before applying regression.

Similar predicting capacity to that of (Ranta and Satri, 2007) was re-
ported by (Dahl and Strandhede, 1996) but direct comparison is not

possible due to sqrt-transformed values reported in that paper. An im-
portant difference of that work was that the predictors were taken as
heat sums rather than mean temperature over some period, which po-
tentially can further improve the model accuracy.

Quite high correlations of the local SPI and several meteorological
drivers were reported for Poznan by (Grewling et al., 2012) but no pre-
dictive model were built. The authors also pointed out that they found
no parameters capable of explaining the break points in the bi-annual
cycle. This study has succeeded but Poznan is outside the current region
and the developed models are not directly applicable there.

6.2. Selection of input parameters

Among the parameters influencing the SPI, the northern part of
Europe is mostly limited by the available heat and solar radiation, so it
is not surprising that heat is the most important predictor for our region
(Table 3). This is supported by very high scores of the model in the north
of Finland (up to 90%, Fig. 5) and also pointed out by (Ranta et al., 2005).
In the south of Europe the stress will probably shift towards water and
nutrient availability (Dahl et al., 2013), with Central Europe being argu-
ably the most-difficult to model.

A noticeable degradation of the model skills at the northern-most
site FIKEVO is probably caused by the ignored pollen atmospheric trans-
port. Indeed, the characteristic level of the SPI in that region is much
lower than in Central Finland and Russia, which makes the local pollen
production less important than the impact of the long-distance trans-
port. The transport contribution was estimated by (Sofiev, 2016), who
showed that the transport-induced SPI variability grows sharply to-
wards remote regions. This points out at a certain shortcut of the current
approach: the developed models should predict the total amount of pol-
len released from catkins rather than the observed concentrations. The
proportionality of these two quantities is not exact and is disturbed by
both local pollen dispersion conditions and by the long-range transport
(Sofiev, 2016). Averaged over the whole season, the disturbance is com-
paratively small in the self-polluting regions but can be large if strong
remote sources affect the area. The other possible explanation is the ge-
netic differentiation between the birches in far north (mainly Betula
nana) and other parts of the domain. The significance of such differenti-
ation was shown for olives by (Chuine and Belmonte, 2004).

6.2.1. Meteo only model

An intriguing feature of the current approach differentiating it from
the previous studies is that it had produced a comparatively well-
performing model using only meteorological parameters without any
reference to the previous-year pollen observations. This is a confirma-
tion of the working hypothesis: meteorology alone controls a large frac-
tion of the SPI variability, synchronously over the whole region.

Performance of the meteo-only model still trails behind the full-
input model, thus suggesting that the biological processes also signifi-
cantly contribute to the SPI - in agreement with (Dahl and
Strandhede, 1996). In particular, the dynamic range of the SPI variability
is the largest in the observations, closely followed by the full-input
model, whereas the meteo-only model is more conservative (Fig. 5).
One can argue then that the plant response serves as an amplifier for
the meteorological signals. This also corroborates with conclusions of
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the biological model (Dahl et al., 2013) that stressed the importance of
the combination of meteorological and biological parameters for ade-
quate next-season prediction.

Finally, the meteo-only model reproduces both the bi-annual cycle
and the years when it breaks down (Fig. 5), also strongly suggesting
that such behaviour of birch is at least inspired by the regional-scale
weather phenomena.

6.2.2. SPI only model

The second “simplified” model can be built using only SPI but taking
it from more than one preceding years. In-essence, it exploits the bi-
annual cycle as the foundation (Ranta et al., 2005; Ranta and Satri,
2007) but can, to a certain extent, adapt to several years without such
cycle in sight. In the Baltic countries and Southern Sweden (area 15°E,
25°E, 55°N, 65°N), the SPI correlation between forecasted year Y and
previous year (Y-1) is —0.47 whereas the correlation between the fore-
casted Y and two years earlier birch SPI (Y-2) is 0.41. One of possible
ways to formalise the relations is the following:

ASPI®8(Y) = In (b) + a(ASPI™®(Y—2)—ASPI*¢(Y—1)) (4)

Fitting the coefficients a and b for Finland (obs: not for the whole re-
gion!), one obtains a = 0.21 and b = 0.97. The optimal a and b values
differ from area to area and country to country but b is usually around
1 and a varies between 0.1 and 0.3. Areas where mean SPI is low have
proven to be difficult. As a result, b = 1.0 and a = 0.21 may be taken
for the whole Europe, thus providing a rough screening algorithm for
the SPI predictions if a few years of pollen observations are available
but meteorological data are not straightforward to obtain (a rare
occasion).

Performance of the SPI-only model Eq. (4) is usually worse than the
scores of the meteo-only model - see examples for a few Finnish sta-
tions in (Fig. 5). An exception is the Vaasa station (Fig. 5), which is
one of the northern-most sites in the region. That far in the north, the
limitations of the plant productivity are the most-severe, so the
biology-related amplification of the external stress become so strong
that SPI itself contains sufficient amount of information to predict the
next-year flowering. As a result, both models that use SPI as (one of)
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predictor(s) show very high correlation whereas meteo-only model
stays behind.

6.3. Possibilities for further generalization of the models

The suggested models were made for a large but still limited region
in the north of Europe. Since the climatic conditions and plant response
to the stress change gradually along north-south and west-east direc-
tions, the models score lower in Lithuania and southern Sweden (Fig.
6), which delineate the southern border of the region.

6.3.1. Performance outside the domain

Outside the region, the model gives poor predictions if temporal cor-
relation is considered (Fig. 7) - but the low-high- season differentiation
is still very good (see OR ans MA, Fig. 3). The time series are still quite
good for the years with pronounced bi-annual cycle but large errors
show up when this cycle breaks down. Such “unusual” years also be-
come more frequent, especially in Brussels, where the bi-annual cycle
is practically non-existent. It indicates a presence of some un-
accounted factors, which control the SPI in temperate climate.

6.3.2. Steps towards European model

Considering the expansion of the models, one needs to involve other
parameters, at least the amount of precipitation and winter-time chill-
ing. The principal difficulty will be that the interplay between the
governing processes will, most probably, be strongly non-linear and
non-additive. In-essence, this study covered the area where the rela-
tions between the governing parameters and the SPI are well represent-
ed as linear and additive. Noteworthy, the SPI variations correlate
between different locations within the region but not with places out-
side of it. It again points out at non-linear dependencies of the SPI on
governing parameters if a wider region is considered.

At the current stage, there are two possibilities for constructing the
model for the whole Europe: (i) increase the number of parameters
and allow for strong non-linearities in the dependencies (possible, as
shown by Ritenberga et al., 2016), (ii) construct different model(s) for
Central and Eastern Europe as, for instance, done for the olive season
timing forecasting by (Aguilera et al., 2014). Each approach has its
pros and contras.
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Fig. 4. Comparison of the predicted and observed SPI for the three models presented in Table 3 in 2016 (3 pollen/year m~>), a) - full data set; b) low SP! sites.
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The first approach, being clearly preferable from the user standpoint,
faces a wide variety of interplay of the governing parameters, which
have to be identified and quantified. For instance, lack of chilling can
both reduce the SPI and shift the season (Hdnninen, 1990), whereas
very cold winters may have no effect at all (saturation above certain
threshold, (Hdnninen, 1990)), provoke more intense flowering and
seeding (reproduction push), or damage some trees and reduce SPI for
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several years (damage of the habitat). These and other processes can
dominate or be negligible depending on climatic zones, so that their
unified consideration will be cumbersome. Finally, expansion will re-
quire different treatment of meteorology since the area will be much
larger than the synoptic scale, i.e. the homogeneity assumption with re-
gard to the meteorological input will no longer be valid.
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Fig. 6. Model performance in Lithuania (Siauliai) (left-hand panel) and southern Sweden (Vaestervik) (right-hand panel).
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The multi-model approach, albeit being easier in each region, leads
to discontinuities of the parameterizations at the borders of the delin-
eated areas, where also none of the models is good. Therefore, it can
be recommended only as an intermediate step revealing the governing
parameters in each region and suggesting their (linearized) relations,
which are then used for development of the unified model.

7. Conclusions

We demonstrated that the inter-annual variability of the birch seasonal
pollen index SPI is synchronized over large regions of Europe significant
correlations at the distances associated with the synoptic spatial scale.

A predictive model was constructed for the region covering Finland,
Sweden, and Baltic States, part of Belarus, and, probably, part of Russia
and Norway, where the lack of data did not allow for conclusive
analysis.

Three models were constructed based on: (i) previous-year meteo-
rology and CO,, (ii) several previous years of the SPI, (iii) combination
of the previous-year meteorology, CO, and the SPL

The best-performing model based on combination of the meteoro-
logical and aerobiological data from the preceding years showed corre-
lation coefficient reaching up to 0.9 and successfully reproduced both
bi-annual cycle of the SPI as well as the years when this cycle breaks
down. Odds ratio is infinitely high for 50% of sites inside the region
and the fraction of prediction falling within factor of 2 from observa-
tions, stays within 40-70%.

Meteo-only model also showed remarkably good prediction skills,
which allow its usage in the areas with sparse or no pollen observational
network. The model captured the bi-annual cycles and its breaking
years, which highlights the key role of meteorology in formation of
this cycle. The dynamic range of the variations is however under-
stated by this model, pointing out the importance of the plant response
to the meteorological stress.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2017.09.061.
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Abstract. The paper presents the first modelling experi-
ment of the European-scale olive pollen dispersion, analy-
ses the quality of the predictions, and outlines the research
needs. A 6-model strong ensemble of Copernicus Atmo-
spheric Monitoring Service (CAMS) was run throughout the
olive season of 2014, computing the olive pollen distribution.
The simulations have been compared with observations in
eight countries, which are members of the European Aeroal-
lergen Network (EAN). Analysis was performed for individ-
ual models, the ensemble mean and median, and for a dy-
namically optimised combination of the ensemble members
obtained via fusion of the model predictions with observa-
tions. The models, generally reproducing the olive season of
2014, showed noticeable deviations from both observations
and each other. In particular, the season was reported to start
too early by 8 days, but for some models the error mounted
to almost 2 weeks. For the end of the season, the disagree-
ment between the models and the observations varied from
anearly perfect match up to 2 weeks too late. A series of sen-
sitivity studies carried out to understand the origin of the dis-
agreements revealed the crucial role of ambient temperature
and consistency of its representation by the meteorological
models and heat-sum-based phenological model. In particu-
lar, a simple correction to the heat-sum threshold eliminated
the shift of the start of the season but its validity in other
years remains to be checked. The short-term features of the
concentration time series were reproduced better, suggesting
that the precipitation events and cold/warm spells, as well as
the large-scale transport, were represented rather well. En-
semble averaging led to more robust results. The best skill
scores were obtained with data fusion, which used the pre-
vious days’ observations to identify the optimal weighting
coefficients of the individual model forecasts. Such combi-
nations were tested for the forecasting period up to 4 days
and shown to remain nearly optimal throughout the whole
period.

1 Introduction

Biogenic aerosols, such as pollen and spores, constitute
a substantial fraction of particulate matter mass in the
air during the vegetation flowering season and can have
strong health effects, causing allergenic rhinitis and asthma
(D’ Amato et al., 2007).

Olive is one of the most extensive crops and its oil is one of
the major economic resources in southern Europe. The bulk
of olive habitation (95 % of the total area worldwide) is con-
centrated in the Mediterranean basin (Barranco et al., 2008).
Andalusia has by far the world’s largest area of olive planta-
tions: 62 % of the total olive land of Spain and 15 % of the
world’s plantations (Gémez et al., 2014).

Olive pollen is also one of the greatest causes of respi-
ratory allergies in the Mediterranean basin (D’ Amato et al.,

Atmos. Chem. Phys., 17, 12341-12360, 2017

M. Sofiev et al.: Olive pollen forecasting in Europe

2007), and in Andalusia it is considered the main cause of
allergy. In Cérdoba (southern Spain), 71-73 % of pollen-
allergy sufferers are sensitive to olive pollen (Sdnchez-Mesa
et al., 2005; Cebrino et al., 2017). High rates of sensitiza-
tion to olive pollen have been documented in Mediterranean
countries: 44 % in Spain and 20 % in Portugal (Pereira et al.,
2006), 31.8 % in Greece (Gioulekas et al., 2004), 27.5 % in
Portugal (Loureiro et al., 2005), 24 % in Italy (Negrini et al.,
1992), 21.6 % in Turkey (Kalyoncu et al., 1995), and 15 %
in France (Spieksma, 1990). At the same time, relations be-
tween allergy and pollen concentrations are person- and case-
specific: allergen content of the pollen grains varies from
year to year and day to day, as well as the individual sensi-
tivity of allergy sufferers (de Weger et al., 2013; Galan et al.,
2013).

Olive is an entomophilous species that presents a sec-
ondary anemophily, favoured by the agricultural manage-
ment during the last few centuries. This tree is very well
adapted to the Mediterranean climate and tolerates the high
summer and the low winter temperatures, as well as the sum-
mer drought, which is characteristic for this climate.

Olive floral phenology is characterised by bud forma-
tion during summer, dormancy during autumn, budburst in
late winter, and flowering in late spring (Fernandez-Escobar
et al., 1992; Galan et al., 2005; Garcia-mozo et al., 2006).
Similarly to some other trees, olive flowering intensity shows
alternating years with high and low or even no pollen pro-
duction. The characteristic quasi-biannual cycles are easily
visible in the observations (Ben Dhiab et al., 2017; Garcia-
Mozo et al., 2014). This cycle, similarly to that of other trees,
e.g. birch, is not strict and is frequently interrupted, showing
several years with similar flowering intensity (Garcia-Mozo
et al., 2014). Such cyclic behaviour is related to the repro-
ductive development, which is completed in two consecutive
years. In the first year, the bud vegetative or reproductive
character is determined by the current harvest level, since
this is the main factor responsible for the interannual varia-
tion of flowering. In the second year, after the winter rest, the
potentially reproductive buds that have fulfilled their chill-
ing requirements develop into inflorescences (Barranco et al.,
2008).

After budbreak, certain biothermic units are required for
the development of the inflorescences. Both the onset of the
heat accumulation period and the temperature threshold for
the number of positive heat units might vary according to
the climate of a determined geographical area. The threshold
level was also reported to decrease towards the north (Aguil-
eraetal., 2013). Altitude is the topographical factor that most
influences olive local phenology and the major weather fac-
tors are temperature, rainfall, and solar radiation, which con-
trol plant evapotranspiration (Oteros et al., 2013, 2014).

Several studies used airborne pollen as a predictor vari-
able for determining the potential sources of olive pollen
emission, e.g. concentric ring method (Oteros et al., 2015a;
Rojo et al., 2016), geostatistical techniques (Rojo and Pérez-
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Badia, 2015), and the spatio-temporal airborne pollen maps
(Aguilera et al., 2015).

There is substantial variability of the biological character-
istics of olive and its responses to environmental stresses. In
particular, the allergen content was shown to be strongly dif-
ferent in pollen from different parts of the Iberian Peninsula
(Galan et al., 2013).

Forecasting efforts of the olive pollen season were mainly
concentrated on statistical models predicting the start of the
season and peak using various meteorological predictors.
The bulk of studies is based on information from one or
a few stations within a limited region (e.g. Orlandi et al.,
2006; Moriondo et al., 2001; Alba and Diaz De La Guardia,
1998; Frenguelli et al., 1989; Galan et al., 2005; Fornaciari
etal., 1998). Several wider-area studies were also undertaken
to aim at more general statistical characteristics of the season,
e.g. Aguilera et al. (2014, 2013), Galan et al. (2016).

Numerical modelling of olive pollen transport is very lim-
ited. In fact, the only regular regional-scale computations
since 2008 were made by the SILAM model (http://silam.
fmi.fi), but the methodology was only scarcely outlined in
Galan et al. (2013).

The Copernicus Atmospheric Monitoring ~ Service
(CAMS; http://atmosphere.copernicus.eu) is one of the
services of the EU Copernicus programme, and it ad-
dresses various global and regional aspects of atmospheric
state and composition. The CAMS European air quality
ensemble (Marécal et al., 2015) provides high-resolution
forecasts and reanalysis of the atmospheric composition
over Europe. Olive pollen is one of the components which
is being introduced to the CAMS European ensemble in
co-operation with the European Aeroallergen Network
(EAN; https://www.polleninfo.org/country-choose.html).

One of the possible ways of improving the quality of
model predictions without direct application of data assim-
ilation is to combine them with observations via ensemble-
based data fusion methods (Potempski and Galmarini, 2009).
Their efficiency has been demonstrated for air quality prob-
lems (Johansson et al., 2015 and references therein) and cli-
matological models (Genikhovich et al., 2010), but the tech-
nology has never been applied to pollen.

The aim of the current publication is to present the first
Europe-wide ensemble-based evaluation of the olive pollen
dispersion during the season of 2014. The study followed the
approach of the multi-model simulations for birch (Sofiev
et al., 2015a) with several amendments reflecting the pecu-
liarity of olive pollen distribution in Europe. We also made
further steps towards fusion model predictions and observa-
tions and demonstrate their value in the forecasting regime.

The next section will present the participating models and
set-up of the simulations, the observation data used for evalu-
ation of the model predictions, an approach for constructing
an optimised multi-model ensemble, and a list of sensitiv-
ity computations. The Results section will present the out-
come of the simulations and the quality scores of the individ-
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ual models and the ensemble. Section 4 will be dedicated to
analysis of the results, considerations of the efficiency of the
multi-model ensemble for olive pollen, and identification of
the development needs.

2 Materials and methods

This section presents the regional models used in the study,
outlines the olive pollen source term implemented in all of
them, and describes pollen observations used for evaluation
of the model predictions.

2.1 Dispersion models

The dispersion models used in the study comprise the CAMS
European ensemble, which is described in detail by Marécal
et al. (2015) and Sofiev et al. (2015a). Below, only the model
features relevant for the olive pollen atmospheric transport
calculations are described.

The ensemble consisted of six models.

The EMEP model of EMEP MSC—-West (European Moni-
toring and Evaluation Programme Meteorological Synthesiz-
ing Centre — West) is a chemical transport model developed
at the Norwegian Meteorological Institute and described in
Simpson et al. (2012). It is flexible with respect to the choice
of projection and grid resolution. Dry deposition is handled
in the lowest model layer. A resistance analogy formula-
tion is used to describe dry deposition of gases, whereas
for aerosols the mass-conservative equation is adopted from
Venkatram (1978) with the dry deposition velocities depen-
dent on the land-use type. Wet scavenging is dependent on
precipitation intensity and is treated differently within and
below cloud. The below-cloud scavenging rates for parti-
cles are based on Scott (1979). The rates are size-dependent,
growing for larger particles.

EURAD-IM (http://www.eurad.uni-koeln.de) is an Eule-
rian mesoscale chemistry transport model involving advec-
tion, diffusion, chemical transformation, wet and dry de-
position, and sedimentation of tropospheric trace gases and
aerosols (Hass et al., 1995; Memmesheimer et al., 2004). It
includes 3D-VAR and 4D-VAR chemical data assimilation
(Elbern et al., 2007) and is able to run in nesting mode.
The positive definite advection scheme of Bott (1989) is
used to solve the advective transport and the aerosol sedi-
mentation. An eddy diffusion approach is applied to parame-
terise the vertical subgrid-scale turbulent transport (Holtslag
and Nieuwstadt, 1986). Dry deposition of aerosol species is
treated size-dependent using the resistance model of Petroff
and Zhang (2010). Wet deposition of pollen is parameterised
according to Baklanov and Sorensen (2001).

LOTOS-EUROS (http://www.lotos-euros.nl/) is an Eule-
rian chemical transport model (Schaap et al., 2008). The ad-
vection scheme follows Walcek and Aleksic (1998). The dry
deposition scheme of Zhang et al. (2001) is used to describe
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the surface uptake of aerosols. Below-cloud scavenging is
described using simple scavenging coefficients for particles
(Simpson et al., 2003).

MATCH (http://www.smhi.se/en/research/research-de
partments/air-quality/match-transport-and-chemistry-model
-1.6831) is an Eulerian multiscale chemical transport model
with mass-conservative transport and diffusion based on
a Bott-type advection scheme (Langner et al., 1998; Robert-
son and Langner, 1999). For olive pollen, dry deposition
is mainly treated by sedimentation and a simplified wet
scavenging scheme is applied. The temperature sum, which
drives pollen emission, is computed offline from January
onwards and is fed into the emission module.

MOCAGE  (http://www.cnrm.meteo.fr/gmgec-old/site_
engl/mocage/mocage_en.html) is a multiscale dispersion
model with grid-nesting capability (Josse et al., 2004; Martet
et al.,, 2009). The semi-Lagrangian advection scheme of
Williamson and Rasch (1989) is used for the grid-scale
transport. The convective transport is based on the param-
eterisation proposed by Bechtold et al. (2001), whereas the
turbulent diffusion follows the parameterisation of Louis
(1979). Dry deposition including the sedimentation scheme
follows Seinfeld and Pandis (1998). The wet deposition
caused by convective and stratiform precipitation is based
on Giorgi and Chameides (1986).

SILAM (http://silam.fmi.fi) is a meso- to global-scale dis-
persion model (Sofiev et al., 2015b), also described in the
review of Kukkonen et al. (2012). Its dry deposition scheme
(Kouznetsov and Sofiev, 2012) is applicable for a wide range
of particle sizes including coarse aerosols, which are pri-
marily removed by sedimentation. The wet deposition pa-
rameterisation distinguishes between sub- and in-cloud scav-
enging by both rain and snow (Sofiev et al., 2006). For
coarse particles, impaction scavenging, parameterised fol-
lowing Kouznetsov and Sofiev (2012), is dominant below the
cloud. The model includes emission modules for six pollen
types: birch, olive, grass, ragweed, mugwort, and alder, albeit
only birch, ragweed, and grass sources are so far described
in the literature (Prank et al., 2013; Sofiev, 2017; Sofiev et
al., 2012).

Three ENSEMBLE models were generated by (i) the arith-
metic average, (ii) the median and (iii) an optimal combina-
tion of the six model fields. The average and median were
taken on hourly basis, whereas optimisation was applied at
daily level following the temporal resolution of the observa-
tional data. For the current work, we used a simple linear
combination cop of the models ¢;;, m = 1...M, minimising
the regularised RMSE J of the optimal field:

M
Coptli, ok, 1,7, A) = ao(@®) + D aw(®) cm i, .k, 1),

m=1

A=laj...ayl, an >0Vm (1)
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J(t,7) = %g(cm(im Joskot, T A =)’ ()
M 1 2 M

+a; (amm - M) + ﬁ;(am(r -1 —an(r))?

T = {d—g.do). ©)

Here, i, j, k, t are indices along the x, y, z, and time axes,
M is the number of models in the ensemble, O is the num-
ber of observation stations, T = {d_x : dp} is the time pe-
riod of k+ 1 days covered by the analysis window, start-
ing from d_ to dy, T — 1 is the previous-day analysis period
T —1={d_k—1 :d_1}, ci is the concentration of pollen pre-
dicted by the model m, ¢, is observed pollen concentration,
ay, is the time-dependent weight coefficient of the model m
in the ensemble, ag is the time-dependent bias correction. In
Eq. (2), the first term represents the RMSE of the assimilated
period 7, the second term limits the departure of the coeffi-
cients from the homogeneous weight distribution, the third
one limits the speed of evolution of the a,, coefficients in
time. The scaling values « and $ decide on the strength of
regularisation imposed by these two terms.

The ensemble was constructed to mimic the forecasting
mode. Firstly, the analysis is made using data from the anal-
ysis period 7. The obtained weighting coefficients a; are used
over several days from day dy: from d; to dpf, which consti-
tute the forecasting steps. The performance of the ensemble
is evaluated for each length of the forecast, from 1 to n¢ days.

2.2 Olive pollen source term

All models of this study are equipped with the same olive
pollen source term, which has not yet been described in the
scientific literature. However, it follows the same concept as
the birch source (Sofiev et al., 2012) that was used for the
birch ensemble simulations (Sofiev et al., 2015a). The for-
mulations and input data are available at http:/silam.fmi.fi/
MACC. The main input data set is the annual olive pollen
production map based on the ECOCLIMAP data set (Cham-
peaux et al., 2005; Masson et al., 2003), Fig. 1.

ECOCLIMAP incorporates the CORINE land-cover data
for most western European countries with olive plantations
as an explicit land-use type (CEC, 1993). For Africa and
countries missing from CORINE, the empty areas were filled
manually, assuming that 10 % of all tree-like land-use types
are olives. This way, Tunisian, Egyptian, and Algerian olive
plantations were recovered and included in the inventory. In
some areas, such as France (Fig. 1), the olive habitat looks
unrealistically low, probably because the large olive planta-
tions are rare but the trees are planted in private gardens, city
park areas, streets, etc. Since these distributed sources are
not reflected in the existing land-use inventories, they are not
included in the current pollen production map.

www.atmos-chem-phys.net/17/12341/2017/
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Figure 1. Olive habitat map, showing the percentage of the area occupied by the trees [%]. Productivity of an area with 100 % olive coverage

is assumed to be 1010 pollen grain m~2 season!.

Similarly to birch, the flowering description follows the
concept of thermal time phenological models and, in par-
ticular, the double-threshold air temperature-sum approach
of Linkosalo et al. (2010) modified by Sofiev et al. (2012).
Within that approach, the heat accumulation starts on a pre-
scribed day in spring (1 January in the current set-up —
after Spano et al., 1999; Moriondo et al., 2001; Orlandi
et al. 2005a, b) and continues throughout spring. The cut-
off daily temperature below which no summation occurs is
0°C, in contrast to 3.5°C for birch. It was obtained from
the multi-annual fitting of the start of the season. Flowering
starts when the accumulated heat reaches the start threshold
(Fig. 2) and continues until the heat reaches the end threshold
(in the current set-up, which is equal to the starting thresh-
old 4275 degree day). The rate of heat accumulation is the
main controlling parameter for pollen emission: the model
assumes direct proportionality between the flowering stage
and fraction of the heat sum accumulated to date.

Similarly to the birch parameterisation in Sofiev
et al. (2012), the model distinguishes between pollen
maturation, which is solely controlled by the heat accumu-
lation described above, and pollen release, which depends
on other parameters. Higher relative humidity (RH) and rain
reduce the release, completely stopping it for RH > 80 %
and/or rain>0.1mmh~!. Strong wind promotes it by up

www.atmos-chem-phys.net/17/12341/2017/

to 50 %. Atmospheric turbulence is taken into account via
the turbulent velocity scale and thus becomes important
only in cases close to free convection. In stable or neutral
stratification and calm conditions the release is suppressed
by 50%. The interplay between pollen maturation and
release is controlled by an intermediate ready pollen buffer,
which is filled in by maturation and emptied by the release
flows.

Local-scale variability of flowering requires a probabilis-
tic description of its propagation (Siljamo et al., 2008). In the
simplest form, the probability of an individual tree entering
the flowering stage can be considered via the uncertainty of
the temperature-sum threshold determining the start of flow-
ering for the grid cell — 10 % in the current simulations. The
end of the season is described via the open-pocket principle:
the flowering continues until the initial available amount of
pollen is completely released. The uncertainty of this number
is taken to be 10 % as well.

2.3 Pollen observations
The observations for the model evaluation in 2014 have been
provided by the following eight national networks, members

of the EAN: Croatia, Greece, France, Hungary, Israel, Italy,
Spain, and Turkey. The data were screened for completeness

Atmos. Chem. Phys., 17, 12341-12360, 2017
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Figure 2. Heat-sum threshold for the start of the season. Unit=[° day].

and the existence of a significant olive season: (i) the time se-
ries should have at least 30 valid observations, (ii) at least 10
daily values during the season should exceed 3 pollenm—3,
and (iii) the seasonal pollen index (SPI, an integral of the
concentrations over the whole season) should be at least 25
pollen day m—3. After this screening, information from 62
sites was used in the intercomparison. Data from Hungary re-
ferred to 2016 and required dedicated computations for eval-
uating the long-range transport events.

Pollen monitoring was performed with Burkard 7 day and
Lanzoni 2000 pollen traps based on the Hirst design (Hirst,
1952). The pollen grains were collected at an airflow rate of
10 L min~". The observations covered the period from March
to September, with some variations between the countries.
Daily pollen concentrations were used. Following the EAS-
EAN requirements (Galan et al., 2014; Jiger et al., 1995),
most samplers were located at heights between 10 and 30 m
on the roofs of suitable buildings. The places were frequently
downtown of the cities, i.e. largely representing the urban
background conditions (but not always). With regard to mi-
croscopic analysis, the EAS-EAN requirement is to count at
least 10 % of the sample using horizontal or vertical strips
(Galan et al., 2014). The actual procedures vary between the
countries but generally comply. The counting in 2014 was
mainly along four horizontal traverses as suggested by Man-
drioli et al. (1998). In all cases, the data were expressed as
mean daily concentrations (pollenm™3).

2.4 Set-up of the simulations
Simulations followed the standards of the CAMS European

ensemble (Marécal et al., 2015). The domain spanned from
25°W to 45° E and from 30 to 70° N. Each of the six mod-
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els was run with its own horizontal and vertical resolutions,
which varied from 0.1 to 0.25° of the horizontal grid cell
size and had from 3 up to 52 vertical layers within the tro-
posphere (Table 1). This range of resolutions is not designed
to reproduce local aspects of pollen distribution; instead it
covers the whole continent and describes large-scale trans-
port. The 10km grid cells reach the sub-city scale but are
still insufficient to resolve the valleys and individual moun-
tain ridges. The limited number of vertical dispersion layers
used by some models is a compromise, allowing for high hor-
izontal resolution. Thick layers are not a major limitation as
long as the full vertical resolution of the input meteorological
data is used for evaluation of dispersion parameters (Sofiev,
2002).

The simulations were made retrospectively for the season
of 2014, from 1 January (the beginning of the heat-sum ac-
cumulation) to 30 June. All models produced hourly output
maps with concentrations at eight vertical levels (near the
surface, 50, 250, 500, 1000, 2000, 3000 and 5000 m above
the surface), as well as dry and wet deposition maps.

All models considered pollen as an inert water-insoluble
particle, 28 um in diameter, and with a density of 800 kgm—3.

3 Results of the pollen season of 2014
3.1 Observed peculiarities of the season

At the French Mediterranean stations (Aix-en-Provence, Avi-
gnon, Montpellier, Nice, Nimes, and Toulon), the mean value
of the SPI in 2014 was quite similar to that of 2012 but lower
than that in 2013 (see de Weger et al., 2013 for the SPI rele-
vance to allergy).

www.atmos-chem-phys.net/17/12341/2017/
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Table 1. Set-up of the simulations for the participating models.

12347

Model Horizontal Dispersion vertical ~ Meteo input Meteo grid Meteo vertical
dispersion
grid
EMEP 0.25° x 0.125° 20 levels up internal preprocessor 0.25° x 0.125° IFS lvs 39-91
to 100 hPa up to 100 hPa
EURAD-IM 15 km, Lambert 23 layers up WREF based on ECMWF IFS Same as CTM Same as CTM
conformal projection  to 100 hPa
LOTOS-EUROS  0.25° x 0.125° 3 dyn. lyrs up ECMWEF IFS 00 operational 0.5° x 0.25° IFS Ivs 69-91
to 3.5km, forecast, internal preprocessor up to 3.5km
sfc 25m
MATCH 0.2° x 0.2° 52 layers up ECMWEF IFS 00 from MARS,  0.2° x 0.2° IFS vertical: 91 lvs
to 7km internal preprocessor
MOCAGE 0.2° x0.2° 47 layers up ECMWEF IFS 00 operational 0.125° x 0.125°  IFS vertical 91 lvs
to 5hPa forecast, internal preprocessor
(7in ABL)
SILAM 0.1° x 0.1° 9 layers up ECMWEF IFS 00 operational 0.125° x 0.125°  IFS 1vs 62-137
to 7.5km forecast, internal preprocessor up to ~ 110 hPa

The start of the pollen season was earlier than in the previ-
ous 5 years. The duration of the season had been the longest
one in Aix-en-Provence, Nice, and Nimes since 2010. At the
Ajaccio (Corsica) station, the SPI was higher in 2014 than at
other stations, similarly to the situation in 2012.

In Andalusia, 2014 was the second warmest year of the last
few decades but was more humid than usual, at 5 % above the
typical relative humidity level (https://www.ncdc.noaa.gov/
sotc/global/201413). However, after an intense olive flower-
ing period in 2013, in 2014 the flowering intensity was lower
and similar to 2012, in agreement with the biannual alter-
ations of the season severity.

In northern Italy, the 2014 olive pollen season was less in-
tense than the average of the previous 10 years (2004-2013).
In contrast, in southern Italy, the 2014 season was more in-
tense in the first part and less intense in the second part (after
the beginning of June) than during previous seasons. No dif-
ferences were noted with respect to the start and the end of
the season in both cases.

In Thessaloniki, Greece, in 2014, the pollen season started
at the same time as in the last few decades (first half of April)
but ended about 1.5 months later (last half of October). The
pollen season peak has been steady in May. The SPI was con-
siderably higher in 2014 (418 pollen day m~3) compared to
the previous 2 years (approximately 300 pollen day m~3).
The overall shape of the pollen season in 2014 resembled that
of the previous decade, but with a multimodal and smoother
pattern.

3.2 Model results

The total seasonal olive pollen load (Figs. 3 and 4) expect-
edly correlates with the map of olive plantations (Fig. 1),
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which is also confirmed by the observations (Fig. 3). The
highest load is predicted over Spain and Portugal, whereas
the level in the eastern Mediterranean is not so high reflect-
ing the smaller size of the areas covered by the olive trees
and limited long-range transport over the Mediterranean. The
model predictions differ up to a factor of 2—4 (Fig. 4), reflect-
ing the diversity of modelling approaches, especially the de-
position and vertical diffusion parameterisations (see Table 1
and Sect. 3.1).

Since the olive plantations are located within a compara-
tively narrow climatic range, flowering propagates through
the whole region within a few weeks, starting from the
coastal bands and progressing inland (not shown).

Hot weather during the flowering season leads to strong
vertical mixing and a deep atmospheric boundary layer
(ABL), which in turn promotes the pollen dispersion. As seen
from Fig. 5, the pollen plumes can extend over the whole
Mediterranean and episodically affect central Europe. Figs. 4
and 5 illustrate the differences between the models, e.g. sub-
stantially higher concentrations reported by EURAD-IM and
MOCAGE compared to other models. The shortest transport
with the fastest deposition is manifested by LOTOS-EUROS
(also showing the lowest concentrations), while the longest
one is suggested by MOCAGE.

The most important general parameters describing the sea-
son timing are its start and end (Fig. 6). Following Andersen
(1991), these dates are computed as dates on which 5 and
95 % of the SPI are reached.

Computations of the model-measurement comparison
statistics face the problem of non-stationarity and non-
normal distribution of the daily pollen concentrations (Riten-
berga et al., 2016). For such processes, the usual non-
parametric statistics have to be treated with a great amount

Atmos. Chem. Phys., 17, 12341-12360, 2017
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Figure 3. Observed (dots) and median-model-predicted (shades) seasonal pollen index (SPI, sum of daily concentrations), 2014
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Figure 4. Modelled seasonal pollen index (SPI) by the individual ensemble members and mean models, 2014 [pollen day m™

of care, since their basic assumptions are violated. Never-
theless, they can be formally calculated for both individual
models and the ensemble (Figs. 7 and 8). The main charac-
teristic of the ensemble, the discrete rank histogram, and the

Atmos. Chem. Phys., 17, 12341-12360, 2017

Pollen day m*
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distribution of the modelled values for the below-detection-
limit observations (Fig. 9) show that the spread of the ob-
tained ensemble is somewhat too narrow in comparison with
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the dynamic range of the observations. The same limitation
was noticed for the birch ensemble.

The patterns in Figs. 6 and 7 reveal a systematic early bias
of the predicted start and end of the season, which is easily
seen from normalised cumulative concentration time series
(Fig. 10). This bias is nearly identical for all models, except
for EURAD-IM, which also shows a higher correlation co-
efficient than other models. The reasons for the problem and
for the diversity of the model response are discussed in the
next section.

4 Discussion

In this section, we consider the key season parameters and
the ability of the presented ensemble to reproduce them
(Sect. 4.1), the added value of the multi-model ensembles,
including the optimised ensemble (Sect. 4.2), the main un-
certainties that limit the model scores (Sect. 4.3), and the key
challenges for future studies (Sect. 4.4).

4.1 Forecast quality: model predictions for the key
season parameters

The key date of the pollen season is its start: this very date
refers to adaptation measures that need to be taken by al-
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lergy sufferers. Predicting this date for olives is a signifi-
cantly greater challenge than, for example, for birches: the
heat sum has to be accumulated from 1 January with the sea-
son onset being in mid-April, whereas for birches the dates
are 1 March and mid-March, respectively. As a result, the
prediction of the start of the olive season strongly depends on
the temperature predictions by the weather prediction model
and the way this temperature is integrated into the heat sum.
Inconsistency between these factors over the period of almost
4 months, even if small, can easily lead to a week of error. As
one can see from Figs. 7 and 8, there is a systematic albeit
spatially inhomogeneous bias of all models by up to 10 days
(too early season). The exception is the SILAMos150 sen-
sitivity run, which used the higher heat-sum threshold, by
150 degree days (~ 10 %), than the standard level (Fig. 2).
No other sensitivity runs, including the simulations driven by
ERA-Interim fields, showed any significant improvement of
this parameter. Importantly, EURAD-IM, which is driven by
'WREF meteorology fields, also showed a similar bias. Finally,
the shift varies among the stations from near-zero (France,
some sites in Italy, Croatia, Greece, and Israel) up to almost
3 weeks in north-western Spain. It means that no “easy” so-
lution exists and an analysis of long-term time series is called
for, aiming at a refinement of the heat-sum formulations and
threshold values.

Atmos. Chem. Phys., 17, 12341-12360, 2017
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Figure 6. The start (5% of the cumulative seasonal concentrations) and the end (95 % of the cumulative seasonal concentrations) of the
olive season in 2014 as day of the year, predicted by the median of the ensemble and observed by the stations with a sufficient number of

observations.

The end of the season showed an intriguing picture:
EURAD-IM, despite starting the season as early as all other
models, ends it 2 days too late instead of 5 days too early as
all other models (see examples for two stations in Fig. 10).
This indicates that WRE, in late spring, predicts a lower tem-
perature than IFS, which leads to a longer-than-observed sea-
son in the EURAD-IM predictions. Other models showed
the correct season length and, due to initial early bias, end it
a few days too early. The de-biased run SILAMos150 shows
an almost perfect shape and has within a 1 day accuracy for
the start and end, which supports a 250 degree day as a sea-
son length parameter.

The most divergent model predictions are shown for
the absolute concentrations (Fig. 8). With the mean ob-
served April-June concentration of 35 pollenm ™ the range
of predictions spans over a factor of four: EURAD-IM and
MOCAGE being two times as high and EMEP and LOTOS-
EUROS two time as low. Shifting the season by 5 days in
the SILAMos150 run also changes the model bias, reflect-
ing differences in the transport patterns and the impact of
stronger vertical mixing in later spring. Spatially, the bias is

Atmos. Chem. Phys., 17, 12341-12360, 2017

quite homogeneous, except for southern Spain, where a het-
erogeneous pattern is controlled by local conditions at each
specific site (Fig. 7).

Temporal correlation is generally high in coastal areas
(Fig. 7) but at or below 0.5 at terrestrial stations on the
Iberian Peninsula (the main olive plantations). This is primar-
ily caused by the shifted season: the simulations with more
accurate seasons showed the highest correlations among all
models with ~ 60 % of sites having a significant correlation
(p <0.01, Fig. 8).

Comparison with local statistical models made for single
or a few closely located stations expectedly shows that local
models are usually comparable to but somewhat more ac-
curate (at their locations) than the European-scale dispersion
models; also see discussion in Ritenberga et al. (2016). Thus,
(Galan et al., 2001) analysed the performance of three popu-
lar local models for Cérdoba, with the best one showing the
mean error of 4.7 days at the start of the season but reach-
ing up to 14 days in some years. A similar error was found
for Andalusia (Galan et al., 2005) and two sites (Perugia and
Ascoli Piceno) in Italy (Frenguelli et al., 1989) — 4.8 and

www.atmos-chem-phys.net/17/12341/2017/
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Figure 7. Results of model-measurement comparison for the ensemble mean: correlation coefficient for daily time series, mean bias April—
June (pollen m_s), RMSE (pollenm_3), and error at the start of the season (days).

4.33 days of the standard error, respectively. A recent study
(Aguilera et al., 2014) constructed three independent statis-
tical models for Spain, Italy, and Tunisia and ended up with
over 5 days of standard error for the Mediterranean. In an-
other study, the authors admitted the scale of the challenges:
“The specific moment for the onset of the olive heat accu-
mulation period is difficult to determine and has essentially
remained unknown” (Aguilera et al., 2013).

One of the strengths of continental-scale dispersion mod-
els is their ability to predict long-range transport events.
However, a direct evaluation of this feature for olive pollen
is difficult, since countries without olive plantations usually
do not count its pollen. One can, however, refer to Fig. 3
(zoomed map of Spain), which shows that the ensemble
successfully reproduces the drastic change of the SPI from
nearly 10° pollen daym~ in the south of Spain down to
less than 100 pollen day m~> in the north. Episode-wise, an
example of a well-articulated case of olive pollen transport
from Italy to Hungary in 2016 was brought up by Udvardy
et al. (2017), who analysed it with adjoining SILAM simu-
lations. The episode was also predicted well by the forward
computations.

www.atmos-chem-phys.net/17/12341/2017/

4.2 Ensemble added value

Arguably the main uncertainty of the model predictions was
caused by the shift of the season start and end — the parame-
ters were heavily controlled by temperature, i.e. least affected
by transport features of the models. As a result, application of
the “simple” ensemble technologies does not lead to a strong
improvement. Some effect was still noticed, but it was less
significant than in case of birch or traditional AQ forecast-
ing. Therefore, in this section we also consider the possibility
of ensemble-based fusion of the observational data with the
model predictions. All ensembles were based on operational
models; i.e. the SILAMos150 run was not included in either
of them.

4.2.1 Mean ensembles: arithmetic average and median

Considering the mean-ensemble statistics, one should keep
in mind that both the meteorological driver and the source
term parameterisation were the same for all models (except
for EURAD driven by WRF). This resulted in the underrep-
resentative ensemble (Fig. 9), for which several good and bad

Atmos. Chem. Phys., 17, 12341-12360, 2017
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features visible in all models propagate to the mean ensem-
bles.

Among the simple means, the arithmetic average per-
formed better than the median, largely owing to strong
EURAD-IM impact. That model overestimated the concen-
trations and introduced a powerful push towards an extended
season, thus offsetting the early bias of the other models.
Since the median largely ignored this push, its performance
was closer to that of other models. Nevertheless, both the
mean and median demonstrated low RMSE, the median be-
ing marginally better.

www.atmos-chem-phys.net/17/12341/2017/
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4.2.2 Fusing the model predictions and observations
into an optimised ensemble: gain in the analysis
and predictive capacity

Developing the ensemble technology further, here we present
the first attempt of fusion of the observational data with the
multi-model ensemble for olive pollen.

In Sect. 3.1, Eq. (2) requires three parameters: the regu-
larisation scaling parameters « and 8, and length of the as-
similation window T'. For the purposes of the current feasi-
bility study, several values for each of the parameters were
tested and the robust performance of the ensemble was con-
firmed with very modest regularisation strength and for all
considered lengths of the analysis window from 1 to 15 days.

Atmos. Chem. Phys., 17, 12341-12360, 2017
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Figure 11. Optimal weights of the individual models and ensemble correlation score over the 5-day-long assimilation window (panel a);
RMSE of the of individual models and the optimal ensemble forecasts against those of individual models and simple ensemble means (b),

and against persistence-based forecasts (panel c).

Finally, « = 0.1, 8 =0.1, T =5 days were selected for the
example below as a compromise between the smoothness of
the coefficients, regularisation strength, and the optimisation
efficiency over the assimilation window.

The optimised ensemble showed (Fig. 11a) that each of the
six models had a substantial contribution over certain parts of
the period. Over some times, e.g. during the first half of May,
only one or two models were used, other coefficients being
put to zero, whereas closer to the end of the month, all models
were involved. Finally, prior to and after the main season,
concentrations were very low and noisy, so the regularisation
terms of Eq. (2) took over and pushed the weights to an a
priori value of 1/6.

The bulk of the improvements came in the first half of the
season (Fig. 11b). After the third peak in the middle of May,
the effect of assimilation becomes small and the optimisation
tends to use the intercept to meet the mean value, whereas the
model predictions become small and essentially uncorrelated
with the observations. This corroborates with the observed 8-
day shift of the season, which fades out faster in the models
than in the observed time series (Fig. 10).

There was little reduction in the predictive capacity of the
optimised ensemble when going out of assimilation window
and towards the forecasts. In essence, only the first peak of
the concentrations (and RMSE) is better off with shorter fore-
casts. For the rest of the season (before and after the peak) the
5-day assimilation window led to a robust combination of the
models that stayed nearly optimal over the next 5 days.

Comparison with other forecasts expectedly shows that the
optimised ensemble not only has significantly better skills
than any of the individual models, but is up to 25-30 % bet-
ter than the mean and median of the ensemble (Fig. 11b).
A stronger competitor was the “persistence forecast” when
the next-day concentrations are predicted to be equal to the
last observed daily value. The 1-day persistence appeared to
be the best possible “forecast”, which shows an RMSE at the
beginning of May that is two times lower than in the 1-day
forecast of the optimal ensemble (Fig. 11c). However, 2-day
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persistence forecast had about the same RMSE as the ensem-
ble, and 3- and 4-day predictions were poor.

The strong performance of the 1-day persistence forecast
is not surprising and, with the current standards of the pollen
observations, has no practical value: the data are always late
by more than 1 day (counting can start only next morning
and become available about midday). The second problem
of the persistence forecast is that it needs actual data; i.e.
the scarcity of pollen network limits its coverage. Thirdly,
persistence loses its skills very fast: the day 42 forecast has
no superiority over the optimal ensemble, whereas day +3
and +4 persistence-based predictions are useless. Finally, at
local scale, state-of-the-art statistical models can outperform
it — see discussion in Ritenberga et al. (2016).

One should, however, point out that the 1-day predicting
power of the persistence forecast (or more sophisticated sta-
tistical models based on it) can be a strong argument for the
future real-time online pollen monitoring. It’s delay can be as
short as 1 h (Crouzy et al., 2016; Oteros et al., 2015b). These
data have good potential to be used for next-day predictions
for the vicinity of the monitor.

4.3 Sensitivity of the simulations to model and source
term parameters

The above-presented results show that arguably the most sig-
nificant uncertainty was due to shifting the start and the end
of the season. It originated from the long heat-sum accumu-
lation (since 1 January), where even a small systematic dif-
ference between the meteorology driving the multi-annual
fitting simulations and that used for operational forecasts
causes a significant season shift by late spring. In some ar-
eas, the resolution of the NWP model plays a role as well:
the complex terrain in the north of Spain and in Italy requires
dense grids with which to resolve the valleys. Other possible
sources of uncertainties might need attention.

To understand the importance of some key parameters,
a series of perturbed runs of SILAM was made:

www.atmos-chem-phys.net/17/12341/2017/
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— 05100 and 0s150 runs with the season starting threshold
increased by 100 and 150 degree days (the 0s150 run is
referred in the above discussion as SILAMos150),

— ERA run with ERA-Interim meteorological fields,
which were used for the source parameters fitting,

— series of three runs with reduced vertical mixing within
the ABL and the free troposphere,

— smlpoll run with 20 um size of the pollen grain,

— smlpoll_coarse run with 20 um pollen size and coarse
computational grid (0.2° x 0.2°).

The ERA simulations with ERA-Interim reduced the shift
of the start of the season by 2 days but increased the shift
of the end by 3 days, i.e. making the season shorter by
5 days. At the same time, the 0s150 run showed that a sim-

www.atmos-chem-phys.net/17/12341/2017/

ple increase of the heat-sum threshold by ~ 10 % (150 de-
gree days) essentially eliminates the mean shift for 2014, but
it remains unclear whether this adjustment is valid for other
years.

Variations of the mixing parameterisation (perturbing the
formula for the K eddy diffusivity) did not lead to signifi-
cant changes: all scores stayed within 10 % of the reference
SILAM simulations.

Evaluation of the impact of deposition parameterisations
was more difficult since they are model specific. Higher
deposition intensity causes both reduction of the transport
distance and absolute concentrations. This issue might be
behind the low values reported by LOTOS-EUROS and,
conversely, the high concentrations of EURAD-IM and
MOCAGE. Its importance was confirmed by the SILAM sen-
sitivity simulations with smaller pollen size, smlpoll, and
smlpoll_coarse. Both runs resulted in the mean concentra-
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tions more than doubling but with a marginal effect on tem-
poral correlation. They also differed slightly from each other.

Variations of the fusion parameters showed a certain ef-
fect. For a short averaging window (5 days or less), the vari-
ations of weighting coefficients increased and the time series
became noisier (Fig. 12). On return, the correlation increased
almost up to 0.8-0.9 for some analysis intervals, but stayed
the same for other periods. Also, the 1-day forecast RMSE
decreased for some days but little difference was found for
longer predictions.

4.4 Main challenges for the future studies

The current study is the first application of numerical mod-
els to olive pollen dispersion in Europe. One of its objectives
was to identify the most pressing limitations of the current
approach and the extent to which the ensemble and data fu-
sion technologies can help in improving the forecasts.

The most evident issue highlighted by the exercise is the
shift of the pollen season in some key regions, which is simi-
lar in all models, suggesting some unresolved inconsistencies
between the heat-sum calculations of the source term and
the features of the temperature predictions by the weather
model. The issue suggests some factor(s) currently not in-
cluded or misinterpreted in the source term. One of the candi-
date processes is the chilling-sum accumulation suggested by
some studies, e.g. Aguilera et al. (2014). A switch to differ-
ent types of phenological models with genetic differentiation
of the populations following Chuine and Belmonte (2004) is
another promising option.

The second issue refers to the underestimation of the
pollen concentration in France, which probably originates
from a comparatively large number of olive trees spread, for
example, in private gardens but not accounted for in the agri-
cultural maps of olive plantations.

The third set of questions refers to the pollen load pre-
diction, i.e. the possibility of forecasting the overall season
severity before it starts. Several statistical models have been
presented in the literature, e.g. Ben Dhiab et al. (2017) for to-
tal annual load and Chuine and Belmonte (2004) for relative
load. Their evaluation and implementation in the context of
dispersion models is important.

An issue, mostly addressing the long-term horizon rather
than the short-term forecasts, is the validity of the developed
models in the conditions of changing climate. The models
have to be robust to the trends in meteorological forcing.
Purely statistical models are among the most vulnerable in
this respect, because they just quantify the apparent corre-
lations observed under certain conditions but do not explore
the processes behind these relations.

Finally, the first steps towards the ensemble-based fusion
of the model forecasts and pollen observations showed a
strong positive effect. Further development of these tech-
niques combined with progress towards near-real-time pollen
data has very high potential for improving the forecasts.
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5 Summary

An ensemble of six CAMS models was run through the olive
flowering season of 2014 and compared with observational
data of eight countries of European Aeroallergen Network
(EAN).

The simulations showed a decent level of reproduction of
the short-term phenomena but also demonstrated a shift of
the whole season by about 8 days (~ 20 % of the overall pol-
lination period). An ad-hoc adjustment of the starting heat-
sum threshold by ~ 10 % (150 degree days) on average re-
solves the issue and strongly improves the model skills, but
its regional features and validity for other years and meteo-
rological drivers remain unclear.

The ensemble members showed quite diverse pictures,
demonstrating substantial variability, especially in areas re-
mote from the main olive plantations. Nevertheless, the ob-
servation rank histogram still suggested a certain understate-
ment of the ensemble variability in comparison with the
observations. This partly originates from the synchronised
source-term formulations and meteorological input used by
all but one model.

Simple ensemble treatments, such as the arithmetic aver-
age and median, resulted in a more robust performance, but
they did not outrun the best models over significant parts of
the season. The arithmetic average turned out to be better
than the median.

A data-fusion approach, which creates the optimal-
ensemble model using the observations over preceding days
for an optimal combination of the ensemble members, is sug-
gested and evaluated. It was based on an optimal linear com-
bination of the individual ensemble members and showed
strong skills, routinely outperforming all individual models
and simple ensemble approaches. It also showed strong fore-
casting skills, which allowed an application of the past-time
model weighting coefficients over several days in the future.
The only approach outperforming this fusion ensemble was
the 1-day persistence-based forecast, which has no practical
value due to the manual pollen observations and limited net-
work density. It can, however, be used in the future when
reliable online pollen observations become available.

A series of sensitivity simulations highlighted the impor-
tance of a meteorological driver, especially its temperature
representation, and deposition mechanisms. The data fusion
procedure was quite robust with regard to analysis window,
still requiring 5-7 days to eliminate the noise in the model
weighting coefficients.

Data availability. The model simulations presented in the paper
are freely available on-request from the FMI team. The archive of
1.1 TB size is stored in the long-term FMI tape archive.
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