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ABSTRACT 

 

Development and application of sensitive mass spectrometric methods for the effective 

determination of polycyclic aromatic hydrocarbons in food. Rozentāle I., supervisors Dr. 

Chem., Assoc. Prof. Bartkevičs V. and Dr. Chem., Prof. Vīksna A. Doctoral thesis in 

analytical chemistry, 130 pages, 20 figures, 26 tables, 161 literature references, 10 annexes. In 

English. 

 

A new analytical methodology for the determination of polycyclic aromatic 

hydrocarbons (PAHs) by applying dispersive solid-phase extraction with multi-walled carbon 

nanotubes as sorbents for selective extraction of analytes has been elaborated. The method 

demonstrated its appropriate performance and underlined good reliability and practicability 

for the analysis of four EU-regulated PAHs. 

For the first time, the analytical capabilities of Orbitrap mass spectrometry equipped 

with atmospheric pressure photoionisation ion source was applied and assessed for the 

quantitative determination of the PAHs in dark chocolate. This elaborated analytical method 

was demonstrated to be an accurate, precise, and a powerful tool for the determination of non-

polar hydrophobic PAHs at trace levels, enabling its routine use even for difficult matrices. 

Within the study two different gas chromatographic – mass spectrometric methods 

were developed, optimised and compared for the determination of PAHs at ultra-low 

contamination levels. Elaborated methods showed superior performance over single mass 

spectrometric detection and highlighted the need for proper control of cereal-based products 

with regards to low levels of contamination and high consumption. 

A special attention in a study was drawn to risks associated with the consumption of 

smoked meat and smoked meat products in Latvia, with an emphasis to consumer’s 

preferences and dietary habits. Furthermore, the present study reports data on the occurrence 

of PAHs in different foods and mitigation strategies for reducing the PAHs content were 

proposed.  

 

POLYCYCLIC AROMATIC HYDROCARBONS, FOOD, OCCURRENCE OF PAHs, RISK 

ASSESSMENT, TANDEM MASS SPECTROMETRY, HIGH RESOLUTION MASS 

SPECTROMETRY, ORBITRAP 

  



9 
 

ANOTĀCIJA 

 

Jutīgo masspektrometrisko metožu izstrāde un pielietojums policiklisko 

aromātisko ogļūdeņražu efektīvai noteikšanai pārtikā. Rozentāle I., zinātniskie vadītāji 

Dr. ķīm., asoc. prof. Bartkevičs V. un Dr. ķīm., prof. Vīksna A. Promocijas darbs, 130 

lappuses, 20 attēli, 26 tabulas, 161 literatūras avoti, 10 pielikumi. Angļu valodā. 

 

Promocijas darbā tika izstrādāta jauna un inovatīva paraugu sagatavošanas metode 

selektīvai policiklisko aromātisko ogļūdeņŗažu (PAH) noteikšanai, kas balstās uz dauzslāņu 

oglekļa nanocaurulīšu izmantošanu par dispersīvās cietfāzes ekstrakcijas sorbentu. Izstrādātā 

metode uzrādīja teicamas pielietošanas spējas, sniedzot ticamus un precīzus rezultātus Eiropas 

Savienības četru prioritāro PAH noteikšanā. 

Pirmo reizi Orbitrap masspektrometra analītiskās spējas tika piemērotas un izvērtētas 

PAH kvantitatīvai noteikšanai tumšajā šokolādē, izmantojot atmosfēras spiediena 

fotojonizācijas jonu avotu. Izstrādātā metode uzrādīja selektīvu un precīzu PAH detektēšanu 

zemās piesārņojuma koncentrācijās, pavērot jaunas iespējas PAH rutīnās analīzēs sarežģītās 

matrices gadījumos. 

Promocijas darbā tika izstrādātas, optimizētas un izvērtētas divas gāzu hromatogrāfijas 

– masspektrometrijas metodes PAH kvantitatīvai noteikšanai īpaši zemos piesārņojuma 

daudzumos. Abas metodes demonstrēja izcilas spējas un uzsvēra pienācīgās graudaugu 

produktu kontroles nepieciešamību, ņemot vērā produktu zemo piesārņojuma līmeni un 

augsto patēriņu uzturā. 

Īpaša uzmanība promocijas darbā tika veltīta riskiem, kas saistīti ar kūpinātās gaļas 

produktu patēriņu Latvijā, ņemot vērā vietējo pātērētāju izvēli un paradumus. Darbā tika 

izpētīta PAH sastopamība lielā pārtikas produktu klāstā, kā arī tika piedāvātas un izvērtētas 

divas PAH piesārņojuma mazināšanas stratēģijas. 

 

POLICIKLISKIE AROMĀTISKIE OGĻŪDEŅRAŽI, PĀRTIKA, PAO SASTOPAMĪBA, 

RISKA NOVĒRTĒJUMS, TANDĒMA MASSPEKTROMETRIJA, AUGSTAS 

IZŠKIRTSPĒJAS MASSPEKTROMETRIJA, ORBITRAP  
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INTRODUCTION 

 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants, 

often with carcinogenic, teratogenic, and mutagenic effects [1-4]. Their physical and chemical 

properties, particularly high stability and lipophilicity, gives them ubiquity and capacity of 

accumulation in the living organisms and nature [5-6]. However, PAHs are not listed in a 

persistent organic pollutants (POPs) list by a Stockholm Convention, PAHs often goes in line 

with POPs and are classified as extremely toxic compounds for the environment and human 

health at a world scale [7-8]. 

Humans are exposed to PAHs through different pathways and it was proved in various 

studies that for the non-smokers the major route of exposure is consumption of food [1, 9-10]. 

Food is frequently contaminated with the PAHs, while the levels of PAHs found in food 

varies significantly. For example, the levels of PAHs found in unprocessed foods (fruits and 

vegatables, grains etc.) in rural areas reflect the background contamination (usually between 

0.010 and 0.50 μg kg-1) [11-13], whereas highly elevated concentrations of PAHs (up to 1 700 

µg kg-1) in smoked meat products can still be occasionally reported [14-18]. Hence, the 

importance of research on the PAHs occurrence in different foods is highlighted. A special 

attention should be drawn to a quantitatively minor foods or ingredients that can hold a 

significant potential to contaminate a wide range of products due to the wide spread use and 

large-scale distribution (for example, dried herbs and spices, cocoa). 

Furthermore, to secure the public health, additional focus should be set to the risk 

assessment processes and mitigation strategies to reduce the chemical contamination of 

different food chain products with PAHs. 

The practical relevance of the problem. Nowadays, food quality control institutions 

are established, food regulations and standards are developed, however, different methods and 

approaches may be used to assure food safety at appropriate level. 

The low levels of the PAHs in food are often accompanied with the high consumption 

levels, and contrarily, high contamination levels often deals with low intake. Thus, due to the 

carcinogenic properties of the PAHs and its occurrence in food, the Scientific Committee on 

Food (SCF) recommended that the PAH contents in food should be “as low as reasonably 

achievable” in adherence with the so-called ALARA-principle [9]. Thus, methods for the 

PAHs determination should be sensitive enough to meet the aforementioned requirements and 

ensure the quality and safety of food [19-20]. 

The analysis of organic contaminants in food samples is hampered by interfering 

compounds present in the complex food matrices and the food matrix itself [5, 21-22]. 
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Therefore, the most challenging task for analysts is to maximise recovery of analyte and 

minimise the accompanying interferences by proper extraction and clean-up procedures. In 

order to observe the better separation, extraction and clean-up, novel and selective methods 

are of a great importance. 

Analytical approaches for the PAHs determination were historically based on both gas 

chromatography (mainly, gas chromatography with single quadrupole mass spectrometric 

detection (GC-MS)) and liquid chromatography (with both, fluorescence (FLD) and triple 

quadrupole (MS/MS) mass spectrometric detection) [1, 8, 10, 13]. In recent years, due to 

many advantages of high resolution mass spectrometry (HRMS) such as greater peak capacity 

and enhanced sensitivity, a general shift from single quadrupole mass spectrometric detection 

in case of GC, (GC-MS) and triple quadrupole detection, for LC systems, (LC-MS/MS) to 

HRMS has been observed [23-26]. Despite this fact, the usage of HRMS methods in PAHs 

analysis remains poorly investigated. 

The aim of the work. Several aims were proposed during this thesis: 

i. Elaboration of sensitive novel mass spectrometric methods for the simultaneous 

determination of the selected PAHs in different food samples; 

ii. Estimating the occurrence of PAHs in different foods and risk assessment for these 

contaminants; 

iii. The investigation of new strategies to reduce the contamination of PAHs in smoked 

food. 

The approach used. The following objectives have been set in order to fulfil the aims 

of the thesis: 

i. Development of an efficient sample extraction and clean-up procedure, together with 

the investigation of optimal conditions for the analysis of the PAHs using multi-walled carbon 

nanotubes as sorbents for dispersive solid-phase extraction (d-SPE); 

ii. The elaboration of an efficient and reliable analytical method using liquid 

chromatography/high resolution Orbitrap mass spectrometry for the analysis of the PAHs in 

the samples of complex matrix (dark chocolate); 

iii. The optimisation of GC-MS/MS and GC-HRMS instrumental methods for the 

determination of the PAHs at ultra low contaminaton levels and the comparative assessment 

of two investigated methodologies in terms of sensitivity, selectivity and robustness; 

iv. Application of the developed analytical methods for the analysis of selected PAHs and 

the risk assessment associated with their presence in different foods; 

v. Consideration of the ways for the PAHs reduction in smoked foods. 
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Scientific novelty. 

i. The elaboration of a novel sample preparation method based on d-SPE with MWCNTs 

as sorbents for selective extraction of the PAHs; 

ii. The development, optimisation and application of a HPLC-Orbitrap-MS analytical 

method with an APPI ionisation source for sensitive and selective determination of four EU 

marker PAHs; 

iii. Comparative evaluation of GC-MS/MS based analytical method versus GC-HRMS 

based method in the analysis of PAHs; 

iv. Assessment of Latvian population exposure to PAHs intake from smoked food; 

v. Proposals for new mitigation strategies to prevent, eliminate or reduce PAHs 

contamination in smoked food. 

Practical application of the work. The elaborated analytical methods could be applied 

for the extended monitoring of the occurrence of the selected PAHs in different foods, while 

the proposed strategies to reduce the PAHs contamination should be reassessed and can be 

suggested only in case of the lactic acid bacteria treatment.   
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1. LITERATURE REVIEW 

 

1.1. Polycyclic aromatic hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds 

(comprising about 10,000 substances) containing two or more aromatic rings without any 

heteroatoms or substituents and are of special importance because of their widespread 

distribution throughout the environment and their potential toxic, carcinogenic, and mutagenic 

properties [2, 3, 6, 9, 27]. PAHs can be classified according to the number of condensed 

aromatic rings as light (2-3 rings) and heavy (4-6 rings) PAHs, the latter being more stable 

and toxic than the light ones [5]. 

PAHs are formed in all incomplete combustion processes with insufficient oxygen 

supply at >200°C temperatures and originate from natural (forest fires, volcanic activity) and 

anthropogenic sources (fossil fuel combustion, industrial and agricultural activities, power 

generation, municipal and medical waste incineration) [10, 28-29]. 

According to numerous studies, food is the main source of non-smokers exposure to 

PAHs [1, 30-31] and this fact highlights the importance of research about PAHs in food and 

the development of mitigation strategies to reduce such contamination [10]. PAHs occurring 

in foods are not present individually, but always exist as complex mixtures, so the occurrence 

of a whole range of PAHs in food and environment represents a cause for concern. 

Furthermore, PAHs that are not defined as carcinogens often may act as synergists of 

carcinogenesis [22]. 

PAHs that are found in foods may be formed during industrial food processing or 

domestic food preparation, such as smoking, drying, roasting, baking, frying, or grilling [21, 

32-35]. Food can be also contaminated with PAHs present in the environment, i.e., PAHs can 

accumulate on the waxy surfaces of many vegetables and fruits. Indeed, the presence of PAHs 

in uncooked food, such as vegetables, seeds, and grains has also been demonstrated. For 

example, Fismes et al. (2002) have experimentally demonstrated the uptake of PAHs by fruit 

and vegetables grown in contaminated soils [11]. Another example of possible PAH 

contamination in foods is due to traffic exhaust, i.e., crops or livestock close to busy roads 

could be exposed to PAHs and nitro-PAHs (derivatives from PAHs), which often show higher 

mutagenic, carcinogenic, and toxic activity in comparison to their corresponding PAHs [36]. 

Benzo[a]pyrene (BaP) is the most studied compound among high molecular weight 

PAHs. It has been classified by the US Environmental Protection Agency (US EPA) as a 

priority pollutant: a compound selected on the basis of its known or suspected 
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carcinogenicity, teratogenicity or acute toxicity [37]. Since 2012, BaP has been ranked as a 

top example among human carcinogens in a report by the World Health Organization (WHO) 

International Agency for Research on Cancer [4]. Multiple animal studies in many species 

have demonstrated the carcinogenicity of BaP following administration by numerous routes 

[4, 33, 38-39]. In addition, BaP has been shown to cause genotoxic effects in a broad range of 

prokaryotic and mammalian cell assays, therefore its occurrence in the environment and food 

products is of great concern [40]. 

Despite the structural diversity of PAHs, only selected representatives are considered 

to be toxicologically significant, among which benzo[a]anthracene (BaA), chrysene (Chr), 

benzo[b]fluoranthene (BbF), and BaP are recognised in the EU as a subgroup of four priority 

PAHs (Fig. 1.1.) and are regulated in food products according to Commission Regulations 

(EU) No. 836/2011, 2015/1933 and 2015/1125 [1, 41-44]. 

 

Fig. 1.1. Four EU-regulated priority PAHs 

In October 2005 EFSA adopted the margin of exposure (MOE) approach for health 

risk assessment regarding PAHs in food [1]. The MOE is defined as a function of the potency 

of a given chemical assessed using animal carcinogenicity assays and human dietary exposure 

to the chemical in question and is calculated by dividing the lowest confidence limit of 

benchmark dose for a 10% increase in the number of tumour bearing animals compared to 

control animals (BMDL10) by the mean and high level estimates of dietary exposure to BaP 

and PAH4. The reference BMDL10 values among the accepted ones for the derivation of a 

MOE are 0.07 mg kg-1 b.w. per day for BaP and 0.34 mg kg-1 b.w. per day for the PAH4 [1]. 

In the Scientific Committee report EFSA also stated that a MOE of 10000 or higher is 
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considered of low concern from a public health point of view with respect to the carcinogenic 

effect and might be reasonably considered as a low priority for risk management actions [1]. 

 

1.2. Analytical methods for the determination of the PAHs 

A large number of analytical methods for the determination of the PAHs in food have 

been proposed over the years, which relied on different purification, pre-concentration, and 

determination procedures [3, 45]. The main obstacle in the analysis of PAHs is that the major 

constituents of most matrices are high molecular weight compounds (e.g., triglycerides and 

fatty acids), thus laborious procedures need to be applied in order to separate analyte fractions 

from the matrix and to achieve the desired purity of the final extract. Hence, the search for 

alternative analytical protocols is still of great relevance. 

Next important issue for the PAHs determination methods is associated with relatively 

low maximum permitted levels for some food products. For example, according to the latest 

European legislation concerning PAHs in food the content of BaP and PAH4 (sum of BaP, 

BaA, BbF, and Chr) in processed cereal-based foods and baby foods for infants and young 

children should not exceed 1.0 µg kg-1 [44]. Therefore, in case if all four regulated 

compounds had the same analytical performance the limit of quantification (LOQ) for 

individual PAH compounds should be below 0.25 µg kg-1 and limit of detection (LOD) – 

below 0.08 µg kg-1. 

Several GC-based studies on PAHs exposure in bread and/or cereal products with 

variable LOQs of PAH determination methods have already been published. For example, in a 

research from Poland dedicated to PAHs in the bakery chain [46], the LOQ of the reported 

method for PAH4 was 0.83 µg kg-1, with the highest obtained value among PAH4 observed 

for Chr –  0.29 µg kg-1. In a similar research from Spain regarding PAHs in toasted bread 

[47], the LOQs of the selected method for PAH4 were 9.8 µg kg-1 for the bread ash and 1.2 

µg kg-1 for the bread samples, with highest LOQ obtained for Chr - 6.2 µg kg-1 and 0.75 µg 

kg-1 for the bread ash and the bread samples, respectively. Important to mention that by the 

time the last cited study was published, ML for processed cereals for PAHs was set at 1.0 µg 

kg-1 expressed by the content of BaP that was used as a marker for the occurrence of PAHs in 

foodstuffs, while MLs for other individual PAH4 have not been set yet [48]. Meanwhile, in 

the French total diet study [32], the specified LOQ values were 0.026 – 0.055 µg kg-1. This 

underlines the fact that PAHs determination methods should be optimised and harmonised to 

provide the PAHs determination in different foodstuffs at the appropriate levels. 
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1.2.1. Sample preparation methods for the PAHs analysis  

Due to its physical and chemical properties, PAHs tend to coextract with large amounts 

of matrix effects, thus the laborious purification procedure of extracts should often be applied. 

Gel permeation chromatography (GPC) as well as fat saponification have been recognised as 

most efficient clean-up methods in the analysis of foods with high fat content [3, 29]. 

However, these methods are time-consuming and additional clean-up steps (e.g., solid-phase 

extraction (SPE) or liquid - liquid extraction (LLE)) are typically needed. 

Several novel analytical procedures based on the application of molecularly imprinted 

polymers [49, 50] and nanoparticles [45, 51-52] as SPE sorbents were recently published, 

indicating the new opportunities to design rapid analytical methods with promising isolation 

capability of desired analytes [53-54]. Considering the highly hydrophobic properties of 

multi-walled carbon nanotubes (MWCNTs), their unique tubular structure with the ability for 

π-stacking [55], these nanomaterials provide superior sorption potential towards aromatics, 

with a special emphasis on planar compounds. Thus, affirming the high sorption capability for 

planar aromatics, MWCNTs were found to be much effective in sorption of polychlorinated-

dibenzo-p-dioxins in comparison to activated carbon [56]. The great potential of MWCNTs 

for selective sorption of planar aromatic contaminants causes increasing amount of scientific 

publications yearly [52, 54, 57-61]. However, despite the multiple studies in different fields of 

science, the application of MWCNTs in analytical food chemistry still remains poorly 

investigated and only a few published studies describe the application for the PAHs 

determination in complex food matrices [57, 60]. 

1.2.2. Instrumental methods for the sensitive determination of the PAHs 

The analytical determination of PAHs can be carried out by both liquid chromatography 

(LC), including ultra-high performance LC, and gas chromatography (GC) with various 

detectors, or by comprehensive techniques (GCxGC and LCxLC) [5]. The LC determination 

of PAHs usually is carried out by liquid chromatography coupled to fluorescence (LC-FLD) 

or ultraviolet–visible detection (LC-UV) techniques, which are also described in some official 

methods according to the International Standardization Organization (ISO) and the United 

States Environmental Protection Agency (US EPA). However, it is well known that UV 

detection shows a number of disadvantages, such as selectivity problems and sensitivity 

limitations, and it cannot discriminate matrix interferences, especially in complex matrices. 

On the contrary, FLD is more selective and sensitive than UV detection, and it is currently the 

detection system of choice in LC analysis of PAHs. LC-FLD has been extensively applied for 
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the determination of PAHs in very different matrices, including foods and beverages, since it 

is simple and affordable compared to other detection systems [3]. 

Despite the advantages of FLD compared to UV detection, FLD can still show a lack of 

selectivity. Moreover, some authors describe certain selectivity problems due to the presence 

of alkylated PAHs, which are considered to be the main impurities of PAH fractions [21]. 

These compounds show fluorescence responses similar to the unsubstituted PAHs. Another 

disadvantage is the impossibility of using certain isotopically labelled compounds that cannot 

be distinguished by FLD from the native PAHs [3, 5]. 

Mass spectrometric detection methods in both LC and GC have become more and more 

popular because of the high selectivity that enables reliable confirmation of analyte identity 

and the possibility to use stable isotope labelled PAHs as internal standards [10]. So far, gas 

chromatography – single quadrupole mass spectrometry has been extensively used to isolate 

and quantify PAHs, however, application of tandem MS compared to single MS analysers 

provides a notable increase in sensitivity. For examples, in an analysis of fish matrix GC-

MS/MS method showed an increase in sensitivity by five times [10]. Whereas, due to the 

improvements in robustness and sensitivity of high resolution mass spectrometry (HRMS) in 

recent years, there has been a growing interest in switching from using single or even triple 

quadrupole mass spectrometers to high resolution mass spectrometers [26]. 

The most commonly used ion sources in LC–MS analysis are electrospray ionisation 

(ESI) and atmospheric-pressure chemical ionisation sources (APCI). However, such ion 

sources provide insufficient efficiency for the ionisation of non-polar PAHs. APPI appears to 

be a good alternative to ESI and APCI for the coupling of low flow rate separation techniques 

(<50 μL min-1) and capillary LC, due to the lower concentration of the solvent vapour in the 

ion source. Furthermore, APPI is generally considered to be a compatible ionisation technique 

for non-polar compounds. In fact, APPI was found by various authors to be more 

complementary to ESI than APCI, due to its ability to ionise less polar molecules than those 

that can be ionised in APCI, and this type of interface also shows less ion suppression than 

APCI and ESI [5, 62]. 

Most of the studies based on the application of APPI in the analysis of PAHs were 

carried out using pure PAH standards [24, 63-68]. Only a few published studies describe the 

determination of PAHs in complex food matrices - LC-DA-APPI-MS/MS method for the 

determination of 15 + 1 EU priority PAHs in edible oil [69]; LC-DA-APPI-MS/MS method 

for the determination of 16 US EPA priority PAHs in shrimp samples [70], and LC-APPI-MS 

method for 16 US EPA priority PAHs analysis in oysters [71]. The LODs of the reported 
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methods were the following: 0.19 – 0.36 µg kg-1 for the oil, 0.02 – 0.51 µg kg-1 for the 

shrimp, and 0.013 – 0.13 µg kg-1 for the oysters. 

 

 1.3. Contamination of the processed foods with the PAHs 

The occurrence of PAHs in processed foods is usually a consequence of numerous 

factors – nutrient contents in the foods (e.g., proteins, carbohydrates, and lipids), duration of 

cooking (drying and etc.), heat source type, distance from heat source, design of the cooking 

device, and the type of fuel used [33, 72]. Whereas according to Zelinkova and Wenzl 

(2015b), with respect to food groups, the highest levels of total PAHs were detected in meat 

and meat products, oils and fats and cereals [10]. 

1.3.1. Cocoa products 

Cocoa is an important commercial crop – the raw material from which chocolate is 

manufactured. A number of manufacturing steps are necessary for the production of a 

homogenous chocolate of high quality with respect to flavour, consistency, and homogeneity. 

The manufacturing process includes some critical steps during which cocoa products 

including chocolate may be contaminated with PAHs. According to literature data [33], PAH 

contamination in chocolate mainly can be affected by drying, roasting, winnowing, blending, 

and fermenting of the cocoa beans, typically in their country of origin [33, 73]. 

Cocoa butter is a major constituent of raw cocoa products (e.g. cocoa beans, cocoa 

mass, cocoa nibs, or cocoa liquor) that is eventually present in chocolate and other processed 

cocoa products. It has been confirmed by many researchers that cocoa butter might contain 

even higher levels of PAH than other oils and fats and it cannot be refined by processes 

applied to other vegetable oils and fats [10, 34, 74]. Therefore, the maximum permissible 

levels for PAHs in cocoa beans and derived products were established on a fat basis since 

PAHs tend to concentrate in the fat fraction, which is the cocoa butter [75]. It should be 

mentioned that cocoa beans and derived products are the only food categories for which the 

maximum permissible levels of PAHs are based on the fat fraction. EU has established the 

maximum level for BaP and for the sum of the four marker PAHs (BaA, BbF, Chr, and BaP) 

as 5.0 μg kg-1 fat and 30.0 μg kg-1 fat, respectively. The second maximum level for the sum of 

four marker PAHs came into force on 1 April 2015 [43]. 
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1.3.2. Processed cereal-based products 

According to the studies on PAHs exposure, food is the main source of human 

exposure to PAHs, while cereals constitute one of the major contributing sources [30-31]. 

Bread is an essential food in human nutrition. It is a good source of energy, contains 

vitamins, proteins, lipids, and minerals, which are crucial for human diet. In many European 

countries (Latvia, Poland, Italy, Spain, France, etc.) bread is a major component of people’s 

diet with the per capita consumption among the highest in the world [2, 31-32, 46]. Bread 

contamination by PAHs can be dependent on both the contamination of bakery raw materials, 

primarily flour, and the baking process. An important issue is also the temperature of the 

thermal treatment taking into account its impact on bread contamination level [46, 76]. It is 

considered that a maximum amount of PAHs is formed when materials are heated at 

temperatures in the range of 500–550°C, while the average bread baking temperature is 250°C 

[77-78]. 

According to the European Food Safety Authority (EFSA) report [1], prepared on the 

basis of the results of studies performed in 16 Member States dealing with PAHs in food, with 

special attention to BaP, the mean contents of this compound in bread, flour and grain were 

0.22, 0.10 and 0.09 µg kg-1, respectively. Moreover, the percentage of samples exceeding the 

limit of detection in the case of bread was only 8%, in flour 31%, and in grain 53%. Other 

research has revealed that, in samples of toasted bread originating from Kuwait, BaP was not 

detected in 10 of 18 samples whereas, in the rest of the samples, it varied from 2.8 µg kg-1 to 

even 16.5 µg kg-1 [79]. 

In general, processed cereal-based foods are usually characterised by low levels of 

PAHs, however, it should be noted that, due to their high volume of consumption, they can be 

a significant source of exposure to PAHs [30, 32, 46, 80]. 

1.3.3. Dried herbs and spices 

During the last 15 years, PAHs have been an emerging issue in the herb and spice 

industry [81]. Spices and herbs have been used for flavour, colour, aroma, and preservation of 

foods and beverages for many hundreds of years. They are important ingredients in many 

processed foods, e.g., meat products, dairy products, and bakery products, and in the majority 

of culinary recipes. Aside from their efficacy, spices and herbs are classified as “all natural” 

or from “natural sources”, therefore projecting high expectations regarding the quality of the 

product for consumers [81-83]. Moreover, with the ever-increasing use of herbs/spices and 
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the global expansion of the seasonings market, safety has become a major concern for both 

the health authorities and general public worldwide [84]. 

In general, the organoleptic and commercial quality of herbs and spices is affected by 

intrinsic quality parameters, as well as unintentional and intentional sources of contamination. 

Besides illegal colourants and other illegal food additives, the major groups of chemical 

hazards in spices and herbs comprise mycotoxins, pesticide residues, heavy metals, persistent 

organic pollutants, including PAHs, cross-contamination with allergens and toxic endogenous 

compounds [19, 83-87]. Thereby, even if used at low amounts, culinary herbs and spices can 

harbour potential health hazards. 

Several studies have reported detectable levels of PAHs in various types of botanical 

food supplements. Significant levels of PAHs were detected mainly as a result of 

inappropriate drying processes [6, 83, 85-86]. While relatively high levels of PAHs were 

reported for food supplements that contained individual herbal ingredients such as ginkgo, 

ginseng, green tea, spirulina, liquorice root, rose flowers, and bee products such as propolis 

[6, 19, 88]. Data collection on the occurrence of PAHs in foodstuffs carried out within the 

framework of Council Directive 93/5/EEC and by the EFSA revealed that spices and herbs 

are often contaminated with PAHs, also at very high levels [1, 89]. Therefore, the maximum 

levels (MLs) for PAHs have recently been laid down [43], stating that dried culinary herbs 

and spices that are sold on the EU market from 1 April 2016 must not exceed the ML of 10.0 

µg kg-1 for BaP and the ML of 50.0 µg kg-1 for the sum of BaP, BaA, BbF, and Chr. 

Cardamon and smoked fruits of Capsicum species are exempt from the MLs to enable these 

smoked products to remain on the market and because the consumption of these spices is low 

[43]. 

Despite the fact that the MLs for PAHs have recently been set, studies on the 

permissible limits and safety aspects of these contaminants are still insufficient, indicating an 

urgent need to focus more research on this issue. 

1.3.4. Smoked meat 

Smoking of meat and its products has been used for centuries, not only to achieve 

particular sensory profiles like taste, colour, and aroma, but also to ensure preservation based 

on the antimicrobial, antioxidant, and drying effects of this process [90-91]. The traditional 

smoking procedure includes the exposure of meat products to the smoke generated by 

controlled combustion of certain natural hardwoods, sometimes accompanied by aromatic 

herbs and spices. The formation of PAHs depends on the specific conditions of the smoking 

process [29, 92-93]. During smoking phenolic substances are generated, which have 
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considerable importance in organoleptic properties of smoked meat products. Besides that, 

phenolic compounds show antimicrobial and antioxidant properties. Nowadays, smoking 

technology uses mainly the specific effects of various sensory active compounds contained in 

smoke aromatisation of meat products with suitable organoleptic profile, widely demanded on 

the market [94]. As undesirable consequence of smoking, PAHs are generated during the 

incomplete combustion of wood [29, 95-97]. 

Smoked meat has been extensively monitored for PAHs and according to the EFSA, 

meat and meat products are one of the food categories contributing most to the dietary PAHs 

intake per day of European Union member state consumers [1]. This demonstrates an 

important role of PAHs studies for smoked food products. 

Latvia has a long tradition of meat smoking. Smoked meat is produced not only by 

large meat processing facilities, but also at home and by small companies that produce 

products according to the traditional recipes. However, according to Zelinkova & Wenzl, 

(2015b) exactly traditional smoking, when the meat is put near the fireplace for several days, 

is characterised by higher observed levels of the PAHs contamination [10]. 

Since 2012, the maximum levels of PAHs in traditionally smoked meat and meat 

products in the European Union were set to 5.0 µg kg-1 for BaP and 30.0 µg kg-1 for PAH4. 

These maximum levels were lowered in September 2014 to 2.0 µg kg-1 for BaP and 12.0 µg 

kg-1 for the PAH4 [75]. However, in accordance to the Commission Regulation (EC) No. 

1327/2014, a list of EU countries was specified that were allowed to continue using 

traditionally smoked meat and smoked meat products with levels of PAHs higher than those 

set out in Commission Regulation (EC) No. 835/2011 (5.0 µg kg-1 for BaP and 30.0 µg kg-1 

for the PAH4) [75, 98]. Those EU Member States (Ireland, Spain, Croatia, Cyprus, Latvia, 

Poland, Portugal, Romania, Slovakia, Finland, Sweden, and the United Kingdom) should 

continue to monitor the presence of PAHs in traditionally smoked meat and smoked meat 

products and should establish programmes to implement good smoking practices where 

possible, within the limits of what is economically feasible and what is possible without 

losing typical organoleptic characteristics of those products [98]. 

 

1.4. Strategies to reduce the contamination of food with the PAHs 

Due to PAHs adverse effects these compounds are being monitored in foods to ensure 

that public health is not endangered by violative contaminants concentrations, whereas 

strategies for the reduction of these contaminants are of major importance. Additional concern 

on the contamination of foods with PAHs arises from an increasing rate of PAHs exposure 
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world-wide [33, 99-100]. Therefore, technological procedures in food production to reduce 

the content of pollutants hazardous to public health should be desirably applied. Nowadays, in 

the food industry it is very common to use starter cultures or ozone to improve the 

characteristics of the foods, and the possibility that these microorganisms or procedures could 

lower the food contaminants content is of great relevance. 

1.4.1. Ozone treatment 

Ozone is one of the most powerful sanitisers. It was affirmed as Generally Recognised 

As Safe (GRAS) in the United States and approved by the Food and Drug Administration 

(FDA) as an antimicrobial agent that can be directly applied in the food industry [9, 101-102]. 

Ozone has been known as a disinfecting agent since 1893, when it was first 

industrially used for drinking water treatment [103]. Since that time, ozone has been widely 

applied in water processing, food processing and food storage as a powerful disinfectant and 

oxidising agent. However, ozonation was seldom reported to be used to destroy BaP in 

environmental samples [104-106]. Apart from the processes of BaP degradation, ozone is 

widely used to reduce the mycotoxin content in foods [101, 107-108]; it also can kill pests 

and has potential applications for the inactivation of microbes including bacteria, fungi, and 

viruses [109-111]. Ozone has a high penetration capacity and can be quickly decomposed to 

oxygen without producing any toxic residues, therefore it has numerous potential applications 

in food industry [112]. However, the identity of BaP derivatives that may form in foods 

during ozonation remains to be elucidated. 

1.4.2. Lactic acid bacteria treatment 

A great interest has been recently expressed in the biodegradation of chemical 

compounds using microorganisms [99, 113-116]. Lactic acid bacteria (LAB) are the dominant 

starter cultures employed in the production of fermented foods [117]. The use of bacteriocins 

or bacteriocins producing LAB with wide range of antimicrobial activity can improve the 

safety aspects of food by the control of the fermentation microflora and speed of maturation; 

can increase the shelf life of the products and inhibit the growth of certain pathogenic bacteria 

during the fermentation and ripening periods [118]. A few reports on the positive effect of 

lactic acid bacteria (LAB) against PAHs are also already available [12, 100, 119-120]. 

PAH degradation capabilities are associated with members of certain taxa such as 

Pseudomonas, Sphingomonas, and Burkholderia, independent of origin of the soil from which 

bacteria isolated [100, 119]. Moreover, genes responsible for PAH degradation are 

homologous and ordered. The results obtained by Abou-Baker et al., (2012) revealed that 
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PAHs was affected by B. bifidium strain during the incubation period [119]. For example, 

after 2 to 48 h of incubation, low weight PAHs as naphthalene, acenaphthylene, 2-

bromonaphthalene, and acenaphthene were not detected in the various samples. However, 2-

bromonaphthalene and acenaphthene that were appeared after 72 h of incubation were 

reduced by 75% and 88%, respectively. 
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2. EXPERIMENTAL PART 

 

2.1. Chemicals and materials 

Pesticide grade solvents (acetonitrile, cyclohexane, n-hexane, dichloromethane, 

toluene, m-xylene, acetone, and ethyl acetate), as well as Celite-545 were purchased from 

Sigma-Aldrich (Steinheim, Germany), while pesticide grade ethanol used for the study of BaP 

degradation was purchased from Merck (Darmstadt, Germany). Ultrapure water was obtained 

from a Millipore-Q SP Reagent Water system (Millipore, Bedford, MA, USA) and pre-

filtered through a 0.22 µm membrane filter. Anhydrous sodium sulphate and Strata SI-1 Silica 

solid-phase extraction (SPE) tubes (6 mL, 500 mg) were obtained from Supelco (Bellefonte, 

PA, USA) and Phenomenex (Torrance, CA, USA), respectively. 

Four different types of MWCNTs were employed as potential sorbents for d-SPE. 

Agglomerated MWCNT of trademark Baytubes® C150P (abbreviated further as CNT-1) were 

obtained from Covestro AG (Leverkusen, Germany) with the purity greater than 95%, outer 

diameter (O.D.) of 13 nm, internal diameter (I.D.) of 4 nm, length >1 µm, and the density 

range of 1300–1500 kg/m3 (according to data provided by manufacturer). Other three disperse 

MWCNTs – TNIM4 (abbreviated as CNT-2), TNIMH4 - hydroxyl derivate of TNIM4 (CNT-

OH; hydroxy group content 2.5 wt.%), and TNIMC4 – carboxyl derivate of TNIM4 (CNT-

COOH; carboxyl group content 1.6 wt.%) were purchased from Chengdu Organic Chemicals 

Company (Sichuan Sheng, China). The latter three MWCNTs were of >95% purity, with 5-10 

nm I.D., 10–30 nm O.D., 10–30 µm length, and the average density of 2100 kg/m3. 

Four individual PAH standards (BaA, BbF, BaP, Chr) (50 mg L-1 each in acetonitrile) 

and isotopically labelled deuterated standards (BaP-d12, BbF-d12, Chr-d12, BaA-d12) (1 mg L-1 

each in toluene) were purchased from LGC Standards (Bury, UK) and were stored at 4°C. 

The spiking solutions and calibration standards were prepared by serial dilution of stock 

standards in toluene and were stored in UV-protected glassware at 4°C. 

Pure BaP standard (97% assay by HPLC) used for BaP ozonation and degradation 

study was purchased from Sigma-Aldrich (Steinheim, Germany). The BaP standard solution 

of 1 mg mL-1 concentration was prepared by weighing an aliquot of BaP standard in a 100 mL 

graduated flask and then dissolving in ethanol. The solution was stored at 4°C. 
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2.2. Microorganisms 

Pediococcus acidilactici KTU05-7, Pediococcus pentosaceus KTU05-9 and 

Lactobacillus sakei KTU05-6 strains, previously isolated from spontaneous rye sourdough 

were obtained from the collection of Kaunas University of Technology. The lactic acid 

bacteria were grown in de Man Rogosa Sharpe (MRS) medium (Biolife, Italy). P. acidilactici 

KTU05-7, P. pentosaceus KTU05-9 and L. Sakei KTU05-6 strains were incubated at 32, 35 

and 30°C, respectively, for 24 h and were used for further experiments. 

 

2.3. Preparation of MWCNT-based sorbents for d-SPE and control of background 

contamination 

Taking into account that relatively small amounts of MWCNTs are required for 

sufficient recovery of PAHs from the matrix aliquot, and in order to facilitate handling 

operations, MWCNTs were dispersed in Celite-545 at the ratio of 5/95 (w/w). Considering the 

affinity of MWCNTs towards sorption of planar aromatic compounds and the ubiquity of 

PAHs, there was a need to control the probable background contamination of SPE sorbents 

based on MWCNTs. In this respect the prepared MWCNT-based sorbent mixtures were 

washed with hot toluene under reflux conditions for 48 h, dried overnight at room temperature 

under aluminum foil and heated at 115°C for 4 h. 

 

2.4. Sample preparation and clean-up 

The presence of PAHs in 15 oil samples was determined using a novel sample 

preparation method based on d-SPE with MWCNTs, whereas rest 391 samples (bread and 

cereal products, dark chocolate, dried herbs and spices, smoked meats) were analysed using a 

sample preparation method based on extraction of PAHs with an organic solvent mixture, gel 

permeation chromatography and SPE. All the samples were minced, ground, cut or crushed 

and then thoroughly homogenised before the analysis. Smoked meat samles were 

homogenised (including skin and muscle) without bones. Dried herbs and spices samples 

were additionally sieved through a 1.5 mm sieve to ensure satisfactory homogeneity of the 

test samples. 
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2.4.1. Sample extraction and clean-up using MWCNT-based sorbents 

A 1.0 gram aliquot of oil sample was placed in a 15 mL glass tube, spiked with 100 

µL of isotopically labeled PAH surrogates in toluene (100 pg µL-1 of each surrogate) and n-

hexane (10 mL) was added. The sample was vortexed and pre-cleaned d-SPE sorbent (1.0 g) 

consisting of 50 mg of MWCNTs and 950 mg of Celite-545 was added. After performing the 

d-SPE procedure by vigorous shaking of the glass tube for 25 min, the sample was 

centrifuged at 3000 rpm for 5 min and the upper n-hexane phase was eliminated. 

Subsequently, 10 mL of washing solvent was added and, after vigorous shaking for 5 min, the 

centrifugation was repeated and the washing solvent was removed. The resultant d-SPE 

sorbent was dispersed in 5 mL of toluene and the obtained slurry was quantitatively 

transferred into an extraction thimble for the semi-automatic Soxtec™ 2055 Extraction 

System (Hillerød, Denmark). PAHs were eluted from the d-SPE sorbent into a glass vessel 

with toluene (35 mL), according to the following program: immersion of the sample in 

refluxing solvent for 15 min with further rinsing of the thimble for 60 min, followed by 

careful elimination of the bulk of the solvent for 15 min. The residue was quantitatively 

transferred with n-hexane (5 mL) to a 10 mL glass tube and complete solvent evaporation was 

performed under a gentle stream of nitrogen. The resulting sample was reconstituted in 

toluene (50 µL) and analysed by the means of GC-MS/MS. 

2.4.2. Sample extraction and clean-up using gel permeation chromatography and 

solid-phase extraction 

A 2.75 g portion of each homogenised sample was mixed with 10-15 g of anhydrous 

sodium sulphate to absorb moisture. A 27.5 μL aliquot of toluene solution containing BaP-d12, 

Chr-d12, BbF-d12, and BaA-d12 internal standards at 1.0 μg mL-1 concentration was added. The 

PAHs were extracted from test samples by adding 25 mL of dichlormethane/hexane (1:1, v/v) 

mixture and performing sonication for 20 min. After sonication, the supernatant was decanted 

and 15 mL of fresh solvent was added for another 20 min sonication cycle. To avoid the 

presence of solid particles, all the extracts were filtered. The combined extracts (~40 mL) 

were evaporated on a rotary evaporator (30°C, 500-100 mbar) to remove the solvents, and the 

residue was reconstituted in 5.5 mL of cyclohexane/ethyl acetate (1:1, v/v) mixture for further 

removal of high molecular mass compounds by the means of gel permeation chromatography 

(GPC). The extracts were centrifuged at 3000 rpm for 10 min and the solution was transferred 

into a glass GPC vial. The sample extracts were injected into an LC Tech Freestyle™ GPC 

system (Dorfen, Germany) consisting of an LC pump, autosampler, and a fraction collector. 
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High molecular mass substances were removed on a glass column (500 × 40 mm, 25 mm ID) 

filled with 50 g of Bio-Beads SX3 (Bio-Rad, Philadelphia, PA, USA) stationary phase with 

cyclohexane/ethyl acetate (1:1, v/v) mobile phase at a flow rate of 5 mL min-1. The automated 

GPC program was as follows: dump time 0 – 21 min, collection time 21 – 45 min. The 

collected fraction was transferred to a round-bottom flask, evaporated (30°C, 130 mbar) to 

dryness on a rotary evaporator and the residue was redissolved in 3 mL of cyclohexane. 

Further clean-up was performed by using Strata SI-1 Silica SPE cartridges. The sorbent of the 

SPE cartridges was first conditioned with 5 mL of cyclohexane and then the extracts were 

loaded onto the cartridges. The analytes of interest were eluted from the column with 

cyclohexane (3 × 3 mL), the obtained fraction was evaporated under a nitrogen stream at 

40°C, dissolved in appropriate organic solvent (50 µL of cyclohexane for GC-MS/MS or GC-

HRMS analysis; 100 µL of acetonitrile for HPLC-HRMS analysis), and transferred into an 

autosampler vial for the further analysis of PAHs. 

 

2.5. Instrumental analysis 

2.5.1. Parameters of the HPLC-HRMS method 

A Thermo Scientific Dionex Ultimate 3000 Series RS pump coupled to a Thermo 

Scientific Dionex Ultimate 3000 Series TCC-3000RS column compartments and a Thermo 

Fisher Scientific Ultimate 3000 Series WPS-3000RS autosampler controlled by Chromeleon 

7.2 software (Thermo Fisher Scientific, Waltham, MA and Dionex Softron GmbH, Part of 

Thermo Fisher Scientific, Germany) were used for the analysis. A Pinnacle DB PAH 50 mm 

× 2.1 mm, ID 1.9 µm (Restek, Bellefonte, PA, USA) column was used for the 

chromatographic separation of target compounds at 30°C. 

Mobile phase A consisted of 100% water, and mobile phase B consisted of 100% 

acetonitrile. The gradient was started from 50% B, then the phase B was increased to 90% 

from 0–1 min, after that the phase B was increased to 95% (1-2 min) and, finally, to 100% (2-

5 min), and was held constant for 1 min. Finally, the mobile phase was brought back to the 

initial conditions and maintained for 1 min. The selected flow rate was 0.4 mL min-1 and the 

injection volume was 5 µL. 

The determination of target analytes was performed using an HPLC-Orbitrap-MS 

system consisting of Thermo Scientific Dionex Ultimate 3000 HPLC instrument (Bremen, 

Germany) coupled to an Orbitrap Q-Exactive mass spectrometer (Bremen, Germany) 

equipped with a Thermo Scientific Ion Max APCI/APPI interface (Thermo Fisher Scientific). 
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The Ion Max source housing was equipped with a Syagen Photo-Mate vacuum UV light 

source (krypton discharge lamp, 10.0 eV) (Syagen Technology Inc., Tustin, CA, USA). The 

APCI probe was used as a nebulizer-desolvation device without applying corona discharge. 

The mass spectra were recorded in the positive ion mode. During the tuning procedure, the 

signals of target analytes were preliminarily optimised for the highest response of the 

corresponding ions. Introduction of the target compounds (native analytes and deuterated 

internal standards, 1 ng mL-1 in toluene) into the APPI interface of MS system was performed 

using a Chemyx Fusion 100T (Stafford, TX, USA) infusion pump at the flow rate of 50 µL 

min-1 through a T-piece connected to the capillary, which delivered the mobile phase to the 

ion source with a flow rate of 400 µL min-1. Orbitrap-MS detection in tMS2 mode was applied 

for the quantitative determination of selected compounds using the two most abundant ions of 

the respective molecular ion cluster for both the native components and the deuterated internal 

standards. The width of the ion-extraction window was 5 × 10-6 amu (5 ppm). External 

calibration of the Orbitrap-MS system was performed before each batch of samples over the 

m/z range of 50 – 2000 according to the guidelines provided by the instrument supplier. The 

details of the optimised instrumental parameters in tMS2 mode are summarised in Table 2.1, 

while the average experimental mass of precursor ion as well as the ion masses used for the 

quantification and confirmation of all four marker PAHs are shown in Table 2.2. 

Table 2.1 

The optimised DA-APPI-Orbitrap-MS parameters for tMS2 mode 

APPI parameters   

Sheath gas flow 40 a.u. 

Auxiliary gas flow 30 a.u. 

Sweep gas flow 0 a.u. 

Capillary temperature 300°C 

Source heater temperature 350°C 

S-lens radio frequency 35 a.u. 

Dopant Toluene 

Dopant flow rate 50 µL min-1 

Orbitrap-MS parameters   

Detection mode tMS2 

Maximum injection time 100 ms 

Automatic gain control (AGC target) 2 × 105 

MS resolving power 17,500 FWHM 

a.u. - arbitrary unit 

 

  



 
 

Table 2.2 

Orbitrap-MS scan parameters of the detection of selected PAHs 

PAH 

Calculated 

exact mass 

[M]+, m/z 

Experimental 

mass [M]+, m/z 

Mass 

accuracy, 

ppm 

NCE, 

% 

Quantification 

ion1 mass, m/z 

Experimental 

quantification 

ion1 mass, m/z 

Mass 

accuracy, 

ppm 

Confirmation 

ion2 mass, m/z 

Experimental 

confirmation 

ion2 mass, m/z 

Mass 

accuracy, 

ppm 

BaA 228.0939 228.0943 1.6 100 226.0783 226.0792 4.0 202.0783 202.0792 4.5 

Chr 228.0939 228.0945 2.7 100 226.0783 226.0792 4.0 202.0783 202.0792 4.5 

BbF 252.0939 252.0936 -1.2 100 250.0783 250.0784 0.76 226.0783 226.0789 2.7 

BaP 252.0939 252.0937 -0.67 100 250.0783 250.0785 0.84 226.0783 226.0788 2.6 

BaA-d12 240.1692 240.1697 2.1 110 236.1410 236.1419 3.8 212.1410 212.1417 3.3 

Chr-d12 240.1692 240.1703 4.6 100 236.1410 236.1419 3.8 212.1410 212.1417 3.3 

BbF-d12 264.1692 264.1683 -3.4 110 260.1410 260.1404 -2.3 236.1410 236.1409 -0.42 

BaP-d12 264.1692 264.1682 -3.8 120 260.1410 260.1405 -1.9 236.1410 236.1412 0.85 

ppm – part per million 
1 –[M–H2]+ or [M–D2]+ 
2 –[M–C2H2]+ or [M–C2D2]+ 

  



 
 

2.5.2. Parameters of the GC-HRMS method 

The PAHs analysis was carried out on an Agilent Technologies 6890N gas 

chromatograph coupled with MicromassAutospec Premier high-resolution mass spectrometer. 

The GC-HRMS system was equipped with a ZB-50 capillary column (30 m × 0.25 mm i.d. × 

0.25 mm film thickness) and operated in a splitless mode with helium as the carrier gas at a 

constant flow rate of 1.2 mL min-1. The following GC-HRMS operating parameters were 

employed: injector temperature was set at 300°C; capillary line temperature 280°C; source 

temperature 280°C; electron energy 36 eV, and the ion trap current was 600 μA. The oven 

temperature was set initially at 90°C (1 min hold), increased to 215°C at 25°C min-1. At 

215°C, the temperature increased at a rate of 4°C min-1 to 235°C, at 235°C the temperature 

increased at a rate of 15°C min-1 and then to 320°C at a rate of 4°C min-1 (10.5 min hold). The 

total run time was 35 min. The injection volume was 1 µL. 

The GC-HRMS system was operated in EI mode, at a resolving power > 10,000 (10% 

valley definition). The GC-HRMS system was controlled by MassLynx 4.1 software 

(Waters). The analysis was performed by operating the MS in the selected ion monitoring 

mode (SIM). The accurate mass of the monitored ions of each compound was individually 

optimised. Selected m/z values of fragments for the analysed compounds are given in Table 

2.3. 

Table 2.3 

The compounds monitored by HRMS, with the respective analytical parameters 

Analyte 
Retention time, 

min 

Quantifier transition/ion, 

m/z 

Qualifier transition/ion, 

m/z 

BaA 15.87 228.0939 240.1692 

Chr 16.08 228.0939 240.1692 

BbF 19.22 252.0939 264.1692 

BaP 20.59 252.0939 264.1692 

BaA-d12 15.78 240.1692 – 

Chr-d12 15.97 240.1692 – 

BbF-d12 19.11 264.1692 – 

BaP-d12 20.47 264.1692 – 

 

2.5.3. Parameters of the GC-MS/MS method 

The analysis of PAHs was carried out on a Thermo Scientific Trace GC Ultra gas 

chromatograph coupled with Thermo Scientific TSQ Quantum XLS Ultra mass selective 

detector. This GC-MS/MS system was equipped with a Zebron ZB-50 (Phenomenex) 
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capillary column (30 m × 0.25 mm i.d. × 0.25 mm film thickness) and operated in a splitless 

mode. The injector temperature was kept at 260°C. The transfer line temperature was set at 

320 °C. The operating conditions were as follows: helium was used as the carrier gas at a 

constant flow rate of 1.2 mL min-1; inlet temperature 260°C; MS transfer line temperature 

280°C. The oven temperature was set initially at 80°C (2 min hold), increased to 265°C at 

15°C min-1. At 265°C, the temperature was increased at a rate of 5°C min-1 to 290°C and then 

to 320°C at a rate of 20°C min-1 (12 min hold). The total run time was 38 min. The injection 

volume was 1 µL. 

A tandem mass spectrometer with an electron impact (EI) interface was used, 

operating in the positive ion mode at electron energy of 70 eV; emission current of 50 μA and 

the source temperature of 250°C. The collision gas was argon, supplied at 1.0 mTorr pressure 

in the collision chamber. The system was controlled by Xcalibur software (Thermo 

Scientific). The data were acquired by operating the MS in selective reaction monitoring 

(SRM) mode. The transitions of each compound were individually optimised to produce 

suitable sensitivity and selectivity. Pseudo-SRM transitions were not selected in order to 

provide better selectivity and confirmatory capabilities of the analytical procedure. The 

obtained [M]+→[M–2H]+ transitions for quantification and [M]+→[M–2CH]+ transitions for 

the confirmation of selected PAHs are given in Table 2.4. 

Table 2.4 

The compounds monitored by GC-MS/MS, with the respective analytical parameters 

Analyte 
Retention 

time, min 

Quantifier transition, 

m/z 

Qualifier transition, 

m/z 

Collision energy for both 

transitions, eV 

BaA 17.34 228.1 → 226.1 228.1 → 202.1 25 

Chr 17.54 228.1 → 226.1 228.1 → 202.1 25 

BbF 20.76 252.1 → 250.1 252.1 → 226.1 30 

BaP 22.44 252.1 → 250.1 252.1 → 226.1 30 

BaA-d12 17.28 240.1 → 238.0 – 30 

Chr-d12 17.47 240.1 → 238.0 – 30 

BbF-d12 20.66 264.1 → 260.1 – 30 

BaP-d12 22.32 264.1 → 260.1 – 30 

 

 

2.6. Quality assurance/quality control 

Identification criteria for the analytes of interest were based on the retention times of 

native PAHs and deuterated PAH surrogates, and the isotopic peak ratios of the SRM 
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transitions. The acceptable deviation of the isotopic peak ratio of two monitored ions or SRM 

transitions (target/confirmation) was within 15% of the value obtained for the medium 

calibration point. A minimum of five-point calibration curve was checked with relative 

response factors (RRFs) over the sample concentration range of 0.10–50.0 ng g-1 and was 

used for quantifying the analytes of interest in each sample run. The procedural blanks were 

taken through all steps of analytical procedure and were found to be uncontaminated with the 

analytes of interest. The quantification of analytes of interest was based on stable isotope 

dilution with the deuterated PAH surrogates and on internal standardisation.  

 

2.7. Sampling and storage 

In total, 406 different food samples were selected and analysed for the PAH content 

(see Table 2.5). These included 5 different food groups – bread and cereal products, dark 

chocolate, seasonings (dried herbs and spices), smoked meats and edible oils. 

Bread and cereal products group included 35 samples from 15 different Latvian 

bakeries – 20 rye bread samples, 12 wheat bread samples and 3 cereals. All the samples were 

obtained from local markets and supermarkets and were immediately prepared upon arrival to 

the laboratory to avoid potential chemical composition changes. The final extracts were stored 

at -20°C before the instrumental analysis. 

Dark chocolate samples included twenty six randomly selected samples originating 

from different countries and obtained from local supermarkets in Riga, Latvia. To avoid 

potential chemical composition changes, all samples were immediately prepared upon arrival 

to the laboratory, while the final extracts were stored at -20°C before performing the 

instrumental analysis. 

Seasonings samples included: three types of commercial ground herbs: 25 basil 

samples from India, 25 oregano samples from Turkey, 24 thyme samples from Poland and 

one thyme sample from China, and three types of commercial ground spices: 25 blends of 

black pepper originating from Brazil and Vietnam, 25 nutmeg samples from Indonesia, and 25 

sweet paprika / chilli blends originating from Brazil and China. In order to assess the possible 

influence of the year of production and pretreatment process on the PAH content, seasonings 

samples were grouped by the production year and pretreament type. All the samples were 

provided in 2014 by FUCHS Gewürze GmbH (Germany). To avoid potential chemical 

composition changes, all samples were immediately processed upon arrival to the laboratory 

and the final extracts were stored at -20°C before performing the instrumental analysis. 
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Smoked meat samples for the determination of PAHs were purchased in the time 

period from March to May 2014. For the study, 128 samples of various smoked meat 

products, produced by 48 different smoked meat manufacturers were obtained in local Latvian 

markets. Smoked meat samples included: smoked meat (pork, pork breast, chop, speck, 

smoked ham, smoked chicken), and smoked meat products (sausages, small sausages, semi-

dry sausages, roulette and other). All samples were labelled, homogenised, and frozen at         

-20°C before the analysis. 

Smoked meat samples for the determination of high levels of PAH were purchased in 

the time period from November 2016 until May 2017. The samples were selected with an 

emphasis to those with darker surface colour and origin from small-scale producers. A total of 

52 smoked meat samples from 29 different producers in Latvia, 17 smoked meat samples 

from 10 Lithuanian companies and 8 samples from 7 Estonian producers were collected. All 

samples were labelled, homogenised, and frozen at -20°C before the analysis. 

Edible oil samples (n=15) were collected during the period from February to May 

2017 within the framework of a monitoring program for control of PAHs in Latvian food 

products. The samples were transported to the laboratory while protected from ambient UV 

radiation. To avoid potential chemical composition changes, the samples were immediately 

processed upon arrival and the final extracts were stored at -20°C prior to the instrumental 

analysis. 

Table 2.5 

Summary of the samples analysed for the PAHs content 

Product group Number of analysed samples 

Bread and cereal products 35 

Dark chocolate 26 

Dried herbs 75 

Edible oil 15 

Spices 75 

Smoked meats 180 

Total 406 

 

 

2.8. Smoked meat consumption data evaluation 

The dietary survey of Latvian inhabitants was conducted in the year 2012 and almost 

two thousand participants from the age group of 19-64 were reached. Due to the fact that 

smoked meat consumption is a specific part of food consumption, focussed additional 
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research for smoked meat consumption in Latvia in the age group of 19-64 was carried out in 

2014. 

For dietary survey, the food frequency questionnaire and 24 h recall method were 

used. An additional questionnaire for smoked meat producers about processing technologies 

was used. 

 

2.9. Risk characterisation 

The actual contribution of smoked meat products to the overall exposure to BaP and 

PAH4 was assessed by estimating the MOEs, using the lower confidence limit of benchmark 

dose for a 10% increase in the number of tumour bearing animals compared to control 

animals (BMDL10), as proposed by EFSA. Taking into account the findings of the EFSA 

study on PAHs in food, the BMDL10 for BaP was 0.07 mg kg-1 b.w. per day, and the BMDL10 

for the PAH4 was 0.34 mg kg-1 b.w. per day. These values were used as a reference for the 

calculations of MOEs [1]. 

The MOE values were calculated by dividing the reference BMDL10 values with the 

mean, median, 75 and 95 percentiles of the estimated dietary exposure to BaP and PAH4. In 

order to calculate the exposure of the whole population and specific population groups, data 

on the mean, median, 75 and 95 percentile consumption of smoked meat products were used. 

In accordance with the scientific opinion of EFSA on a harmonised approach for risk 

assessment of substances which are both genotoxic and carcinogenic, the MOEs of 10,000 or 

higher were assumed as to be of low concern from the viewpoint of public health and were 

considered as low priority for risk management actions [1, 121]. 

Comparison of the MOE indicators within different groups of consumers was carried 

out to conclude whether consumption of smoked meat products could present a risk to public 

health, taking into account the characteristic consumption patterns. 

The one-way analysis of variance (ANOVA) and t-test with the Microsoft Excel Data 

Analysis Toolpack was used to test the differences between PAHs in different food samples. 

A criterion of p < 0.05 was considered to indicate statistical significance. 
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2.10. Ozone treatment to reduce PAHs contamination in smoked fish samples 

2.10.1. Ozonation of BaP standard solution 

Ozone gas was generated from purified extra-dry oxygen (purity ≥99.5%, AGA) using 

an ozone generator (OZ-3G, Kai Yuan, Guangzhou, China). The generated maximum ozone 

output was 3 g h-1, meanwhile the maximum ozone concentration at the outlet was 10 mg L-1. 

The oxygen flow rate was ~6 L min-1, the current was 260 mA. 

A standard solution of BaP was treated with 10 mg L-1 of ozone at the flow rate of 5 L 

min-1 for 1 min, 2 min, 5 min, 15 min, and 30 min. After the ozone treatment the samples 

were transferred into autosampler vials, labelled, and stored at -20°C until further analysis. 

2.10.2. Ozonation and analysis of smoked fish samples 

Ozonation experiments on PAHs content reduction were performed on a smoked fish 

sample with previously determined high PAH content. 300 g of smoked sprats were evenly 

hanged on metal rods and placed in a 60 L plastic box. The generated ozone gas at the 

maximum flow rate was introduced into the bottom of the box via plastic tube until the ozone 

concentration reached its maximum value of 20 mg m-3.  

The concentration of the introduced ozone was regulated by controlling the proportion 

of the ozone output from the generator and determined by a portable ozone sensor (A-22 

Ozone Sensor, EcoSensors, California, USA). After the ozonation of sprats for 5 min the 

ozone gas flow was stopped, and the box was tightly closed. The first fifty gram portion of 

sprats after ozonation for 5 min was transferred to a plastic bag for further analysis of PAHs, 

while the remaining sprats were ozonated for additional 10 min (the ozone concentration in 

the box was again adjusted to 20 mg m-3). After 10 min the second portion of fifty grams of 

sprats (ozonated for 15 min) was transferred to a plastic bag for further analysis of PAHs and 

the remaining sprats were ozonated for additional 15 min to obtain a sample with cumulative 

ozone exposure for a total of 30 min. The same procedure was repeated to obtain sprats with 

45 and 60 min of ozone exposure. Ozone concentration was continuously monitored during 

all the experiments. All experiments were performed at room temperature and 65–75% 

relative humidity. 

To avoid potential changes in chemical composition, all ozonated samples of sprats 

were immediately prepared for analysis and the final extracts were stored at -20°C before 

analysis. 

The sample preparation procedure in the current study was based on GPC followed by 

SPE on silica gel and the determination of PAHs by the means of GC-MS/MS. 
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2.10.3. HepG2 and 3T3 cell culture and treatment 

The HepG2 and 3T3 cell lines were suspended in standard cell cultivation medium 

DMEM/10%FBS (Biochrom, Germany) and seeded in 96-well microplates (Sarstedt, 

Germany) at the density of 2500 cells per well (p/w) for HepG2 and 5000 cells p/w for 3T3. 

The cell lines were incubated at 37°C, 5% CO2, and were left to adhere to the surface of the 

plate and allowed to grow for 48 hours. The cell cultivation medium was then drained and 

treated with 100 μL of fresh medium as control, 40% (v/v) solvent control solution (distilled 

H2O), and BaP standard solutions at different concentrations corresponding to 1 – 8 µg mL-1 

of BaP in the cell cultivation medium. Cells were imaged for up to 96 h by phase contrast 

imaging at 100× magnification, using an IncuCyte ZOOM microscope system (Essen 

Biosciences, USA). The kinetics of cell growth was monitored using the IncuCyte integrated 

confluence algorithm, where the confluence served as a surrogate for the number of cells.  

 

2.11. Lactic acid bacteria treatment to reduce PAHs contamination in smoked 

meat samples 

2.11.1. Antimicrobial activity determination 

2% (w/w) of LAB cells were inoculated into a fresh MRS medium and propagated for 

18 h. The cells were harvested by centrifugation (6000 g, 10 min, 4°C), and the supernatants 

then filtered through a 0.2 mm sterile Millipore filter to remove remaining cells. Supernatants 

were used for the determination of antimicrobial activities against various pathogenic and 

food spoilage bacteria. Agar well diffusion assay was performed for LAB antimicrobial 

activity evaluation. 0.5 McFarland Unit density suspension of each indicator bacteria strain 

were inoculated onto surface of cooled Mueller Hinton Agar (Oxoid, UK) using sterile cotton 

swabs. The wells (6 mm in diameter) were punched in agar and filled with 50 µL of LAB 

supernatants. The antimicrobial activities against tested bacteria were determined by 

measuring the diameter of inhibition zones (mm) after 48 h of cultivation at 37°C. 

Antimicrobial activity of LAB produced metabolites was tested against pathogens according 

to Cizeikiene et al. (2013) [115]. Antimicrobial activity tests were performed in three 

independent experiments and the average of inhibition zones was calculated. 
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2.11.2. Evaluation of potatoes juice as an alternative substrate for LAB propagation 

Potatoes (var. Vinetta) tubers were obtained from a local farm (Mazeikiai, Lithuania) 

after 2014 harvest. The tubers were stored at 5°C in the dark. A juice of potatoes tubers was 

extracted by blending potatoes pieces without any additives. Potato mass was filtered through 

nylon mesh with pore size of approximately 150 µm to remove potato particles and obtained 

potato juice were sterilised at 121°C for 15 min and used for LAB propagation. 2% (w/w) of 

freshly prepared LAB cells suspension was inoculated in sterilised potato juice media and 

fermented at optimal temperatures: 32°C for P. acidilactici KTU05-7, 35°C for P. 

Pentosaceus KTU05-9 and 30°C for L. sakei KTU05-6 strain. The viable LAB cells in the 

potatoes juice was evaluated under standard serial dilution method on MRS agar medium at 

30°C and expressed in log10 cfu mL-1. The plates were incubated at 30°C temperature for 4 

days under anaerobic conditions in a jar (Sigma–Aldrich, Broendby, Denmark) with anaerobic 

atmosphere generation bags (Sigma–Aldrich, Broendby, Denmark). The pH values were 

measured using a pH electrode (PP – 15, Sartorius, Goettingen, Germany). For total titratable 

acidity (TTA) determination, 10 mL of sample was homogenised with 90 mL of distilled 

water. After that the sample was neutralised with 0.1 M NaOH up to pH value 8.2. TTA was 

expressed as the amount (mL) of 0.1 M NaOH used to obtain the pH value 8.2. The analyses 

of fermented potatoes juice (count of viable LAB cells, pH, TTA and lactic acid content) was 

carried out after 24, 48 and 72 h of fermentation. LAB multiplied in an alternative substrate 

(potato juice) were used for surface treatment (before and after smoking) of cold smoked pork 

meat sausages. 

2.11.3. Production of sausages for LAB experiments 

The cold smoked pork sausages production was performed in the meat products 

production company “Nematekas” (Dovainonys, Lithuania). Sausages were made of 77% 

fresh pork, 20% frozen back fat, 2.4% salt (containing 0.4% sodium nitrite (NaNO2)), 0.4% 

glucose, and 0.4% spice mix. Meat and fat was ground. After grinding, the batch was mixed 2 

min in a mixer to distribute the added fat and spice mix. The mixture was vacuum-stuffed into 

natural casing (40 mm diameter, 240 mm length). Sausages treatment with LAB have been 

performed before (I) and after (II) smoking. (I) Formed fresh pork meat sausages, 400 g of 

each, were placed individually in a container with 1000 mL of fermented potatoes juice 

(containing on average 9.6 log10 cfu mL-1 of LAB) and were immersed for 60 min at 18°C. 

After immersion the sausages were drained and covered with plastic film. Samples were 

stored at room temperature (18-20°C) for 24 h. After 24 h sausages were ripened for 78 h in 
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24°C temperature under 93-86% humidity. After ripening fresh pork meat sausages were 

smoked at 16°C temperature for 130 min under 80-82% humidity. After smoking sausages 

were dried (8 days at 15°C under 75% humidity). The smoking and drying was carried out in 

the universal thermal camera (Bastramat 850 C-UP, Armsberg, Germany) with separate 

sawdust smoke generator. (II) The sausages after smoking and drying (400 g of each) were 

placed individually in a container with 1000 mL fermented potatoes juice (containing on 

average 9.6 log10 cfu g-1 of LAB) and covered with plastic film. Samples were stored at room 

temperature (18-20°C) for 24 h. The diagram of sausages preparation, additional biotreatment 

with LAB and sampling scheme is presented in Fig. 2.1. Control sample was prepared without 

treatment by LAB suspension. To evaluate the possible transition of PAHs into the liquid 

phase, control samples before and after smoking were treated with water. For cold smoking 

alder wood was used. 

 
Fig. 2.1. The diagram of sausages preparation, additional bio-treatment with LAB and 

sampling 

 

Sausages were collected for PAHs analysis. Geometry of the sausages and sampling 

locations for PAHs and BAs analysis are presented in Fig. 2.2. 
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Fig. 2.2. Geometry of the sausage and sampling locations for PAHs analysis 

 

2.11.4. Determination of polycyclic aromatic hydrocarbons (PAHs) in smoked pork 

meat sausages 

The method for PAHs extraction from meat was carried out according to the 

procedures described in section 2.4.1. The sample preparation procedure included extraction 

of PAHs with an organic solvent mixture, GPC and SPE on silica gel. The determination of 

PAHs was performed by the means of GC-MS/MS. 
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3. RESULTS AND DISCUSSION 

 

A set of experiments was performed following the different pathways to cover 

complex areas dedicated to issues of PAHs contamination in food. First, a novel analytical 

method for the determination of PAHs in edible oils by applying dispersive SPE (d-SPE) with 

MWCNTs as sorbents for selective extraction of analytes was elaborated. The whole 

procedure was optimised, including the type of MWCNT, as well as the extraction and elution 

conditions. Next, three different determination methods including HPLC-Orbitrap-MS, GC-

HRMS, and GC-MS/MS were elaborated and optimised. 

With the purpose to demonstrate applicability of elaborated methods the most 

challenging matrices were selected – edible oil as the most fatty matrix, to show the capability 

of sorption in fatty matrices, with regard to investigate the potential of the elaborated method 

for the application for other fatty matrices like canned smoked sprats and smoked meat; dark 

chocolate – as the only matrix that has the established MLs on a fat basis and thus requires 

ultra-low detection limits; bread – as a matrix that has the lowest established MLs. 

The present study has been concentrated on the occurrence of 4 EU-regulated PAHs in 

different seasonings, while to monitor the PAHs in one of the food categories contributing 

most to the dietary PAHs intake, the smoked meat and smoked meats products from Latvia 

were analysed. With regards to latter the exposure of certain Latvian population groups to 

PAHs from smoked meat products was also assessed and risks associated with the uptake 

were evaluated. In addition, targeted smoked meat samples from the Baltic states were also 

analysed to assess the current situation in all three countries. 

Concluding the ubiquitous PAHs contamination, two different strategies to reduce the 

PAHs contamination in processed foods were assessed - the effect of ozone treatment on BaP 

degradation in solutions and smoked products, and the influence of surface treatment with 

LAB in an alternative substrate for the reduction of PAHs contamination of the cold smoked 

pork meat sausages. 

 

3.1. Innovative sample preparation method for the PAHs analysis – MWCNTs 

The application of multi-walled carbon nanotubes (MWCNTs) in modern analytical 

methods has recently received increased attention due to its broad potential use as a sorbent 

for removing and immobilising various contaminants from different types of samples, 

including food. Hence, the study on an analytical method for the determination of PAHs in 
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edible oils by applying dispersive SPE (d-SPE) with MWCNTs as sorbents for selective 

extraction of analytes, followed by detection with GC-MS/MS was performed. 

During a study it was observed that procedural blanks showed the background 

presence of significant quantities of PAHs in commercially available MWCNTs. For example, 

application of 50 mg of non-pretreated MWCNTs for the extraction of one gram of oil 

resulted in elevated BaA concentration by up to 0.6 µg kg-1 for CNT-1, 0.8 µg kg-1 for CNT-2, 

1.7 µg kg-1 for CNT-COOH, and 2.5 µg kg-1 for CNT-OH, respectively. The source of this 

contamination is unknown; however, this fact should be considered during the application of 

MWCNTs as sorbents in PAH analysis. In order to avoid background contamination, all the 

prepared MWCNT-based sorbent mixtures were pre-treated until the sorbents did not show 

signals of the selected PAHs. 

Experiment design for the optimisation of the extraction and clean-up procedure for 

the PAHs included the following steps: 1) selection of organic solvent for the dilution of oil 

samples to enhance the analyte sorption efficiency from the matrix; 2) selection of an 

appropriate solvent for analyte desorption and, 3) selection of the MWCNT sorbent type, 

considering a) sorption capacity of each MWCNT type towards PAHs in the presence of 

matrix; b) effectiveness of PAH desorption from the MWCNTs and, c) the affinity of 

MWCNTs towards matrix coextractives and selection of solvent for the washing step in order 

to reduce possible influence of matrix coextractives. All experiments devoted to the 

optimisation of extraction procedure were carried out using deuterated PAH surrogates as 

target compounds in order to eliminate the influence of the possible native PAH background 

in the laboratory environment and considering that isotopically labeled surrogates behaved 

analogously to the analytes in the presence of matrix components. 

3.1.1. Selection of sample dilution and analyte elution solvents 

One of the most convenient ways for providing better transfer of analytes from the oil 

matrix to d-SPE sorbent is decreasing the viscosity of the sample by dilution with an 

appropriate organic solvent (dilution solvent). Selection of such solvent should be based on 

the following aspects: a) miscibility of the sample matrix in the solvent; b) complete solubility 

of analytes in the solvent; c) the affinity of sorbent for the solvent molecules should be as low 

as possible in comparison to the affinity for analyte molecules, in order to ensure quantitative 

sorption of the analytes from the sample solution. Contrary to the case of sample dilution 

solvent, the affinity of sorbent for the elution solvent molecules should be at least comparable 

to the affinity for analyte molecules, providing for competitive desorption of the analyte. A 

number of organic solvents were tested as possible sample dilution and analyte elution media 



44 
 

and the results of sorption experiments expressed as analyte sorption efficiency are illustrated 

in Fig. 3.1. The best results among the tested aliphatic compounds as sample dilution solvents 

were obtained with n-hexane, from which the selected PAHs were almost completely 

adsorbed on the MWCNTs. Among the two tested aromatic elution solvents, toluene was 

found to be more efficient in comparison to m-xylene and provided better recovery of 

analytes from the MWCNT sorbents. The probable explanation of this effect is the stronger π-

π interaction between the toluene molecules and MWCNT surface due to the smaller size of 

toluene molecules in comparison with m-xylene. 

 

Fig. 3.1. Sorption of the deuterated PAHs with different MWCNTs from standard solutions in 

selected organic solvents (CNT-1 – agglomerated MWCNT of trademark Baytubes® C150P; 

CNT-2 – disperse MWCNTs of trademark Timestube™; CNT-OH – hydroxyl derivate of CNT-

2; CNT-COOH – carboxyl derivate of CNT-2) 

 

3.1.2. Selection of MWCNT sorbent 

Absorption of PAHs on different MWCNTs  

In order to assess the sorption potential of MWCNTs towards PAH analytes in the 

presence of matrix components, the capacity of each MWCNT type was evaluated in terms of 

recovery of PAHs-d12 from aliquots of oil treated (n=3 for each MWCNT type). As shown in 

Fig. 3.2, generally the lowest affinity among the tested sorbents towards the selected PAHs 
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was observed in the case of CNT-OH nanomaterial. The other three sorbents were found to 

provide comparable extraction efficiency under the fully optimised conditions, apart from 

BaP-d12, for which CNT-1 was less effective than CNT-2 and CNT-COOH.  

Recovery of analytes from MWCNT sorbents 

Considering the planar structure of PAHs, the dominant sorption mechanism likely 

involved strong π-π electron interactions between the aromatic structure of analytes and the 

active surface of MWCNT sorbent [122]. 

Despite the known benefits of π-π electron interactions for quantitative and selective 

sorption of aromatics from the matrix, the strong affinity of MWCNT sorbents for PAH 

analytes resulted in poor absolute recoveries of selected PAHs-d12 during the initial 

desorption attempts. It was found that acceptable recoveries of the selected targets could be 

obtained by direct elution of the analytes with toluene, although the necessary volume of 

toluene was very high (up to 200 mL per sample) and was similar to the volume typically 

applied to elute the fraction of planar molecules from activated carbon in the analysis of 

polychlorinated dibenzo-p-dioxins and dibenzofurans [123-124]. In order to overcome this 

drawback and to reduce the necessary volume of elution solvent, washing with hot toluene 

under reflux conditions was applied for analyte elution from the MWCNT sorbent, and the 

total volume of toluene considered to be sufficient for the desorption procedure was 35 mL. It 

was found that the effectiveness of PAH elution from the MWCNTs increased with 

decreasing molecular weights of the analytes, showing absolute recoveries in the following 

order: BaA-d12 ~ Chr-d12 > BbF-d12 ~ BaP-d12. The degree of analyte desorption was found to 

be highly dependent on the duration of refluxing, with 60 min extraction with toluene under 

reflux conditions selected as a reasonable compromise between the desorption efficiency of 

target PAHs and the labor and time consumption of the procedure. The best analyte recovery 

rates were in the range from 75 to 90%, observed for sorbents based on CNT-2 and CNT-

COOH, (Fig. 3.2A and 3.2B), while sorbents prepared from CNT-1 and CNT-OH were less 

effective, providing absolute recoveries for BaP-d12 equal to only about 50% (Fig. 3.2D).  
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Fig. 3.2. Recovery rates for deuterated PAHs observed with different MWCNTs, reflux times, 

and desorption solvents (CNT-1 – agglomerated MWCNT of trademark Baytubes® C150P; 

CNT-2 – disperse MWCNTs of trademark Timestube™; CNT-OH – hydroxyl derivate of CNT-

2; CNT-COOH – carboxyl derivate of CNT-2) 

 

Evaluation of coextractive propensity of MWCNTs and the selection of washing solvent 

Despite the selective sorbent properties of MWCNTs, the adsorption of some matrix 

components of aromatic nature (e.g., dyes) could be also expected. A greater role of sorption 

mechanisms other than π-π electron interaction could be expected in the case of CNT-OH and 

CNT-COOH sorbents due to the presence of hydroxy and carboxyl groups in their structure. 

The affinity of the tested MWCNTs towards matrix coextractives was evaluated by treating 

aliquots of oil diluted with n-hexane and further gravimetrical measurement of the residual 

matrix remaining after the evaporation of n-hexane. As it was expected, the chemically 

modified CNT-OH and CNT-COOH sorbents were found to be more susceptible to retaining 

the matrix in comparison to CNT-1 and CNT-2, pointing to different sorption mechanisms. 

The initial extraction experiments showed that post-extraction washing of the sorbent is 

clearly required. As shown in Fig. 3.3, n-hexane was not sufficiently effective as a post-

extraction washing solvent, while the more polar EtOAc efficiently removed the remaining 

matrix components from the MWCNT sorbents without significant losses of analytes (Fig. 

3.2). 
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Fig. 3.3. Matrix residue on the tested MWCNTs after post-extraction washing with different 

solvents, determined by extracting one gram of oil (CNT-1 – agglomerated MWCNT of 

trademark Baytubes® C150P; CNT-2 – disperse MWCNTs of trademark Timestube™; CNT-

OH – hydroxyl derivate of CNT-2; CNT-COOH – carboxyl derivate of CNT-2) 

 

From the results observed it can be concluded that all the tested MWCNTs have a 

great potential for the sorption of PAHs from oil samples, providing good recoveries of 

analytes and acceptable purity of the final extracts. Based on the superior analyte recovery 

rates and the lower retention of matrix components, CNT-2 was used in the final method in 

combination with EtOAc as post-extraction washing solvent. 

Method validation 

The method was validated using spiked corn oil and the results of spiking experiments 

were corrected by taking into account the concentrations of pseudo-blank samples. The mean 

concentrations of PAHs in the pseudo-blank samples were: BaA – 0.19 µg kg-1; Chr – 0.41 µg 

kg-1; BbF – 0.24 µg kg-1; BaP – 0.12 µg kg-1. Essential parameters such as sensitivity, 

selectivity, linearity, accuracy, and precision were investigated and the overview of validation 

parameters for the elaborated method is given in Annex 1. Since isotope dilution and internal 

standardisation were used, solvent-matched calibration standards were chosen for quantitative 

purposes. Seven calibration levels covered the concentration range between 0.10 and 10.0 μg 

kg-1 and, in order to avoid heteroscedasticity, the calibration range was split into two parts. 

The lower part was applicable for LOD calculation and covered the range from 0.10 to 0.60 

μg kg-1, whereas the second calibration curve was set up for the whole calibration range 

between 0.1 and 10 μg kg-1. The linearity of instrument responses was evaluated for each 

section based on visual inspection of the residuals of the linear regression curves. The 
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obtained correlation coefficients were greater than 0.998 with the residual values of less than 

15% for all selected PAHs. 

The calculation of method LOD was based on a single analysis on the test sample, ten 

independent analyses of the pseudo-blank, and equal probabilities (α=ß=0.05) for false 

positive and false negative detections. The pseudo-blank samples were processed by applying 

the whole analytical procedure. Homoscedasticity was assumed for the analyte concentration 

range between LOD and the spiking level, and the probabilities of type I and type II errors (α 

and ß errors) were set to 0.05. The method LOD and LOQ for each analyte were calculated 

based on the Guidance Document on the Estimation of LOD and LOQ for Measurements in 

the Field of Contaminants in Feed and Food [125]. The obtained method LODs and LOQs for 

single compounds were far below the levels set in Commission Regulation (EU) No. 

836/2011 and 2015/1933 [42-43], with the actual values ranging from 0.06 to 0.21 μg kg-1 and 

from 0.19 to 0.71 μg kg-1 (Annex 1), respectively. 

The results of spiking experiments show that the mean recovery values for target 

analytes ranged from 96 to 107% and all the obtained HORRATr values were far below 2, 

thus completely meeting the criteria stated in the Commission Regulation No 836/2011 [42], 

while the intra-day and inter-day precision in terms of RSDs were in the range of 2–5% and 

4–6%, respectively. The expanded uncertainties for individual PAH compounds and for the 

combined PAH4 group were calculated for the lowest validation level (1 µg kg-1) with the 

refined level of confidence of 95% (k=2). The expanded uncertainty values for BaP and 

PAH4 were 10% and 11%, respectively. 

The trueness of the method was demonstrated by analysis of a real sample that was 

inter-laboratory tested for the content of selected PAHs within the framework of the 14th 

inter-laboratory comparison organised by the European Union Reference Laboratory for 

Polycyclic Aromatic Hydrocarbons – “Four marker PAHs in food supplements”. Eq. (1) was 

applied for evaluation of the obtained results [126]. The measurement uncertainty was 

estimated as a first approximation from the determined intermediate precision. A statistically 

significant difference of the measurement result and certified value cannot be postulated at the 

95% confidence level if Eq. (1) is fulfilled. Statistical evaluation of the measurement results 

did not indicate any bias. 

2 ≥ |𝑧𝑒𝑡𝑎| =
𝑋𝑚−𝑋𝐼𝐿𝐶

√𝑢𝑚
2 +𝑢𝐼𝐿𝐶

2
   (1) 

𝑋𝑚: the average measured value; 

𝑋𝐼𝐿𝐶: the values assigned for inter-laboratory comparison; 
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𝑢𝑚: standard uncertainty of the measurement; 

𝑢𝐼𝐿𝐶: standard uncertainty of the assigned value. 

The results derived from the analyses of this material represent a good agreement of 

the determined concentrations with the provided consensus values (Table 3.1). The calculated 

zeta scores of 0.71 for BaA, -0.22 for Chr, 1.0 for BbF, 0.71 for BaP, and 0.67 for the PAH4 

indicated a good reliability of the elaborated method for the analysis of 4 EU-regulated PAHs 

in edible oils. 

Table 3.1 

Results obtained for the ILC 2014 – Four marker PAHs in food supplements (fish oil) 

 XILC, µg kg-1 fat uILC, µg kg-1 fat Xm, µg kg-1 fat um, µg kg-1 fat zeta Acceptance 

BaA 3.3 0.3 3.6 0.3 0.71 Yes 

Chr 3.6 0.4 3.5 0.2 -0.22 Yes 

BbF 4.3 0.3 4.8 0.4 1.0 Yes 

BaP 3.3 0.2 3.5 0.2 0.71 Yes 

PAH4 14.5 0.6 15.4 1.2 0.67 Yes 

 

Application to real samples and comparison with the GPC method 

The applicability of the elaborated method was assessed through the analysis of 

selected PAHs in fifteen edible oil samples and the obtained analyte concentrations are 

outlined in Table 3.2. The concentrations of PAHs observed with the MWCNT sample 

preparation protocol varied from 0.19 to 7.0 μg kg-1 for BaP and from 1.6 to 31 μg kg-1 for 

PAH4, respectively. The concentrations of PAHs in five of the samples were above the MLs 

of 2.0 μg kg-1 for BaP and 10 μg kg-1 for PAH4 stated in Commission Regulation (EU) No 

835/2011 [75], thus the efficiency of the method was evaluated over a broad range of analyte 

concentrations (from 0.1× to 3.5× of the ML for BaP and from 0.15× to 3× of the ML for the 

PAH4). 

  



 
 

Table 3.2 

The results of the analysis of selected PAHs in oil samples obtained with MWCNT and GPC sample preparation protocols (n=15) 

No. Oil type 

BaA, μg kg-1 Chr, μg kg-1 BbF, μg kg-1 BaP, μg kg-1 PAH4, μg kg-1 

CNT 

protocol 

GPC 

protocol 

CNT 

protocol 

GPC 

protocol 

CNT 

protocol 

GPC 

protocol 

CNT 

protocol 

GPC 

protocol 

CNT 

protocol 

GPC 

protocol 

1 Unrefined linseed oil 3.3 3.6 4.0 4.3 2.6 2.4 3.2 2.9 13.2 13.1 

2 Unrefined walnut oil 0.83 0.65 1.3 1.6 0.92 0.39 0.73 0.39 3.8 3.0 

3 Unrefined linseed oil 6.2 6.9 7.5 8.4 5.5 5.3 6.6 6.0 25.8 26.6 

4 Milk thistle oil 7.2 6.8 10.7 10.0 4.3 4.8 5.5 5.6 27.7 27.2 

5 Unrefined milk thistle oil 0.92 0.66 1.4 1.1 0.56 0.43 0.51 0.41 3.4 2.6 

6 Unrefined walnut oil 7.7 8.0 10.8 10.5 5.7 6.1 7.0 6.9 31.2 31.5 

7 Unrefined almond oil 1.7 1.5 2.8 2.4 1.2 0.86 1.0 0.97 6.7 5.7 

8 Unrefined rapeseed oil 0.90 0.74 1.7 1.5 0.56 0.44 0.47 0.32 3.6 3.0 

9 Sea buckthorn oil 0.32 0.20 0.79 0.50 0.36 0.17 0.31 0.15 1.8 1.0 

10 Unrefined olive oil 1.6 1.5 2.7 2.2 0.37 0.46 0.29 0.21 4.9 4.3 

11 Unrefined olive oil 0.61 0.46 2.1 2.6 0.35 0.18 0.35 0.13 3.4 3.4 

12 Unrefined olive oil 0.37 0.13 0.72 0.55 0.31 0.20 0.19 0.10 1.6 0.98 

13 Linseed oil 0.97 0.81 1.6 1.1 1.0 0.72 0.43 0.67 4.0 3.3 

14 Pumpkinseed oil 1.2 1.4 1.9 1.7 0.56 0.45 0.71 0.46 4.3 4.0 

15 Olive extra virgin oil 2.9 2.5 4.1 4.6 3.5 3.8 5.3 5.0 15.8 15.8 

 

 



 
 

A functional relationship between the data obtained by two different methods could 

serve as one of the approaches for the evaluation of comparability of the obtained results. In 

order to assess the efficiency of the elaborated d-SPE method, all tested oil samples prepared 

and analysed according to a novel MWCNT sorbent procedure, were additionally reanalysed 

using a well-established and validated GC-MS/MS method [127], in which a GPC based 

sample preparation procedure was applied. The functional relationship between d-SPE and 

GPC methods for selected PAHs is shown in Fig. 3.4. Two regression curves were plotted: the 

bisecting line and the functional relationship between the methods calculated by the 

regression method. As it has been shown, all selected PAHs practically merged with the 

bisecting line and the observed bias could be acknowledged to be in the range of method 

uncertainty, affirming the equivalency of the developed method in terms of providing reliable 

results. Taking into account all of the aforementioned considerations, it can be concluded that 

the developed method is convenient and rapid, while the whole proposed procedure using d-

SPE for six parallel samples can be completed within less than 3 h. 

 

Fig. 3.4. Representation of the functional relationships between results obtained by the 

elaborated d-SPE method and GPC method for selected PAHs 
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3.2. Instrumental methods for the PAHs determination 

Depending on the complexity of the food matrices and the sample preparation 

methodology to provide acceptable separation of the target analytes from the interfering food 

matrix coexrtactives, the instrumental methods published in the scientific literature for the 

determination of PAHs in food can be divided into two groups. The first group focuses on the 

determination of the PAHs by the means of HPLC coupled to FLD and MS detectors. The 

second group focuses on GC-MS determinations. Both groups were covered within the 

present study, thus representing recent trends in both possible instrumental analytical methods 

pathways. GC-MS/MS and GC-HRMS methods cover recent trends in GC-MS determination, 

however HPLC-HRMS opens new perspectives in HPLC-MS determinations of PAHs. 

3.2.1. HPLC-Orbitrap-MS method for the determination of PAHs 

The most common LC determination of PAHs is carried out by liquid chromatography 

coupled to fluorescence (LC-FLD) detection that is also proposed in some official methods 

according to the ISO and the US EPA. However, it is well known that FLD detection shows a 

number of disadvantages, such as selectivity problems and sensitivity limitations. To 

overcome these limitations MS or even HRMS detection can be used. Whereas, it would be 

not able to improve the sensitivity of determination without improving the ionisation 

efficientcy, the development and optimisation of a novel LC-APPI-Orbitrap-MS analytical 

method was performed. 

Optimisation of the sample clean-up and HPLC conditions 

Since the concentrations of PAHs in food are very low, generally in the range of parts 

per billion, the sample clean-up procedures usually consist of several extraction and 

purification steps [10]. The sample clean-up procedure for the present study was based on 

extraction of PAHs with dichlormethane/n-hexane mixture, gel permeation chromatography, 

and solid-phase extraction [see Section 2.4.2]. During the optimisation of the sample clean-up 

procedure, we attempted to analyse the chocolate samples without the final purification step 

(solid-phase extraction), and it was found that a sample clean-up apart from GPC was not 

strictly necessary for the APPI. However, for routine applications, the SPE clean-up step is 

very beneficial in order to avoid contamination of the ion source. 

In order to achieve the highest possible instrumental selectivity for specific PAHs, the 

parameters of HPLC analysis were optimised. Based on previous studies regarding the 

analysis of PAHs using LC-MS [3, 8, 128], two different LC columns were tested - 
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LiChrospher PAH 250mm × 3 mm, ID 5 µm (Merck Millipore, Darmstadt, Germany) and 

Pinnacle DB PAH 50 mm × 2.1 mm, ID 1.9 µm (Restek, Bellefonte, PA, USA). The initial 

experiments were based on the manufacturer’s recommendations and then optimised to 

achieve better separation of the analytes. Both columns demonstrated acceptable results even 

for the critical compounds – BbF and Chr. The main difference between the two tested 

columns was the total run time of the sample analysis. Sufficient separation of PAHs was 

achieved within a 6 min run on the Pinnacle DB PAH column, whereas LiChrospher PAH 

250-3 showed acceptable results only after a 25 min run. Therefore, the selection of Pinnacle 

DB PAH analytical column was more reasonable. Figure 3.5 shows typical chromatograms 

for chocolate samples spiked with PAHs at 0.10 µg kg-1 concentration using these two 

analytical LC columns.  

 

 
Fig. 3.5. Chromatograms for chocolate samples spiked with PAHs at 0.1 µg kg-1 concentration 

using two different analytical LC columns: A – LiChrospher PAH 250-3; B – Pinnacle DB PAH 

 

The optimal column flow rate of 0.4 mL min-1 was used and was proved to be well 

suited for direct coupling with the APPI interface. Chromatographic separation of the analytes 

was achieved using water/acetonitrile as a binary mobile phase system and no column re-

equilibration time between injections was needed. 

Despite the fact that acetonitrile is not recommended as mobile phase solvent for APPI 

source due to its relatively low protonating efficiency, it was used successfully under our 

experimental conditions. The limitations for the use of acetonitrile are based on the low yield 

of acetonitrile ions responsible for the ionisation of PAHs, which is not sufficient for 

achieving sufficient ionisation of the analytes [63]. In our case, the ionising efficiency was 

greatly improved by adding a post-column doping agent to the mobile phase. 

Several studies were performed during the last decade that compared the benefits of 

either single dopants or mixtures of dopants [64-66]. In our study, a screening aimed at the 

selection of several dopants and their combinations with the ionisation potential of less than 
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10 eV was performed, and these were (1) toluene, (2) anisole, (3) chlorobenzene, (4) 

toluene/acetone (50:50, v/v), (5) toluene/anisole (99.5:0.5, v/v), (6) toluene/chlorobenzene 

(99:1, v/v), and (7) ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v). 

Under our experimental conditions, pure toluene and pure anisole showed better and 

equivalent performance in terms of providing higher ion intensity for most of the selected 

PAHs. Similar results were obtained by Moriwaki et al. (2004) when toluene gave the highest 

peak areas for 12 EPA-PAHs and by Itoh et al. (2006) who reported that a mixture of toluene 

and anisole in the volume ratio of 99.5:0.5 provided the most suitable ionisation for the 

analysis of 16 PAHs [64, 129]. Due to the fact that most of our analytical standards were 

prepared in pure toluene, and to avoid the introduction of different solvents, toluene was 

finally selected in preference over other dopants as the most effective and convenient agent. 

The maximum sensitivity for the analytes was obtained by post-column introduction of 

toluene to the mobile phase at the flow rate of 50 µL min-1. 

Optimisation of the Orbitrap-MS method 

The use of APPI ionisation mode in PAH analysis was previously described by several 

authors [64-65, 67-69, 130], however, limited selectivity, sensitivity, as well as strong 

interference might be occasionally encountered when using quadrupole MS instruments [71, 

130]. The performance of Q-Exactive mass spectrometer functioning as a part of innovative 

hybrid high-resolution mass spectrometers (HRMS) combined the high resolving power (RP) 

performance of the Orbitrap with the high selectivity of the quadrupole. Hereby, in order to 

overcome the aforementioned limitations, we propose the use of HPLC-Orbitrap-MS as a 

promising technology for the routine analysis of PAHs. 

In order to adjust the HRMS parameters and to optimise the method for determination 

of PAHs, systematic experiments were carried out for each of the Q-Exactive scan modes (FS, 

tSIM, and tMS2). The effect of mass spectrometry (MS) parameters, such as automatic gain 

control (AGC target), maximum injection time (IT), resolving power (RP), normalised 

collision energy (NCE), and number of scans per chromatographic peak were examined. 

During the optimisation of Q-Exactive scan modes, one of the essential criteria 

responsible for the sensitivity of method is finding the optimal values of two related 

parameters - AGC and IT. In the FS mode (m/z range of 100 – 500) with a complex matrix, 

the optimal AGC was configured to 1 × 106, while the IT was set to 200 ms. As a 

consequence, the detection of all species in the operating mass range was enhanced. 

The AGC value for the tSIM mode was established at the same level as was found 

optimal for the FS mode, whereas the IT value was decreased. As a result, we observed a 
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slightly improved sensitivity and much higher intensities of the analyte signals in the spectra 

(Fig.3.6). The optimal AGC and IT values used for this detection mode were 1 × 106 and 120 

ms, respectively. 

In the case of the tMS2 mode, the target ions were filtered from the total ion flux and a 

large portion of interfering ions were removed by applying a selective isolation window of 

narrow mass range (m/z 1) by the quadrupole. Thus, the ions were selectively accumulated in 

high collision dissociation (HCD) cell and subsequently fragmented. In order to avoid 

disrupting the analyte ions in the Orbitrap and to prevent distortions, the AGC was set to 2 × 

105, to limit the amount of ions in the Orbitrap. At the same time, IT was set to 100 ms, still 

providing a sufficient number of scans per second. As a result, the proportion of target ions 

among the total ion population was greater, favouring lower detection limits compared to the 

FS and tSIM modes. 

 

 
Fig. 3.6. Chromatograms for the optimal AGC and IT values for the different Orbitrap-MS 

scan types: A – Full Scan mode; B – tSIM mode; C – tMS2 mode 

 

Another important parameter to consider in relation to the selectivity of HRMS 

analysis is the resolving power (RP). Analysis at higher RP enables a better mass accuracy, 

thus a higher selectivity. Yet, high RP decreases the number of acquisitions during an analysis 

due to longer duty cycles [131]. For quantitative measurements with acceptable RSDs, it is 

generally agreed that a minimum of about 20 data points per peak is required [132]. The 

number of data points in relation to RP was studied in order to identify the best compromise 

between selectivity and quantitative parameters of the method. With these criteria, the 

selected RP for FS and tSIM was 35 000 FWHM, and 17 500 FWHM for tMS2. Fig. 3.7 

presents the optimal RP with the corresponding optimum acquisition points for tSIM and 

tMS2 modes. 
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Fig. 3.7. Optimal RP with corresponding optimum acquisition points for the different scan 

modes: A – tSIM mode; B – tMS2 mode 

 

As described above, the efficiency of different scan modes was examined during the 

study. The FS and tSIM modes showed poorer performance in terms of selectivity compared 

to tMS2, and many interfering peaks were observed for chocolate matrix when operating at 

low detection levels, especially near the BaA and BbF peaks (Fig. 3.8). Comparing the 

different scan modes in terms of sensitivity and amount of data points per peaks against the 

tMS2 mode showed better performance (Fig. 3.7). Consequently, the tMS2 mode resulted in a 

more accurate determination of PAHs and should be preferred when using complex matrices. 

Based on these observations, only the tMS2 method was validated in the present study and 

used for the further analysis of chocolate samples. 

 

 
Fig. 3.8. Chromatograms of the chocolate sample obtained by the different scan modes: A – 

tSIM mode; B – tMS2 mode 

 

Validation of the method 

The developed DA-APPI-HPLC-Orbitrap-MS method was validated according to the 

Commission Regulations (EU) No. 836/2011, 2015/1933, and 2016/582 [42-43, 133]. The 

validation of the method was performed using dark chocolate homogenate (pseudo-blank) 
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previously analysed for the PAHs content and found to contain quantifiable traces of selected 

substances. The mean concentrations of PAHs in the pseudo-blank sample were: BaA – 0.21 

µg kg-1 fat; Chr – 0.31 µg kg-1 fat; BbF – 0.16 µg kg-1 fat; BaP – 0.071 µg kg-1 fat. 

In order to evaluate the analytical performance of the developed method, essential 

parameters such as sensitivity, selectivity, linearity, accuracy, and precision were investigated. 

The overview of validation parameters such as linearity (r2), linearity range, instrumental and 

method LODs and LOQs, as well as the recoveries and precision values for all the three 

different spiking levels during the intra-day and inter-day validation experiments are outlined 

in Annex 2. 

As the analytical method had to be fit for the generation of reliable data at low 

concentration levels, an emphasis was given to the assessment of the lower limits at which 

analytes can be detected. Nine calibration levels covered the concentration range between 

0.10 μg kg−1 and 5.0 μg kg−1 expressed on fat basis. To avoid heteroscedasticity, the 

calibration range was split into two parts. The lower part, which was applicable for LOD 

calculation, covered the range from 0.10 μg kg−1 to 0.30 μg kg−1 fat, whereas the second 

calibration curve was set up for the range between 0.20 μg kg−1 and 5.0 μg kg−1 fat and was 

used for the analysis of chocolate samples. The linearity of instrument responses was 

evaluated for each section based on visual inspection of the residuals of the linear regression 

curves. The obtained correlation coefficients were greater than 0.990 for all of the 

investigated compounds. 

The calculation of method LOD (LOD) was performed according to Equation 1 under 

the conditions of performing a single analysis on the test sample, ten independent analyses of 

the pseudo-blank, and equal probabilities (α=ß=0.05) for false positive and false negative 

detections [125]. The pseudo-blank samples were processed by applying the whole analytical 

procedure. Homoscedasticity was assumed for the content range between method LOD and 

the spiking level, and the probabilities of type I and type II errors (α and ß errors) were set to 

0.05. The method LOD and LOQ of each analyte were calculated based on the Guidance 

Document on the Estimation of LOD and LOQ for Measurements in the Field of 

Contaminants in Feed and Food [125], according to Eqs. (2) and (3), respectively. The factor 

3.86 takes into account the number of experiments and the chosen error probabilities. 

Equation (2) was used for the estimation of method LOD: 

𝑥𝐿𝑂𝐷 = 3.86 ∙
𝑆𝑦,𝑏

𝑏
  (2) 

𝑥𝐿𝑂𝐷: limit of detection for the method; 

𝑆𝑦,𝑏: standard deviation of the pseudo-blank signals; 
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𝑏: slope of the calibration curve close to LOD; 

whereas Equation (3) was applied for the estimation of method LOQ: 

𝑥𝐿𝑂𝑄 = 3.3 ∙ 𝑥𝐿𝑂𝐷  (3) 

𝑥𝐿𝑂𝑄: limit of quantification for the method. 

Due to the fact that in the case of Orbitrap-MS the extraction of exact masses within 5 

× 10-6 amu (5 ppm) of the theoretical m/z from the full scan raw data for most of the target 

compounds provided for absence of background noise, the evaluation of the instrumental 

sensitivity via S/N ratio was not applicable and could result in overestimated results [134]. 

Thus, the instrumental LOD (i-LOD) and instrumental LOQ (i-LOQ) values were assessed 

from the analyses of pure standard solutions with analyte concentrations from 0.10 to 0.50 pg 

µL-1 (0.50 – 2.5 pg injected on-column). For the reliable detection taking into account the 

dynamic range of the detector, only signals with the intensities above 1 × 104 were used. The 

assessed i-LOD values for the analysed PAHs were: BaA – 1.2 pg injected on-column, Chr – 

0.80 pg injected on-column; BbF – 1.0 pg injected on-column, and BaP – 1.0 pg injected on-

column. The i-LOQs were BaA – 3.7 pg injected on-column, Chr – 2.4 pg injected on-

column; BbF – 3.1 pg injected on-column, and BaP – 2.9 pg injected on-column, respectively. 

The method LODs observed in the present study (0.016 to 0.024 μg kg−1 fat, see 

Annex 2) were approximately ten times lower than those obtained by Hollosi et al. (2011), 

and comparable to the lowest LODs reported by Smoker et al. (2010) and Cai et al. (2012) 

[69-71]. With regard to the instrumental LOD values, the most sensitive among the 

aforementioned methods was reported by Smoker et al. (2010), with the lowest established 

instrumental LOD at the level of 0.40 pg of BaP on-column [70]. However, the determination 

of LODs for the reported method was based on S/N ratio that is often associated with 

overestimated results. The instrumental LOD values reported by other authors were 6.3 pg of 

BaP on-column for edible oil matrix and 8.0 – 106 pg of individual PAHs for oysters. 

According to the Commission Regulation No. 836/2011 amending the performance 

criteria for methods of analysis for PAHs, validated method recoveries for every single PAH4 

compound should be in the range from 50 to 120%, and HORRATr values should be less than 

2 [42]. The mean recoveries for the elaborated method were within the recommended range – 

from 84% to 110%. All the obtained HORRATr values were significantly lower than required 

(Annex 2). 

The obtained mean RSD values for the inter-day validation ranged from 7% to 11%, 

while the mean RSD values for the intra-day validation were 10% for all the individual 

compounds. 
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The trueness of the method was estimated by analysis of an inter-laboratory 

comparison test material (EUPT-2015 – Four marker PAHs in cocoa products). Eq. (1) was 

applied for evaluation of the obtained results [126]. 

In general, the determined concentrations for the analytes included in the PT were in 

good agreement with the provided assigned values for both samples. The details are given in 

Table 3.3.  

The overall quality assessment of validation data shows that our elaborated 

methodology provided acceptable performance for sensitive, selective, and accurate analysis 

of selected PAHs in chocolate samples. 

Table 3.3 

Results obtained for the ILC 2015 – Four marker PAHs in cocoa products 

 XILC, µg kg-1 fat uILC, µg kg-1 fat Xm, µg kg-1 fat um, µg kg-1 fat zeta Acceptance 

Milk chocolate 

BaA 4.7 0.3 4.2 0.42 -0.99 Yes 

Chr 5.8 0.3 5.3 0.53 -0.81 Yes 

BbF 3.9 0.2 3.8 0.38 -0.20 Yes 

BaP 3.9 0.2 3.5 0.35 -0.96 Yes 

PAH4 18.2 0.5 16.7 3.4 -0.4 Yes 

Cocoa powder 

BaA 4.4 0.32 4.7 0.47 0.46 Yes 

Chr 6.2 0.39 5.9 0.59 -0.41 Yes 

BbF 2.3 0.21 2.7 0.27 1.1 Yes 

BaP 2.2 0.17 2.1 0.21 -0.49 Yes 

PAH4 15.1 0.6 15.3 3.1 0.070 Yes 

 

3.2.2. Comparison of GC-MS/MS and GC-HRMS methods for the determination of 

PAHs in cereal-based food 

As it was mentioned above GC-MS/MS and GC-HRMS represent recent trends in 

instrumental determination of PAHs using gas chromatography. Both methods have 

appropriate sensitivity and selectivity for the analysis of these contaminants at trace levels. 

However, to evaluate the performance of aforementioned methods, it is relevant to compare 

the essential parameters of the determination methods such as sensitivity, selectivity, linearity, 

accuracy and precision. For this purpose, analysis of cereal-based foods with the PAHs at the 

ultra low contamination levels and the goal criteria for LOQs at the level of 0.10 µg kg-1 for 

the four individual PAHs was performed. 

The analytical procedure for the analysis of PAHs used in this study was based on a 

sample preparation procedure described in a Section 2.4.2., however instrumental parameters 



60 
 

were thoroughly optimised to achieve the highest possible instrumental sensitivity for the 

selected PAH compounds.  

As a result, both elaborated analytical methods demonstrated outstanding sensitivity 

and selectivity. Figure 3.9 shows typical chromatograms for bread samples spiked with PAHs 

at 0.10 µg kg-1 concentration. It is important to mention that PAHs concentrations in the 

pseudo-blank sample were: BaA – 0.089 µg kg-1; Chr – 0.15 µg kg-1; BbF – 0.097 µg kg-1; 

BaP – 0.085 µg kg-1. 

 

Fig. 3.9. GC-MS/MS and GC-HRMS chromatograms of bread sample spiked with 0.10 µg kg-1 

of analytes 

 

In order to perform a comparative assessment of two analytical methods for PAHs 

analysis in processed cereal-based foods, essential parameters such as sensitivity, selectivity, 

linearity, accuracy, and precision were compared. The main validation parameters such as 

linearity (r2), LOQ, LOD, recoveries, RSD, and the HORRATr values for elaborated tandem 

and high resolution mass spectrometric methods are given in Annex 3. 

Assessment of validation data for both instrumental methods shows that the MS/MS 

technique produces a slightly lower r2 for all 4 PAHs. The comparison of sensitivity between 

MS/MS and HRMS techniques indicates that the MS/MS technique is more sensitive in the 

case of BaP analysis and slightly inferior in the case of other 3 PAHs – BaA, Chr, and BbF. 
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According to the Commission Regulation No. 836/2011 amending the performance 

criteria for methods of analysis for PAHs, validated method recoveries for every single PAH4 

compound should be in a range from 50 to 120%, but HORRATr values should be less than 2 

[42]. The recoveries for both of our studied methods were in the recommended range – from 

86% to 119%, whereas HRMS produced slightly elevated recoveries for both 0.10 and 1.0 µg 

kg-1 spiked samples, while MS/MS indicated almost 100% recovery for all the investigated 

samples. All the obtained HORRATr values were significantly lower than required. 

The obtained RSD values ranged from 3% to 19% for both validation levels, while the 

mean RSD values ranged from 8% to 13% for the MS/MS method and 6% ‒ 7% for the 

HRMS method. 

The uncertainties for individual PAH compounds and for the combined PAH4 group 

were expressed as 2xRSD for the lowest validation level (0.10 µg kg-1) and calculated 

according to equation: , where u – measurement uncertainty. 

Uncertainty values for BaP were 13% in the case of HRMS and 21% in the case of 

MS/MS, while for the PAH4 the uncertainty values were 24% for HRMS and 35% for 

MS/MS, respectively.  

In general, the obtained validation data indicated that the analytical characteristics of 

HRMS method are equivalent to the MS/MS method, and therefore both methods are 

perfectly appropriate for the application in PAHs analysis at low concentrations in processed 

cereal-based foods, such as bread. 

In order to compare the results obtained by the GC-HRMS and GC-MS/MS methods, 

ten different bread samples were analysed with both analytical techniques. The observed 

differences of results were lower than 5% in the case of BaP and lower than 10% for PAH4, 

indicating a good agreement of the analytical performance of both elaborated methods. The 

obtained results are summarised in Table 3.4. 
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Table 3.4 

The obtained HRMS and MS/MS results for 10 bread samples 

Sample 

No. 
Technique 

BaA, 

μg kg-1 

Chr, 

μg kg-1 

BbF, 

μg kg-1 

BaP, 

μg kg-1 

PAH4, 

μg kg-1 

Difference 

BaP, % 

Difference 

PAH4, % 

1 
MS/MS 0.20 0.32 0.33 0.17 1.0 

-0.70 -7.4 
HRMS 0.23 0.34 0.35 0.18 1.1 

2 
MS/MS 0.15 0.34 0.15 0.065 0.71 

-0.10 -5.4 
HRMS 0.19 0.39 0.12 0.066 0.76 

3 
MS/MS 0.069 0.16 0.15 0.094 0.48 

-1.6 0.20 
HRMS 0.076 0.18 0.11 0.11 0.48 

4 
MS/MS 0.068 0.18 0.12 0.039 0.41 

-3.6 -6.8 
HRMS 0.10 0.20 0.097 0.075 0.48 

5 
MS/MS 0.057 0.16 0.094 0.037 0.34 

-2.6 -6.1 
HRMS 0.078 0.18 0.088 0.063 0.40 

6 
MS/MS 0.045 0.15 0.078 0.031 0.31 

-1.1 -2.3 
HRMS 0.061 0.16 0.064 0.042 0.33 

7 
MS/MS 0.066 0.15 0.10 0.031 0.35 

-2.4 0.40 
HRMS 0.078 0.14 0.067 0.055 0.34 

8 
MS/MS 0.035 0.14 0.084 0.022 0.28 

-0.60 0.80 
HRMS 0.047 0.15 0.052 0.028 0.28 

9 
MS/MS 0.028 0.11 0.071 0.017 0.22 

-1.6 -4.9 
HRMS 0.051 0.13 0.058 0.033 0.27 

10 
MS/MS 0.051 0.15 0.085 0.029 0.31 

-1.3 -4.4 
HRMS 0.064 0.18 0.074 0.042 0.36 

 

3.2.3. GC-MS/MS method for the determination of PAHs 

In a present study the GC-MS/MS method for the occurrence data collection of the 

PAHs contamination was used. Utilised method was applied for the analysis of dried herbs 

and spices, and smoked meats. All the instrumental parameters were identical to those used 

for the GC-MS/MS and GC-HRMS comparative study, however to ensure that the performed 

method meets the requirements and specifications set in EU legislation as well as fulfills its 

intended purpose, the validation study for every desired food matrix was performed.  

The performance of the GC-MS/MS method for the determination of PAHs in dried herbs 

and spices 

In order to perform validation of the method for determination of four EU regulated 

PAHs in dried herbs and spices, essential parameters such as sensitivity, selectivity, linearity, 
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accuracy, and precision were assessed. According to the Commission Regulation No. 

836/2011 amending the performance criteria for methods used in the analysis of PAHs, 

recoveries of the analytical method for every single PAH4 compound should be in a range 

from 50 to 120%, HORRATr values should be less than 2, and specificity has been defined as 

method being “free from matrix or spectral interferences, verification of positive detection” 

[42]. Blank samples were analysed by the same procedure to determine any background 

contamination and no chromatographic peaks belonging to PAHs were detected. 

The results show that analytical response of the target compounds exhibited good 

linearity over the range of 0.10 – 5.0 μg kg-1 with correlation coefficients varying from 0.9989 

to 0.9999. The method LODs and LOQs were calculated as the analyte concentration giving a 

three and ten times signal-to-noise (S/N) ratio, respectively, for chromatographic peaks of 

PAHs in spiked samples. The method LOD values ranged from 0.04 μg kg-1 to 0.09 μg kg-1, 

while mthod LOQ values were in the range of 0.13 – 0.31 μg kg-1. 

The obtained HORRATr values were in a range of 0.41 – 0.73 and, accordingly, 

significantly lower than required by the relevant EU legislation. The obtained recoveries 

revealed in a study were in the recommended range – from 72% to 107%, with the lowest 

value for Chr – 72% at the spiking level of 1 μg kg-1 and the highest for BaP – 107% at the 

spiking level of 2 μg kg-1. The obtained precision (RSD) values ranged from 2% to 15% for 

all spiking levels, while the mean RSD values ranged from 6% to 11%. The values of main 

validation parameters for the elaborated method of PAHs determination are summarised in 

Annex 4. 

The trueness of the method was estimated by participation in the interlaboratory 

comparison testing program (EUPT-2016 – Four marker PAHs in smoked black pepper). The 

determined concentrations for the analytes included in the PT were in a good agreement with 

the provided assigned values for smoked black pepper sample, indicating the method’s 

applicability for different types of seasonings. The performance of the participation was 

expressed by z-scores, that were graded with the absolute values between -0.7 – 0.9 for all the 

reported results (Table 3.5). 

Table 3.5 

Results obtained for the ILC 2016 – Four marker PAHs in smoked black pepper 

PAH XILC, µg kg-1 uILC, µg kg-1 Xm, µg kg-1 um, µg kg-1 z-score Acceptance 

BaA 34.2 2.1 29.7 3.0 -0.7 Yes 

Chr 39.8 3.3 46.7 4.7 0.9 Yes 

BbF 17.2 1.3 17.5 1.8 0.1 Yes 

BaP 14.4 1.0 15.4 1.5 0.3 Yes 

PAH4 106 4 109 22 0.3 Yes 
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In order to assess the validity of the obtained within the study results the internal 

quality control checks (IQC) for the different types of seasonings were also performed. 

Spiked samples were included in each analytical batch and the obtained results were plotted 

on a control charts. Mean recovery values were in a range of 90 – 94% for all four PAHs with 

the dynamic recovery ranges from 70 to 119%. Fig. 3.10. shows typical chromatogram for 

oregano sample spiked with PAHs at 2.0 µg kg-1 concentration. 

 

Fig. 3.10. GC-MS/MS chromatogram of oregano sample spiked with 2 µg kg-1 of analytes 

 

In summary, the obtained results indicated that the proposed analytical method has a 

sufficient extraction efficacy, good linearity and reproducibility, satisfactory precision and 

accuracy, and reliable and valid results. 

The performance of the GC-MS/MS method for the determination of PAHs in smoked 

meats 

The method was validated using spiked smoked meat and the results of spiking 

experiments were corrected by taking into account the concentrations of pseudo-blank 

samples. The mean concentrations of PAHs in the pseudo-blank samples were: BaA – 0.07 µg 

kg-1; Chr – 0.14 µg kg-1; BbF – 0.09 µg kg-1; BaP – 0.15 µg kg-1. Essential parameters such as 

sensitivity, selectivity, linearity, accuracy, and precision were investigated and the overview 

of validation parameters for the utilised method is given in Annex 5. Since isotope dilution 

and internal standardisation were used, solvent-matched calibration standards were chosen for 

quantitative purposes. Seven calibration levels covered the concentration range between 0.10 

and 10.0 μg kg-1 and, in order to avoid heteroscedasticity, the calibration range was split into 

two parts. The lower part was applicable for LOD calculation and covered the range from 

0.10 to 0.60 μg kg-1, whereas the second calibration curve was set up for the whole calibration 

range between 0.10 and 10 μg kg-1. The linearity of instrument responses was evaluated for 
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each section based on visual inspection of the residuals of the linear regression curves. The 

obtained correlation coefficients were greater than 0.995 with the residual values of less than 

15% for all selected PAHs. 

The calculation of method LOD was based on a single analysis on the test sample, ten 

independent analyses of the pseudo-blank, and equal probabilities (α=ß=0.05) for false 

positive and false negative detections. The pseudo-blank samples were processed by applying 

the whole analytical procedure. Homoscedasticity was assumed for the analyte concentration 

range between LOD and the spiking level, and the probabilities of type I and type II errors (α 

and ß errors) were set to 0.05. The method LOD and LOQ for each analyte were calculated 

based on the Guidance Document on the Estimation of LOD and LOQ for Measurements in 

the Field of Contaminants in Feed and Food [124]. The obtained method LODs and LOQs for 

single compounds were far below the levels set in Commission Regulation (EU) No. 

836/2011 and 2015/1125 [42, 44], with the actual values ranging from 0.02 to 0.03 μg kg-1 

and from 0.06 to 0.09 μg kg-1 (Annex 5), respectively. 

The results of spiking experiments show that the mean recovery values for target 

analytes ranged from 97 to 119% and all the obtained HORRATr values were far below 2, 

thus completely meeting the criteria stated in the Commission Regulation No 836/2011 [42], 

while the intra-day and inter-day precision in terms of RSDs were in a range of 3–9%. The 

expanded uncertainties for individual PAH compounds and for the combined PAH4 group 

were calculated for the lowest validation level (0.50 µg kg-1) with the refined level of 

confidence of 95% (k=2). The expanded uncertainty values for the individual PAHs were 

20%. 

The trueness of the method was estimated by participation in the interlaboratory 

comparison (ILC) testing program (EUPT-2014 – Four marker PAHs in smoked meat) [135]. 

The determined concentrations for the analytes included in the ILC were in a good agreement 

with the provided assigned values for smoked meat sample, indicating the method’s 

applicability. The performance of the participation was expressed by z-scores, that were 

graded with the absolute values between -0.4 – 1.0 for all the reported results. 

 

 3.3. The occurrence of the PAHs in foods 

Human beings are exposed to PAHs via air and drinking water, but mostly by intake 

of food, thus monitoring the safety of food products and proper management of the risks 

associated with PAHs are strictly needed. All the elaborated methods for the determination of 
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PAHs described above were applied for the analysis of real food samples, and the obtained 

occurrence data as well as main safety aspects will be discussed further. 

3.3.1. PAHs in dark chocolate 

The DA-APPI-HPLC-Orbitrap-MS method developed within the current study was 

applied for the analysis of dark chocolate samples. Dark chocolate is more often contaminated 

with PAHs because of the relatively high cocoa bean and cocoa butter content [73, 126]. The 

fat content in our analysed samples varied over the range of 30-66%. 

Twenty six randomly selected dark chocolate samples were tested for the four EU 

marker PAHs. The total PAH content was found to be in the range from 1.1 to 16.1 μg kg-1 

fat, with the mean content of 4.2 μg kg-1 fat. In all of the samples, the 4-ring PAHs (BaA, 

Chr) were detected at relatively higher concentrations than the 5-ring PAHs (BbF, BaP). Chr 

was especially prominent in the analysed samples, at the concentration range from 0.37 to 7.4 

μg kg-1 fat. BaP, the most harmful of the indicator substances for the PAHs, had the mean 

concentration of 0.71 μg kg-1 fat, with 77% of the samples showing detectable concentrations 

of BaP. The determined concentrations of individual PAHs in the analysed chocolate samples 

are shown in Annex 6. The concentrations below the limit of detection were considered as not 

detected (ND), and the values below the LOD or LOQ were replaced by zero in order to 

describe the sample set by descriptive statistics methods. No samples exceeding the existing 

EU ML values were found. 

The results obtained in the present study correlate well with the previously published 

survey results about the presence of PAHs in chocolate on the German market [136], where 

the highest PAH content was found for Chr+triphenylene (0.83 – 2.1 μg kg-1), while the 

content of BaP ranged between 0.07 and 0.63 μg kg-1 (median: 0.22 μg kg-1). Recalculating 

our results on a product mass basis as it was expressed in a study by Ziegenhals et al. (2009), 

the content of BaP ranged from ND (<0.02 μg kg-1) to 0.98 μg kg-1 with the median value of 

0.24 μg kg-1, and the content of Chr was in the range of 0.06 – 2.1 μg kg-1 [136]. 

Another study concerning the content of PAHs in chocolate candies [137] indicated 

the median BaP content of 0.66 µg kg-1, which was almost three times higher than our 

observed value of 0.24 µg kg-1, whereas the mean BaP content of 1.5 µg kg-1 observed by 

Indian researchers was more than five times higher than our observed value of 0.27 µg kg-1. 

This observation could be explained by the fact that some additional chocolate processing 

steps are included in the manufacturing of chocolate candies, which could act as additional 

sources for the formation and introduction of PAHs. 
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Commission Regulation (EU) No. 2015/1933 specifies a maximum level of 5.0 µg kg-

1 fat for BaP in cocoa beans and derived products (excluding cocoa beans and derived 

products intended for use as an ingredient in food) [43]. All of the analysed samples 

conformed to the aforementioned maximum limit. BaP levels over the detection limit were 

found in 77% of the samples tested. The 95th percentile concentration was 0.29 μg kg-1 fat. 

An overview of the obtained results from this study is presented in Table 3.6. 

The limits of 1.0 and 2.0 μg kg-1 fat for the individual PAHs concentrations were also 

applied for better characterisation of chocolate samples. Thus, 19% of the samples had BaP 

levels exceeding 1.0 μg kg-1 fat, and only 7.7% exceeded 2.0 μg kg-1 fat. As for PAH4, the 

specified maximum level of 30.0 µg kg-1 fat was set in Commission Regulation (EU) No. 

2015/1933 [43], and no sample exceeding this level was found. The 95th percentile 

concentration for the PAH4 was established at the level of 1.6 μg kg-1 fat. 

Table 3.6 

The concentration of PAHs in chocolate and the percentage of samples exceeding the LOD, 1, 2, 

5, or 30 µg kg-1 fat 

PAH 

Number of samples (%) Concentration, μg kg-1 fat 

>LOD 
>1 μg 

kg-1 fat 

>2 μg 

kg-1 fat 

>5 μg 

kg-1 fat 

>30 μg 

kg-1 fat 
Median Mean P95 Max 

BaA 100 27 12 0 0 0.49 0.91 0.38 3.6 

Chr 100 35 15 7.7 0 0.87 1.4 0.65 7.4 

BbF 100 27 19 0 0 0.74 1.2 0.51 4.8 

BaP 77 19 7.7 0 0 0.59 0.71 0.29 2.9 

PAH4 100 100 73 23 0 2.6 4.2 1.6 16.1 

 

 

Judging from the results obtained in our study, chocolate seems to be consistently 

contaminated with a range of PAHs. In most of the cases this contamination is characterised 

by relatively low levels of PAHs, indicating that highly sensitive instrumentation with high 

trueness and efficiency level without any false positive/negative findings is preferable for 

reliable, precise, and accurate quantification.  

3.3.2. PAHs in processed cereal-based foods 

Applicability of the elaborated GC-MS/MS analytical method for ultra-sensitive 

determination of PAHs in processed cereal-based foods was checked by performing the 

analysis of 35 randomly collected Latvian bread and cereal samples. 
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The observed PAHs concentrations in processed cereal-based products available on 

the Latvian retail market are showed in Annex 7, while the summary with the mean, median, 

minimum, and maximum concentrations of single PAH compounds and the PAH4 

compounds in Latvian cereal products and bread samples are shown in Table 3.7. 

Table 3.7 

The mean, median, and range of concentrations of single PAH compounds and PAH4 in 

Latvian cereal and bread samples 

 BaA, µg kg-1 Chr, µg kg-1 BbF, µg kg-1 BaP, µg kg-1 PAH4, µg kg-1 

Cereals, n=3 

Mean 0.12 0.29 0.14 0.061 0.61 

Median 0.12 0.32 0.15 0.062 0.67 

Min-max 0.092-0.15 0.20-0.34 0.099-0.17 0.056-0.065 0.45-0.71 

Rye bread, n=20 

Mean 0.18 0.28 0.17 0.084 0.71 

Median 0.16 0.25 0.15 0.060 0.65 

Min-max 0.045-0.41 0.15-0.61 0.078-0.37 0.010-0.24 0.31-1.6 

Wheat bread, n=12 

Mean 0.094 0.20 0.13 0.064 0.49 

Median 0.074 0.17 0.11 0.045 0.40 

Min-max 0.028-0.25 0.11-0.42 0.065-0.33 0.017-0.17 0.22-1.1 

Processed cereal-based foods, n=35 

Mean 0.14 0.25 0.15 0.075 0.63 

Median 0.14 0.22 0.14 0.059 0.55 

Min-max 0.028-0.41 0.11-0.61 0.065-0.37 0.010-0.24 0.22-1.6 

 

Bread and cereal samples collected for this study were categorised into three groups: 

cereals (n=3), rye bread (n=20) and wheat bread (n=12). Rye bread samples were found to be 

the most contaminated with an arithmetic mean of the BaP content at the level of 0.084 μg kg-

1 and an arithmetic mean of the combined PAH4 content – 0.71 μg kg-1 (see Table 3.7). The 

concentration of the PAH4 in cereals and wheat bread samples ranged from 0.45 μg kg-1 to 

0.71 μg kg-1 for the cereals and 0.22 – 1.1 μg kg-1 for the bread samples, while mean of PAH4 

were 0.61 μg kg-1 and 0.49 μg kg-1, respectively. Measured BaP content in the analysed 

cereals and the wheat bread samples was rather similar, mean BaP concentration in the 

analysed cereals was established at the level of 0.061 μg kg-1 and at the level of 0.064 μg kg-1 

for the wheat bread samples. Comparable results were obtained by Polish scientists, in the 

study of PAHs in the bakery chain [46]. The mean combined concentrations of 4 regulated 

PAHs reported in the study were in the range of 0.05 – 0.47 µg kg-1, 0.23 – 0.45 µg kg-1, and 

0.21 – 1.3 µg kg-1 in the case of wheat-rye bread, rye bread, and whole rye bread, 

respectively, but the lowest levels of total PAHs contamination were found in wheat flour. 
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Among four individual PAHs chrysene was always the most abundant PAH with the 

amounts between 0.11 μg kg-1 and 0.61 μg kg-1. The minimum Chr content at the level of 0.11 

μg kg-1 was found among wheat bread samples, while maximum content (0.61 μg kg-1) was 

observed among rye bread samples. The average Chr content was established at the level of 

0.25 μg kg-1. 

Rye bread samples were also characterised by the most variable PAH content. For 

example, the BaA concentration range in rye bread samples was 0.045 – 0.41 μg kg-1. 

In general, the obtained results of the present study show that the BaP content in the 

analysed bread samples was notably lower than the EU maximum permitted level (ML) – 1.0 

µg kg-1, but in relation to the PAH4, 5 of 35 (14%) of the analysed bread samples had their 

values above the ML. The mean as well as the median PAH4 values for all the investigated 

bread samples were 0.63 µg kg-1 and 0.55 µg kg-1, respectively (see Table 4), that also could 

be considered as a relatively high level, taking into account the ML value of 1.0 µg kg-1. 

The obtained results clearly indicate that the minimum LOD value (0.30 µg kg-1) 

required by the legislation (Commission Regulation No. 836/2011) is not sufficient for 

appropriate analysis of the four priority PAH compounds in bread samples [42]. In case the 

analysis method with LOD of 0.30 µg kg-1 would be applied for this study, only one sample 

would exceed the MRL for the PAH4, and there would be no samples in which BaP would be 

detected at all, since all the BaP values found were lower than 0.30 µg kg-1. 

As it was mentioned above, the uncertainty of the developed methods for the PAH4 

was 24% in the case of HRMS technique and 35% in the case of MS/MS method, therefore, 

by taking into account the uncertainty, the number of cases when the combined concentration 

of 4 PAHs exceeded the EU permitted level decreased from 5 to 1 or from 14% to only 3% 

(Table 3.8). 

Table 3.8 
The distribution of concentrations of PAH4 in bread samples 

 <MRL-35% <MRL-24% <MRL >MRL >MRL+24% >MRL+35% 

 <0.65 µg kg-1 <0.76 µg kg-1 <1 µg kg-1 >1 µg kg-1 >1.24 µg kg-1 >1.35 µg kg-1 

Number of samples 22 28 30 5 2 1 

Frequency, % 63 80 86 14 5.7 2.9 

 

 

In a study performed by scientists from Spain [47] 24 bread samples were analysed 

and only 4 samples from 24 were found to contain PAHs (LOQ of the performed method 

ranged from 0.07 µg kg-1 to 0.75 µg kg-1). The concentration of BaP was observed above the 

quantification limit (LOQ 0.07 µg kg-1) only in three bread samples, with concentrations 

ranging from 0.13 to 0.23 μg kg-1. If such LOQ would be applied to samples analysed in the 
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present study, only 11 samples from 35 (31% of the samples) would show detectable 

concentrations of BaP. 

In another study concerning PAHs content in toasted bread [79], BaP was not detected 

in 10 of 18 samples (LOD 0.50 µg kg-1; LOQ 1.5 µg kg-1), whereas in the rest of the samples 

the BaP content varied from 2.8 μg kg-1 to 16.5 μg kg-1. Furthermore, the total PAH 

concentration was in the range of 1.1 – 44.2 μg kg-1. Remarkably, even the minimum 

calculated total PAH concentration would be non-compliant with the existing EU ML. This 

fact clearly shows that when such a low MLs are specified in legislation, sensitive and 

selective determination methods should be applied. 

3.3.3. PAHs in dried herbs and spices 

Samples of seasonings collected for the study were categorised into two groups: dried 

herbs and spices. The category of dried herbs included 25 oregano samples, 25 basil samples, 

and 25 thyme samples. The spices category combined 25 black pepper samples, 25 paprika 

samples, and 25 nutmeg samples. Detailed sample description is shown in Annex 8, while the 

summarised descriptions of every sample category are outlined in Annex 9. All the results 

were obtained by using the GC-MS/MS analytical technique. 

In order to characterise the whole set of samples by descriptive statistics, all values 

below the LOD or LOQ were replaced by zero, and the confidence level was set at 95% to 

reflect a significance level of 0.05. 

PAHs in oregano samples. For the determination of PAHs, 25 oregano samples 

produced from 2009 to 2014 were analysed. Oregano samples were found to be contaminated 

with the analysed PAHs at low levels (see Annex 9). BaP was present in 64% of the analysed 

oregano samples with the maximum concentration of 1.6 μg kg-1. The observed concentration 

range of the PAH4 was 1.0 – 13.6 μg kg-1 with Chr as the most significant contributor at the 

mean concentration of 2.2 μg kg-1. The confidence intervals at the confidence level of 95% 

were in the range of 0.21 – 0.54 μg kg-1 for BaP and 3.3 – 6.0 μg kg-1 for PAH4. In the 

oregano samples assessed by the production year there was a slight increase of PAHs content 

in years 2012 and 2013, with the average PAH4 content of 8.11 μg kg-1 in 2012 and 8.13 μg 

kg-1 in 2013. 

The most contaminated oregano samples were produced in 2013, with the highest 

mean BaP content of 0.67 μg kg-1 and PAH4 reaching 8.1 μg kg-1, respectively. Lower levels 

of PAHs were found in the oregano samples produced in 2010, with the average PAH4 

content of 2.0 μg kg-1. The highest concentrations among four individual PAHs were observed 
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for Chr, with the maximum content of 8.4 μg kg-1. No oregano samples analysed in the 

current study exceeded the existing EU MLs. 

PAHs in basil samples. Within the framework of this study, 25 basil samples 

produced in years 2010, 2011, 2013, and 2014 were analysed with regard to the PAHs 

content. Basil samples were found to be more contaminated with PAHs than oregano samples 

(see Annex 9). BaP was present at detectable levels in all analysed samples, with the average 

content of 1.5 μg kg-1. The obtained confidence interval at the confidence level of 95% was 

established in the range of 1.2 – 1.7 μg kg-1. As for PAH4, the obtained confidence interval 

was 10.2 – 13.1 μg kg-1. Likewise for oregano samples, the most contaminated basil samples 

were produced in 2013, with the highest mean BaP content of 2.2 μg kg-1 and PAH4 content 

of 13.1 μg kg-1. The lowest levels of PAHs were found in samples produced in 2011, with the 

mean PAH4 content of 9.9 μg kg-1 and BaP content of 1.1 μg kg-1, respectively. Similarly to 

the oregano samples, in the case of basil the main contributor to the aggregated concentration 

of selected PAHs was Chr, with the highest mean content of 6.3 μg kg-1. In order to assess the 

influence of the pretreatment process on the PAHs content in seasonings, the results from 21 

cleaned and steam-treated basil samples were compared to 4 other basil samples that were 

only cleaned. The mean BaP and PAH4 concentrations in the four basil samples that were 

only cleaned turned out to be lower in comparison to those found in the cleaned and 

additionally steam treated samples (1.1 μg kg-1 and 8.0 μg kg-1 for basil that was only cleaned, 

but 1.6 μg kg-1 and 12.3 μg kg-1 for the cleaned and additionally steam treated basil, 

respectively). Although all investigated individual PAHs were present above the LOQ in all 

analysed basil samples, the existing EU MLs of 10.0 μg kg-1 for BaP and 50.0 μg kg-1 for 

PAH4 were not exceeded in any of the samples. 

PAHs in thyme samples. Thyme samples included in this study were produced in 

2010, 2011, 2014, and 2015, and were found to be the most contaminated samples in dried 

herbs category (see Annex 9). The mean BaP and PAH4 concentrations among the analysed 

samples were found to be 4.2 μg kg-1 and 25.8 μg kg-1, respectively. The confidence interval 

for PAH4 concentration was 23.1 – 28.4 μg kg-1. BaP was detected in all the analysed samples 

in the range of 1.3 – 5.7 μg kg-1, with the confidence interval (confidence level of 95%) of 3.7 

– 4.7 μg kg-1. No significant correlation between the production year and PAHs content was 

observed. Similarly to the other dried herbs samples, Chr was the dominant congener, with 

the observed concentration range of 3.0 – 18.2 μg kg-1, with the average amount of 9.2 μg kg-

1. 
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Among all the analysed thyme samples, PAHs content in organic thyme was the 

lowest, with PAH4 contamination at the level of 6.9 μg kg-1 and BaP content equal to 1.3 μg 

kg-1. It is important to mention that organic thyme sample was produced in China, while the 

country of origin for the remaining thyme samples was Poland. However, this observation 

does not allow to conclude about the contamination risks regarding the country of origin, due 

to the insufficient number of analysed samples. 

Similarly to basil samples, thyme samples were investigated for the possible influence 

of the pretreatment process on the PAH content and it was found that steam treatment might 

be associated with increased PAH contamination. Thus, the mean PAH4 concentration in the 

cleaned samples was significantly higher in comparison with the non-treated samples, at 18.5 

and 6.9 μg kg-1, respectively. Even though thyme samples were most contaminated in the 

dried herb category, no samples exceeded the acceptable MLs. 

PAHs in black pepper samples. Twenty five black pepper samples produced in 2008 – 

2010 were analysed for the PAHs content and a high variation of concentrations was 

observed. Thus, BaP content ranged from non-detectable levels (<0.05 μg kg-1) to 6.6 μg kg-1 

and PAH4 concentration was found to be in the range from 1.4 to 25.2 μg kg-1 (see Annex 9). 

The confidence intervals were established at the levels of 1.7 – 3.1 μg kg-1 for BaP and 10.3 – 

16.0 μg kg-1 for the PAH4. In most of the cases, Chr was the dominant PAH at concentrations 

between 0.76 μg kg-1 and 10.9 μg kg-1. Only one of the samples was produced in year 2008, 

and it was found to be the most contaminated with BaP (6.6 μg kg-1) in the spices category. 

Samples produced in 2010 showed a slight decrease of PAHs content, with the average BaP 

and PAH4 concentrations of 2.2 μg kg-1 and 11.5 μg kg-1, respectively. Based on the obtained 

results, it should be noted that contamination of black pepper samples with PAHs 

significantly decreased from 2008 to 2010. Thus, a decrease of PAHs content by a factor of 

two was observed from year 2008 (PAH4 of 22.5 μg kg-1) to year 2010 (PAH4 of 11.5 μg kg-

1). A similar trend was observed for BaA, showing a decrease of concentration from 4.0 μg 

kg-1 in the samples from year 2008 to 1.5 μg kg-1 in the samples from year 2010. It should be 

noted that the concentrations of BaA, BbF, and Chr in black pepper samples also decreased, 

but to a lesser extent. 

Two samples (8%) among the 25 analysed black pepper samples were found to exceed 

a half of the existing EU ML value for BaP (10 μg kg-1). The relatively high contamination of 

black pepper might be explained by the additional processing step in black pepper production, 

where the still green, unripe drupes of the pepper plant are briefly boiled in hot water before 
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the drying process [138]. This additional step causes rupturing of cell walls, accelerating the 

browning during drying, and therefore could be an additional source of PAHs contamination. 

PAHs in paprika samples. The analysed paprika samples were produced in 2010 and 

2014. The concentration of PAH4 in paprika samples ranged from 2.9 μg kg-1 to 14.0 μg kg-1, 

with the average concentration of 8.0 μg kg-1 (see Annex 9). The BaP concentration in 

analysed paprika samples was in the range of 0.33 – 2.2 μg kg-1, with the mean concentration 

of 1.1 μg kg-1. The confidence intervals were established at the levels of 0.92 – 1.3 μg kg-1 for 

BaP and 7.0 – 9.1 μg kg-1 for PAH4, respectively. Chr was observed as the dominant 

congener with the average content of 3.1 μg kg-1. 

The obtained results showed no significant differences between PAHs content and 

year of production. No significant differences in PAHs content were also observed between 

the hot and sweet paprika samples, however, the sweet paprika samples showed broader 

PAHs concentration ranges. Thus, the BaP concentration range in sweet paprika samples was 

0.33 – 2.2 μg kg-1, while the BaP concentration range in hot paprika samples was 0.70 – 1.1 

μg kg-1. All four EU regulated congeners were detected in 100% of the analysed samples, but 

none of the samples exceeded the ML values. 

PAHs in nutmeg samples. A total of 25 nutmeg samples produced in 2009, 2010, 

2011, and 2014 were analysed for the PAHs content, and this seasoning was found to be the 

least contaminated in the spice category (see Annex 9). In the majority of samples, the PAHs 

content was below the method LOQ. For example, BbF was present in 24% of the analysed 

nutmeg samples, while BaP was present in just 16%. The confidence interval of <LOQ - 0.22 

μg kg-1 was calculated for BaP, and 1.9 – 3.8 μg kg-1 for PAH4. The measured levels of PAH4 

varied within the range of 1.0 – 7.3 μg kg-1, with the average value of 2.9 μg kg-1. The most 

contaminated samples were produced in 2011, with the mean PAH4 content of 7.3 μg kg-1. 

Lower levels of PAHs were found among the nutmeg samples produced in 2009, with the 

average PAH4 content of 1.3 μg kg-1. Chr had the highest mean concentration of 1.4 μg kg-1 

in all the analysed nutmeg samples. No nutmeg samples exceeding the existing EU ML values 

were found. 

In summary, our results showed that both dried herbs and spices are contaminated 

with PAHs at low levels below the established EU MLs. Our elaborated analytical method for 

the analysis of PAHs indicated individual PAH congeners at detectable levels in 86% of the 

analysed samples, with the highest detection frequency for Chr, which was detected at levels 

above the established LOQ in 95% of the analysed samples. BaP, BbF, and BaA were 
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detected at levels above LOQ in 93%, 81% and 79%, respectively. Only basil and paprika 

samples showed all four individual EU regulated PAHs in 100% of analysed samples. 

The aggregated PAHs content in the tested samples decreased in the order of thyme > 

black pepper > basil > paprika > oregano > nutmeg (Fig. 3.11). The same trend was observed 

for BaP and BbF, while the content of BaA and Chr decreased in the following orders: thyme 

> black pepper > paprika > oregano > nutmeg > basil and thyme > basil > black pepper > 

paprika > oregano > nutmeg, respectively. 

 

Fig. 3.11. Mean levels of BaP (μg kg-1) and the PAH4 (μg kg-1) in seasonings 

 

Although some trends in the contamination with PAHs in various seasonings were 

discovered, the overall results showed no evidence of unusual contamination in specific types 

of products and, therefore, confirmed a prior observation [6] of non-systematic contamination 

connected with environmental pollution and processing techniques. 

3.3.4. PAHs in smoked meat 

The study on the occurrence of PAHs in smoked meats produced in Latvia was 

performed in two parts: 1) monitoring of the smoked meat samples and the assessment of 

dietary exposure to PAHs from smoked meat in Latvia; 2) occurrence of PAHs by applying a 

targeted approach, where smoked meat samples originating from small-scale producers and 

commercially available on the local market at farmer’s markets, natural food stores, and 

farmer’s fairs. All the results were obtained by the analytical method that included extraction 
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of PAHs with an organic solvent mixture, gel permeation chromatography, solid phase 

extraction, and followed by the GC-MS/MS determination. 

PAHs in smoked meat and smoked meat products from Latvia 

In a first study, 128 samples of smoked meat products from Latvia were analysed and 

the content of four PAHs was determined. Table 3.9 shows the mean, median, minimum, and 

maximum concentrations of single PAH compounds, as well as the total content of PAH4. In 

some samples the concentration of BaP and BbF was below the limit of quantification (LOQ). 

Table 3.9 

Mean, median, minimum, maximum of single PAH compounds and PAH4 in smoked meat 

products (n=128) 

Compound Mean, μg kg-1 Median, μg kg-1 Maximum, μg kg-1 Minimum, μg kg-1 

BaA 2.4 0.76 14.2 0.052 

Chr 2.4 0.82 14.5 0.10 

BbF 0.82 0.32 4.6 <0.05 

BaP 0.74 0.21 6.0 <0.05 

PAH4 6.4 2.1 34.7 0.15 

 

The median of BaP contents was 0.21 μg kg-1, being significantly below the ML of 5.0 

μg kg-1. The higher content was observed for BaA and Chr with median values of 0.76 and 

0.82 μg kg-1, respectively. 

Results showed (see Table 3.10) that all median values of individual PAH content and 

the mean levels of PAH4 were higher in smoked chicken samples (8.0 μg kg-1), although no 

significant differences (p > 0.05) were observed. The highest level of PAH4 for individual 

samples was found in smoked pork speck (34.7 μg kg-1) that could be due to the high 

concentration of Chr in some samples. An important factor for PAH contamination is the 

surface/mass ratio. General smoked chicken meat being of lesser size and thickness than 

smoked pork meat, showed a larger surface per unit of volume, which causes the elevated 

concentration of PAHs. 
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Table 3.10 

Average and median concentration and range of individual PAHs and PAH4 of each meat type 

 BaA, 

μg kg-1 

Chr, 

μg kg-1  

BbF, 

μg kg-1 

BaP, 

μg kg-1  

PAH4, 

μg kg-1 

Smoked pork, n=14 

Average 

Median 

Min-max 

Samples >0 

2.7 

1.1 

0.05-10.6 

14 

2.8 

1.3 

0.10-11.1 

14 

1.1 

0.37 

<0.05-4.6 

13 

1.1 

0.29 

<0.05-6.0 

13 

7.7 

3.1 

0.15-27.3 

14 

Smoked pork breast, n=18 

Average 

Median 

Min-max 

Samples >0 

2.3 

0.74 

0.06-9.6 

18 

2.3 

0.67 

0.10-11.2 

18 

0.81 

0.33 

<0.05-4.3 

16 

0.60 

0.23 

<0.05-3.0 

16 

5.9 

1.8 

0.16-28.1 

18 

Smoked chop, n=12 

Average 

Median 

Min-max 

Samples >0 

2.4 

1.1 

0.08-8.4 

12 

2.2 

0.88 

0.14-8.3 

12 

0.93 

0.44 

<0.05-3.0 

11 

0.99 

0.24 

<0.05-4.2 

8 

6.5 

3.0 

0.23-20.2 

12 

Smoked pork speck, n=10 

Average 

Median 

Min-max 

Samples >0 

2.7 

0.72 

0.13-12.2 

10 

3.1 

0.80 

0.25-14.5 

10 

1.1 

0.34 

0.11-4.3 

10 

0.91 

0.31 

<0.05-3.6 

9 

7.8 

2.2 

0.48-34.7 

10 

Smoked ham, n=4 

Average 

Median 

Min-max 

Samples >0 

1.9 

0.56 

0.12-6.3 

4 

2.17 

0.69 

0.29-7.0 

4 

0.81 

0.34 

0.11-2.5 

4 

0.65 

0.25 

<0.05-2.1 

3 

5.5 

1.8 

0.52-17.8 

4 

Smoked chicken, n=12 

Average 

Median 

Min-max 

Samples >0 

3.3 

2.3 

0.30-12.3 

12 

3.0 

2.0 

0.63-12.1 

12 

0.94 

0.62 

0.20-4.6 

12 

0.74 

0.47 

0.08-2.8 

12 

8.0 

5.4 

1.2-31.7 

12 

 

The PAH values observed in smoked chicken and smoked pork meat were higher than 

those reported for smoked meat products in Italy, Estonia, and Germany [128, 139-140]. 

However, data from previous studies show that during traditional smoking of meat high levels 

of BaP appear. Wretling et al. (2010) reported 9 (out of 38) samples with high BaP lavels 

ranging from 6.6 to 36.9 μg kg-1 in Swedish smoked meat samples exceeding the 5.0 μg kg-1 

level [17]. High levels of BaP were detected in samples where traditional sauna smoking is 

used. 

Also, our research shows that the higher concentrations of PAHs appear in samples 

from small producers, where traditional smoking methods could be used and the intensity of 

smoke deposition is uncontrolled, thus depends on the environmental conditions (temperature 

and relative humidity), and the type of wood used. In this case, the foodstuff is in direct 
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contact with all components of the generated smoke and it could be highly contaminated with 

PAHs. Contrary to traditional smoking methods, smoke production in industrial smoking 

ovens is closely controlled and the removal of undesirable compounds is facilitated by the 

smoke generators being separated from the smoking chamber [141]. 

All analysed sausages were distributed in three groups – smoked sausages, small 

sausages, and semi-dry sausages. The highest average concentrations of BaA (2.4 μg kg-1), 

Chr (2.6 μg kg-1), BbF (0.77 μg kg-1), BaP (0.84 μg kg-1), and PAH4 (6.6 μg kg-1) were found 

in smoked sausage samples (see Table 3.11). Significant (p < 0.05) lower concentrations of 

BaP with an average value of 0.11 μg kg-1 were found in half dried sausage samples. Our 

results were higher than those obtained for Spanish [94, 142], Italian [5], and Swedish 

sausages, where the content of BaP was below the limit of detection [17]. 

Table 3.11 

Average and median concentration and range of individual PAHs and PAH4 in smoked sausages 

and smoked products 

 BaA, 

μg kg-1 

Chr, 

μg kg-1 

BbF, 

μg kg-1 

BaP, 

μg kg-1 

PAH4, 

μg kg-1 

Smoked sausage, n=21 

Average 

Median 

Min-max 

Samples >0 

2.4 

0.31 

0.08-14.2 

21 

2.6 

0.49 

0.13-11.2 

21 

0.77 

0.25 

<0.05-4.1 

18 

0.84 

0.11 

<0.05-4.2 

14 

6.6 

1.3 

0.22-33.7 

21 

Crackers or small sausages, n=10 

Average 

Median 

Min-max 

Samples >0 

1.9 

0.36 

0.19-13.1 

10 

1.9 

0.58 

0.26-12.8 

10 

0.68 

0.23 

0.13-4.0 

10 

0.67 

0.080 

0.05-4.6 

10 

5.2 

1.2 

0.63-34.6 

10 

Semi-dry sausage, n=8 

Average 

Median 

Min-max 

Samples >0 

0.43 

0.36 

0.13-0.88 

8 

0.54 

0.53 

0.21-1.0 

8 

0.22 

0.24 

0.10-0.33 

8 

0.11 

0.07 

<0.05-0.22 

6 

1.3 

1.2 

0.48-2.4 

8 

Roulette, n=6 

Average 

Median 

Min-max 

Samples >0 

0.35 

0.30 

0.12-0.78 

6 

0.45 

0.37 

0.21-0.88 

6 

0.25 

0.26 

0.12-0.39 

6 

0.15 

0.12 

<0.05-0.36 

5 

1.2 

1.1 

0.46-2.4 

6 

 

Low BaP content of 0.13 – 0.16 μg kg-1 was determined in Danish sausages [15] 

smoked by indirect smoking methods, followed by 0.24 – 0.33 μg kg-1 in smoked sausages 

from Serbia [143], 0.36 – 0.63 μg kg-1 in Portuguese traditional smoked meat and blood 

sausages [144], and 0.13 – 0.59 μg kg-1 [94] in Spanish traditional smoked sausage varieties 
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“Androlla” and “Botillo”. In a study of Italian traditional smoked sausages “Pitina” the BaP 

content was found 0.8 μg kg-1 [5]. 

The higher concentrations of BaP and PAH4 were found in Portuguese traditional 

meat and blood sausages [18], where BaP levels in meat products were from 0.36 up to 4.8 μg 

kg-1 and in blood-derived products from 0.32 to 5.7 μg kg-1. In these products very high BaA 

and Chr concentrations were found (up to 133 and 151 μg kg-1 respectively), hence the 

maximum PAH4 was found to be 295 μg kg-1, which is several times higher than the 30.0 μg 

kg-1 ML for PAH4. 

The proportion (%) of samples exceeding the maximum permitted level and planned 

maximum concentration of BaP from September 2014 are shown in Table 3.12, and for PAH4 

in Table 3.13. The frequency of cases exceeding the EU specified limits for PAHs varied from 

7% for smoked pork to 0% for other samples, although in the case if the 5.0 μg kg-1 ML for 

BaP of will be lowered to 2.0 μg kg-1 in September 2014, 14% of smoked meat products in 

Latvia will be non-compliant to the new permitted level of BaP. Regarding the PAH4, 

currently 3.9% of all smoked meat samples exceed the existing EU limit (30.0 μg kg-1) and 

with the introduction of the new EU limits (12.0 μg kg-1) more than 20% of samples will 

exceed that limit. 

Table 3.12 

The occurrence of BaP in smoked meat products 

  <0.05 μg kg-1 ≤2 μg kg-1 >2 μg kg-1 >5 μg kg-1 

Smoked meat products, % n=128 19 86 14 0.82 

Smoked chicken, % n=12 0 92 8.3 0 

Smoked pork, % n=12 7.1 79 21 7.1 

Smoked pork breast, % n=18 11 89 11 0 

Smoked chop, % n=12 33 83 17 0 

Smoked pork speck, % n=10 10 80 20 0 

Smoked ham, % n=4 25 75 25 0 

Smoked sausage, % n=21 33 81 19 0 

Small sausages, % n=10 0  90 10 0 

Half-dried sausage, % n=8 20 100 0 0 

Roulette, % n=6 17 100  0 0 

 

The overall results indicate that the production of smoked meat products with BaP 

contamination levels below 2.0 μg kg-1 and PAH4 concentration below 12.0 μg kg-1 for 

manufacturers applying traditional smoking methods is problematic, and a greater effort of 

changing processing practices and regional consumption habits is needed. 
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Table 3.13 

The occurrence of PAH4 sum concentrations in smoked meat products 

  ≤12 μg kg-1 ≤30 μg kg-1 >30 μg kg-1 

Smoked meat products, % n=128 79 96 3.9 

Smoked chicken, % n=12 75 92 8.3 

Smoked pork, % n=12 71 100 0 

Smoked pork breast, % n=18 78 100 0 

Smoked chop, % n=12 75 100 0 

Smoked pork speck, % n=10 80 90 10 

Smoked ham, % n=4 75 100 0 

Smoked sausage, % n=21 76 95 4.8 

Small sausages, % n=10 90 90 10 

Half-dried sausage, % n=8 100 100 0 

Roulette, % n=6 100 100 0 

 

 

Consumption of smoked and grilled products in Latvia 

Food consumption database is the significant information source for risk assessment, 

since it contains information on food consumption habits in Latvia. Due to the fact that 

smoked meat consumption is a specific part of food consumption, focussed research for 

smoked meat consumption in Latvia in the age group of 19-64 years was performed in 2014. 

The data for smoked meat and fish consumption is presented in Table 3.14. 

Differences in meat consumption between men and women are statistically significant 

at exceptionally high levels (p < 0.0001 independent sample Student t-test, Mann-Whitney-

Wilcoxon U-test). Women consume 171 g of meat per day, while men consume significantly 

more – 280 g per day. 

Table 3.14 

Consumption of meat and fish during a year 

n = 1811 Mean 
25th 

percentile 
Median 

75th 

percentile 

Meat, kg 81.8 34.9 64.1 111 

Fish, kg 13.0 2.6 6.7 15.4 

Meat and fish, kg 94.8 42.1 73.7 125 

Smoked meat and fish, kg 14.6 3.3 8.3 18.2 

Grilled/barbequed meat and fish, kg 13.9 1.2 5.3 17.3 

Smoked, grilled, barbequed meat and fish, kg 28.6 7.3 17.6 37.0 

Smoked meat and fish, % from all meat and fish consumed 15.0 6.0 12.2 20.9 

Grilled/barbequed meat and fish, % from all meat and fish 

consumed 
14.0 2.1 8.2 21.6 

Smoked, grilled, barbequed meat and fish, % from all meat and 

fish consumed 
29.0 14.7 27.3 41.2 
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Assessment of consumer preferences in relation to smoked products 

Respondents were asked to note products they use every day and those that are usually 

consumed on festive occasions. Semi-dry, dried sausages, and smoked chicken legs are 

consumed more on every day basis, but smoked whole chicken, pork chop, ham and chicken 

roulette are usually eaten on festive occasions. On average, 33% of consumers purchase 

smoked products in supermarkets, 23% buy at farmers markets, and 15% get them directly 

from farmers. Few families make smoked meat and fish products by themselves. Almost 15% 

do it on their own, while 10% mentioned that they have friends, relatives or neighbours who 

smoke meat for them. 

It is possible to slightly reduce the consumed amounts of BaP and PAH4 if the skin or 

dark rind of meat is removed. Almost half of consumers (48%) replied that they remove skin 

of smoked chicken. These habits are more common among women (62%) than men (33%). 

The differences are statistically significant at high level (Pearson ꭓ2 test p < 0.001). The 

consumers who remove skin from smoked products also consume less smoked products than 

those who do not. 

An average of 22% respondents have planned or have already reduced their smoked 

meat consumption to reduce intake of BaP and PAH4, but 23% mentioned that they would not 

change anything in their eating habits to reduce BaP and PAH and are worried that there will 

be changes in the taste of traditionally smoked products if levels of BaP and PAH4 have to be 

lowered. To detect what type and what colour of smoked meat products consumers prefer, 

they were offered photos of 4 groups of products and indicated their preferences. All the 

pictures shown in Fig. 3.12 contain products that are easily available on the market. 

Most consumers prefer chicken that is prepared and looks like in Fig. 3.12 sample a – 

31%, but 26% rate d as the favourite. Our concern is that the product in Fig. 3.12, sample d 

has such high level because this is one of most easily available products in all supermarkets 

and the only one available on market that is packed in convenient vacuum packaging. 

 

Fig. 3.12. Colour scale for assessment of surface colour of smoked chicken 
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The same situation is with smoked pork fat, where 39% of consumers prefer products 

which look like sample a in Fig. 3.13, while only 7% prefer the one in Fig. 3.13 sample c. 

 

Fig. 3.13. Colour scale for the assessment of surface colour of smoked pork fat 

In assessing the situation with home-made smoked sausages, we also concluded that 

most consumers (52%) prefer sausage with darker surface colour (sample a in Fig. 3.14). 

 

Fig. 3.14. Colour scale for the assessment of home-made sausage colour 

This is a product typically eaten with bread and mainly chosen by seniors, as it may 

have a strong taste of garlic and other spices.  

Targeted approach for the determination of the PAHs in smoked meat and meat products 

Based on the aforementioned observations and according to the preferences of the 

consumers in Latvia, the research was extended and data on the occurrence of PAHs by 

applying a targeted approach, where smoked meat samples originating from small-scale 

producers, commercially available on the local market at farmer’s markets, natural food 

stores, and farmer’s fairs, and with an emphasis to those with darker surface colour were also 

collected and evaluated. In addition, targeted smoked meat samples from Lithuania and 

Estonia were also analysed for the content of PAHs in order to assess the situation in all three 

of the Baltic states. 

An overview of the determined concentrations of individual PAHs in the analysed 

smoked meat samples from the three Baltic states is shown in Table 3.15. Meanwhile, 
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detailed descriptions of samples along with the respective contamination levels are presented 

in Annex 10. 

Very large variations between the tested samples were observed with the concentration 

of BaP ranging from 0.05 to 116 μg kg-1 and the concentration of PAH4 ranging from 0.42 to 

628 μg kg-1. The smoked meat samples from Latvia were found to be the most contaminated – 

the PAH4 content was found to be in a range of 0.77 – 628 μg kg-1, with the mean and median 

concentrations at 53.8 μg kg-1 and 13.3 μg kg-1, respectively. Chr was found as the most 

prominent PAH in the analysed samples, at a concentration range in Latvian smoked meat 

samples from 0.27 to 215 μg kg-1. BaA showed slightly lower concentrations than Chr, the 

detected concentrations in traditionally smoked meat samples produced in Latvia varied in the 

range of 0.25 – 171 μg kg-1. Meanwhile, BaP, which is the most harmful of the PAHs, was 

detected in samples originating from Latvia at the levels of 0.11 – 116 μg kg-1, with the mean 

concentration of 8.1 μg kg-1. The content of BbF was at the same order of magnitude – from 

0.12 to 126 μg kg-1, with the mean concentration of 9.5 μg kg-1. 

Lithuanian and Estonian smoked meat samples were found to be contaminated with 

the PAHs to a lesser extent. The median BaP and PAH4 concentrations in smoked meats 

produced in Lithuania were 0.73 and 7.1 μg kg-1, while smoked meats produced in Estonia 

contained BaP and PAH4 at the median concentrations of 0.18 and 1.8 μg kg-1, respectively. 

Based on the results described above, Estonian smoked meat samples were found to be the 

least contaminated, however, only relatively few samples produced in Estonia were available 

for our study. 

The 95th percentile of PAH4 concentrations for the smoked meats from Latvia and 

Lithuania was established at the level of 29.7 μg kg-1 and 6.8 μg kg-1, respectively. The results 

obtained from the analysis of smoked meat samples from Estonia were not included in this 

evaluation, because of insufficient sample number for reliable statistical evaluation. The 95th 

percentile BaP concentrations were 5.0 μg kg-1 for the smoked meats from Latvia and 0.93 μg 

kg-1 for the samples from Lithuania. Hence, even the 95th percentile concentrations for 

targeted Latvian smoked meat products are very close to the exceptional EU maximum 

permitted levels of 5.0 µg kg-1 for BaP and 30.0 µg kg-1 for PAH4 in traditional smoked meets 

in Latvia and exceeds the existing baseline EU MLs of 2.0 µg kg-1 (BaP) and 12.0 µg kg-1 

(PAH4). At this point it is important to point out that all of the obtained results characterise 

only our special case, when the samples were collected with an emphasis to those with darker 

surface colour, smoked using traditional methods, and produced by small local producers. 
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Table 3.15 

The mean and median concentrations, as well as the range of concentrations of individual PAHs 

and PAH4 in smoked meat samples 

  BaA, μg kg-1 Chr, μg kg-1 BbF, μg kg-1 BaP, μg kg-1 PAH4, μg kg-1 

Smoked meat from Latvia, n=52 

Mean 16.4 19.8 9.5 8.1 53.8 

Median 4.2 4.2 2.8 2.3 13.3 

Minimum 0.25 0.27 0.12 0.11 0.77 

Maximum 171 215 126 116 628 

Confidence level (95%) 8.8 10.6 5.9 5.0 29.7 

Smoked meat from Lithuania, n=17 

Mean 2.7 3.5 1.9 1.5 9.5 

Median 1.1 2.5 0.99 0.73 7.1 

Minimum 0.10 0.17 0.084 0.053 0.42 

Maximum 19.5 21.1 8.5 7.1 56.2 

Confidence level (95%) 2.3 2.5 1.2 0.93 6.8 

Smoked meat from Estonia, n=8 

Mean 8.6 11.0 3.9 2.8 26.3 

Median 0.61 0.80 0.24 0.18 1.8 

Minimum 0.12 0.13 0.085 0.086 0.42 

Maximum 59.1 74.7 24.6 16.8 175 

Confidence level (95%) 17.1 21.6 7.1 4.9 50.7 

 

Among the analysed meat samples from Latvia, 46% exceeded the existing EU 

maximum level for BaP and 48% - for PAH4. However, taking into account the amendment 

of 2014, specifying the list of countries that can apply MLs applicable before September 

2014, i.e. 5.0 µg kg-1 for BaP and 30.0 µg kg-1 for PAH4, the fraction of meat samples from 

Latvia exceeding the MLs decreases to 31% for both BaP and PAH4. Nonetheless, the 

number of these cases is extremely high. Lower incidence of excessive contamination with 

PAHs was found among the samples produced in Lithuania and Estonia, which are not on the 

exception list of the EU 1327/2014 amendment [98]. However, from 24% to 29% of samples 

from Lithuania and Estonia still exceeded the EU norm for the concentrations of BaP and 

PAH. An overview of the results described above is presented in Table 3.16. 

Table 3.16 

The frequency of PAHs concentrations exceeding the ML in smoked meat products 

  BaP PAH4 
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>2 µg kg-1 >5 µg kg-1 >12 µg kg-1 >30 µg kg-1 

Number of 

samples 

Frequency, 

% 

Number of 

samples 

Frequency, 

% 

Number of 

samples 

Frequency, 

% 

Number of 

samples 

Frequency, 

% 

Latvian (n=52) 24 46 16 31 25 48 16 31 

Lithuanian (n=17) 4 24 1 5.9 5 29 1 5.9 

Estonian (n=8) 2 25 1 13 2 25 1 13 

 

As to our knowledge, the levels of PAHs revealed in our study are rarely seen in 

recent studies. The majority of articles reporting high contamination with PAHs were 

published before 2000, when the extremely high levels of PAHs in smoked products caused 

an increasing interest from the EU authorities and resulted in establishing the maximum 

permitted levels for these contaminants. For example, Dyremark et al. (1994) and Rogge et al. 

(1991) reported individual PAH concentrations ranging from approximately 30 to 900 µg kg-1 

for 3-, 4-, and 5-ringed PAH molecules, with the sum of PAHs reaching up to 1700 µg kg-1 

[14, 145]. Despite the fact that extremely high concentrations of PAHs in smoked meat 

products are rarely observed in recent years, elevated concentrations of PAHs are still 

reported by the authors from several countries, for example, PAH4 concentrations up to 272 

µg kg-1 were found in traditional blood sausages originating from Portugal [18]; up to 49 µg 

kg-1 of PAHs in smoked sausages originating from Denmark [15]; 31.2 μg kg-1 of BaP in 

smoked meat from Estonia [140]; 17.6 μg kg-1 of BaP in smoked belly of pork from Germany 

[16], and 36.9 μg kg-1 of BaP in Swedish ham produced by direct “sauna” smoking with birch 

logs [17]. 

Judging from the results obtained in our study, traditionally smoked meat in Latvia, 

Lithuania, and Estonia seems to be consistently contaminated with a range of PAHs. 

Although in most of the cases this contamination is characterised by relatively low levels of 

PAHs [127, 140], extremely high PAH contamination, as shown in a present study, can be 

still occasionally detected. 

 

3.4. Risk characterisation in relation to meat consumption 

The nutritional value of smoked meat is tarnished by its negative association with 

safety issues, like the presence of various toxic contaminants, including PAHs. Certainly, the 

actual toxicity of any compound depends on the dose and period of contact with the organism 

as well as on the individual characteristics of the human or animal host. In order to 

characterise the risks related to the presence of PAHs, the margins of exposure (MOEs), as 

adopted by the EFSA Scientific Committee for substances which are both genotoxic and 
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carcinogenic, were calculated. Calculations were performed for different groups of 

respondents according to the respective levels of consumption and two different scenarios 

were developed for evaluating the possible impact of smoked meat products on public health. 

For the 1st scenario, the data on average BaP concentration and average PAH4 for primary 

results were used. For the 2nd scenario, the results obtained applying targeted approach for the 

sampling of the smoked meat and meat products were used. 

3.4.1. Risk assessment according to the mean PAHs contamination 

Calculations of both the consumer exposure to BaP and PAH4, and the MOE 

indicators for all consumers of smoked meat products are demonstrated in Table 3.17 

Table 3.17 

The calculation of consumer exposure to BaP and PAH4 

 

Consumption of smoked meat 

products (kg day-1) 
Mean 

contamination 

(µg kg-1) 

Consumer exposure 

(ng kg-1 b.w.day-1) 
BMDL10 

Mean Median 
95th 

percentile 
Mean Median 

95th 

percentile 

BaP 0.036 0.022 0.047 0.74 0.33 0.20 0.43 70000 

PAH4 0.036 0.022 0.047 6.4 2.9 1.8 3.7 340000 

 

The calculation of dietary exposures and MOEs suggests that MOE indicators for all 

consumer groups studied within this research far exceeds 10 000 – the MOE value derived on 

the base of precautionary approach and recommended by EFSA (Tables 3.18). 

Table 3.18 

MOE indicators within different groups of consumers for mean BaP and mean PAH4 

concentrations 

Group of 

consumers 

MOE (BaP) MOE (PAH4) 

Mean Median 75th percentile Mean Median 75th percentile 

All consumers 209627 343026 160565 116868 191238 89516 

19-35 years old 212702 350959 171199 118582 195660 95444 

36-50 years old 198174 297260 148630 110482 165723 82862 

51-64 years old 217697 383562 167808 121367 213836 93553 

Men 172803 259204 127608 96338 144507 71142 

Women 261486 424914 206019 180939 294025 142558 

 

The comparison of MOE indicators for different consumer groups with regard to BaP 

exposure revealed that a relatively higher dietary exposure and thus a comparatively lower 

MOE is characteristic for men and middle-age consumers; nevertheless, the MOE values were 

significantly higher than 10 000. The comparison of MOE indicators for different consumer 
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groups with regard to the exposure to PAH4 indicated that a relatively higher dietary exposure 

and thus a comparatively lower MOE is characteristic for men, rather for women. 

Thus, the MOE indicators calculated during the research demonstrate a low concern 

for consumer health at the mean, median, and 75th percentile exposures even in the case of 

worst possible scenarios. 

3.4.2. Specific case with the elevated PAHs contamination 

Considering the revealed concentrations of PAHs in smoked meat according to the 

preferences of consumers and the availability of the exposure data to smoked meat samples 

originating from the Baltic states, detailed risk assessment was made only for the smoked 

meats from Latvia. Meanwhile, in order to represent the central tendency of the PAHs 

distribution, MOEs were calculated just for the mean and 95th percentile values of the PAHs 

content. 

Based on the previously determined consumption of smoked meat products (Table 

3.17) and determined content of PAHs, the overall average dietary exposure for all consumers 

in Latvia is 324 ng day-1 (5.4 ng kg-1 b.w. per day assuming a body weight of 60 kg) for BaP 

(range: 229 – 426 ng day-1) and 2153 ng day-1 (35.9 ng/kg b.w. per day assuming a body 

weight of 60 kg) for PAH4 (range: 1519 – 2832 ng day-1). In view of these findings, the 

respective mean MOE for BaP among all consumer groups was 12952, with the minimum 

value of 9849 for men and maximum of 18350 for women. Slightly lower MOEs in a range of 

7205 – 13430 were observed for the PAH4, with the mean value of 9475. Again, the lowest 

values were observed for men and the highest for women. 

The characterisation of MOEs based on consumer age indicated the highest potential 

risk for middle-age (39–50 years) group of respondents – MOE of 8486 for PAH4 and 11602 

for BaP. MOEs calculated for 95th percentile contamination were approximately 20% higher 

than those observed for the mean BaP and PAH4 content – between 12 517 and 24 434 for 

BaP and between 10 264 and 20 035 for PAH4. An overview of the obtained results is shown 

in Table 3.19. 

Table 3.19 

The calculated MOEs within the different groups of consumers in Latvia 

Group of consumers 
MOE (BaP) MOE (PAH4) 

Mean 95th percentile Mean 95th percentile 

All consumers 12952 16781 9475 13760 

19-35 years old 14547 19331 10641 15850 

36-50 years old 11602 15120 8486 12398 

51-64 years old 12607 16509 9222 13537 
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Men 9849 12517 7205 10264 

Women 18360 24434 13430 20035 

 

The MOE approach within age/gender groups was already used to estimate the 

carcinogenic risk of different types of foods contaminated with PAHs. For example, Kang et 

al. (2014) reported MOEs for PAHs from edible oils in Korea at the levels of 4 000 000 for 

BaP and 137 000 for PAH4, and thus indicated a negligible risk to human health [146]. 

Similar results were obtained by Kim et al. (2014), who reported MOEs for PAH4 at the 

levels of 485 437 in the fish and shellfish group, 25 634 in the meat group, and 265 957 in the 

smoked products group [147]. Also, Veyrand et al. (2013), who assessed human dietary 

exposure to PAHs in a French total diet study, reported high MOE values – 150 000 and 230 

000 for different age groups of consumers in France [32]. At the same time, Duedahl-Olesen 

et al. (2015) have recently published a detailed study on PAH contamination in Danish 

barbecued meat [148]. It revealed a health concern only in a worst case scenario – daily intake 

of highly contaminated barbecued meat, with the MOE values of 7 080 and 8 500 for 

commercially barbecued and home-grilled meat, respectively. Even though the study revealed 

levels less than 10 000, no consumer was believed to be exposed to these levels [148]. 

Nevertheless, taking into account the dietary habits and preferences of the Latvian 

consumers, as well as in accordance with the exposure assessment and risk characterisation, 

the comparison of MOE indicators revealed that the high levels of PAHs in traditionally 

smoked meat products from Latvia should raise concerns about the health of consumers and 

call for risk management actions. 

 

3.5. Methods to reduce the PAHs content in food 

As the PAHs are ubiquitous contaminants that could be found everywhere and, 

moreover, pose a potential threat to human health it is necessary not only to monitor the 

presence of these compounds but also elaborate methods of reducing of the PAHs content. 

Two different approaches were tested for this purpose – ozone treatment and lactic acid 

bacteria treatment. 

3.5.1. Ozone treatment 

The effect of ozonation on BaP standard solution 

Initially, the effects of ozone treatment on a standard solution of BaP in ethanol were 

assessed. Ozone was applied to a solution containing high concentration of BaP (1.0 mg mL-1) 
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and immediate fading of the yellow colour within the first seconds indicated effective 

chemical transformation. It was established by GC-MS analysis that ozone treatment for 1 

min reduced the BaP content in ethanol solution by 89% and after 5 minutes 99% of BaP was 

transformed. Additional ozone exposure further decreased the BaP concentration, although 

the overall changes after the first 5 min were insignificant (Fig. 3.15). Our results show that 

the degradation of BaP by ozone is consistent with pseudo-first order kinetics under the 

experimental conditions used in this study. Our data was fitted to the first order rate equation 

[A]=[A]0e
-kt, where [A] is a BaP concentration (mg mL-1) at the time t (min), [A]0 is an initial 

BaP concentration (mg mL-1) and k is the apparent first order rate constant (min-1). This 

analysis yielded an apparent first order rate constant of 2.2 min-1 and an apparent half-life of 

0.31 min for BaP in ethanol under these conditions. These results are consistent with the 

observations of Ottingen et al. (1999) who reported that BaP content was reduced by 99.7% 

after 1 min of ozonation and that BaP content was reduced to non-detectable levels after 10 

min of ozonation [105]. 

The obtained results clearly indicate the high efficiency of ozonation treatment for the 

decomposition of BaP in solutions. Samples of ethanol solutions obtained in these 

experiments were injected into the GC-MS instrument operated in a full scan mode. Many 

low molecular mass products were detected in ozonated BaP solutions without any compound 

giving a major peak on the chromatogram. In general, the compounds identified by the mass 

spectral database represent the pathways of oxidative degradation of BaP described by other 

authors [149-152]. 

 
 

Fig. 3.15. The effect of ozonation on a standard solution of BaP 
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Taking into account the pronounced effect of ozone on diminishing the concentration 

of BaP in ethanol solution, further experiments were performed in order to explore the 

possible application of similar processes for the removal of PAHs from smoked products. To 

study the effects of ozone, smoked sprats that were previously found to contain high 

concentrations of PAHs were treated under optimal ozonation conditions. The initial 

concentrations of PAHs and the changes after ozonation are summarised in Table 3.20. 

The results clearly indicated the tendency for decrease of total PAHs concentration in 

smoked fish samples. The individual PAH concentrations in smoked fish decreased by 6 – 

46% after 60 min, while the PAH4 concentration decreased by 22%. The concentration of Chr 

decreased by only 6% after ozonation for 60 min, moreover, positive and negative 

fluctuations in concentration were observed during the whole period of ozonation. These 

fluctuations did not exceed 10%, and were attributed to random errors, with the method 

uncertainty at around 20%. Similar results were obtained for BaA, even though fluctuations 

were less obvious in the case of BaA and the final decrease after 60 min of ozonation was 

18%. The decrease in BbF and BaP concentration was more consistent, and the final degree of 

reduction was 34% and 46%, respectively. These observations indicate that PAH molecules 

containing an additional aromatic ring are more readily oxidised by ozone. 

Table 3.20 

The decrease of average PAH content in smoked fish samples during ozonation process (n=3) 

Sample 

type 

Time, 

min 

BaA, 

μg kg-1 

BaA, 

% 

Chr, 

μg kg-1 

Chr, 

% 

BbF, 

μg kg-1 

BbF, 

% 

BaP, 

μg kg-1 

BaP, 

% 

PAH4, 

μg kg-1 

PAH4, 

% 

Smoked 

sprats 

0 4.5 100 5.2 100 2.4 100 2.8 100 14.9 100 

5 4.2 94 5.8 110 1.8 77 2.2 79 14.0 94 

15 3.7 81 4.9 94 1.8 75 2.0 72 12.4 83 

30 4.1 91 5.4 103 1.8 76 2.0 70 13.2 89 

45 3.6 79 5.0 97 1.8 77 1.9 67 12.3 83 

60 3.7 82 4.9 93 1.6 67 1.5 54 11.7 78 

 

Previous studies on ozonation of food samples clearly showed that ozone has a strong 

potential to affect a wide range of quality traits in foods, such as colour, flavour, aroma, and 

the presence of vitamins. Both negative and positive effects are likely to occur [101, 109, 111, 

153]. 

In vitro toxicity evaluation of products arising from the ozonation of BaP 

A comprehensive assessment of results obtained in the present study shows that ozone 

has a significant effect on food quality. Unequivocally adverse effects of ozonation on food 
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safety were identified by in vitro studies of 3T3 and HepG2 cell culture viability and 

morphology after treatment with ozonated BaP solution. 

In vitro toxicity evaluation of BaP ozonation products was based on four different BaP 

solutions obtained as 0.1%, 0.2%, 0.4% and 0.8% v/v dilutions of ozonated BaP solution, 

corresponding to 1.0, 2.0, 4.0, and 8.0 µg mL-1 of BaP and its degradation products in cell 

cultivation medium. 

Non-ozonated BaP standard solution had no adverse effect on 3T3 cell division – 

control samples and samples with non-ozonated BaP reached the maximum confluence of 

100% within 72 h. 

The samples with BaP concentration of 8.0 µg mL-1 after ozonation for 1 and 2 min 

initially inhibited the cell growth rate in 3T3 cell cultures, although 100% cell confluence was 

achieved within 72 h (Fig. 3.16.). The samples with BaP concentration of 8.0 µg mL-1 after 

ozonation for 5 min had negative effect on cell proliferation, and only 30% of control sample 

confluence was achieved within 72 h, with many dead cells observed. BaP samples of lower 

concentration that were ozonated for 5 min showed no cytotoxic effects on 3T3 cells. 

 

Fig. 3.16. The changes in 3T3 cell confluence in the presence of ozonated BaP 

 

BaP samples that were ozonated for 15 and 30 min had cytotoxic effects that directly 

correlated with the initial concentration of BaP. The 2.0, 4.0, and 8.0 µg mL-1 solutions of 

BaP after ozonation for 30 min were highly toxic to 3T3 cells, with the number of living cells 

significantly reduced during the first incubation hours. Adding a 1.0 µg mL-1 BaP solution 
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after ozonation for 30 min decreased the rate of cell growth, but in the presence of this 

solution cells were able to reach confluence within 72 h, in contrast to the treatment with 

more concentrated ozonated BaP solutions. In the case of BaP solutions that were ozonated 

for 15 min, cytotoxic effects were observed at initial BaP concentrations of 4.0 and 8.0 µg 

mL-1. Samples with the initial BaP concentration of 2.0 µg mL-1 slowed cell division in the 

growth medium, but 95% confluence was still achieved after 72 h cultivation. 

Obvious changes in 3T3 cell morphology were observed after 48 h of exposure to 

ozonated BaP samples. Reduced cell growth rate and altered morphology were evident in 

cells treated with 8.0 µg mL-1 BaP that had been ozonated for 5 min, while cells exposed to 

BaP ozonated for 30 min showed complete cell death. 

Similarly to 3T3 cell cultures, the viability of HepG2 cells was not significantly 

affected by treatment with non-ozonated BaP solutions, however, slightly lower proliferation 

rates were observed at the highest BaP concentrations (4.0 and 8.0 µg mL-1). 

Substantial cytotoxicity was observed in HepG2 cell cultures with BaP solutions that 

were ozonated for 5, 15, and 30 min. HepG2 cell viability in the presence of 2.0, 4.0, and 8.0 

µg mL-1 of BaP that was ozonated for 15 and 30 min was negatively affected already during 

the first hours after the addition of ozonated BaP solutions. Cytotoxic effects were also 

observed with 8 µg mL-1 BaP solutions that were ozonated for 5 min. Cells remained viable at 

the lower BaP concentration of 4.0 µg mL-1, however, the cell division rate was noticeably 

lower than in the control samples and cell morphology changes were observed. 

BaP solutions that were ozonated for 30 min at the concentrations between 2.0 and 8.0 

µg mL-1 were highly cytotoxic – these ozonated BaP solutions reduced cell viability and cell 

cultures did not reach even their initial seeding confluence throughout the 96 h period of 

cultivation. In contrast, BaP solutions at the lowest tested BaP concentration (1.0 µg mL-1) 

that were ozonated for 30 minutes showed no cytotoxic effect and cell confluence was 

comparable to that of the control sample after 96 h of cultivation. 

BaP samples ozonated for 15 min at the BaP concentration range of 4.0 – 8.0 µg mL-1 

were cytotoxic to HepG2 cells. In contrast to these solutions, more dilute BaP samples that 

were ozonated for 15 min at concentrations between 1.0 and 2.0 µg mL-1 had no cytotoxic 

effects and cell confluence after cultivation for 96 h was similar to that of the control solution, 

see Fig. 3.17. 
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Fig. 3.17. The changes in HepG2 cell confluence in the presence of ozonated BaP 

 

The BaP solutions that were ozonated for 5 min had no pronounced cytotoxic effect, 

but a significant reduction of cell proliferation rate was observed during the first 48 h of 

cultivation at the higher concentrations – 4.0 and 8.0 µg mL-1. As cell cultivation continued, 

proliferation increased and reached the confluence of control samples. Presumably, the BaP 

ozonation products acted as a stress factor at the beginning that temporarily inhibited cell 

division, and after overcoming the stress, the cell division was even slightly stimulated. 

Cytotoxic effect was not observed with BaP solutions that were ozonated for only 2.0 

min. Although the initial cell division was inhibited at BaP concentration of 8.0 µg mL-1, the 

cell growth rate recovered after a lag period. No adverse effects on cell growth were observed 

with 6.0 µg mL-1 BaP solution that was ozonated for 2 min. 

In terms of food safety, when comparing the positive and negative effects of 

ozonation, the negative effects obviously had more influence on the safety of ozone treated 

fish products. It is also important to mention that smoked fish samples were ozonated for a 

twice longer time than BaP standard solution, for which the toxicity was evaluated. So it can 

be presumed that the toxicity of ozone treated smoked fish samples could be significantly 

higher. 

In summary the current study indicates that ozone has a limited potential to degrade 

PAHs in smoked sprats. The most effective degradation by 60 min of ozonation was observed 
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for BaP and BbF, with contamination levels reduced by 46 and 34%, respectively. However, 

the content of BaA and Chr in analysed smoked fish samples remained at the same level. 

According to the 3T3 and HepG2 cell’s survival rate, morphology, and viability 

ozone-treated BaP standard solution inhibited the growth of 3T3 and HepG2 cells and long-

term ozonated BaP standard solution (15 – 30 min) had strong adverse influence on cell 

viability and was highly toxic to 3T3 and HepG2 cells. At lower concentrations, cell 

proliferation was inhibited, and cell morphology was significantly changed indicating that 

even low concentrations can generate toxicity in primary cell types. 

3.5.2. Lactic acid bacteria (LAB) 

The PAHs content obtained in sausages even in not pre-treated with LAB suspension 

samples was below the maximum value currently allowed by European Union regulations. 

The results of PAHs formation in the outer layers and centre of the cold smoked sausages 

treated with LAB before and after smoking are presented in Table 3.21. The application of 

LAB for sausages treatment before and after smoking had significant influence on BaP and 

chrysene decreasing. In our experiment pH values of LAB bioproduct used for sausages 

treatment was in range 4.2 – 4.4. Zhao et al. (2013) reported that the maximum values of BaP 

binding rate of several LAB were obtained at pH 4.0 and 5.0 [154]. A significant effect of 

type of LAB applied for the fermentation on BaA (F(6.8) ¼ 0.005, p ¼ 0.0001), BbF (F(12.0) 

¼ 0.062, p ¼ 0.0001), BaP (F(5.6) ¼ 0.011, p ¼ 0.001), and Chr (F(26.7) ¼ 0.035, p ¼ 

0.0001) content in cold smoked sausages was found. 

Significant changes were estimated in the different layers (outer or centre) of the 

sausages on BaA (F(17.0) ¼ 0.005, p ¼ 0.0001), BbF (F(4.6) ¼ 0.062, p ¼ 0.035), BaP 

(F(29.1) ¼ 0.011, p ¼ 0.0001), and Chr (F(18.0) ¼ 0.035, p ¼ 0.0001) content. Also, 

sausages treatment with LAB bioproduct before and after smoking had significant effect on 

BbF (F(4.1) ¼ 0.062, p ¼ 0.049), and BaP (F(5.2) ¼ 0.011, p ¼ 0.027) content. BaA and Chr 

formation in outer layers and centre of the cold smoked sausages were similar, and the 

differences were statistically insignificant. The interaction between all analysed factors (type 

of microorganisms, different part of sausages, treatment before and after smoking) on BaP 

(F(3.6) ¼ 0.001, p ¼ 0.014) and Chr (F(3.9) ¼ 0.001, p ¼ 0.009) content has been determined 

as statistically significant. 

The results obtained in this study indicate that, during direct smoking process, the 

greatest amount of PAHs is formed in outer layers of sausages in comparison with inner 

layers of sausages. Similar results were reported by Ledesma et al. (2014, 2015) as they found 

that the greatest amount of BaP, PAHs content indicator, was deposited in the casing of the 
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meat product, not inside the product. These results are in agreement with other authors in 

smoked meat products [155-156]. Andrée et al. (2010) and Santos et al. (2011) reported that 

PAHs accumulate on the surface of the smoked meat product during smoking and then 

migrate into the products being smoked [144, 157]. 

Abou-Arab et al. (2010) reported that Bifidobacterium bifidium, Streptococcus 

thermophilus and Lactobacillus bulgaricus reduced PAHs content by 47, 88 and 92%, 

respectively [100]. Hongfei et al. (2013) reported that several LAB strains together might be 

beneficial for removing several toxic compounds [158]. Therefore, the mechanism of 

reducing toxic compounds is still unclear. Some researchers suggest that toxins are converted 

by specific enzymes produced by cells, therefore PAHs content decreasing after sausages 

treatment with LAB suspension could be achieved [159]. Other reports revealed that this 

process was due to the binding of the carcinogen to cell wall components, meanwhile, Tsuda 

et al. (2008) reported that exopolysaccharides played an important role in removing 

carcinogen [160-161]. 

To sum up, biopreservation using LAB and/or their antimicrobial metabolites 

represents an alternative for improving food safety. LAB strains used in a present research 

demonstrated good inhibition properties against all tested undesirable microorganisms, and 

could be used for cold smoked pork sausages surface treatment, in order to reduce 

biological/chemical contamination. 



 
 

Table 3.21 

PAHs content in outer layers and centre of cold smoked pork sausages 

  L. sakei  P. acidilactici  P. pentosaceus  Control 

  
BS AS BS AS BS AS Non-treated 

Treated with 

water BS 

Treated with 

water AS 

Centre of sausage 

BaA, µg kg-1 0.068 ± 0.005 0.054 ± 0.003 0.061 ± 0.004 0.063 ± 0.010 0.065 ± 0.007 0.062 ± 0.005 0.072 ± 0.006 0.069 ± 0.005 0.061 ± 0.003 

Chr, µg kg-1 0.15 ± 0.01 0.17 ± 0.01 0.20 ± 0.01 0.14 ± 0.01 0.17 ± 0.01 0.10 ± 0.01 0.20 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 

BbF, µg kg-1 0.021 ± 0.009 0.033 ± 0.005 0.030 ± 0.004 0.039 ± 0.002 0.031 ± 0.001 0.051 ± 0.004 0.033 ± 0.003 0.021 ± 0.002 0.024 ± 0.002 

BaP, µg kg-1 0.039 ± 0.004 0.030 ± 0.002 0.036 ± 0.007 0.034 ± 0.003 0.034 ± 0.005 0.042 ± 0.003 0.081 ± 0.007 0.079 ± 0.004  0.067 ± 0.005 

PAH4, µg kg-1 0.23 0.29 0.33 0.28 0.30 0.26 0.38 0.33 0.33 

Outer layers of sausage 

BaA, µg kg-1 0.072 ± 0.003 0.065 ± 0.004  0.069 ± 0.005 0.071 ± 0.011 0.069 ± 0.004  0.072 ± 0.003  0.086 ± 0.009 0.074 ± 0.003  0.068 ± 0.005 

Chr, µg kg-1 0.17 ± 0.01 0.18 ± 0.02 0.21 ± 0.01 0.16 ± 0.01 0.18 ± 0.01 0.12 ± 0.01    0.21 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 

BbF, µg kg-1 0.040 ± 0.007 0.051 ± 0.007 0.041 ± 0.005 0.062 ± 0.008 0.054 ± 0.007 0.073 ± 0.005 0.037 ± 0.005 0.048 ± 0.003 0.032 ± 0.005 

BaP, µg kg-1 0.062 ± 0.005 0.054 ± 0.006 0.051 ± 0.009 0.072 ± 0.007 0.068 ± 0.002 0.059 ± 0.004 0.106 ± 0.010 0.098 ± 0.007 0.081 ± 0.010 

PAH4, µg kg-1 0.34 0.35 0.37 0.37 0.38 0.33 0.44 0.40 0.36 

BS – cold smoked pork sausages treated with LAB before smoking; AS – cold smoked pork sausages treated with LAB after smoking. 

 

  



 
 

CONCLUSIONS 

 

1. A novel nanomaterial-based d-SPE method for selective extraction of PAHs from 

edible oil was developed. The method showed good agreement between the results 

obtained with the elaborated method and a previously published GPC method, and 

thus, emphasized the great potential of nanomaterial-based sorbents in the analysis of 

the PAHs providing a respectable and less laborious alternative to commonly used 

sample preparation protocols. 

2. The use of APPI interface in Orbitrap-MS system showed its superior performance in 

terms of method sensitivity and selectivity. The on-column instrumental LOD ranged 

from 0.8 pg to 1.2 pg for all four marker compounds, while the elaborated method 

LOD for chocolate samples varied from 0.016 to 0.024 µg kg-1 expressed on fat basis. 

3. A comparative assessment of GC-MS/MS and GC-HRMS instrumental methods 

demonstrated that both methods have appropriate performance for the determination 

of the PAHs at ultra-low contamination levels. The obtained LODs for all individual 

PAHs were below 0.006 μg kg-1 and these LODs were lower than the values defined 

in the EU methods performance criteria more than 50 times. 

4. The elaborated methods for the determination of the PAHs indicated a great variety of 

the observed PAHs in 406 different foods. The analysed foods were: bread and cereal 

products, dark chocolate, seasonings (dried herbs and spices), smoked meats and 

edible oils. 

5. The MOE approach was utilised to assess the risks to Latvian consumers due to PAHs 

revealed in smoked meats. The obtained results indicated a potential concern for 

consumer health in Latvia. Moreover, the revealed PAHs contamination of bread and 

processed cereal-based products indicated a need to include these products into the 

risk characterisation study and to reassess possible human health risks. 

6. Ozone treatment showed immediate effect for BaP solution, however, the impact of 

ozonation on smoked products was less pronounced even after prolonged ozonation. 

The in vitro toxicity evaluation showed that the cytotoxicity of BaP standard solution 

had significantly increased after the ozonation procedure, indicating a pronounced 

negative effect in terms of food safety. 

7. The application of LAB for sausages treatment before and after smoking decreased 

both BaP and Chr content. The results also confirm that potatoes juice could be used 

as an alternative substrate for LAB cultivation, and the obtained fermented 
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bioproducts could be applied for surface treatment of cold smoked pork sausages to 

reduce PAHs content in final product. 
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ANNEXES 

 

Annex 1 

The main validation parameters of the PAHs determination method using MWCNTs in 

edible oil 

PAH 
Calibration 

range, µg kg-1 

Linearity, 

r2 

LOD, 

µg kg-1 

LOQ, 

µg kg-1 

1st spiking level 2nd spiking level 
HORRATr 

a b c a b c 

BaA 0.10 – 10 0.998 0.09 0.30 108 5 6 107 2 4 0.34 

Chr 0.10 – 10 0.999 0.21 0.71 104 3 5 105 2 4 0.31 

BbF 0.10 – 10 0.998 0.08 0.27 107 3 5 101 4 6 0.38 

BaP 0.10 – 10 0.999 0.06 0.19 98 2 4 96 4 5 0.31 

1st spiking level – 1.0 µg kg-1; 2nd spiking level – 2.0 µg kg-1; a - Recovery (n=5), %; b - Intra-day precision, (n=5), %; c - 

Inter-day precision, (n=5), % 

  



 
 

Annex 2 

The main validation parameters for the HPLC-Orbitrap-MS determination method of the PAHs in dark chocolate 

PAH 
Calibration 

range, µg kg-1 

Linearity, 

r2 

LOD, 

µg kg-1 

LOQ, 

µg kg-1 

1st spiking level 2nd spiking level 3rd spiking level 
HORRATr 

a b c a b c a b c 

BaA 0.10 – 5.0 0.995 0.024 0.081 86 14 12 88 7 7 84 11 10 0.71 

Chr 0.10 – 5.0 0.993 0.016 0.054 94 10 17 85 3 4 86 9 10 0.49 

BbF 0.10 – 5.0 0.990 0.021 0.069 94 12 16 92 9 8 91 7 6 0.63 

BaP 0.10 – 5.0 0.997 0.019 0.064 110 16 14 102 8 10 95 8 7 0.72 

1st spiking level – 0.10 µg kg-1 fat; 2nd spiking level – 1.0 µg kg-1 fat; 3rd spiking level – 5.0 µg kg-1 fat; a - Recovery (n=5), %; b - Intra-day precision, (n=5), %; c - Inter-day precision, (n=5), 

% 
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Annex 3 

The main validation parameters of the GC-MS/MS and GC-HRMS methods for the PAHs determination in bread 

PAH 

Calibration 

range, µg 

kg-1 

r² LOD, µg kg-1 LOQ, µg kg-1 Recovery, % Precision, % HORRATr 

MS/MS HRMS MS/MS HRMS MS/MS HRMS 
MS/MS HRMS MS/MS HRMS 

MS/MS HRMS 
A b Mean a b Mean a b Mean a b Mean 

BaA 0.10 – 10 0.993 0.997 0.006 0.003 0.018 0.010 99 100 100 110 113 112 11 4 8 7 7 7 0.36 0.50 

Chr 0.10 – 10 0.991 0.998 0.004 0.002 0.015 0.007 86 100 93 113 114 114 17 4 11 6 7 7 0.50 0.41 

BbF 0.10 – 10 0.992 0.998 0.006 0.003 0.021 0.011 102 103 103 115 119 117 17 4 11 9 3 6 0.50 0.45 

BaP 0.10 – 10 0.996 0.998 0.002 0.006 0.006 0.021 87 97 92 97 118 108 19 7 13 9 5 7 0.59 0.45 

a – 0.10 µg kg-1; b – 1.0 µg kg-1 
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Annex 4 

The main GC-MS/MS validation parameters of the PAHs determination method in dried herbs and spices 

PAH 
Calibration 

range, µg kg-1 

Linearity, 

r2 

LOD, 

µg kg-1 

LOQ, 

µg kg-1 

Recovery, % Precision, % 
HORRATr 

a b c Mean a b c Mean 

BaA 0.10 – 5.0 0.9989 0.09 0.31 83 88 100 90 15 7 4 9 0.60 

Chr 0.10 – 5.0 0.9999 0.04 0.14 79 72 81 77 5 9 4 6 0.41 

BbF 0.10 – 5.0 0.9993 0.04 0.13 101 96 104 100 13 13 6 11 0.73 

BaP 0.10 – 5.0 0.9992 0.05 0.18 100 100 107 102 15 3 2 7 0.45 

a - 0.30 µg kg-1; b – 1.0 µg kg-1; c – 2.0 µg kg-1 

  



 
 

Annex 5 

The main GC-MS/MS validation parameters of the PAHs determination method in 

smoked meat 

PAH 
Calibration 

range, µg kg-1 

Linearity, 

r2 

LOD, 

µg kg-1 

LOQ, 

µg kg-1 

1st spiking level 2nd spiking level 
HORRATr 

a b c a b c 

BaA 0.10 – 10 0.995 0.02 0.06 110 3 7 113 8 7 0.48 

Chr 0.10 – 10 0.999 0.02 0.06 113 7 6 114 7 7 0.45 

BbF 0.10 – 10 0.997 0.03 0.09 115 8 9 119 4 3 0.41 

BaP 0.10 – 10 0.997 0.03 0.09 97 9 9 118 5 5 0.48 

1st spiking level – 0.50 µg kg-1; 2nd spiking level – 5.0 µg kg-1; a - Recovery (n=5), %; b - Intra-day precision, (n=5), %; c - 

Inter-day precision, (n=5), % 
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Annex 6 

The content of PAHs in the analysed dark chocolate samples, μg kg-1 fat (n=26) 

No. 
Country of 

production 

Fat 

content, % 

BaA, µg kg-1 

fat 

Chr, µg kg-1 

fat 

BbF, µg kg-1 

fat 

BaP, µg kg-1 

fat 

PAH4, µg kg-1 

fat 

1 Latvia 46 0.41 0.69 1.1 0.55 2.8 

2 Spain 50 0.75 0.76 0.46 0.60 2.6 

3 France 45 0.18 0.81 0.16 <0.06 1.1 

4 France 51 0.73 1.1 0.54 <0.06 2.4 

5 Germany 49 3.6  5.4 4.8 2.3 16.1 

6 Switzerland 53 1.3 2.3 1.4 1.0 6.1 

7 Lithuania 43 0.36 0.72 0.99 0.57 2.6 

8 Estonia 57 0.72 0.74 0.32 <0.06 1.8 

9 Germany 34 0.41 0.79 0.73 <0.06 1.9 

10 Latvia 47 1.4 3.1 3.9 2.9 11.3 

11 Germany 43 0.29 0.46 0.76 0.52 2.0 

12 Belgium 59 3.5 7.4 3.2 0.87 15.0 

13 Germany 45 1.5 1.7 2.8 0.69 6.6 

14 Germany 56 0.38 0.71 0.36 0.21 1.7 

15 Germany 67 0.41 0.83 0.30 0.56 2.1 

16 Germany 62 0.47 0.91 0.48 0.75 2.6 

17 Denmark 48 0.24 0.97 0.14 <0.06 1.4 

18 France 35 0.23 0.61 0.96 0.55 2.4 

19 Germany 58 0.49 0.37 0.18 0.08 1.1 

20 Switzerland 45 2.7 0.94 3.0 0.89 7.5 

21 Germany 55 0.49 1.0 0.53 0.76 2.8 

22 Switzerland 41 0.84 0.94 0.97 0.88 3.6 

23 Finland 58 0.58 1.0 0.76 1.9 4.3 

24 Russia 31 0.34 0.60 0.34 <0.06 1.3 

25 Russia 35 0.46 0.78 0.45 0.65 2.3 

26 Russia 30 1.0 1.9 0.84 1.1 4.9 
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Annex 7 

The mean, median, and range of concentrations of single PAHs and PAH4 in Latvian 

cereal and bread samples, µg kg-1 (n=35) 

No. BaA, μg kg1 Chr, μg kg-1 BbF, μg kg-1 BaP, μg kg-1 PAH4, μg kg-1 

Cereals, n=3 

1 0.092 0.20 0.099 0.056 0.45 

2 0.15 0.34 0.15 0.065 0.71 

3 0.12 0.32 0.17 0.062 0.67 

Rye bread, n=20 

1 0.15 0.23 0.12 0.14 0.64 

2 0.16 0.24 0.16 0.11 0.67 

3 0.20 0.32 0.24 0.20 0.95 

4 0.33 0.41 0.24 0.093 1.1 

5 0.32 0.50 0.29 0.24 1.3 

6 0.41 0.61 0.37 0.23 1.6 

7 0.14 0.22 0.15 0.090 0.60 

8 0.14 0.20 0.19 0.052 0.58 

9 0.22 0.36 0.17 0.059 0.82 

10 0.18 0.29 0.16 0.040 0.67 

11 0.15 0.21 0.092 0.032 0.48 

12 0.15 0.21 0.099 0.010 0.46 

13 0.20 0.29 0.21 0.052 0.75 

14 0.22 0.31 0.13 0.060 0.71 

15 0.15 0.20 0.15 0.041 0.54 

16 0.18 0.26 0.14 0.076 0.65 

17 0.11 0.25 0.11 0.065 0.53 

18 0.068 0.18 0.12 0.039 0.41 

19 0.057 0.16 0.094 0.037 0.34 

20 0.045 0.15 0.078 0.031 0.31 

Wheat bread, n=12 

1 0.25 0.42 0.24 0.16 1.1 

2 0.069 0.16 0.15 0.094 0.48 

3 0.066 0.15 0.10 0.031 0.35 

4 0.035 0.14 0.084 0.022 0.28 

5 0.028 0.11 0.071 0.017 0.22 

6 0.076 0.18 0.095 0.045 0.39 

7 0.051 0.15 0.085 0.029 0.31 

8 0.20 0.32 0.33 0.17 1.0 

9 0.072 0.17 0.065 0.035 0.34 

10 0.077 0.18 0.11 0.045 0.42 

11 0.093 0.20 0.14 0.067 0.50 

12 0.12 0.25 0.13 0.059 0.55 

 

  



 
 

Annex 8 

List of the analysed seasonings with detailed description (n=150) 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

Oregano, n=25 

1 rubbed oregano Turkey cleaning 2009 0.75 2.2 1.0 0.55 4.5 

2 rubbed oregano Turkey cleaning 2009 0.78 0.58 <0.04 <0.05 1.4 

3 rubbed oregano Turkey cleaning 2009 1.4 <0.04 0.96 0.54 2.9 

4 rubbed oregano Turkey cleaning 2009 0.95 0.84 0.56 0.28 2.6 

5 rubbed oregano Turkey cleaning 2009 <0.09 1.7 0.70 0.45 2.9 

6 rubbed oregano Turkey cleaning 2009 2.5 0.36 <0.04 <0.05 2.8 

7 rubbed oregano Turkey cleaning 2010 0.78 1.3 0.61 0.50 3.2 

8 rubbed oregano Turkey cleaning 2010 0.76 <0.04 <0.04 0.25 1.0 

9 rubbed oregano Turkey cleaning 2010 1.3 0.64 <0.04 <0.05 1.9 

10 rubbed oregano Turkey cleaning 2010 0.96 <0.04 0.50 <0.05 1.5 

11 rubbed oregano Turkey cleaning 2010 1.0 0.58 <0.04 0.45 2.1 

12 rubbed oregano Turkey cleaning 2010 <0.09 2.4 <0.04 <0.05 2.4 

13 rubbed oregano Turkey cleaning 2010 1.3 0.74 <0.04 <0.05 2.1 

14 rubbed oregano Turkey cleaning 2012 1.5 1.2 0.73 0.28 3.7 

15 rubbed oregano Turkey cleaning 2012 1.0 8.4 0.90 0.31 10.6 

16 rubbed oregano Turkey cleaning 2012 1.3 7.5 0.80 0.42 10.1 

17 rubbed oregano Turkey cleaning 2013 1.5 4.2 0.70 0.65 7.0 

18 rubbed oregano Turkey cleaning 2013 2.4 4.2 1.1 0.90 8.6 

19 rubbed oregano Turkey cleaning 2013 2.4 3.0 1.0 0.81 7.2 

20 rubbed oregano Turkey cleaning 2013 2.7 0.87 1.2 <0.05 4.8 

21 rubbed oregano Turkey cleaning 2013 2.4 8.1 1.5 1.64 13.6 

22 rubbed oregano Turkey cleaning 2013 2.6 3.7 1.3 <0.05 7.6 

23 rubbed oregano Turkey cleaning 2014 1.8 0.54 0.73 0.69 3.8 

24 rubbed oregano Turkey cleaning 2014 1.0 1.7 0.93 0.68 4.4 
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Annex 8 continues 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

25 rubbed oregano Turkey cleaning 2014 1.7 0.91 0.49 <0.05 3.1 

Average 1.4 2.2 0.63 0.38 4.6 

Median 1.3 1.2 0.70 0.31 3.2 

Observed concentration range <0.09 - 2.7 <0.04 - 8.4 <0.04 - 1.5 <0.05 - 1.6 1.0 - 13.6 

Confidence interval (95%) 1.1 – 1.7 1.19 – 3.3 0.44 – 0.82 0.21 – 0.54 3.3 – 6.0 

Basil, n=25 

26 rubbed basil Egypt cleaned, steam treated 2010 0.72 5.7 2.2 1.1 9.8 

27 rubbed basil Egypt cleaned, steam treated 2010 1.5 4.2 7.0 2.9 15.5 

28 rubbed basil Egypt cleaned, steam treated 2010 <0.31 1.6 9.1 1.1 11.8 

29 rubbed basil Egypt cleaned, steam treated 2010 0.32 5.5 2.7 0.94 9.4 

30 rubbed basil Egypt cleaned, steam treated 2010 1.3 5.0 2.9 0.89 10.0 

31 rubbed basil Egypt cleaned, steam treated 2010 1.0 8.2 5.8 2.4 17.4 

32 rubbed basil Egypt cleaned, steam treated 2010 0.77 8.3 2.1 1.3 12.5 

33 rubbed basil Egypt cleaned, steam treated 2010 <0.31 7.2 1.6 1.6 10.4 

34 rubbed basil Egypt cleaned, steam treated 2010 <0.31 5.2 1.7 1.3 8.3 

35 rubbed basil Egypt cleaned, steam treated 2010 2.6 9.7 3.8 1.5 17.6 

36 rubbed basil Egypt cleaned, steam treated 2010 0.79 3.7 2.4 0.85 7.7 

37 rubbed basil Egypt cleaned, steam treated 2010 0.90 5.2 3.4 0.97 10.5 

38 rubbed basil Egypt cleaned, steam treated 2011 0.56 9.2 1.7 0.99 12.5 

39 rubbed basil Egypt cleaned, steam treated 2011 0.08 3.4 2.6 1.3 7.4 

40 rubbed basil Egypt cleaned, steam treated 2013 0.65 4.3 4.0 1.6 10.7 

41 rubbed basil Egypt cleaned, steam treated 2013 <0.31 3.1 9.3 2.8 15.2 

42 rubbed basil Egypt cleaned 2014 1.9 5.3 1.9 1.2 10.3 

43 rubbed basil Egypt cleaned 2014 0.77 2.3 1.8 1.1 6.0 

44 rubbed basil Egypt cleaned 2014 0.65 5.8 2.1 0.95 9.5 
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Annex 8 continues 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

45 rubbed basil Egypt cleaned 2014 0.55 2.0 2.4 1.2 6.1 

46 rubbed basil Egypt cleaned, steam treated 2014 1.7 6.1 2.7 1.0 11.5 

47 rubbed basil Egypt cleaned, steam treated 2014 1.2 8.5 3.4 2.0 15.1 

48 rubbed basil Egypt cleaned, steam treated 2014 1.3 6.2 4.5 1.8 13.8 

49 rubbed basil Egypt cleaned, steam treated 2014 0.55 5.3 4.1 2.5 12.5 

50 rubbed basil Egypt cleaned, steam treated 2014 3.1 9.2 3.9 2.0 18.2 

Average 0.95 5.6 3.6 1.5 11.6 

Median 0.77 5.3 2.7 1.3 10.7 

Observed concentration range <0.09 - 3.1 1.6 - 9.7 1.6 - 9.3 0.85 - 2.9 6.0 - 18.2 

Confidence interval (95%) 0.64 – 1.3 4.7 – 6.6 2.7 – 4.4 1.2 – 1.7 10.2 – 13.1 

Thyme, n=25 

51 rubbed thyme Poland steam treated 2010 7.5 4.5 8.9 4.7 25.6 

52 rubbed thyme Poland steam treated 2010 6.3 10.8 10.5 4.4 32.0 

53 rubbed thyme Poland steam treated 2010 4.0 8.5 9.6 4.2 26.3 

54 rubbed thyme Poland steam treated 2010 6.1 12.0 6.3 5.1 29.4 

55 rubbed thyme Poland cleaned 2010 3.1 8.4 4.9 2.0 18.5 

56 rubbed thyme Poland steam treated 2010 7.6 12.7 11.5 5.7 37.4 

57 rubbed thyme Poland steam treated 2011 6.6 11.1 7.3 5.2 30.1 

58 rubbed thyme Poland steam treated 2011 4.5 10.2 7.5 5.1 27.3 

59 rubbed organic thyme China none 2011 0.81 3.0 1.8 1.3 6.9 

60 rubbed thyme Poland steam treated 2011 4.9 8.0 7.9 4.2 25.0 

61 rubbed thyme Poland steam treated 2011 5.5 10.4 10.3 4.7 30.9 

62 rubbed thyme Poland steam treated 2014 5.9 9.3 8.5 4.5 28.2 

63 rubbed thyme Poland steam treated 2014 5.4 8.8 10.0 4.8 29.1 

64 rubbed thyme Poland steam treated 2014 5.1 9.0 8.4 4.5 27.0 

65 rubbed thyme Poland steam treated 2014 5.5 10.6 9.5 4.7 30.3 
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Annex 8 continues 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

66 rubbed thyme Poland steam treated 2014 5.8 11.0 10.0 5.5 32.4 

67 rubbed thyme Poland steam treated 2014 4.8 9.3 8.8 4.4 27.3 

68 rubbed thyme Poland steam treated 2014 5.0 10.9 9.2 4.6 29.6 

69 rubbed thyme Poland steam treated 2014 3.5 7.0 9.3 4.8 24.7 

70 rubbed thyme Poland steam treated 2014 5.7 12.0 7.7 5.3 30.8 

71 rubbed thyme Poland steam treated 2014 2.3 5.8 6.1 3.2 17.3 

72 rubbed thyme Poland steam treated 2014 <0.09 18.2 2.4 1.8 22.4 

73 rubbed thyme Poland steam treated 2014 2.3 6.2 5.9 3.6 18.0 

74 rubbed thyme Poland steam treated 2014 2.5 6.3 6.0 3.4 18.1 

75 rubbed thyme Poland steam treated 2015 2.9 6.6 6.8 3.4 19.8 

Average 4.5 9.2 7.8 4.2 25.8 

Median 5.0 9.3 8.4 4.5 27.3 

Observed concentration range 0.81 - 7.6 3.0 - 18.2 1.8 - 11.5 1.3 - 5.7 6.9 - 37.4 

Confidence interval (95%) 3.7 – 5.3 7.9 – 10.5 6.8 – 8.8 3.7 – 4.7 23.1 – 28.4 

Black pepper, n=25 

76 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2008 4.0 6.1 5.8 6.6 22.5 

77 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 2.3 2.2 1.3 0.60 6.5 

78 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 7.2 3.5 2.6 1.4 14.7 

79 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 2.9 3.2 3.5 1.8 11.4 

80 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 5.5 3.6 4.6 2.0 15.6 

81 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 4.3 2.8 5.5 1.9 14.4 

82 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 5.4 9.6 4.4 3.6 23.1 

83 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 2.3 2.6 4.1 1.6 10.5 

84 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 3.4 2.2 3.6 2.3 11.5 

85 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 5.2 4.2 5.9 6.5 21.7 

86 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 6.4 10.9 4.4 3.5 25.2 



122 
 

Annex 8 continues 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

87 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 1.6 3.3 6.2 2.0 13.0 

88 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 5.9 10.0 5.6 2.7 24.2 

89 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 0.83 0.79 <0.04 <0.05 1.6 

90 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 0.82 3.5 <0.04 4.0 8.3 

91 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2009 <0.31 1.1 <0.04 <0.05 1.4 

92 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 5.6 4.5 7.2 3.0 20.3 

93 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 0.58 0.76 0.51 0.50 2.3 

94 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 2.9 7.1 4.4 1.6 15.9 

95 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 2.0 1.8 3.3 1.5 8.5 

96 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 0.57 6.2 4.9 2.5 14.1 

97 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 1.3 2.4 1.4 1.4 6.5 

98 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 0.46 2.9 5.5 3.6 12.5 

99 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 <0.31 2.4 4.6 2.9 10.1 

100 ground black pepper Blend of Brazil and Vietnam steam treated, milled 2010 <0.09 8.2 2.4 3.0 13.6 

Average 2.9 4.2 3.7 2.4 13.2 

Median 2.3 3.3 4.4 2.0 13.0 

Observed concentration range <0.09 - 7.3 0.76 - 10.9 0.51 - 7.2 <0.05 - 6.6 1.4 - 25.2 

Confidence interval (95%) 1.9 – 3.8 3.0 – 5.4 2.8 – 4.5 1.7 – 3.1 10.3 – 16.0 

Paprika, n=25 

101 ground hot paprika Blend of Brazil and China steam treated 2010 2.7 3.8 2.2 1.1 9.7 

102 ground hot paprika Blend of Brazil and China steam treated 2010 2.3 3.4 1.7 1.1 8.4 

103 ground hot paprika Blend of Brazil and China steam treated 2010 2.2 3.6 2.1 1.0 8.9 

104 ground sweet paprika Blend of Brazil and China steam treated 2010 2.3 3.9 2.2 1.3 9.6 

105 ground sweet paprika Blend of Brazil and China steam treated 2010 4.1 2.8 3.1 2.0 12.0 

106 ground sweet paprika Blend of Brazil and China steam treated 2010 2.2 3.6 2.9 1.0 9.6 

107 ground sweet paprika Blend of Brazil and China steam treated 2010 3.4 5.0 3.4 2.2 14.0 
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No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

108 ground sweet paprika Blend of Brazil and China steam treated 2010 1.7 2.6 1.7 1.1 7.1 

109 ground sweet paprika Blend of Brazil and China steam treated 2010 2.0 6.4 2.9 1.6 12.8 

110 ground sweet paprika Blend of Brazil and China steam treated 2010 1.8 2.3 1.9 0.80 6.8 

111 ground sweet paprika Blend of Brazil and China steam treated 2010 0.61 1.2 0.76 0.33 2.9 

112 ground sweet paprika Blend of Brazil and China steam treated 2010 1.8 1.6 1.3 0.58 5.2 

113 ground sweet paprika Blend of Brazil and China steam treated 2010 2.0 2.3 1.4 1.0 6.6 

114 ground sweet paprika Blend of Brazil and China steam treated 2010 1.2 2.0 2.1 0.87 6.2 

115 ground sweet paprika Blend of Brazil and China steam treated 2010 1.1 1.3 2.0 0.92 5.4 

116 ground sweet paprika Blend of Brazil and China steam treated 2010 1.5 1.5 2.1 1.2 6.2 

117 ground sweet paprika Blend of Brazil and China steam treated 2010 1.6 4.1 2.3 1.5 9.4 

118 ground sweet paprika Blend of Brazil and China steam treated 2010 2.6 4.0 1.8 1.2 9.5 

119 ground sweet paprika Blend of Brazil and China steam treated 2010 2.2 3.7 2.3 0.88 9.0 

120 ground sweet paprika Blend of Brazil and China steam treated 2010 1.7 2.9 2.1 0.90 7.6 

121 ground sweet paprika Blend of Brazil and China steam treated 2010 1.5 1.4 1.5 0.78 5.1 

122 ground sweet paprika Blend of Brazil and China steam treated 2010 0.95 2.3 2.2 0.95 6.4 

123 ground sweet paprika Blend of Brazil and China steam treated 2014 1.2 4.2 1.7 1.1 8.2 

124 ground sweet paprika Blend of Brazil and China steam treated 2014 1.2 3.9 1.6 1.1 7.9 

125 ground hot paprika Blend of Brazil and China steam treated 2014 1.4 2.6 1.8 0.70 6.4 

Average 1.9 3.1 2.0 1.1 8.0 

Median 1.8 2.9 2.1 1.0 7.9 

Observed concentration range 0.61 - 4.1 1.2 - 6.4 0.76 - 3.4 0.33 - 2.2 2.9 – 14.0 

Confidence interval (95%) 1.6 – 2.2 2.5 – 3.6 1.8 – 2.3 0.92 – 1.3 7.0 – 9.1 

Nutmeg, n=25 

126 ground nutmeg Indonesia none 2009 1.2 1.7 0.77 0.64 4.4 

127 ground nutmeg Indonesia none 2009 0.56 1.6 <0.04 <0.05 2.1 

128 ground nutmeg Indonesia none 2009 0.35 1.4 <0.04 <0.05 1.8 



124 
 

Annex 8 continues 

No. Name/description Origin Pretreatments 
Year of 

production 

BaA, 

µg kg-1 

Chr, 

µg kg-1 

BbF, 

µg kg-1 

BaP, 

µg kg-1 

PAH4, 

µg kg-1 

129 ground nutmeg Indonesia None 2009 0.53 0.87 <0.04 <0.05 1.4 

130 ground nutmeg Indonesia None 2009 <0.09 <0.04 <0.04 <0.05 <0.22 

131 ground nutmeg Indonesia None 2009 0.39 0.64 <0.04 <0.05 1.0 

132 ground nutmeg Indonesia None 2009 <0.09 <0.04 <0.04 <0.05 <0.22 

133 ground nutmeg Indonesia None 2009 <0.09 <0.04 <0.04 <0.05 <0.22 

134 ground nutmeg Indonesia None 2009 <0.09 1.7 <0.04 <0.05 1.7 

135 ground nutmeg Indonesia None 2009 0.88 2.0 <0.04 <0.05 2.9 

136 ground nutmeg Indonesia None 2009 <0.09 <0.04 <0.04 <0.05 <0.22 

137 ground nutmeg Indonesia None 2009 <0.09 <0.04 <0.04 <0.05 <0.22 

138 ground nutmeg Indonesia None 2009 <0.09 1.8 <0.04 <0.05 1.8 

139 ground nutmeg Indonesia None 2010 2.7 1.0 0.88 0.64 5.2 

140 ground nutmeg Indonesia None 2010 0.65 1.9 0.91 0.61 4.1 

141 ground nutmeg Indonesia None 2010 1.6 3.4 <0.04 <0.05 5.0 

142 ground nutmeg Indonesia None 2010 1.7 0.80 <0.04 <0.05 2.5 

143 ground nutmeg Indonesia None 2010 2.0 2.1 <0.04 <0.05 4.1 

144 ground nutmeg Indonesia None 2010 0.91 2.3 <0.04 <0.05 3.2 

145 ground nutmeg Indonesia None 2010 2.7 3.1 <0.04 <0.05 5.8 

146 ground nutmeg Indonesia None 2011 2.6 4.6 <0.04 <0.05 7.3 

147 ground nutmeg Indonesia None 2011 1.4 1.2 4.8 <0.05 7.3 

148 ground nutmeg Indonesia None 2014 1.4 0.76 0.74 0.84 3.7 

149 ground nutmeg Indonesia None 2014 0.48 0.64 0.40 <0.05 1.5 

150 ground nutmeg Indonesia None 2014 2.4 2.5 <0.04 <0.05 4.9 

Average 0.97 1.4 0.34 0.11 2.9 

Median 0.65 1.4 <0.13 <0.18 2.5 

Observed concentration range <0.09 - 2.7 <0.04 - 4.6 <0.04 - 4.8 <0.05 - 0.84 1.0 - 7.3 

Confidence interval (95%) 0.59 – 1.4 0.96 – 1.9 <0.04 – 0.74 <0.04 – 0.22 1.9 – 3.8 

 



 
 

Annex 9 

Average, median, observed concentration range and confidence interval at the 

confidence level of 95% of four individual EU regulated PAHs and PAH4 in dried herbs 

and spices (n=150) 

Herb/spice BaA, µg kg-1 Chr, µg kg-1 BbF, µg kg-1 BaP, µg kg-1 PAH4, µg kg-1 

Oregano, n=25 

Average 1.4 2.2 0.63 0.38 4.6 

Median 1.3 1.2 0.70 0.31 3.2 

Observed concentration range <0.09 - 2.7 <0.04 - 8.4 <0.04 - 1.5 <0.05 - 1.6 1.0 - 13.6 

Confidence interval (95%) 1.1 – 1.7 1.2 – 3.3 0.44 – 0.82 0.21 – 0.54 3.3 – 6.0 

2009, n=6      

Average 1.1 0.94 0.54 0.30 2.8 

Median 0.86 0.71 0.63 0.37 2.8 

Observed concentration range <0.09 - 2.5 <0.04 - 2.2 <0.04 - 1.0 <0.05 - 0.55 1.4 - 4.5 

2010, n=7      

Average 0.88 0.81 0.16 0.17 2.0 

Median 0.96 0.64 <0.13 <0.18 2.1 

Observed concentration range <0.09 - 1.3 <0.04 - 2.4 <0.04 - 0.61 <0.05 - 0.50 1.0 - 3.2 

2012, n=3      

Average 1.3 5.7 0.81 0.34 8.1 

Median 1.3 7.5 0.80 0.31 10.1 

Observed concentration range 1.0 - 1.5 1.2 - 8.4 0.73 - 0.90 0.28 - 0.42 3.7 - 10.6 

2013, n=6      

Average 2.3 4.0 1.1 0.67 8.1 

Median 2.4 3.9 1.2 0.73 7.4 

Observed concentration range 1.5 - 2.7 0.87 - 8.1 0.70 - 1.5 <0.05 - 1.6 4.8 - 13.6 

2014, n=3      

Average 1.5 1.1 0.72 0.46 3.7 

Median 1.7 0.91 0.73 0.68 3.8 

Observed concentration range 1.0 - 1.8 0.54 - 1.7 0.49 - 0.93 <0.05 - 0.69 3.1 - 4.4 

Basil, n=25 

Average 0.95 5.6 3.6 1.5 11.6 

Median 0.77 5.3 2.7 1.3 10.7 

Observed concentration range <0.09 - 3.1 1.6 - 9.7 1.6 - 9.3 0.85 - 2.9 6.0 - 18.2 

Confidence interval (95%) 0.64 – 1.3 4.7 – 6.6 2.7 – 4.4 1.2 – 1.7 10.2 – 13.1 

2010, n=12      

Average 0.88 5.8 3.7 1.4 11.8 

Median 0.78 5.4 2.8 1.2 10.6 

Observed concentration range <0.31 - 2.6 1.6 - 9.7 1.6 - 9.1 0.85 - 2.9 6.0 -18.2 

2011, n=2      

Average 0.32 6.3 2.2 1.1 9.9 

Median 0.32 6.3 2.2 1.1 9.9 

Observed concentration range <0.09 - 0.56 3.4 - 9.2 1.7 - 2.6 0.99 - 1.3 7.4 - 12.5 

2013, n=2      

Average 0.46 3.7 6.7 2.2 13.1 

Median 0.46 3.7 6.7 2.2 13.1 
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Herb/spice BaA, µg kg-1 Chr, µg kg-1 BbF, µg kg-1 BaP, µg kg-1 PAH4, µg kg-1 

Observed concentration range <0.31 - 0.65 3.1 – 4.3 4.0 - 9.3 1.6 - 2.8 10.7 - 15.5 

2014, n=9      

Average 1.3 5.6 3.0 1.5 11.4 

Median 1.2 5.8 2.7 1.2 11.5 

Observed concentration range 0.55 - 3.1 2.0 - 9.2 1.8 - 4.5 0.95 - 2.5 6.0 - 18.2 

Thyme, n=25 

Average 4.5 9.2 7.8 4.2 25.8 

Median 5.0 9.3 8.4 4.5 27.3 

Observed concentration range 0.81 - 7.6 3.0 - 18.2 1.8 - 11.5 1.3 - 5.7 6.9 - 37.4 

Confidence interval (95%) 3.7 – 5.3 7.9 – 10.5 6.8 – 8.8 3.7 – 4.7 23.1 – 28.4 

2010, n=6      

Average 5.8 9.5 8.6 4.3 28.2 

Median 6.2 9.7 9.3 4.5 27.9 

Observed concentration range 3.1 - 7.6 4.5 - 12.7 4.9 - 11.5 2.0 - 5.7 18.5 - 37.4 

2011, n=5      

Average 4.5 8.5 7.0 4.1 24.1 

Median 4.9 10.2 7.5 4.7 27.3 

Observed concentration range 0.81 - 6.6 3.0 - 11.1 1.8 - 10.3 1.3 - 5.2 6.9 - 30.9 

2014, n=13      

Average 4.1 9.6 7.8 4.2 25.8 

Median 5.0 9.3 8.5 4.5 27.3 

Observed concentration range <0.09 - 5.9 5.8 - 18.2 2.4 - 10.0 1.8 - 5.5 17.3 - 32.4 

2015, n=1      

Average 2.9 6.6 6.8 3.4 19.8 

Median 2.9 6.6 6.8 3.4 19.8 

Observed concentration range 2.9 6.6 6.8 3.4 19.8 

Black pepper, n=25 

Average 2.9 4.2 3.7 2.4 13.2 

Median 2.3 3.3 4.4 2.0 13.0 

Observed concentration range <0.09 - 7.3 0.76 - 10.9 0.51 - 7.2 <0.05 - 6.6 1.4 - 25.2 

Confidence interval (95%) 1.9 – 3.8 3.0 – 5.4 2.8 – 4.5 1.7 – 3.1 10.3 – 16.0 

2008, n=1      

Average 4.0 6.1 5.8 6.6 22.5 

Median 4.0 6.1 5.8 6.6 22.5 

Observed concentration range 4.0 6.1 5.8 6.6 22.5 

2009, n=15      

Average 3.6 4.2 3.4 2.3 13.5 

Median 3.4 3.3 4.1 2.0 13.0 

Observed concentration range 0.30 - 7.3 0.79 - 10.9 <0.04 - 6.2 <0.05 - 6.5 1.4 - 25.2 

2010, n=9      

Average 1.5 4.0 3.8 2.2 11.5 

Median 0.58 2.9 4.4 2.5 12.5 

Observed concentration range <0.09 - 5.6 0.76 - 8.2 0.51 - 7.2 0.50 - 3.6 2.3 - 20.3 

Paprika, n=25 

Average 1.9 3.1 2.0 1.1 8.0 
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Herb/spice BaA, µg kg-1 Chr, µg kg-1 BbF, µg kg-1 BaP, µg kg-1 PAH4, µg kg-1 

Median 1.8 2.9 2.1 1.0 7.9 

Observed concentration range 0.61 - 4.1 1.2 - 6.4 0.76 - 3.4 0.33 - 2.2 2.9 – 14.0 

Confidence interval (95%) 1.6 – 2.2 2.5 – 3.6 1.8 – 2.3 0.92 – 1.3 7.0 – 9.1 

2010, n=22      

Average 2.0 3.0 2.1 1.1 8.1 

Median 1.9 2.9 2.1 1.0 8.0 

Observed concentration range 0.61 - 4.1 1.2 - 6.4 0.76 - 3.4 0.33 - 2.2 2.9 – 14.0 

2014, n=3      

Average 1.3 3.6 1.7 0.98 7.5 

Median 1.2 3.9 1.7 1.1 7.9 

Observed concentration range 1.2 - 1.4 2.6 - 4.2 1.6 - 1.8 0.70 - 1.1 6.4 - 8.2 

Sweet, n=21      

Average 1.8 3.0 2.1 1.1 8.0 

Median 1.7 2.8 2.1 1.0 7.6 

Observed concentration range 0.61 - 4.1 1.2 - 6.4 0.76 - 3.4 0.33 - 2.2 2.9 – 14.0 

Hot, n=4      

Average 2.1 3.3 1.9 0.98 8.4 

Median 2.2 3.5 1.9 1.1 8.7 

Observed concentration range 1.4 - 2.7 2.6 - 3.8 1.7 - 2.2 0.70 - 1.1 6.4 - 9.7 

Nutmeg, n=25 

Average 0.97 1.4 0.34 0.11 2.9 

Median 0.65 1.4 <0.13 <0.18 2.5 

Observed concentration range <0.09 - 2.7 <0.04 - 4.6 <0.04 - 4.8 <0.05 - 0.84 1.0 - 7.3 

Confidence interval (95%) 0.59 – 1.4 0.96 – 1.9 0.00 – 0.74 0.00 – 0.22 1.9 – 3.8 

2009, n=13      

Average 0.30 0.89 0.06 0.05 1.3 

Median <0.31 0.87 <0.13 <0.18 1.4 

Observed concentration range <0.09 - 1.2 0.64 - 2.0 <0.04 - 0.77 <0.05 - 0.64 1.0 - 4.4 

2010, n=7      

Average 1.7 2.1 0.26 0.18 4.3 

Median 1.7 2.1 <0.13 <0.18 4.1 

Observed concentration range 0.65 - 2.7 0.80 - 3.4 <0.04 - 0.91 <0.05 - 0.64 2.5 - 5.8 

2011, n=2      

Average 2.0 2.9 2.4 <0.05 7.3 

Median 2.0 2.9 2.4 <0.05 7.3 

Observed concentration range 1.4 - 2.6 1.2 - 4.6 <0.04 - 4.8 <0.05 7.3 - 7.3 

2014, n=3      

Average 1.4 1.3 0.38 0.28 3.4 

Median 1.4 0.76 0.40 <0.18 3.7 

Observed concentration range 0.48 - 2.4 0.64 - 2.5 <0.04 - 0.74 <0.05 - 0.84 1.5 - 4.9 
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Annex 10 

The obtained PAHs concentrations in smoked meat samples originating from Latvia, 

Lithuania and Estonia (n=77) 

No. Type 
BaA, 

μg kg-1  

Chr, 

μg kg-1  

BbF, 

μg kg-1  

BaP, 

μg kg-1  

PAH4, 

μg kg-1  
MOEBaP MOEPAH4 

Latvian smoked meat 

1 Smoked pork lard 0.81 1.06 0.27 0.19 2.32 564516 219733 

2 Smoked pork 0.47 0.56 0.19 0.21 1.44 497630 355153 

3 Smoked pork 4.87 5.28 1.43 1.73 13.30 60764 38337 

4 Smoked pork lard 0.52 0.61 0.18 0.13 1.43 840000 357895 

5 Smoked pork lard 35.34 46.26 9.85 10.87 102.3 9663 4985 

6 Smoked pork 0.42 0.43 0.16 0.25 1.26 415020 405728 

7 Smoked pork belly 1.20 1.42 0.46 0.65 3.73 161538 136729 

8 Smoked pork 0.79 1.24 0.30 0.41 2.74 256098 186472 

9 Smoked ham 0.68 0.42 0.21 0.13 1.44 783582 353921 

10 Smoked pork 4.93 6.50 3.00 5.21 19.64 20161 25967 

11 Smoked ham 51.50 72.28 22.52 14.56 160.9 7211 3170 

12 Smoked pork 0.25 0.33 0.16 0.14 0.88 736388 578955 

13 Smoked pork 6.57 8.14 3.58 3.24 21.53 32394 23684 

14 Smoked pork 7.63 7.27 4.68 4.70 24.27 22341 21011 

15 Smoked pork 16.91 51.37 8.23 6.21 82.71 16918 6166 

16 Smoked pork 123.77 126.28 43.39 32.77 326.2 3204 1563 

17 Smoked pork 0.72 0.80 0.32 0.30 2.15 344424 237235 

18 Smoked pork 5.40 7.58 2.39 1.87 17.24 56119 29579 

19 Smoked pork roulette 0.98 1.14 0.38 0.36 2.85 294762 178882 

20 Smoked pork belly 3.22 3.15 1.15 1.53 9.05 68486 56324 

21 Smoked pork belly 26.62 26.35 10.07 12.61 75.66 8325 6741 

22 Smoked ham 0.39 0.46 0.17 0.15 1.16 699633 438375 

23 Smoked pork 0.26 0.27 0.12 0.11 0.77 940361 666324 

24 Smoked pork lard 1.08 1.22 1.38 0.69 4.37 153002 116724 

25 Smoked pork belly 0.47 0.51 0.56 0.23 1.77 448574 287576 

26 Smoked pork 1.39 1.64 0.48 0.56 4.08 186199 125042 

27 Smoked sausage 1.03 1.11 0.73 0.45 3.32 233971 153634 

28 Smoked sausage 30.29 23.47 13.98 11.35 79.09 9251 6448 

29 Smoked pork 3.43 2.85 3.12 2.12 11.53 49421 44233 

30 Smoked ham 46.03 45.74 37.18 29.44 158.4 3566 3220 

31 Smoked pork belly 7.79 10.05 7.74 3.80 29.38 27621 17359 

32 Smoked ham 31.27 40.64 12.24 9.35 93.50 11227 5455 

33 Smoked ham 28.21 34.28 13.50 11.13 87.13 9434 5854 

34 Smoked pork belly 84.60 105.16 76.45 53.97 320.2 1945 1593 

35 Smoked ham 170.66 214.78 125.98 116.12 627.5 904 813 

36 Smoked pork 1.63 2.10 1.98 1.71 7.42 61442 68748 

37 Smoked pork 22.06 26.92 11.20 9.88 70.05 10628 7280 

38 Smoked ham 25.47 31.09 11.58 10.79 78.94 9730 6461 

39 Smoked pork 8.00 9.79 4.27 3.54 25.60 29664 19920 

40 Smoked pork 6.40 7.87 4.19 2.44 20.90 43044 24396 

41 Smoked chicken 36.59 39.44 14.59 12.55 103.2 8369 4944 

42 Smoked pork belly 1.61 1.39 1.83 1.39 6.23 75536 81890 
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No. Type 
BaA, 

μg kg-1  

Chr, 

μg kg-1  

BbF, 

μg kg-1  

BaP, 

μg kg-1  

PAH4, 

μg kg-1  
MOEBaP MOEPAH4 

43 Smoked pork 0.76 0.83 0.29 0.42 2.29 251252 222283 

44 Smoked pork cheeks 16.28 20.73 11.38 9.50 57.90 11057 8809 

45 Smoked pork 1.54 1.70 3.12 6.87 13.23 15286 38557 

46 Smoked ham 0.93 0.94 0.55 0.71 3.14 147220 162379 

47 Smoked pork lard 1.94 2.42 0.55 0.78 5.69 135351 89623 

48 Smoked pork 4.89 5.21 8.81 10.61 29.52 9895 17276 

49 Smoked pork 14.19 16.07 6.92 5.92 43.10 17743 11833 

50 Smoked pork belly 1.98 2.04 2.53 2.99 9.55 35096 53391 

51 Smoked pork 0.75 0.95 0.72 0.91 3.33 115442 153195 

52 Smoked pork belly 8.06 9.11 3.60 2.99 23.77 35124 21457 

Lithuanian smoked meat 

1 Cold smoked sausage 2.26 4.50 4.42 3.89 15.08 26960 33823 

2 Smoked pork 3.77 4.80 4.03 2.51 15.11 41840 33761 

3 Cold smoked sausage 1.08 2.54 2.14 1.33 7.08 79242 72014 

4 Cold smoked sausage 1.03 2.82 2.31 1.69 7.84 62256 65035 

5 Cold smoked sausage 3.65 5.72 4.09 2.29 15.74 45936 32392 

6 Cold smoked sausage 1.89 2.45 0.62 0.71 5.66 148010 90081 

7 Cold smoked sausage 0.11 0.17 0.08 0.05 0.42 1982549 1201862 

8 Cold smoked sausage 0.29 0.28 0.14 0.11 0.81 970681 626252 

9 Smoked ham 19.52 21.07 8.52 7.06 56.17 14876 9080 

10 Smoked ham 0.75 0.85 0.36 0.34 2.29 312038 222304 

11 Smoked pork 4.13 4.47 2.40 2.53 13.53 41495 37684 

12 Cold smoked sausage 0.87 0.89 0.49 0.42 2.66 251476 191567 

13 Cold smoked sausage 3.03 3.86 1.09 1.25 9.23 84055 55252 

14 Cold smoked sausage 2.40 3.12 0.99 0.73 7.24 143920 70431 

15 Cold smoked sausage 0.53 0.49 0.28 0.23 1.52 464593 334761 

16 Cold smoked sausage 0.36 0.38 0.23 0.16 1.12 661830 453635 

17 Smoked pork 0.10 0.17 0.13 0.09 0.49 1157733 1032434 

Estonian smoked meat 

1 Smoked ham 0.12 0.13 0.09 0.09 0.42 1216948 1206353 

2 Smoked ham 0.23 0.38 0.13 0.11 0.86 988115 595406 

3 Smoked pork 0.22 0.33 0.13 0.09 0.77 1201235 658971 

4 Smoked pork 0.93 1.17 0.34 0.25 2.69 427883 189664 

5 Smoked pork 0.29 0.42 0.14 0.11 0.96 976803 533597 

6 Smoked pork 5.79 7.85 4.22 3.93 21.79 26745 23410 

7 Smoked ham 2.11 3.06 1.35 1.07 7.59 97893 67214 

8 Smoked ham 59.11 74.74 24.63 16.79 175.3 6255 2910 
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