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AABBSSTTRRAACCTT  

Cutaneous melanoma is the most aggressive skin cancer with an increasing incidence 

worldwide and Latvia as well, and it accounts for the majority of skin cancer related deaths. 

Early melanoma detection and identification of high risk individuals is important to prevent 

the disease. Melanoma has a complex aetiology that involves environmental, phenotypic, 

genetic and epigenetic risk factors. 

The aim of this study was to investigate the role of high, medium and low melanoma 

risk genes in melanoma development and survival in the Latvian population. Two different 

approaches were used for this.  

A family study approach was used to study high melanoma risk genes CDKN2A and 

CDK4 in predisposed individuals, and a case-control study approach was used to study 

medium (MC1R, MITF) and low melanoma risk genes (TP53, MDM2, PARP1) in sporadic 

melanoma patients. The study found melanoma associated variant―6 bp deletion c.–20677_ 

– 20682delGTACGC― in the main high melanoma risk gene CDKN2A for the first time in 

the Latvian population. The third Latvian CDK4 melanoma family with rare variant 

p.Arg24His was identified confirming CDK4 as the main familial melanoma risk gene in 

Latvia so far. Data about Latvian CDK4 melanoma families were included in an international 

world-wide CDK4 family study that demonstrates that CDK4 melanoma families are 

phenotypically similar to CDKN2A families, and CDK4 gene needs to be examined when the 

family is negative for variants in the CDKN2A gene. 

The highest melanoma risk variant in Latvian sporadic melanoma patients is variant 

p.Arg151Cys in medium melanoma risk gene MC1R. A subset of rare MC1R variants is 

functionally relevant and should be considered as high risk variants in MC1R analysis.  

Carrying two MC1R variants is associated with twice as high melanoma risk as carrying one 

MC1R variant, and overall the risk associated with MC1R variants is independent from 

pigmentation phenotype. However, MC1R variants have a positive effect on melanoma 

survival revealing ambiguous effects of MC1R variants and the disease. Although variant 

p.Arg151Cys is the main signal from 16q24.3 associated with melanoma risk, another variant 

rs4785763 in pseudogene AFG3L1P also displays an association with melanoma and is 

independent from MC1R. Medium melanoma risk gene MITF variant p.Glu318Lys is not a 

significant melanoma risk factor in Latvian population. Variants in low melanoma risk genes 

TP53 (p.Pro72Arg) and MDM2 (c.14+309T>G) have a minor effect on melanoma 

development in the Latvian population, but PARP1 variant rs2249844 is associated with an 

increased risk of death. Taken together these data illustrate the complex relations between 

various melanoma risk genes and their impact on melanoma development and leave space for 

discoveries of yet other unknown melanoma risk genes and complex interplay between them. 
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KKOOPPSSAAVVIILLKKUUMMSS  

Ādas melanoma ir ļaundabīgākais no visiem ādas audzējiem. Tās incidence visā 

pasaulē, ieskaitot Latviju, aizvien pieaug, turklāt tā izraisa lielāko daļu nāves gadījumu, kas 

saistīti ar ādas audzējiem. Liela loma melanomas novēršanā ir agrīnai diagnostikai, kā arī 

augsta riska indivīdu identificēšanai. Melanomai ir sarežģīta etioloģija, kas ietver gan vides, 

gan fenotipiskos, ģenētiskos un epiģenētiskos riska faktorus. 

Šī pētījuma mērķis bija izvērtēt augsta, vidēja un zema melanomas riska gēnu 

ietekmi uz melanomas attīstību un izdzīvotību Latvijas populācijā. Tā sasniegšanai tika 

izmantotas divas dažādas pētījuma pieejas. 

Ģimeņu ietvaros indivīdiem ar palielinātu melanomas predispozīciju tika pētīti augsta 

melanomas riska gēni CDKN2A un CDK4, savukārt pacientu – kontroles personu (case-

control) pētījuma pieeja tika izmantota, lai analizētu vidēja (MC1R, MITF) un zema (TP53, 

MDM2, PARP1) melanomas riska gēnus sporādiskajos pacientos. Pirmo reizi Latvijas 

populācija tika atrasts CDKN2A variants, kas saistīts ar melanomas attīstību – 6 bp delēcija 

c.–20677_ – 20682delGTACGC. Tika atrasta trešā ģimene Latvijā ar atkārtotiem melanomas 

saslimšanas gadījumiem un variantu p.Arg24His CDK4 gēnā, kas apstiprina, ka CDK4 

aizvien ir galvenais riska gēns ģimenēs ar atkārtotiem melanomas saslimšanas gadījumiem 

Latvijā. Dati par Latvijas CDK4 ģimenēm tika iekļauti starptautiskā pētījumā par CDK4 

ģimenēm, kas parādīja, ka CDK4 ģimenes fenotipiski ir līdzīgas CDKN2A ģimenēm un 

gadījumā, ja ģimenē netiek atrastas CDKN2A izmaiņas, jāveic CDK4 analīze. 

Galvenais riska variants sporādiskajiem melanomas pacientiem Latvijā ir vidēja 

melanomas riska gēna MC1R variants p.Arg151Cys. Arī daļa reto MC1R variantu ir 

funkcionāli nozīmīgi un MC1R variantu analīzē būtu uzskatāmi par augsta riska variantiem. 

Divi MC1R varianti ir saistīti ar divreiz augstāku melanomas risku nekā tikai viens variants, 

un kopumā MC1R variantu veidotais risks ir neatkarīgs no pigmentācijas fenotipa. No otras 

puses, MC1R varianti uzrāda pozitīvu efektu uz melanomas izdzīvotību, tādējādi norādot uz 

neviennozīmīgo MC1R variantu ietekmi uz slimību. Lai gan MC1R variants p.Arg151Cys ir 

galvenais melanomas riska variants 16q24.3 reģionā, tomēr vēl viens šī reģiona variants 

rs4785763 pseidogēnā AFG3L1P uzrāda no MC1R neatkarīgu saistību ar melanomu. Vidēja 

melanomas riska gēna variants p.Glu318Lys nav nozīmīgs melanomas riska faktors Latvijas 

populācijā. Zema melanomas riska gēnu variantiem – p.Pro72Arg TP53 gēnā un 

c.14+309T>G MDM2 gēnā – ir minimāla ietekme uz melanomas attīstību Latvijas populācijā, 

bet PARP1 variants rs2249844 ir saistīts ar paaugstinātu nāves risku. Kopumā rezultāti ilustrē 

sarežģīto mijiedarbību starp dažādiem melanomas riska gēniem un melanomas attīstību, kā arī 

norāda uz iespēju nākotnē atklāt vēl citus jaunus melanomas riska gēnus, kā arī dažādas 

mijiedarbības to starpā. 
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AABBBBRREEVVIIAATTIIOONNSS  

5’UTR 5’ untranslated region 

95% CI 95% confidence interval 

aa Amino acid/acids 
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AC Adenylate cyclase 
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AIM1, AIM1 Melanoma antigen AIM1, gene 
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ASIP, ASIP Agouti signaling protein, gene 
ASXL1/2, ASXL1/2 Additional sex comb-like proteins ASXL1 and ASXL2, genes 

ATM, ATM ATM serine/threonine kinase, gene 
B Stratum basale 

BAP1, BAP1 BRCA1-associated protein 1, gene 

BARD1, BARD1 BRCA1-associated RING domain protein 1, gene 
BHK Baby hamster kidney cells 

BM Basement membrane 

BRAF, BRAF Serine/threonine-protein kinase B-Raf, gene 
BRCA1/2, BRCA1/2 Tumour suppressor breast cancer protein 1 and 2, genes 

cAMP Cyclic adenosine monophosphate 

CASP8, CASP8 Caspase 8, gene 
CCND1, CCND1 Cyclin D1, gene 

CDK4, CDK4 Cyclin-dependent kinase 4, gene 

CDK6, CDK6 Cyclin-dependent kinase 6, gene 
CDK10, CDK10 Cyclin-dependent kinase 10, gene 

CDKAL1, CDKAL1 CDK5 regulatory subunit associated protein 1 like 1 protein, gene 

CDKN2A, CDKN2A Cyclin-dependent kinase inhibitor 2A, gene 
CDKN2B, CDKN2B Cyclin-dependent kinase inhibitor 2B, gene 

CDKN2B-AS1, CDKN2B-AS1 Cyclin-dependent kinase inhibitor 2B antisense RNA 1, gene 

c-Fos Protooncogene c-Fos 
CLPTM1L, CLPTM1L Cleft lip and palate associated transmembrane protein 1 like protein, gene 

CREB cAMP response-element binding protein 

CTD C terminal domain 
CYP1B1, CYP1B1 Cytochrome P450 family 1 subfamily B member 1, gene 

D Dermis 

DCT Dopachrome tautomerase 
DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

E2F Transcription factor E2F 
Elk1/4 ETS transcription factors Elk1 and Elk4 

ERCC5 (XPG), ERCC5 ERCC excision repair 5, endonuclease, gene 

ETS E-twenty six transcription factors 
F Fibroblasts 

FAMMM Familial atypical multiple mole melanoma syndrome 

FoxK1/K2 Forkhead transcription factors FoxK1 and FoxK2 
FTO, FTO Alpha-ketoglutarate dependent dioxygenase, gene 

G Stratum granulosum 

G1 Gap1 phase of the cell cycle 
G2 Gap2 phase of the cell cycle 

GAR1 Ribonucleoprotein GAR1 

GEM Genes, Environment, and Melanoma consortium 
GPCR G-protein coupled receptor 

GTP Guanosine triphosphate 

GWAS Genome wide association study 

HBM Host cell factor 1 binding domain 

HCF1 Host cell factor 1 

HeLa Cervical adenocarcinoma cell line 
HERC2, HERC2 HECT and RLD domain containing E3 ubiquitin protein ligase 2, gene 

HIF1A Hypoxia-inducible factor 1-alpha 

IARC International Agency for Research on Cancer 
IRF4, IRF4 Interferon regulatory factor 4, gene 

K Keratinocytes 
kbp Kilobase pairs 

kDa Kilodalton 

M Mitosis phase of the cell cycle or melanocytes 
MAF Minor allele frequency 

MAFF, MAFF MAF bZIP transcription factor F, gene 

MATP, MATP Membrane-associated transporter protein, gene 
MBAIT Melanocytic BAP1-mutated atypical intradermal tumour 

MC1R, MC1R Melanocortin 1 receptor, gene   

MC2R, MC2R Melanocortin 2 receptor, gene   
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MC3R, MC3R Melanocortin 3 receptor, gene   

MC4R, MC4R Melanocortin 4 receptor, gene   
MC5R, MC5R Melanocortin 5 receptor, gene   
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MPM Multiple primary melanomas 

mRNA Messenger RNA 
M-SKIP Melanocortin-1 receptor gene, Skin cancer and Phenotypic characteristics project 

MTAP, MTAP Methylthioadenosine phosphorylase, gene 

MTS1, MTS1 Multiple tumour suppressor 1, gene 
MX2, MX2 MX dynamin like GTPase 2, gene 

MYH7B, MYH7B Myosin heavy chain 7B, gene 

NCOA6, NCOA6 Nuclear receptor coactivator 6, gene 
NER Nucleotide excision repair 

NHP2 H/ACA ribonucleoprotein complex subunit 2 

NLS Nuclear localisation signals 
NOP10 Nucleolar protein 10 

NRAS, NRAS Neuroblastoma RAS viral oncogene homolog, GTPase, gene 

NRHC Non-red hair colour phenotype 

OB1/2 Oligonucleotide/ oligosaccharide-binding N terminal domains of POT1 

OCA2, OCA2 OCA2 melanosomal transmembrane protein, gene 
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OMIM Online Mendelian Inheritance in Man 

p P-value 

PARP1, PARP1 Poly(ADP-ribose) polymerase 1, gene 
p14ARF Alternate reading frame protein encoded by CDKN2A 

p16INK4A Tumour suppressor protein encoded by CDKN2A 
PGC-1α Peroxisome proliferator-activated receptor γ coactivator-1α 

PIGU, PIGU Phosphatidylinositol glycan anchor biosynthesis class U protein, gene 

PKA Protein kinase A 
PLA2G6, PLA2G6 Phospholipase A2 group VI, gene 

POLE, POLE Catalytic subunit of DNA polymerase epsilon, gene 

POT1, POT1 Protection of telomeres 1 protein, gene 
PTEN, PTEN Phosphatase and tensin homolog protein, gene 

RAD23B, RAD23B Nucleotide excision repair protein, gene 
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SUMO Small ubiquitin-like modifier 
TAL2, TAL2 TAL BHLH Transcription Factor 2, gene 

TCF Ternary complex factors 
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VDR, VDR Vitamin D receptor, gene 
YY1 Ying Yang 1 transcription factor 
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IINNTTRROODDUUCCTTIIOONN  

Cutaneous melanoma is the most aggressive skin cancer that accounts for the 

majority of skin cancer related deaths. Melanoma is easily treatable in early stages, but is 

highly metastatic and deadly in advanced stages. Melanoma incidence has steadily increased 

in the fair-skinned population in the last decades by about 4-5% per year that is mainly 

explained by socioeconomically linked changes in lifestyle (Erdmann et al. 2013). The 

highest melanoma incidence rates in the world are in New Zealand, Australia and Central and 

Northern Europe (Ervik et al. 2016). Melanoma incidence in Latvia is lower, however 

numbers are increasing and survival rates are lower than in the most of Europe (Azarjana et 

al. 2013). In the last decade significant advancements have been reached in the therapy of 

advanced melanoma through development of small molecular inhibitors and immunotherapy, 

however these therapies are expensive, have serious side effects, and only a selective range of 

patients respond to the treatment. Therefore early melanoma detection and identification of 

individuals with increased risk is important to prevent the disease. Melanoma has a complex 

aetiology that involves environmental, phenotypic, genetic and epigenetic risk factors. At 

least eight high risk genes associated with familial melanoma (CDKN2A, CDK4, BAP1, 

TERT, POT1, ACD, TERF2IP, POLE) have been discovered during the last two decades 

(Read et al. 2016; Potrony et al. 2015). Several previous studies have reported the role of 

genetic variants in CDKN2A and CDK4 on melanoma in the Latvian population mainly in a 

family setting (Pjanova et al. 2009; Pjanova et al. 2007; Pjanova et al. 2006a; Pjanova et al. 

2006b; Pjanova et al. 2003). CDKN2A is the most predominant gene associated with familial 

melanoma, however, no changes in CDKN2A associated with melanoma development in 

Latvian families have been discovered so far. Previous studies have identified two Latvian 

melanoma families with a hotspot change p.Arg24His in CDK4 gene. Though, in other 

Latvian melanoma families, a genetic component contributing to the disease is yet to be 

discovered. Besides high melanoma risk genes, at least 30 medium and low melanoma risk 

loci with a role in both familial and sporadic melanoma have been identified and investigated 

in various populations, however, so far no such studies have been conducted in the Latvian 

population.  

The aim of this study was to investigate the role of high, medium and low risk 

predisposition genes in melanoma development and survival in the Latvian population. 

The main objectives were as follows: 

 To analyse comprehensively the CDKN2A locus, including also the promoter region 

and introns as well as a deletion screening of the gene, as well as to analyse the exon 2 

of the CDK4 gene in Latvian melanoma patients with a family history of melanoma 

(paper I); 

 To examine jointly the clinical phenotype of melanoma prone families with CDK4 

codon 24 germline variant, including possible modifying effects of MC1R variants, 

with the intent to inform genetic counselling internationally (paper II); 

 To investigate the prevalence and type of MC1R variants among melanoma patients 

and control persons in the Latvian population and perform functional analyses of 

previously uncharacterized rare MC1R variants (paper III); 

 To examine relations between variants residing in the 16q24.3 region and melanoma 

(paper IV); 



8 

 

 To test the hypothesis that MC1R variants are associated with melanoma survival 

(paper V); 

 To evaluate the prevalence of medium melanoma risk gene MITF variant p.Glu318Lys 

in Latvian melanoma patients and controls (paper VI); 

 To evaluate the prevalence of low melanoma risk gene variants, in particular, TP53 

(p.Pro72Arg) and MDM2 (c.14+309T>G), in the Latvian population (paper VII); 

 To analyse the role of PARP1 gene variants in melanoma development and survival 

(paper VIII).  
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11..  LLIITTEERRAATTUURREE  RREEVVIIEEWW  

11..11..  CCuuttaanneeoouuss  mmeellaannoommaa  

11..11..11..  MMeellaannoommaa  eettiioollooggyy  

Cutaneous melanoma (from here forward―‘melanoma’) is a malignant skin 

neoplasm that develops from melanocytes. While the majority of melanomas develop in the 

skin, it can also develop in the eye (uvea, conjunctiva, ciliary body), meninges and on 

mucosal surfaces. In most cases melanomas are heavily pigmented, however, they can also be 

amelanotic (Garbe et al. 2016). 

 Melanocytes are pigment producing cells that embryonically develop from 

ectodermal neural crest cells, and can be found throughout the human body—epidermis, iris, 

hair, rectum, inner ear, nervous system and heart (Schadendorf et al. 2015; Cichorek et al. 

2013; Brito & Kos 2008; Tachibana 1999). Melanocytes in these histologically different sites 

can give rise to diverse types of melanoma, however, in ‘whites’ the most common form is 

cutaneous melanoma. A simplified model of development of melanoma starts with a benign 

lesion, termed melanocytic naevus (plural naevi) that subsequently evolves to a dysplastic 

naevus, then melanoma in situ and lastly, invasive melanoma (Shain & Bastian 2016) (Figure 

1). However, melanoma can also arise de novo without a pre-existent skin lesion. 

 

Figure 1. Schematic and photographic representation of cutaneous melanoma development 

from a melanocytic naevus. From left to right: the first row—clinical photographs of normal 

skin, a freestanding naevus, a dysplastic naevus, melanoma in situ and invasive melanoma; the 

second row—schematic illustrations of main histological features associated with each step. 

Melanocytes are located in the basal layer of epidermis. A naevus is a benign proliferation of 

melanocytes with very low likelihood for melanoma development. A dysplastic naevus is at 

least 5 mm in diameter with variable pigmentation, asymmetry and/or irregular borders and 

histologically displays architectural disorder. Melanoma in situ is an irregular proliferation of 

melanocytes with enlarged nuclei within the epidermis. In the invasive melanoma stage 

melanocytes leave the epithelium of the epidermis and enter the dermis or submucosa (adapted 

after Shain & Bastian 2016).  

11..11..22..  MMeellaannoommaa  iinncciiddeennccee,,  ssuurrvviivvaall  aanndd  mmoorrttaalliittyy  

Melanoma has shown a steady increase in incidence in fair-skinned population in the 

last decades by about 4-5% per year (Erdmann et al. 2013; Godar 2011; MacKie et al. 2009; 

de Vries et al. 2003). This rapid increase is mainly explained by greater exposure to 

ultraviolet radiation (UVR) due to socioeconomically linked changes in recreational habits 
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and lifestyle—people from high latitude countries more often travel to lower latitudes and 

experience intensive solar exposure especially for non-acclimatised light skin (Erdmann et al. 

2013; MacKie et al. 2009). It has been shown that short intermittent burning episodes are a 

greater melanoma risk factor than continuous exposure thus explaining harmful effects of 

such an episodic and intensive sun exposure (Chang et al. 2009; Elwood & Gallagher 1998). 

The highest melanoma incidence rates in the world are in New Zealand and Australia (age-

standardized incidence rates per 100,000—35.8 and 34.9, respectively) followed by Central 

and Northern European countries Switzerland, The Netherlands, Denmark, Norway and 

Sweden (20.3, 19.4, 19.2, 18.8 and 18.0). Melanoma incidence is also high in the United 

Kingdom and USA (14.4 and 14.3, respectively) (Ervik et al. 2016; Ferlay et al. 2015) 

(Figure 2). 

 

Figure 2. Estimated age-standardized incidence rates of melanoma (both sexes) worldwide 

(GLOBOCAN 2012 data) (Ervik et al. 2016; Ferlay et al. 2015). 

In the recent years some stabilisation in melanoma incidence rates have been 

observed in Australia, New Zealand, North America and Northern European countries, 

especially in younger individuals, that is mostly attributed to public health campaigns and 

growing awareness of melanoma as well as improvement in early detection (Erdmann et al. 

2013; Karim-Kos et al. 2008; Coory et al. 2006; de Vries et al. 2003). 

Melanoma incidence in Latvia on Europe scale is comparatively low, however, 

numbers are increasing. Data from the largest oncological hospital in the country Oncology 

Centre of Latvia shows an increase from 5.1 new melanoma cases per 100,000 inhabitants in 

1998 to 7.8 new melanoma cases in 2008 (Azarjana et al. 2013). 

In the recent couple decades melanoma survival has improved in most of Europe and 

nowadays 5-year age-standardised relative survival reaches 80-90%, however, in Eastern 

Europe it is only 50-75% (De Angelis et al. 2014; Tryggvadottir et al. 2010; Karim-Kos et al. 

2008; Lasithiotakis et al. 2007; Lindholm et al. 2004; Smith et al. 1998a). Survival rates in 

Europe for women are higher than for men (86.6% and 79.2%, respectively). In Latvia 5-year 

age-standardised relative melanoma survival is 65.1% that is lower than survival rate in 

Lithuania (69.2%) and Estonia (72.1%) (De Angelis et al. 2014). 

Melanoma mortality rates have mostly stabilized or even declined in North and 

Central Europe, North America and Australia, however, they are still increasing in Southern 



11 

 

and Eastern Europe (Erickson & Driscoll 2010; Karim-Kos et al. 2008; Coory et al. 2006; 

Baade & Coory 2005; de Vries et al. 2003; La Vecchia et al. 1999). The highest melanoma 

mortality in the world is in Australia and New Zealand (estimated age-standardised rate per 

100,000 is 5.9 for men and 2.4 for women), but lowest in South-Central Asia (0.2 and 0.1, 

respectively). Altogether melanoma mortality is higher for men and almost 2/3 of deaths from 

melanoma occur in more developed regions (mortality rates 2.0 and 1.2) than in less 

developed regions (mortality rates 0.4 and 0.3 for males and females, respectively) (Ferlay et 

al. 2015). 

11..11..33..  MMeellaannoommaa  rriisskk  ffaaccttoorrss  

Melanoma as all cancers is a heterogeneous disease with a complex aetiology that 

involves environmental, phenotypic, genetic and epigenetic risk factors. The main melanoma 

environmental risk factor is UVR, both solar and artificial. Solar light consists of a continuous 

spectrum of electromagnetic radiation: ultraviolet, visible and infrared. UVR light wavelength 

ranges from 100 to 400 nm and is divided into three bands: UVA (315–400 nm), UVB (280–

315 nm) and UVC (100–280 nm). The stratospheric ozone layer absorbs practically all UVC 

radiation as well as approximately 95% UVB and 5% of UVA. As a result about 5% UVB 

and 95% UVA reaches the Earth’s surface (El Ghissassi et al. 2009). Studies using platyfish 

(Xiphophorus maculatus) and swordtails (Xiphophorus heUeri) hybrids in the late 1980s 

showed that UVB can induce melanoma development (Nairn et al. 1996; Setlow et al. 1989). 

UVB mechanism of action is direct DNA damaging by formation of dimeric photoproducts, 

namely, cyclobutane pyrimidine dimers between adjacent thymine or cytosine residues and 

pyrimidine (6-4) pyrimidone photoproducts among adjacent pyrimidine residues. If not 

repaired by cellular reparation systems, these DNA lesions can subsequently result in so 

called ‘UVR signature mutations’—C to T and CC to TT transitions (Cadet et al. 2005; 

Matsumura & Ananthaswamy 2004). Data about UVA involvement in melanoma 

development, however, has been conflicting. It has been shown that UVA can induce 

melanomas in Xiphophorus hybrid models and a focal melanocytic hyperplasia that is a 

putative melanoma precursor in opossum models (Ley 2001; Setlow et al. 1993). These 

findings led to thinking that UVA might be an even more effective and important melanoma 

inducer than UVB due to its larger abundance on the Earth’s surface (Setlow et al. 1993). Yet 

other studies showed that UVA has very small—if any—effect on melanoma induction 

(Mitchell et al. 2010; De Fabo et al. 2004; Robinson et al. 2000). However, current opinion is 

that, UVA has an indirect effect on melanoma development via induction of reactive oxygen 

species (Matsumura & Ananthaswamy 2004; Petersen et al. 2000), oxidative DNA 

modifications (Kielbassa et al. 1997) as well as in vitro DNA strand breaks in human 

keratinocytes and skin fibroblasts (Greinert et al. 2012; Wischermann et al. 2008) that might 

lead to chromosomal aberrations. To sum up—both UVA and UVB can promote melanoma 

development and it applies both to solar UVR and indoor UVR sources—mainly tanning 

beds. Tanning beds became very popular in Europe and USA in 1980s, however, studies now 

show that they undoubtedly are associated with increased risk of melanoma (Boniol et al. 

2012). Since 2009 all solar UVR as well as UVR-emitting tanning devices are classified by 

the International Agency for Research on Cancer (IARC) as ‘carcinogenic to humans (group 

1)’ (El Ghissassi et al. 2009). 

The harmful effects of UVR vary depending on the timing and pattern of exposure. 

There is a clear correlation between the frequency of melanoma and geographical latitudes 

due to differences in UVR levels. Closer to the equator the sun is higher in the sky and UVR 
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travels a shorter distance with a more direct angle through atmosphere layers (including 

protective ozone) thus UVR exposure on the planet’s surface is more intense. The average 

increase in UVB per one geographic latitude degree towards the equator is 3% (Rigel et al. 

1999). Thereby, the closer to equator, the higher UVR exposure is and skin cancer frequency 

increases. The most illustrative fact is that the highest melanoma rate in the fair-skinned 

population in the world is in Australia and New Zealand that lie close to the equator—

between latitudes 10° and 45° south while, for example, European countries where melanoma 

incidence is lower are located further from equator—between latitudes 80° and 35° north. 

Although the total UVR level is an important melanoma risk factor, studies show that 

the risk is higher when a person experiences relatively rare, intermittent sun exposure events, 

typically associated with recreational activities. Risk is especially higher for indoor workers 

as well as if experienced in a young age (Chen et al. 2013; Gandini et al. 2005a; Walter et al. 

1999; Nelemans et al. 1993). On the other hand, intermittent sun exposure has been shown to 

increase survival from melanoma, possibly due to some vitamin D mediated histological or 

intracellular effects (Berwick et al. 2005). Interestingly, some studies on chronic sun exposure 

suggest that it might have a protective effect on melanoma development (Walter et al. 1999; 

White et al. 1994). To sum up—clearly UVR is involved in melanoma development, 

however, the mechanism of action is complex and varies depending of individual situations 

and other factors involved. 

 Another important melanoma risk factor is sunburns. Painful sunburns are associated 

not only with melanoma but also with other skin cancers (squamous and basal cell 

carcinomas) before the age of 20 years. For older individuals (20-40 years), the association 

remains statistically significant only for melanoma (Kennedy et al. 2003). The strongest 

association between painful sunburns and melanoma risk is when they are experienced in 

early childhood (before 6 years) (Oliveria et al. 2006; Kennedy et al. 2003). 

UVR is the main but not only environmental melanoma risk factor. Cancer in general 

is associated with many chemical, biological and other environmental risk factors. Studies 

demonstrate that people exposed to industrial pollutants, e.g., vinyl chloride (Guarneri & 

Guarneri 2014; Langard et al. 2000), volatile organic compounds (Boeglin et al. 2006) and 

polychlorinated biphenyls (Gallagher et al. 2011) as well as ionizing radiation are at increased 

melanoma risk (Fink & Bates 2005). On the question of extrinsic biological risk factors, 

Merrill et al. (2015) suggests human papillomavirus as a possible reason for growing 

melanoma incidence due to the fact that it is found in more than half of melanoma biopsies. 

The impact of environmental factors very much depends on each individual’s 

phenotypical and physiological characteristics. A pale skin that hardly tans and easily 

sunburns, red or blond hair, blue eyes and an increased amount of freckles are typically 

associated with increased melanoma risk (Gandini et al. 2005b; Gandini et al. 2005c). 

However, the major phenotypical risk factor that often is accompanied by above mentioned 

factors is an increased number of naevi as well as a presence of dysplastic or atypical naevi 

(Berwick et al. 2016; Goldstein & Tucker 2013; Tucker & Goldstein 2003; Clark et al. 1978). 

Meta-analysis results show that persons who carry more than 100 common naevi have almost 

seven times higher risk of to develop melanoma than persons with less than 15 naevi (relative 

risk=6.89; 95% CI=4.63–10.25) (Gandini et al. 2005b). Melanoma risk doubles with every 

increase of 25 naevi and is also higher when naevi are large (> 5 mm) (Markovic et al. 2007). 

Dysplastic naevi are another major melanoma risk factor. The International Agency for 

Research on Cancer (IARC) characterizes dysplastic naevi as slightly raised, irregularly 

pigmented lesions with vague borders, asymmetric shape, >0.5 cm in the greatest dimension 

(IARC 2011). These lesions are especially noteworthy in familial setting where atypical mole 
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syndrome (AMS) (also known as dysplastic naevus syndrome or familial atypical multiple 

mole and melanoma syndrome (FAMMM)) is often observed (Berwick et al. 2016; Clark et 

al. 1978). AMS is characterized by the presence of at least two dysplastic naevi, more than 

100 common naevi as well as the presence of naevi on abnormal body sites, and together with 

family history of melanoma this phenotype is an especially strong melanoma risk factor 

(Berwick et al. 2016; Clark et al. 1978).  

Skin pigmentation is primarily determined by melanocytes that are functionally 

connected to dermal fibroblasts and epidermal keratinocytes (Yamaguchi et al. 2007). 

Melanocytes contain melanosomes—pigment-filled organelles—that are later transported to 

keratinocytes (Yamaguchi et al. 2007; Van Den Bossche et al. 2006). In keratinocytes of 

lightly pigmented skin melanosomes are clustered above the nuclei, but in dark skin the 

heavily pigmented melanosomes are distributed more evenly throughout the cell ensuring 

maximal UVR absorption (Yamaguchi et al. 2007) (Figure 3). 

 

Figure 3. Schematic representations of lightly and dark pigmented human skin structures. 

Middle column: SC—stratum corneum; G—stratum granulosum; S—stratum spinosum; B—

stratum basale; BM—basement membrane; D—dermis. Cell types: K—keratinocytes; M— 

melanocytes; F—fibroblasts. Melanin granules depicted as shaded ovals (Yamaguchi et al. 

2007). 

The role of genetics in melanoma development mainly manifests itself through the 

accumulation of numerous, random somatic genetic aberrations in many cellular pathways 

(Zhang et al. 2016). However, approximately 10% of melanoma cases occur in a familial 

setting as recurrent cases thus showing the role of germline inheritance in melanoma 

development (Read et al. 2016; Potrony et al. 2015). Melanoma risk genes are divided in 

three groups: high, medium and low risk genes. The first two high melanoma risk genes were 

discovered more than 30 years ago: cyclin-dependent kinase inhibitor 2A gene (CDKN2A) 

(Hussussian et al. 1994; Cannon-Albright et al. 1992) and cyclin-dependent kinase 4 gene 

(CDK4) (Zuo et al. 1996). However, variants in these genes, depending on the study 

population, are found in only 20-60% of all melanoma families (Goldstein et al. 2007). In the 

recent years due to the rapid progress in next-generation sequencing technologies significant 

advancement in new melanoma risk gene identification has been reached. Analysis of high-

density melanoma families has revealed several new high melanoma risk genes: BRCA1-

associated protein 1 gene (BAP1), protection of telomeres 1 gene (POT1), adrenocortical 
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dysplasia protein homolog gene (ACD), telomeric repeat binding factor 2 interacting protein 

gene (TERF2IP), telomerase reverse transcriptase (TERT), catalytic subunit of DNA 

polymerase epsilon (POLE) (Read et al. 2016; Aoude et al. 2015a; Potrony et al. 2015). Still, 

variants in each of these genes have been found in a relatively small number of melanoma 

families and no disease causing variant has been found in about half of melanoma families 

(Read et al. 2016). Therefore most likely there could be other currently unknown high 

melanoma risk genes or disease predisposition might be explained by combinatory effect of 

lower risk alleles (Goldstein et al. 2017). However, most melanoma cases are sporadic and 

gain an influence from a complex interaction of medium and low risk genetic factors. So far, 

three genes have been classified as medium melanoma risk genes: melanocortin 1 receptor 

gene (MC1R), melanogenesis associated transcription factor gene (MITF) and solute carrier 

family 45 member 2 gene (SLC45A2) (Read et al. 2016; Potrony et al. 2015). Both of them 

are involved in pigmentation regulation. There are also at least 30 loci involved in many 

cellular functions, namely, pigmentation regulation, naevi formation, cell cycle regulation, 

DNA repair, telomere processes and other functions, that have been identified as low 

melanoma risk loci (Read et al. 2016).  

11..22..  GGeenneettiicc  rriisskk  ffaaccttoorrss  ooff  mmeellaannoommaa  

11..22..11..  HHiigghh  mmeellaannoommaa  rriisskk  ggeenneess  

CCyycclliinn--ddeeppeennddeenntt  kkiinnaassee  iinnhhiibbiittoorr  22AA  ggeennee——CCDDKKNN22AA  

Cyclin-dependent kinase inhibitor 2A gene (CDKN2A) (OMIM 600160) was the first 

discovered melanoma risk gene. It is located on chromosome 9 at position 9p21.3 and has 

four exons that encode two tumour suppressor proteins—p16INK4A and p14ARF via 

alternative reading frames and splicing (Mao et al. 1995; Quelle et al. 1995; Stone et al. 1995; 

Kamb et al. 1994a; Serrano et al. 1993) (Figure 4). 

 

Figure 4. Schematic representation of the human cyclin-dependent kinase inhibitor 2A gene 

(CDKN2A) locus on chromosome 9p21. CDKN2A contains four exons—exon 1α, exon 1β, exon 

2 and exon 3 (coloured boxes) that encodes two tumour suppressor proteins via alternative 

reading frames and splicing. The protein p16INK4A consists of 156 amino acid residues and is 

produced from transcript of exon 1α, exon 2 and exon 3 (green boxes). The protein p14ARF 

consists of 132 amino acid residues and is produced from another transcript of exon 1β, exon 2 

and exon 3 (dark blue boxes).  
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One of the main cancer hallmarks is the dysregulation of cell cycle that results in 

uncontrolled cell proliferation and an inability to undergo differentiation and/or apoptosis 

(Hanahan & Weinberg 2011). The cell cycle is classically divided into 4 phases: gap 1 (G1), 

synthesis (S), gap 2 (G2), and mitosis (M) with check-points between them. The transition 

from G1 to S phase is controlled by the cyclin-dependent serine/threonine kinases (Sherr & 

Roberts 2004). Altogether, the human genome contains >20 genes encoding cyclin-dependent 

kinases that act as cell cycle regulators in the various stages of the cell cycle (Malumbres et 

al. 2009). In the active state cyclin-dependent kinase is a holoenzyme that is composed of a 

regulatory subunit, cyclin, and a catalytic subunit, termed a cyclin-dependent kinase 

(Malumbres & Barbacid 2005). Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) 

together with cyclin D phosphorylate the retinoblastoma protein (RB) that allows for cell 

cycle transition through the G1 checkpoint (Malumbres & Barbacid 2005). The protein 

p16INK4A binds CDK4/6 thus inhibiting RB phosphorylation and arresting the cell cycle in 

the G1 phase (Lukas et al. 1995; Sherr & Roberts 1995). The protein p14ARF inhibits the cell 

cycle in G1 and also the G2/M phase by binding and degrading TP53 inhibitor mouse double 

minute 2 homolog (MDM2), thus allowing TP53 to induce cell growth arrest or apoptosis 

(Stott et al. 1998; Zhang et al. 1998; Quelle et al. 1995). 

The first evidence of 9p locus involvement in melanoma development was the loss of 

the short arm or even full copy of chromosome 9 in dysplastic naevi and melanomas (Cowan 

et al. 1988). Cannon-Albright with colleagues in 1992 were the first who, using linkage 

analysis, showed 9p21 locus association with familial melanoma (Cannon-Albright et al. 

1992) that was later confirmed in other studies (Goldstein et al. 1994; Gruis et al. 1993; 

Nancarrow et al. 1993). Besides, large 9p21 germline deletion was found in a patient with 

multiple primary melanomas (MPM) and atypical naevi thus further showing 9p role in 

melanoma development (Petty et al. 1993). Several studies also found that more than half of 

melanoma cell lines contain mutations in the 9p21 locus and there was localized so called 

multiple tumour suppressor 1 gene (MTS1), now known as CDKN2A (Kamb et al. 1994a; 

Nobori et al. 1994; Weaver-Feldhaus et al. 1994; Fountain et al. 1992). Besides, a diverse 

range of mutations affecting 9p21 locus was also found in other tumour cell lines i.e. 

leukaemia (Diaz et al. 1990), glioma (Olopade et al. 1992), non-small cell lung cancer (Merlo 

et al. 1994), as well as various other lung, breast, brain, bone, skin, bladder, kidney, ovary, 

and lymphocyte tumour cell lines (Kamb et al. 1994a) confirming the importance of this locus 

in tumour formation and underpinning its function as a tumour suppressor in general.  

In 1994, Hussussian with colleagues was the first who reported CDKN2A germline 

genetic variants in melanoma families. They analysed 18 melanoma families with at least two 

melanoma cases and found six germline variants that were restricted to melanoma cases in 

nine melanoma families thus allowing to assume that these variants might have caused 

melanoma (Hussussian et al. 1994) and subsequent study also demonstrated evidence for the 

functional effect of these variants on the protein inhibitory properties (Ranade et al. 1995). 

Since then many similar melanoma family studies have been performed, however, results are 

very varied partly due to different inclusion criteria for ‘melanoma families’. In general a 

family can be described as a melanoma family if there are at least three melanoma cases 

irrespective to a degree of relation, however, in regions with lower sunlight level (such as 

northern Europe, including Latvia) families with at least two first degree melanoma affected 

relatives are also classified as a melanoma family (de Snoo & Hayward 2005). 

Up to date many CDKN2A genetic variants in familial melanoma patients have been 

found. Most of the p16INK4A variants are missense substitutions in exon 1α and exon 2 that 

are evenly distributed along practically all protein sequence (exon 3 codes only last 4 amino 
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acids of the p16INK4A) (Aoude et al. 2015b; Goldstein et al. 2006; Hussussian et al. 1994). 

At least one change in CDKN2A has been identified as a ‘hotspot mutation’—24 bp 

duplication p.Pro11_Ser12insAlaAlaGlySerSerMetGluPr (c.32_33insGGCGGCGGGGAGC 

AGCATGGAGCC; rs587780668) that repeats two already naturally existing sequences in 

CDKN2A 5’region, extending the protein by eight amino acids while presumably retaining its 

functionality (Walker et al. 1995). This change has been found in several melanoma families 

in Australia (Flores et al. 1997; Walker et al. 1995), USA (Goldstein et al. 1995) and the 

United Kingdom (Pollock et al. 1998). Haplotype analysis suggests that there have been 

multiple mutational events causing this duplication, most likely caused by unequal crossing 

over between naturally occurring 24 bp repeats or polymerase slippage (Pollock et al. 1998). 

Several of the CDKN2A genetic variants are systematically found in distinct 

geographic regions and populations and are considered ‘founders’ due to haplotype evidence 

of common ancestry rather than recurrent hotspot mutations (Goldstein et al. 2006). The most 

common genetic variant in the Netherlands is the 19 bp deletion c.225-243del19 

(rs730881674) in CDKN2A exon 2, better known as ‘p16-Leiden’. It was discovered in 

melanoma patients coming from a rather isolated Dutch population group near Leiden (de 

Snoo et al. 2008; Gruis et al. 1995). This deletion has been found in 90% of Dutch melanoma 

families with disease associated genetic variants (Goldstein et al. 2006). 

Another founder variant has been discovered in the Swedish population—an extra 

arginine insertion in p16INK4A exon 2 in amino acid position 113: p.Arg112_Leu113insArg 

(c.335_337dupGTC; rs768966657). Similarly as the p16-Leiden variant in the Netherlands, 

this variant is the most frequent melanoma associated genetic change in Swedish melanoma 

families—it constitutes 92% of all disease associated variants (Goldstein et al. 2006). 

Interestingly, statistical estimates indicate that this variant arose 98 generations or ~2000 

years ago in present-day Sweden region (Hashemi et al. 2001; Borg et al. 1996). 

The missense variant p.Gly101Trp (c.301G>C; rs104894094), also in p16INK4A 

exon 2, is the most common familial melanoma variant in France, Italy and Spain—its 

frequency in melanoma families there reaches 60% (Goldstein et al. 2006). Similarly to the 

above mentioned Swedish founder variant, its origination is estimated 97 generations or 

~1940 years ago and has a Celtic ancestry (Ciotti et al. 2000). Functionally this variant 

diminishes p16 affinity to CDK4 thus hampering its ability to inhibit CDK4 kinase activity 

(Reymond & Brent 1995). 

In Iceland CDKN2A exon 2 variant p.Gly89Asp (c.266G>A; rs137854599) has been 

found in >2% of Icelandic invasive melanoma patients and is also considered a founder 

variant that originated in Northern Iceland in the 1600’s (Goldstein et al. 2008). 

In about half of melanoma families in the United Kingdom and Australia the disease 

is associated with CDKN2A exon 2 variants p.Arg24Pro (c.71G>A; rs104894097), 

p.Leu32Pro (c.95T>C; rs878853650) and p.Met53Ile (c.159G>A; rs104894095), as well as a 

deep intron variant IVS2-105A>G (c.458-105A>G; rs1060501266) (Lang et al. 2007; 

Goldstein et al. 2006; Harland et al. 2001; Pollock et al. 1998). All three coding variants 

p.Arg24Pro, p.Leu32Pro and p.Met53Ile are located in highly conserved positions (Goldstein 

et al. 2006; Harland et al. 1997). Protein binding assays shows that variant p.Arg24Pro is 

defective for binding CDK4 and variant p.Met53Ile—both CDK4 and CDK6 (Harland et al. 

1997). 

The deep intron variant IVS2-105A>G creates a false splice donor site producing 

aberrant mRNA (Harland et al. 2001). Interestingly, IVS2-105A>G has also been found in an 

Italian patient with eight primary melanomas. Haplotype analysis rejected English ancestry 
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therefore study’s authors suggested that this position might be a mutational hotspot (Majore et 

al. 2004). 

Besides IVS2-105A>G, other p16INK4A variants that cause aberrant splicing and 

segregate with melanoma families have also been identified. For example exon 1 splice donor 

variant p.Gln50Pro (c.149A>C; rs587778189) has been discovered in an American melanoma 

family without previously detected CDKN2A variants. This variant causes either correctly 

spliced mRNA with nonconservative amino acid change p.Gln50Pro that decreases effectivity 

of interaction between p16INK4A and CDK4, or aberrantly spliced mRNA leading to 

truncated p16INK4A suggesting its involvement in melanoma development (Loo et al. 2003; 

Lynch et al. 2002). Interestingly, in the same position, another missense amino acid change 

p.Gln50Arg (c.149A>G; rs587778189) has been observed in melanoma families in Australia 

(Pollock et al. 2001; Walker et al. 1995). 

Another interesting position is the border between exon 2 and the next intron. Two 

contiguous variants in the last position of exon 2 and in the first position in the following 

intron or exon 2 donor splice site c.457G>T (p.Asp153Tyr; rs45476696) and IVS2+1G>T 

(c.457+1G>T) have been identified in several melanoma families and both of them have been 

proved to cause aberrant splicing (Loo et al. 2003; Rutter et al. 2003; Lynch et al. 2002; 

Moskaluk et al. 1998; Hussussian et al. 1994). The variant IVS2+1G>T has also been 

discovered in a patient with MPM (MacKie et al. 1998). A couple of rare intronic variants 

also have been demonstrated to have an association with melanoma in English and Australian 

melanoma families—IVS1+1104C>A (c.150+1104C>A, rs756102261) and IVS1-1104C>G 

(c.151-1104C>G) (Harland et al. 2005a). 

Several variants associated with familial melanoma development have also been 

discovered in the CDKN2A promoter and 5’UTR region. The first identified p16INK4A 

5’UTR variant with proven functional impact on protein translation was c.-34G>T 

(rs1800586). This transversion creates a novel AUG translation initiation codon, disrupting 

normal wild type protein translation. This variant segregates with melanoma in families in 

Canada, has been found in Australian and USA melanoma families and most likely has 

ancestry in the British Isles (Eliason et al. 2006; Harland et al. 2000; Liu et al. 1999). Since 

then several other variants in the p16INK4A promoter region have been identified in English, 

French, Italian, American and Australian melanoma families—c.-33G>C (rs531597737), c.-

191G>A (rs3814960), c.-252A>T (rs538489460), c.-347G>C, c.-493A>T (rs36228834), c.-

735G>A (rs3731238), c.-981G>T (rs2811708) nevertheless they showed no segregation with 

familial melanoma (Goldstein et al. 2008; Pollock et al. 2001; Harland et al. 2000; Soufir et 

al. 1998). Recent studies in Italian, English and French familial as well as sporadic melanoma 

patients discovered some other novel variants located up to 180 bp upstream from p16INK4A 

(Andreotti et al. 2016; Bisio et al. 2010). These two studies also demonstrated that almost 

half of these variants—c.-21C>T (rs762129503), c.-27_-5del23 (rs757137815), c.-42T>A, c.-

56G>T, c.-67G>C and c.-93_-91delAGG—similarly to previously known c.-34G>T 

(rs1800586) are functionally relevant, while the rest of them—c.-14C>T(rs764244718), c.-

20A>G, c.-30G>A (rs780207215), c.-40C>T, c.-25C>T+c.-180G>A (rs144481587+ 

rs145660371), c.-45G>A, c.-59C>G, c.-87T>A and c.-252A>T (rs538489460), including 

previously discovered c.-33G>C and c.-191G>A—are functionally neutral (Andreotti et al. 

2016; Bisio et al. 2010). 

Altogether variants affecting p14ARF are found less frequently than p16INK4A 

variants. Some of the genetic variants in CDKN2A exon 2 have the potential to modify both 

gene products, for example, large exon 2 deletion was detected in a French melanoma family, 

and this deletion leads to truncation of both proteins—p16INK4A and p14ARF (Lesueur et 
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al. 2008). In one Norwegian melanoma family another large germline deletion was detected. 

This deletion removes exon 1α and half of exon 2 resulting in a truncated p14ARF and loss of 

p16INK4A (Knappskog et al. 2006). In other study a 24 bp deletion within exon 2 was found 

in a patient with MPM and a family history of melanoma and functional studies showed that 

this deletion disrupts functional activity of both CDKN2A products (Hashemi et al. 2002; 

Hashemi et al. 2000). In several families transversion IVS1-1G>C (c.151-1G>C; 

rs730881677) causing aberrant splicing at the acceptor splice site of CDKN2A intron 1 has 

been found. This variant causes incorrect splicing resulting in both p16INK4A and p14ARF 

lacking exon 2 (Hocevar et al. 2006; Petronzelli et al. 2001). First this variant was identified 

in an Italian family with melanomas, neurofibromas, and multiple dysplastic naevi 

(Petronzelli et al. 2001). Lately this variant has been discovered in another family with 

melanoma and multiple other tumours and is associated with FAMMM syndrome (Sargen et 

al. 2016). Some exclusively CDKN2A exon 1β affecting deletions (Laud et al. 2006; Mistry et 

al. 2005; Randerson-Moor et al. 2001), insertions (Rizos et al. 2001) or splice variants 

(Harland et al. 2005b; Hewitt et al. 2002) also have been found in several melanoma families. 

Besides the already mentioned CDKN2A variants, novel other changes have been 

found in various studies of different populations (Borroni et al. 2017; Burgstaller-

Muehlbacher et al. 2015; de Torre & Martinez-Escribano 2010; Erlandson et al. 2007; 

Ghiorzo et al. 2006; Huber & Ramos 2006; Knappskog et al. 2006; Avbelj et al. 2003). 

Overall CDKN2A accounts for about 20% of melanoma associated changes found in 

melanoma families, however, the number varies from 5% to 72% depending on geographic 

region and selection criteria used in the particular study (Potrony et al. 2015; Goldstein et al. 

2007). Meanwhile, on a population level CDKN2A variant frequency in sporadic melanomas 

is rather low—it ranges from 0.2% to 3.3% (Harland et al. 2014; Nikolaou et al. 2011; 

Goldstein et al. 2008; Berwick et al. 2006; Aitken et al. 1999) and overall probability to 

detect a germline CDKN2A variant in melanoma is <2% except for patients with MPM and/or 

a family history of melanoma (Harland et al. 2014). In a family setting the melanoma risk for 

CDKN2A variant carriers increases with age from 30% by age 50 to 67% by age 80 (Bishop et 

al. 2002) while in the general population risk is much lower—ranging from approximately 

14% by age 50 to 28% by age 80 (Begg et al. 2005). There are some characteristics that 

correlate with a positive CDKN2A variant status in a melanoma family such as an increased 

number of family members with melanoma, presence of thick melanomas, an early age of the 

disease onset, MPM as well as at least one family member with pancreatic cancer (Taylor et 

al. 2016; Pedace et al. 2011; van der Rhee et al. 2011; Goldstein et al. 2007; Goldstein et al. 

2006). Carriers of CDKN2A variants in melanoma families harbour significantly more naevi 

as well as a higher proportion of atypical naevi than non-carriers (Taylor et al. 2017; Florell et 

al. 2004; Bishop et al. 2000; Cannon-Albright et al. 1994). In addition, variants in CDKN2A 

are associated with atypical mole syndrome in CDKN2A families suggesting CDKN2A’s role 

in the development of naevi (Bishop et al. 2000; Clark et al. 1978). An interesting 

observation is that pathogenic CDKN2A variant carriers within families have a darker skin 

type and are less likely develop severe burns compared with wild-type or non-pathogenic 

variant carriers (Taylor et al. 2016) highlighting melanoma risk in patients with UVR 

protective phenotype features. 

While pancreatic cancer is the most common type of cancer found in CDKN2A 

melanoma families and changes in CDKN2A are also associated with familial pancreatic 

cancer (Zhen et al. 2015; Ghiorzo et al. 2012a; Harinck et al. 2012; Goldstein et al. 2004; 

Goldstein et al. 1995; Whelan et al. 1995), CDKN2A variants also have been demonstrated to 

have an association with other types of cancer such as lung, breast, gastro-oesophageal 
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cancer, malignant mesothelioma (MM), sarcoma and childhood acute lymphoblastic 

leukaemia (Jouenne et al. 2017; Betti et al. 2016; Vijayakrishnan et al. 2015; Helgadottir et 

al. 2014; Potrony et al. 2014; Mukherjee et al. 2012; Sherborne et al. 2010; Debniak et al. 

2007; Oldenburg et al. 2004; Borg et al. 2000). 

CDKN2A variants are also associated with MPM. An increased frequency (7-10%) of 

CDKN2A variants has been found in sporadic MPM patients without a family history of 

melanoma and an increased number of MPM is correlated with higher possibility of carrying 

a CDKN2A variant, however, some studies report frequency close to population level (~3%) 

(Bruno et al. 2016; Harland et al. 2014; Helsing et al. 2008; Pastorino et al. 2008; Berwick et 

al. 2006; Puig et al. 2005; Monzon et al. 1998). 

The CDKN2A locus shows association with sporadic melanoma (Barrett et al. 2015; 

Maccioni et al. 2013a; Kumar et al. 2001). Several common CDKN2A coding region variants 

have been studied with regard to their impact on melanoma risk both within families as well 

as on a population level. One such is p.Ala148Thr (c.442G>A; rs3731249) in exon 2 of 

p16INK4A. It has been found in several melanoma families, however, did not fully segregate 

with the disease (Hussussian et al. 1994; Kamb et al. 1994b) and results in population level 

studies are also discrepant. A positive association has been found in Latvian and Polish 

populations (Pjanova et al. 2007; Debniak et al. 2005) as well as in Spanish patients with 

MPM (Puig et al. 2005), but no association has been found in English, French, Italian and 

Icelandic populations (Goldstein et al. 2008; Spica et al. 2006; Bertram et al. 2002). 

Functionally this variant does not demonstrate an effect on its inhibitory activity (Lilischkis et 

al. 1996; Ranade et al. 1995; Reymond & Brent 1995).  

A couple of common variants in the CDKN2A gene 3’region c.*29G>C, initially 

known as Nt500C>G (rs11515) and c.*69C>T, initially known as Nt540C>T (rs3088440) 

have also been studied with their regard to melanoma risk, however, results are inconsistent. 

Both of these variants have been shown to have an association with shorter disease free 

survival thereby more aggressive disease nature (Sauroja et al. 2000) though in another study 

c.*69C>T was demonstrated to have an association with improved patient survival (Straume 

et al. 2002). Variant c.*29G>C has been shown to have an association with familial 

melanoma risk in Australia (Aitken et al. 1999) and c.*69C>T has been shown to have an 

association with sporadic melanoma in Norwegian and Spanish populations (Maccioni et al. 

2013a; Kumar et al. 2001), however, no association for any of these two variants has been 

found in other population studies (Brazilian, Greek, Icelandic, Latvian, Polish and Spanish 

population in another study) (Stefanaki et al. 2013; Ibarrola-Villava et al. 2010; Goldstein et 

al. 2008; Pjanova et al. 2007; Debniak et al. 2005). To sum-up—meta-analysis from 

MelGene database shows that c.*69C>T is associated with melanoma while c.*29G>C is not 

associated (Antonopoulou et al. 2015). In addition, genome wide association studies 

(GWASs) and subsequent genotyping studies demonstrate that variants in the CDKN2A locus, 

also in other genes near CDKN2A (for example, methylthioadenosine phosphorylase gene—

MTAP and cyclin-dependent kinase inhibitor 2B antisense RNA 1 gene—CDKN2B-AS1) are 

associated with melanoma thus showing importance of wider CDKN2A locus in melanoma 

development (Barrett et al. 2015; Amos et al. 2011; Barrett et al. 2011; MacGregor et al. 

2011; Bishop et al. 2009). Some of variants in these regions also have been associated with 

phenotype features characteristic to high melanoma risk—skin type and development of 

naevi, especially clinically atypical naevi (diameter >5 mm, irregular border and colour) 

(Maccioni et al. 2013a; Barrett et al. 2011; Yang et al. 2010; Falchi et al. 2009; Florell et al. 

2004) as well as several histological features, for example, higher intensity of pigmentation 

(Sargen et al. 2015). 
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CCyycclliinn--ddeeppeennddeenntt  kkiinnaassee  44  ggeennee——CCDDKK44  

Considering the involvement of p16INK4A in familial melanoma, other molecules 

involved in the same cell cycle regulation mechanism also appeared to be good melanoma 

risk gene candidates; research in this area led to the discovery of the second high melanoma 

risk gene—cyclin-dependent kinase 4 gene (CDK4) (OMIM 123829). CDK4 is located on 

chromosome 12 in position 12q14.1 (Mitchell et al. 1995). It consists of 8 exons, spans a 5kb 

segment and codes for a 303 amino acid long catalytic subunit of a heterodimeric 

serine/threonine kinase CDK4 that controls cell cycle G1 phase progression (Zuo et al. 1996). 

CDK4 together with additional protein cyclin D phosphorylates RB, thus releasing 

transcription factor E2F from the binding with RB and E2F activates transcription of the 

genes that subsequently leads to cell cycle progression in the synthesis phase (Malumbres & 

Barbacid 2005). CDK4 is inhibited by p16INK4A that binds to CDK4 preventing its 

interaction with cyclin D (Serrano et al. 1993). 

A mutational hotspot in codon 24 of CDK4 gene exon 2, resulting in substitutions 

p.Arg24Cys (c.70C>T; rs11547328) or p.Arg24His (c.71G>A; rs104894340) has been 

identified in several melanoma families across the world (Molven et al. 2005). Interestingly, 

Arg substitution with Cys in CDK4 position 24 initially was found in a somatic melanoma 

tissue (but not in the patient’s blood) (Wölfel et al. 1995). It was subsequently discovered that 

the wild type amino acid Arg24 is located in a region that directly interacts with CDK4 

inhibitor p16INK4A and amino acid substitutions caused by these variants functionally 

impairs CDK4’s ability to bind p16INK4A, leading to elevated CDK4 activity and cell cycle 

progression thus generating dominant oncogene (Coleman et al. 1997; Wölfel et al. 1995). In 

addition, substitution p.Arg24Cys as a part of the CDK4 peptide was found to create a 

tumour-specific neoantigen that is recognized by cytolytic T lymphocytes (Wölfel et al. 

1995).  

Zuo et al. (1996) was the first who identified CDK4 variant p.Arg24Cys that 

segregated with familial melanoma in two unrelated USA melanoma families without 

previously detected genetic changes in p16INK4A. Later the same substitution was also found 

in one Italian patient without familial melanoma history (Ghiorzo et al. 2012b). The second 

CDK4 codon 24 substitution p.Arg24Hys has been found in two melanoma families in France 

(Soufir et al. 2007; Soufir et al. 1998), one in Norway, Australia and the United Kingdom 

(Molven et al. 2005), one in Italy (Majore et al. 2008), one in Greece (Nikolaou et al. 2011) 

and two in Latvia (Pjanova et al. 2009; Pjanova et al. 2007).  

BBRRCCAA11--aassssoocciiaatteedd  pprrootteeiinn--11  ggeennee——BBAAPP11  

Since the initial discoveries of high melanoma risk genes CDKN2A and CDK4, lately 

other high melanoma risk genes have also been found. One of them is tumour suppressor gene 

BRCA1-associated protein-1 gene (BAP1) (OMIM 603089) that is located on chromosome 3 

at position 3p21.1 and consists of 17 exons. It encodes 90 kDa 729 amino acid long nuclear-

localized ubiquitin carboxy-terminal hydrolase (Jensen et al. 1998). BAP1 contains several 

physically overlapping but functionally distinct domains and interacting regions (Wang et al. 

2016) (Figure 5). 
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Figure 5. Schematic representation of the human BRCA1-associated protein 1(BAP1) 

functional domains and interacting regions. UCH—N terminal ubiquitin carboxyl hydrolase 

domain (1–250); BARD1 binding region (182–365); HBM—host cell factor 1 binding domain 

(365–385 aa); FoxK1/K2 binding region (477–526); BRCA1 binding region (596–721); CTD 

(C terminal domain) —ASXL1/2 binding domain (635–693 aa); YY1—Ying Yang 1 binding 

region (642–686); NLS—nuclear localisation signals (656–661 and 717–722) (adapted after 

Wang et al. 2016). 

One of the main functions of BAP1 is tumour suppression through protein 

deubiquitination, thus regulating a wide range of cell processes, i.e. transcription, cell cycle 

control, DNA damage repair and cellular differentiation. BAP1 mediated deubiquitination is 

carried out by the protein N terminal ubiquitin carboxyl hydrolase domain (UCH) (Jensen et 

al. 1998). At molecular level BAP1 acts as a chromatin-associated protein and is involved in 

formation of various multiprotein complexes with different transcription factors. One of the 

main BAP1 targets is host cell factor 1 (HCF1). HCF1 is transcriptional factor that modulates 

chromatine structure and activates other transcription factors such as E2F thus controlling cell 

cycle progression through the G1/S phase (Tyagi et al. 2007). BAP1 regulates cell 

proliferation by binding and deubiquitinating HCF1 (Machida et al. 2009; Misaghi et al. 

2009). BAP1 also forms protein complexes with other transcription factors, such as, Yin 

Yang 1 (YY1) (Yu et al. 2010), the forkhead transcription factors FoxK1 and FoxK2 

(FoxK1/K2) (Okino et al. 2015), the additional sex comb-like proteins ASXL1 and ASXL2 

(ASXL1/2) (Daou et al. 2015) and others that are also involved in cell cycle and proliferation 

regulation as well as other functions. BAP1 also mediates DNA repair and damage signalling 

via interaction with several homologous recombination proteins, such as tumour suppressor 

breast cancer protein 1 (BRCA1) and BRCA1-associated RING domain protein 1 (BARD1) 

(Jensen et al. 1998). BRCA1 forms a heterodimer with BARD1 and this complex acts as an 

E3 ubiquitin ligase that regulates the DNA damage response (Greenberg et al. 2006; Dong et 

al. 2003; Hashizume et al. 2001). BAP1 regulates ubiquitination during the DNA damage 

response and the cell cycle by binding and deubiquitylating BARD1, thus modulating E3 

ligase activity of the BRCA1-BARD1 protein complex (Nishikawa et al. 2009). 

The first evidence about BAP1’s role in melanoma was demonstrated by Harbour et 

al. (2010) who discovered inactivating BAP1 somatic mutations in 84% (26 of 31) of highly 

metastatic uveal melanomas (UM). In addition, in one patient a germline insertion in BAP1 

exon 12 p.Glu402fsTer2 (c.1318-1319insA) was detected, and the conclusion was drawn that 

BAP1 might be implicated in UM metastasis (Harbour et al. 2010). Later a germline variant at 

the BAP1 intron 6/exon 7 boundary c.438-2A>G (rs587776879) and a variant in exon 16 

p.Q684Ter (c.2050C>T; rs387906848) creating a stop codon was discovered in two families 

with multiple MMs, UM and other types of cancer (Testa et al. 2011). In addition, protein 
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truncating deletions were also found in couple sporadic MM patients with UM history (Testa 

et al. 2011). Concurrently a second study identified BAP1 germline variants in two families 

with cutaneous melanocytic neoplasms and UM or cutaneous melanoma—a deletion in exon 

13 p.Gln436AsnfsTer135 (c.1305delG; rs587776877) and a variant that removes the acceptor 

splice acceptor site before exon 17 p.Met687GlufsTer28 (c.2057-2A>G; rs587776878) 

(Wiesner et al. 2011). Since then germline BAP1 variants have been found in at least 87 

families with various types of cancers and that has led to the identification of germline 

autosomal dominant BAP1 hereditary cancer predisposition syndrome (OMIM 614327) that 

clinically is characterized by UM, cutaneous melanoma, renal cell carcinoma (RCC), MM, as 

well as specific atypical cutaneous melanocytic proliferations—melanocytic BAP1-mutated 

atypical intradermal tumours (MBAITs) (Haugh et al. 2017; Betti et al. 2016; McDonnell et 

al. 2016; Ohar et al. 2016; Cheung et al. 2015; Maerker et al. 2014; Pilarski et al. 2014; 

Aoude et al. 2013a; Cheung et al. 2013; Farley et al. 2013; Höiom et al. 2013; Popova et al. 

2013; Carbone et al. 2012; Njauw et al. 2012; Wadt et al. 2012; Wiesner et al. 2012a; 

Wiesner et al. 2012b; Abdel-Rahman et al. 2011). Several other types of cancer also have 

been identified in these families, for example, basal cell carcinoma and squamous cell 

carcinoma and it has been suggested to include them in the BAP1 tumour syndrome (Rawson 

et al. 2017; de la Fouchardière et al. 2015; Wadt et al. 2015). Thus melanoma is a part of a 

broader phenotype associated with BAP1 tumour syndrome—approximately 18% of patients 

with germline BAP1 variants have been diagnosed with cutaneous melanoma while 

frequencies for UM and MM in this tumour syndrome is higher—28% and 22%, respectively 

(Rai et al. 2016). In a study by Njauw et al. (2012) only 0.52% (1/193) of patients with a 

family history of solely cutaneous melanoma carried BAP1 variant while there were 28.6% 

(2/7) patients with BAP1 variants and family history of both cutaneous melanoma and UM 

(Njauw et al. 2012). 

So far more than 70 different BAP1 variants have been discovered in BAP1 tumour 

syndrome families and most of them are frameshift or nonsense variants resulting in protein 

truncation (Haugh et al. 2017). At least six variants have been found recurrently in two or 

more families—one variant p.Arg60Ter (c.178C>T) in BAP1 exon 4 has been found 

recurrently in three families from Denmark and USA with UM, cutaneous melanoma, MM 

and other cancers (Wadt et al. 2015; Njauw et al. 2012) while the rest of the recurrent variants 

have been found in two families each (Haugh et al. 2017). 

A couple of studies have explored BAP1 variant frequencies in population-based 

patient samples. An Australian study analysed 66 UM patients and found protein altering 

BAP1 variants that might have contributed to disease risk in 3% (2/66) of them (Aoude et al. 

2013b). In a Finnish population-based sample frequency of UM patients reaches 2% (3/148), 

however, two of these three patients had a family history of UM (Turunen et al. 2016). In 

sporadic cutaneous melanoma patients germline BAP1 variant frequency according to data is 

lower compared to UM patients—no more than 1% (O'Shea et al. 2017), that relatively 

reflects the situation in familial melanoma; BAP1 variants are more prevalent in UM there as 

well. 
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TTEELLOOMMEERRAASSEE  AASSSSOOCCIIAATTEEDD  HHIIGGHH  MMEELLAANNOOMMAA  RRIISSKK  GGEENNEESS  

TTeelloommeerraassee  rreevveerrssee  ttrraannssccrriippttaassee  ggeennee——TTEERRTT  

In recent years several genes associated with telomere maintenance (TERT, POT1, 

ACD, TERF2IP) have been identified as high melanoma risk genes and it is estimated that 

germline variants in these genes might explain ~1% of familial melanoma cases (Potrony et 

al. 2015). 

Telomeres are structures at the ends of chromosomes that ensure chromosomal 

integrity and genomic stability, and in mammals, including humans, they are formed of 

double stranded tandem 5’-TTAGGG-3’ DNA repeats with 3’ single stranded overhang that 

forms a secondary structure called a t-loop, that helps them to be distinguished from 

damaging DNA breaks (Doksani et al. 2013; O'Sullivan & Karlseder 2010; Palm & de Lange 

2008; Moyzis et al. 1988). Telomeres progressively shorten with each round of cell division 

leading to cellular or replicative senescence reaching the Hayflick limit (Bodnar et al. 1998; 

Harley et al. 1990; Hayflick & Moorhead 1961). Telomeres are elongated by enzyme 

telomerase or terminal transferase. The telomerase holoenzyme complex includes the enzyme 

component—reverse transcriptase (TERT), the RNA component (TERC) and several 

additional ribonucleoproteins (Mason & Perdigones 2013; Greider & Blackburn 1985) 

(Figure 6). Telomerase activity in most tissues is silenced through TERT promoter regulatory 

elements leading to telomere shortening and DNA damage while in carcinogenic processes it 

is upregulated by various transcriptional activators, and telomerase activity is characteristic to 

most of the cancer types (Shay 2016; Kyo et al. 2008; Kim et al. 1994). Human telomerase 

was isolated as a constituent of crude extracts from HeLa cells (Morin 1989), but the catalytic 

subunit coding gene was identified several years later. The TERT gene (OMIM 187270) is 

located on chromosome 5 at position 5p15.33, spans more than 37 kb, encompasses 16 exons 

and encodes a 1132-amino acid protein with 127 kDa molecular mass (Wick et al. 1999; 

Kilian et al. 1997; Meyerson et al. 1997; Nakamura et al. 1997).  

Complete telomere structures include not only chromosomal DNA, but also its 

accompanying accessory nucleoproteins involved in telomere maintenance (Figure 6). One of 

these protein complexes is shelterin that is involved in regulation of practically all functions 

associated with telomeres—telomerase complex recruitment and interaction with telomeres, 

telomerase-based telomere maintenance, telomere protection from degradation, aberrant 

recombination or incorrect DNA repair distinguishing natural chromosome ends from DNA 

breaks (Palm & de Lange 2008). Shelterin consists of six proteins—protection of telomeres 1 

protein (POT1), telomeric repeat binding factors 1 and 2 (TRF1 and TRF2), telomeric repeat 

binding factor 2 interacting protein (TERF2IP, also known as RAP1), TRF1-interacting 

nuclear protein 2 (TINF2 or TIN2), and TIN2-interacting protein (TPP1) encoded by 

adrenocortical dysplasia protein homolog gene (ACD) (Heidenreich & Kumar 2017; Palm & 

de Lange 2008) (Figure 6). POT1 binds to single-stranded TTAGGG repeats at the 3’ 

telomere DNA overhang (Flynn & Zou 2010). TRF1 and TRF2 bind to double-stranded 

telomere DNA recruiting other shelterin complex proteins to telomeres. TPP1 enhances POT1 

binding to telomeres as well as telomerase complex recruitment to telomeres (Zhong et al. 

2012; Xin et al. 2007). 
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Figure 6. Schematic representation of the telomerase holoenzyme and the shelterin complex 

relatively to the telomere end structure. Telomerase holoenzyme comprises the enzyme 

component—reverse transcriptase (TERT) and the RNA component (TERC) containing a 3′ 

H/ACA box motif that binds dyskerin protein complex with additional proteins H/ACA 

ribonucleoprotein complex subunit 2 (NHP2), nucleolar protein 10 (NOP10) and 

ribonucleoprotein GAR1. The shelterin complex contains six protein components—protection 

of telomeres 1 protein (POT1), telomeric repeat binding factor 1 and 2 (TRF1 and TRF2), 

telomeric repeat binding factor 2 interacting protein (TERF2IP, also known as RAP1), TRF1-

interacting nuclear protein 2 (TINF2 or TIN2), and TIN2-interacting protein (TPP1) 

(Heidenreich & Kumar 2017). 

TERT was the first gene of the telomere maintenance complex components that was 

found to be associated with familial melanoma. Using linkage analyses and high-throughput 

sequencing a novel germline noncoding transversion T>G at the -57 position from the 

translation initiation codon ATG in the TERT promoter was identified in a four generation 

German family with 14 melanoma patients without changes in CDKN2A or CDK4 (Horn et 

al. 2013). The novel variant was identified in all four melanoma patients analysed as well as 

in one 36 years-old unaffected member of the family with multiple naevi. Patients in this 

family developed melanoma at an early age and a couple of affected members also had other 

types of cancer. Variants were not found among 140 sporadic cases and 165 controls as well 

as in public variant databases (Horn et al. 2013). 

 Functionally variant c.-57T>G (rs878855297) introduces promoter sequence change 

CCTGAA>CCGGAA creating a new binding site for E-twenty six (ETS) transcription factors 

of ternary complex factors (TCFs) Elk1 and Elk4 resulting in an approximately twofold 

increase in TERT transcription (Horn et al. 2013). 

Another study screened TERT promoter variant c.-57T>G in 675 melanoma families 

without changes in other known high melanoma risk genes from the United Kingdom, 

Denmark, Australia and the Netherlands and the variant was detected in seven-case family 

from the United Kingdom with MPM and an early disease onset and one case also has seven 

basal cell carcinomas (Harland et al. 2016). None of the 1863 cases and 529 controls carried 

this variant thus confirming that TERT promoter variant c.-57T>G is rare, highly penetrant 

and associated with early onset melanoma as well as other types of cancer (Harland et al. 

2016). 

In addition to familial melanoma, several variants in TERT locus in GWASs and 

case-control studies have been demonstrated to have an association with sporadic melanoma. 
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Among them are variants rs2853676 (c.1573+4881A>G), rs2242652 (c.1950+245C>T), 

rs401681 (c.1316-153G>A), and rs13356727 (g.1312342G>A), the latter two of which have 

protective effect, and rs13356727 is also associated with decreased number of naevi (Law et 

al. 2012; Barrett et al. 2011; Nan et al. 2011a; Rafnar et al. 2009; Stacey et al. 2009). 

Interestingly, in one study promoter variant c.-57T>G was also found in several 

primary melanoma cell lines (3 of 109) as a somatic variant (Heidenreich et al. 2014a). 

Various other TERT promoter variants have been found in melanoma cell lines and tissue 

samples as somatic changes. Horn et al. (2013) who initially identified c.-57T>G promoter 

variant in familial melanoma also screened 168 melanoma cell lines and none of them carried 

particular promoter variant c.-57T>G, however, they found various recurrent somatic 

ultraviolet signature variants in the TERT core promoter with prevailing hotspot variants c.-

124G>A and c.-146G>A that also introduce ETS/TCF binding motifs in 74% (125) of cell 

lines and confirmed these variants in 85 % (45 of 53) corresponding metastasized tumours. In 

addition 33% (25 of 77) unrelated formalin-fixed, paraffin-embedded primary melanomas 

also harboured changes in TERT promoter (Horn et al. 2013). Further studies strengthened the 

evidence about the role of somatic TERT promoter variants in melanoma development. Huang 

et al. (2013) concurrently examined 70 melanoma cell lines and found the same promoter 

changes in hotspot positions -124 and -146 in 71% (50) of the total cell lines analysed (Huang 

et al. 2013). It was also observed that TERT promoter variants tend to occur together with 

changes in serine/threonine-protein kinase B-Raf proto-oncogene (BRAF), neuroblastoma 

RAS viral oncogene homolog (NRAS) and CDKN2A (Nagore et al. 2016a; Heidenreich et al. 

2014a) and are also associated with a more aggressive disease and poorer disease prognosis 

characterized by faster growing melanomas, increased Breslow thickness, ulceration, high 

mitotic rate (Nagore et al. 2016a; Nagore et al. 2016b; Macerola et al. 2015; Griewank et al. 

2014; Heidenreich et al. 2014a). 

Somatic TERT promoter variants, predominantly c.-124G>A and c.-146G>A have 

also been identified in many other types of malignancies—non-melanoma skin cancer, 

glioma, medulloblastoma, hepatobiliary, thyroid, urinary tract, endometrial, ovarian, 

esophagus, lung and other types of cancer thus exposing a wide range of malignancies 

influenced by changes in TERT promoter region (Heidenreich & Kumar 2017; Heidenreich et 

al. 2014b). Germline TERT variants have also been observed in several families with 

dyskeratosis congenita—rare congenital disease with phenotypic characteristics resembling 

premature ageing. Germline coding variants detected in these families lead to reduced 

telomerase activity and extremely short telomeres (Basel-Vanagaite et al. 2008; Marrone et 

al. 2007; Armanios et al. 2005).  

PPrrootteeccttiioonn  ooff  tteelloommeerreess  11  ggeennee——PPOOTT11  

After TERT promoter variant c.-57T>G was discovered in melanoma families, other 

telomere proteins also became a targets of interest as a possible high melanoma risk genes 

that was strengthened by variant discovery in POT1. 

Human POT1 (OMIM 606478) was cloned in 2001 and was found to be located on 

chromosome 7 at position 7q31.33 (Baumann & Cech 2001). It is 120 kb long, contains 22 

exons with translation starting in exon 6, and encodes at least five different proteins 

(Baumann et al. 2002). 

The first rare melanoma-associated germline variants in POT1 were discovered in 

two concurrent studies using exome sequencing in individuals from melanoma families 

without changes in CDKN2A and CDK4 genes (Robles-Espinoza et al. 2014; Shi et al. 2014). 

In the first study exome sequencing was performed in 184 individuals from 105 melanoma 
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families with 2-11 melanoma cases from Australia, the United Kingdom and the Netherlands 

(Robles-Espinoza et al. 2014). Altogether four different POT1 germline variants in five 

melanoma families were identified—missense variant Tyr89Cys in five-case melanoma 

family, splice acceptor variant between exons 17 and 18 c.1687-1G>A (rs587777473) in a 

six-case melanoma family, missense variant p.Gln94Glu (c.280C>G; rs587777474) in a two-

case melanoma family, and p.Arg273Leu (c.818G>A; rs587777476) in one two-case 

melanoma family. Interestingly, the latter variant was also identified in one early-onset MPM 

patient from population-based sporadic melanoma cohort. All three missense variants 

p.Tyr89Cys, p.Gln94Glu and p.Arg273Leu are located in highly conserved oligonucleotide/ 

oligosaccharide-binding N terminal domains OB1 and OB2 of POT1 resulting in weakened or 

completely disrupted POT1 binding to telomeric DNA possibly allowing unwanted DNA 

damage response and/or access by telomerase that leads to increased telomere length that has 

been associated with cancer development (Haycock et al. 2017; Aoude et al. 2015b; Robles-

Espinoza et al. 2014). A couple of tested individuals also developed breast and lung cancer 

besides melanoma, and some untested family members in these families developed other 

malignancies thus suggesting POT1 might have an influence on a wider range of cancers 

(Robles-Espinoza et al. 2014). 

In the second study exome sequencing was performed in 101 cases or obligate variant 

carriers in 56 melanoma families from Italy as well as exome and targeted sequencing data 

from familial melanoma cases or MPM sporadic cases from the United States (139 cases from 

68 families), France (267 cases from 234 families and 157 MPM patients) and Spain (10 

cases from 3 families) were used (Shi et al. 2014). Three missense variants were discovered 

in altogether seven Italian melanoma families—variant p.Gln623His (c.1869G>C; 

rs587777478) in both cases in a two-case melanoma family, p.Arg137His (c.410G>A; 

rs587777475) in two cases and one healthy person from another two case family, and 

p.Ser270Asn (c.809G>A; rs587777477) in five Italian melanoma families. Variant 

p.Ser270Asn was found in all cases or obligate carriers (altogether 11 individuals) from four 

families and in one melanoma case from two analysed cases in a bilineal melanoma family. 

Haplotype analysis revealed that p.Ser270Asn is a founder variant—all carriers shared the 

same haplotype suggesting a common ancestor ~10 generations ago. A couple more POT1 

variants were discovered in families from other populations—variant p.Asp224Asn 

(c.670G>A; rs202187871) in four cases in a five-case melanoma family from the US (this 

variant was also found in one sporadic MPM case from Italy) and p.Ala532Pro (c.1594G>C; 

rs537377921) in one case with available DNA from a three-case family from France (this 

variant was also identified in one MPM patient with basal cell carcinoma from France) (Shi et 

al. 2014). 

Similarly to the study mentioned above, variants p.Arg137His, p.Asp224Asn and 

p.Ser270Asn are located in OB domains of POT1. Carriers of founder variant p.Ser270Asn 

had longer telomeres as well as cells displayed rather large heterogeneity in telomere length, 

demonstrating that this variant also might have some effect on telomere length regulation. 

Previously longer telomeres have been associated with melanoma development (Burke et al. 

2013). Variant p.Ala532Pro, which is located near a splice junction, might disrupt splicing, 

and variant p.Gln623His is located in C-terminus of POT1, which contains the TPP1-binding 

region thus suggesting their role in DNA binding (Shi et al. 2014).  

Shi et al. (2014) also demonstrated an association between POT1 rare variants and 

sporadic melanoma with OR=2.1, 95% CI=1.1–4.2, p=0.024 (31/768 cases and 15/768 

controls), especially when analysis was restricted to exonic variants with OR=5.4, 95% 

CI=1.5–29.2; p=0.0021 (16/768 cases and 3/768 controls). 
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To sum up, altogether 9 variants have been associated with familial melanoma and 

their location in the POT1 relative to protein domains are depicted in Figure 7. 

 

Figure 7. Schematic representation of the human POT1 protein and localization of variants 

associated with familial melanoma. OB1, OB2—oligonucleotide/oligosaccharide-binding 

domains 1 and 2, TPP1—shelterin complex protein TPP1 binding domain (adapted after 

Bainbridge et al. 2015). 

POT1 variants have also been associated with other types of cancer (Calvete et al. 

2017). Somatic POT1 variants have been found in 3.5% of chronic lymphocytic leukaemia 

patients and in 9% of patients with an especially aggressive chronic lymphocytic leukaemia 

subtype (Ramsay et al. 2013). Interestingly, one of the variants p.Gln94Arg was located in 

codon 94 that was also affected in familial melanoma (variant p.Gln94Glu) (Robles-Espinoza 

et al. 2014; Ramsay et al. 2013). Later POT1 variants were also discovered in familial 

chronic lymphocytic leukaemia (Speedy et al. 2016). POT1 variants have also been 

associated with familial glioma (Bainbridge et al. 2015). Using whole exome and high-

throughput sequencing three different variants with incomplete penetrance were found in 

three unrelated glioma families—p.Gly95Cys (c.283G>T; rs797045168), p.Glu450Ter 

(c.1348G>T; rs797045169) and p.Asp617Glufs (c.1851_1852delTA; rs758673417). Variants 

p.Glu450Ter and p.Asp617Glufs are protein truncating and delete conserved part of the 

protein C-terminus, which contains the TPP1-binding region (Bainbridge et al. 2015). POT1 

variants have also been identified in familial colorectal cancer cases. Three variants that 

induce premature translation termination were identified—p.Asn75LysfsTer16 

(c.219_220insA), p.Arg363Ter (c.1087C>T; rs756198077) and p.Asp617Glufs (previously 

found in glioma family) (Chubb et al. 2016). Finally, a missense POT1 variant p.Arg117Cys 

(c.349C>T; rs780936436) as well as other damaging POT1 variants have been found in 

TP53-negative Li-Fraumeni-like Spanish families with cardiac angiosarcomas and breast 

angiosarcomas as well as sporadic cardiac angiosarcoma and cardiac sarcoma patients 

(Calvete et al. 2017; Calvete et al. 2015). Thus POT1 variants are involved in tumorigenesis 

in various tissues. 

AAddrreennooccoorrttiiccaall  ddyyssppllaassiiaa  pprrootteeiinn  hhoommoolloogg  ggeennee——AACCDD  

Another protein of the telomere shelterin complex involved in melanoma 

development is adrenocortical dysplasia protein homolog gene (ACD) (OMIM 609377). ACD 

is located on chromosome 16 at position 16q22.1 and encodes 544 amino acid long protein 

with molecular mass 58 kDa that is often referred to as TPP1 (Liu et al. 2004). In the shelterin 

complex TPP1 enhances POT1 binding to telomeres and helps recruit telomerase complex to 

telomeres (Zhong et al. 2012; Wang et al. 2007; Xin et al. 2007). Aoude et al. (2015c) 

analysed exome, genome and targeted sequencing data from 601 individuals of 510 

melanoma families looking for variants in genes of five shelterin complex components—

ACD, TERF2IP, TRF1, TRF2, TINF2. In six melanoma families five different changes in 

ACD were detected. Four of these variants cosegregated with melanoma. A nonsense variant 
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p.Gln320Ter (c.958C>T) was found in a six-case Australian family in four of five cases 

analysed and also one unaffected family member. This variant truncates the protein, 

disrupting the POT1 and TINF2 binding domains. A missense variant p.Asn249Ser 

(c.746A>G; rs370512338) was found in two families—in all seven cases available for 

analysis as well as four unaffected members in a twelve-case Australian family and three of 

four cases available for analysis in a six-case Danish family. These two families shared the 

same haplotype suggesting a founder effect of this variant. Another ACD missense variant 

p.Val272Met (c.814G>A; rs780989111) was found in all three cases in an Australian family. 

All three novel ACD variants are located in the POT1 binding domain of ACD. Two 

additional missense variants p.Ala200Thr (c.598G>A; rs377701284) and p.Ile322Phe 

(c.964A>T; rs757807430) were discovered in another two families, however, they did not 

fully segregate with melanoma. None of these variants was detected in any of sporadic cases 

(n=1669) or controls (n=1590) in a case-control study thus indicating that these are indeed 

rare variants (Aoude et al. 2015c).  

Variants in ACD have also been associated with other diseases—inherited bone 

marrow failure where a variant caused telomere shortening (Guo et al. 2014), severe 

dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome) (Kocak et al. 2014), familial 

chronic lymphocytic leukaemia (Speedy et al. 2016), and also a somatic variant in leukaemia 

where it causes increased telomere length (Spinella et al. 2015). 

TTeelloommeerriicc  rreeppeeaatt  bbiinnddiinngg  ffaaccttoorr  22  iinntteerraaccttiinngg  pprrootteeiinn  ggeennee——TTEERRFF22IIPP  

Simultaneously with ACD, another shelterin complex gene—telomeric repeat binding 

factor 2 interacting protein (TERF2IP) (OMIM 605061) was found to be associated with 

familial melanoma. TERF2IP is located on chromosome 16 at position 16q23.1 and encodes 

399 amino acid long protein (also known as RAP1) with molecular mass 47 kDa (Li et al. 

2000). Functionally TERF2IP participates in the repression of homology-directed repair of 

double-strand chromosomal breaks that might alter telomere length (Sfeir et al. 2010). 

In the same study mentioned above Aoude et al. (2015c) identified four families with 

four different TERF2IP variants (one nonsense and three missense) cosegregating with 

melanoma. Nonsense variant p.Arg364Ter (c.1090C>T; rs765095939) was found in a four-

case melanoma family from the United Kingdom. The variant was detected in one melanoma 

affected patient and one family member with breast cancer. Two melanoma patients and one 

unaffected relative were obligate carriers and one melanoma patient could not be analysed. 

This variant truncates 36 amino acids of the protein C-terminus, disrupting the TRF2 binding 

domain. A missense variant p.Gln191Arg (c.572A>G) was found in a two-case melanoma 

family—in both cases who had developed melanoma very early (age 15 and 24) and both also 

have cervical cancer, as well as in two unaffected family members. This variant was predicted 

to disrupt TRF2 binding site that might interfere with TERF2IP contribution to the shelterin 

complex. Two other missense variants p.Met5Ile (c.15G>A) and p.Asp10His (c.28G>C) were 

detected in two more families, however, their segregation with melanoma was less 

pronounced. None of these variants were detected in a case-control study (1669 cases and 

1590 controls) meaning that they are indeed rare and important in a familial context (Aoude et 

al. 2015c). 

Both ACD and TERF2IP families were associated with MPM and early disease onset; 

several other types of cancer were also present in these families—breast, lung, cervix, colon, 

bowel, ovary, and lymphoma suggesting predisposition to a broader spectrum of cancers 

(Aoude et al. 2015c). 
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Aoude et al. (2015c) also detected variants in the three other genes of the shelterin 

complex but they did not demonstrate an association with melanoma. However, considering 

all the available data about variants in genes involved in telomere maintenance, this pathway 

appears to be very important in melanoma predisposition. 

CCaattaallyyttiicc  ssuubbuunniitt  ggeennee  ooff  DDNNAA  ppoollyymmeerraassee  eeppssiilloonn——PPOOLLEE  

The gene most recently discovered to be high melanoma risk is POLE (OMIM 

174762); it is located on chromosome 12 at position 12q24.33 and encodes a central catalytic 

subunit of DNA polymerase epsilon that is 2285 amino acids long with molecular mass 261 

kDa (Li et al. 1997) and is involved in DNA repair and replication (Johnson et al. 2015). 

A melanoma-associated POLE variant was discovered using whole-genome or exome 

sequencing in 87 cases from 34 Australian melanoma families without changes in known high 

melanoma risk genes. A missense substitution p.Trp347Cys (c.1041G>T) was detected in five 

of six cases analysed from s seven-case cutaneous melanoma family that also had an eighth 

melanoma case—UM (Aoude et al. 2015a). Two of the affected carriers had MPM, one 

additionally developed RCC and prostate cancer and one was a UM patient. The only affected 

individual without the novel POLE change developed melanoma at a very late age—94 years. 

The missense variant p.Trp347Cys is located within the proofreading exonuclease domain of 

the large subunit of POLE, and a functional study produced evidence showing that this variant 

would cause an increased mutation rate. Additional population-based melanoma patients 

(1093 Australian and 150 Danish) were also screened for POLE variants and there were ten 

patients with novel (p.Arg259Cys (c.775C>T), p.Gln352Pro (c.1055A>C), p.Lys425Arg 

(c.1274A>G) and p.Val460Met (c.1378G>A)) or rare (p.Phe282Ser (c.844C>T; 

rs138207610), p.Asp287Glu (c.861T>A; rs139075637), p.Arg446Gln (c.1337G>A; 

rs151273553)) POLE variants that were located in the exonuclease domain. Several of these 

patients had MPM, other types of cancer or a family history of cancer, or they developed 

melanoma at an early age. Among these patients, a three-case melanoma family was 

identified where both of the genotyped patients carried another novel missense variant 

p.Ile515Met (c.1545C>G). In addition, in one Danish family a novel variant three amino acids 

after the boundary of the exonuclease domain p.Gln520Arg (c.1559A>G) was discovered. 

This family had several cases of colorectal cancer (Aoude et al. 2015a). Another POLE 

variant p.Leu424Val (c.1270C>T; rs483352909) had also previously been found to be 

associated with familial colorectal cancer (Palles et al. 2013) and another variant 

p.Asn363Lys (c.1089C>T; rs146639652) is suggested to predispose to an even broader 

spectrum of malignancies i.e. ovarian, endometrial, gastric, pancreatic and brain cancer 

(Rohlin et al. 2014). Altogether these data suggests that POLE variants might predispose to a 

broad spectrum of cancers. 

11..22..22..  MMeeddiiuumm  mmeellaannoommaa  rriisskk  ggeenneess  

High melanoma risk genes only partly explain melanoma heredity in a familial 

setting. The rest of the predisposition could be explained either by some yet unknown high 

penetrance genes or complex interactions of multiple medium and low penetrance risk alleles 

that are more common in the population (Read et al. 2016). In addition, a polygenic 

heritability component has been found in many sporadic cancers, including melanoma, thus 

affirming the important contribution of germline variants to the development of sporadic 

melanoma (Lu et al. 2014). However, so far polygenic melanoma risk models utilising 

information about many medium/low risk variants simultaneously, have contributed little to 
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conventional phenotypic risk prediction models (Kypreou et al. 2016; Penn et al. 2014; Cust 

et al. 2013; Fang et al. 2013).  

Three genes have been defined as medium melanoma risk genes i.e. genes with 

melanoma predisposing variants that have OR between 2 and 5—melanocortin 1 receptor 

gene (MC1R), melanogenesis associated transcription factor (MITF) and solute carrier family 

45 member 2 (SLC45A2) (Read et al. 2016). 

MMeellaannooccoorrttiinn  11  rreecceeppttoorr  ggeennee——MMCC11RR  

Many of the medium and low melanoma risk genes are involved in pigmentation 

regulation. So far the most extensively studied medium melanoma risk gene (previously 

categorized as low risk gene) is melanocortin 1 receptor gene (MC1R) (OMIM 155555) that is 

a key regulator of pigmentation synthesis. Human MC1R is located on chromosome 16 at 

position 16q24.3 (Gantz et al. 1994; Chhajlani & Wikberg 1992; Mountjoy et al. 1992). The 

coding region of MC1R is 951 bp long and it consists of one exon that encodes a cell 

membrane receptor of 317 amino acids (Chhajlani & Wikberg 1992). Structurally 

melanocortin 1 receptor (MC1R) is a typical G-protein coupled receptor (GPCR) that consists 

of seven transmembrane α spiral domains, extracellular N tail and intracellular C tail 

(Chhajlani & Wikberg 1992). MC1R belongs to the A-13 family of the rodopshin class of 

GPCRs that altogether comprises five melanocortin receptors (MC1R, MC2R, MC3R, MC4R 

and MC5R) that regulates various physiological functions (Rodrigues et al. 2015; Cone 

2006). MC1R is activated by agonist α-melanocyte stimulating hormone (α-MSH) derived 

from the preprohormone precursor proopiomelanocortin. The binding of α-MSH to MC1R 

causes conformational changes in the receptor triggering binding of guanosine triphosphate 

(GTP) to the G protein α subunit that leads to the activation of adenylate cyclase (AC). AC 

catalyzes synthesis of the second messenger—cyclic adenosine monophosphate (cAMP). 

Concentration increase of cAMP activates protein kinase A (PKA) that phosphorylates cAMP 

response-element binding protein (CREB) leading to the transcriptional activation of 

melanogenesis associated transcription factor (MITF) (Bertolotto et al. 1998; Price et al. 

1998). MITF stimulates the transcription of several enzymes involved in melanogenesis—

tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and 

others leading to melanin production in melanocytes (Herraiz et al. 2017). There are two 

types of melanin—black to brown eumelanin and red to yellow pheomelanin. Eumelanin is 

highly protective against UVR damage while pheomelanin has weaker protective properties. 

Pheomelanin also contributes to oxidative DNA damage both in the presence and absence of 

UVR, thus playing a role in cancerogenesis (Napolitano et al. 2014; Morgan et al. 2013; 

Mitra et al. 2012). Both pigments derive from the same precursor dopaquinone which is 

formed from tyrosine by TYR (d'Ischia et al. 2015; Hirobe 2011). Human skin colour is 

determined by the ratio of both of these pigments and it largely depends on the availability of 

amino acid cysteine that is required for pheomelanin but not eumelanin synthesis; thus in the 

presence of intact MC1R with strong signalling, cysteine reserves are not able to keep pace 

with melanin synthesis and overall melanin ratio inclines towards eumelanin (Chen et al. 

2014). 

Another important MC1R signalling pathway target is peroxisome proliferator-

activated receptor γ coactivator-1α (PGC-1α)—a transcription factor involved in the 

regulation of mitochondrial biogenesis and oxidative metabolism. PGC-1α stimulates MITF 

expression, resulting in melanin production (Shoag et al. 2013), while MITF contributes to 

PGC-1α overexpression in melanoma, resulting in melanoma cell survival and tumour 
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progression (Vazquez et al. 2013). Thus two MC1R downstream targets PGC-1α and MITF 

are interconnected in a positive feedback loop (Ronai 2013). 

In addition to melanin synthesis regulation, MC1R also protects melanocytes against 

UVR damage and maintains genomic stability via pathways other than pigmentation. MC1R 

plays a role in melanocyte protection against oxidative DNA damage and one of the 

mediators of this process is tumour suppressor TP53 (Kadekaro et al. 2012; Kadekaro et al. 

2010; Song et al. 2009; Kadekaro et al. 2005). MC1R also activates nucleotide excision repair 

(NER) pathway that corrects UVR-induced DNA damage (Jarrett et al. 2017; Shah & He 

2015; Jarrett et al. 2014), moreover, NER and melanin synthesis pathways diverge (Wolf 

Horrell et al. 2017). Among other MC1R mediated targets is MAP kinase p38 that promotes 

melanogenesis and has been shown to inhibit cell proliferation in B16 murine melanoma cells 

after their treatment with α-MSH (Smalley & Eisen 2000). 

MC1R is very polymorphic in the Caucasian population. More than 100 

nonsynonymous changes have been found (Pérez Oliva et al. 2009). There are also 

considerable differences in the frequency and distribution of MC1R variants among different 

populations. The highest frequency of nonsynonymous MC1R variants is in Great Britain and 

Ireland populations (57.0 %), followed by the US (47.2%), France (38.4 %), Italy (36.6 %) 

and Greece (21.3 %) (Gerstenblith et al. 2007). In comparison, in African, southern-Asian 

and other populations where skin pigmentation is comparatively dark only a small number of 

nonsynonymous MC1R variants have been detected, for example, 3.6% in Africa, 5.7 % in 

India and 8.8 % in Papua New Guinea (Gerstenblith et al. 2007; Harding et al. 2000). This is 

uncharacteristic to African populations because usually these populations have higher 

genomic variation than non-Africans. This phenomenon could be explained by a strong 

functional constraint on MC1R in order to maintain protection against DNA damage by UVR 

(Harding et al. 2000).  

Since the last decade of the 20th century, numerous studies in different populations 

have investigated the relationship between MC1R gene variants, pigmentation characteristics 

and/or melanoma risk. 

Initially MC1R variants were identified in the British population where their 

association with pigmentation features (hair colour, skin type) was described (Valverde et al. 

1995). In this study MC1R was sequenced in 30 red-haired persons with fair, sun sensitive 

skin and 30 dark-haired individuals who tan easily. Nine different MC1R variants were found 

in 21 red-haired individuals while none were found in dark-haired persons. The most often 

found MC1R variants were p.Asp294His (c.880G>C; rs1805009) and p.Val92Met 

(c.274G>A; rs2228479) (Valverde et al. 1995). Shortly after this study an association was 

discovered between MC1R variants p.Asp84Glu (c.252C>A; rs1805006) and p.Val92Met and 

fair skin and red hair in the US population (Koppula et al. 1997). Later, Smith et al. (1998b) 

in an Australian twin study found association between MC1R variants p.Arg151Cys 

(c.451C>A; rs1805007), p.Arg160Trp (c.478C>T; rs1805008), p.Asp294His and red hair. 

The same three variants together with p.Val92Met were also associated with fair skin (Smith 

et al. 1998b). Similar results were obtained from the Irish population, where an association 

between red hair and p.Arg151Cys, p.Arg160Trp and p.Asp294His was also found (Smith et 

al. 1998b). 

Results from these studies show a link between MC1R variants and the red hair, fair 

skin and poor tanning ability commonly termed as ‘red hair colour’ (RHC) phenotype and it 

has been confirmed in further larger studies. Four variants p.Asp84Glu, p.Arg151Cys, 

p.Arg160Trp, p.Asp294His present a strong association with the RHC phenotype and are 

designated as RHC or R variants (Williams et al. 2011; Duffy et al. 2004; Sturm et al. 2003). 
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Variants p.Arg142His (c.425G>A; rs11547464) and p.Ile155Thr (c.464T>C; rs1110400) are 

also sometimes termed RHC variants due to a strong association with the RHC phenotype in a 

familial setting (Duffy et al. 2004; Flanagan et al. 2000). The p.Val60Leu (c.178G>T; 

rs1805005), p.Val92Met and p.Arg163Gln (c.488G>A; rs885479) variants present a weaker 

association with RHC phenotype and therefore are titled ‘non-red hair colour’ NRHC or r 

variants (Williams et al. 2011; Duffy et al. 2004; Sturm et al. 2003). Variants p.Arg142His 

and p.Ile155Thr are also often included in the NRHC variant group (Williams et al. 2011). In 

some cases all nonsynonymous MC1R variants that are not RHC variants are considered to be 

NRHC variants (Demenais et al. 2010; Kanetsky et al. 2010). 

Besides hair and skin colour, MC1R variants have also been demonstrated to have an 

association with the amount of freckles (Bastiaens et al. 2001a) and sensitivity to sun 

radiation in persons with non-red hair colour (Healy et al. 2000). 

These associations with phenotype characteristics can be explained by changes in 

receptor functional activity caused by genetic variants. Functional and expression studies 

using heterologous cells transfected with different MC1R constructs or primary human 

melanocytes with germline MC1R variants (p.Val60Leu, p.Asp84Glu, p.Val92Met, 

p.Arg142His, p.Arg151Cys, p.Ile155Thr, p.Arg160Trp, p.Arg163Gln, p.Asp294His) show 

that all of them impair at least some aspect of receptor functional activity to various 

degrees—affinity to α-MSH (Ringholm et al. 2004; Robinson & Healy 2002; Sánchez-Más et 

al. 2002; Schiöth et al. 1999; Frӓndberg et al. 1998), coupling of cAMP (Beaumont et al. 

2007; Nakayama et al. 2006; Newton et al. 2005; Ringholm et al. 2004; Robinson & Healy 

2002; Sánchez-Más et al. 2002; Scott et al. 2002; Schiöth et al. 1999; Frӓndberg et al. 1998) 

and/or cell‐surface expression (Beaumont et al. 2007; Sánchez-Laorden et al. 2006; 

Beaumont et al. 2005) (Table 1). Often functionally significant MC1R variants are called 

‘loss-of-function’ alleles, however, results from different studies are not completely 

consistent due to differences in experimental design and expression systems (Newton et al. 

2005) therefore these variants probably have varying degrees of activity (Beaumont et al. 

2005). In addition, MC1R RHC variants act in a dominant negative manner on wild-type 

receptors due to receptor molecule dimerization (Beaumont et al. 2007; Sánchez-Laorden et 

al. 2006; Mandrika et al. 2005). The presence of RHC alleles in human primary melanocytes 

also reduces transcriptional activation of several downstream genes—well known MC1R 

pigmentation regulatory targets MITF and SLC45A2, as well as proto-oncogene c-Fos that 

confirms the existence of MC1R non-pigmentary roles (Newton et al. 2007). In addition, 

functional effects are not limited to the subset of RHC MC1R variants—many other less 

common nonsynonymous MC1R variants also impair receptor functional activity (Pérez Oliva 

et al. 2009; Nakayama et al. 2006; Sánchez-Más et al. 2002; Jiménez-Cervantes et al. 2001a; 

Jiménez-Cervantes et al. 2001b; Schiöth et al. 1997). MC1R variants also hinder DNA repair 

after UVR damage (Kadekaro et al. 2010; Scott et al. 2002), therefore the presence of MC1R 

germline variants may promote mutation accumulation and it has been demonstrated that 

individuals with MC1R variants have higher melanoma mutation burden, both non-UVR and 

UVR signature in coding and non-coding genome regions (Johansson et al. 2016; Robles-

Espinoza et al. 2016).  
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Table 1. The effect of the MC1R RHC variants on the functional activity of the receptor.  

Study 

p.Val60Leu 

c.178G>T 

rs1805005 

p.Asp84Glu 

c.252C>A 

rs1805006 

p.Val92Met 

c.274G>A 

rs2228479 

p.Arg142His 

c.425G>A 

rs11547464 

p.Arg151Cys 

c.451C>A 

rs1805007 

p.Ile155Thr 

c.464T>C 

rs1110400 

p.Arg160Trp 

c.478C>T 

rs1805008 

p.Arg163Gln 

c.488G>A 

rs885479 

p.Asp294His 

c.880G>C 

rs1805009 

Frӓndberg et al. 1998 - - - - = α-MSH 

affinity 

↓↓ cAMP 

- - - - 

Schiöth et al. 1999 = α-MSH 

affinity 

↓ cAMP 

- - ↓ α-MSH 

affinity 

↓↓ cAMP 

= α-MSH 

affinity 

↓↓ cAMP 

- = α-MSH 

affinity 

↓↓ cAMP 

- ↓ α-MSH 

affinity 

↓↓ cAMP 

Sánchez-Más et al. 2002 - - - - = α-MSH 

↓↓ cAMP 

- - - - 

Scott et al. 2002 - - = cAMP - ↓ cAMP - ↓ cAMP - ↓ cAMP 

Robinson & Healy 2002 - - - - = α-MSH 

affinity 

↓↓ cAMP 

- = α-MSH 

affinity 

↓ cAMP 

- = α-MSH 

affinity 

↓↓ cAMP 

Ringholm et al. 2004 - ↓ α-MSH 

affinity 

↓↓ cAMP 

↓↓ α-MSH 

affinity 

↓ cAMP 

- - - - ↓ α-MSH 

affinity 

= cAMP 

↓ α-MSH 

affinity 

↓↓ cAMP 

Newton et al. 2005 = cAMP - - - = cAMP - = cAMP - ↓↓ cAMP 

Beaumont et al. 2005 ↓ Cell surface 

expression 

↓↓ Cell surface 

expression 

= Cell surface 

expression 

= Cell surface 

expression 

↓↓ Cell 

surface 

expression 

↓↓ Cell 

surface 

expression 

↓↓ Cell 

surface 

expression 

↓ Cell surface 

expression 

↑ Cell surface 

expression 

Nakayama et al. 2006 - -  = cAMP - ↓ cAMP - - = cAMP - 

Sánchez-Laorden et al. 2006 - - - - ↓ Cell surface 

expression 

- ↓ Cell surface 

expression 

 

- ↑ Cell surface 

expression 

Beaumont et al. 2007 ↓ Cell surface 

expression 

↓ cAMP 

↓↓ Cell surface 

expression 

↓ cAMP 

= Cell surface 

expression 

↑ cAMP 

= Cell surface 

expression 

↓ cAMP 

↓ Cell surface 

expression 

↓ cAMP 

↓ Cell surface 

expression 

↓↓ cAMP 

↓ Cell surface 

expression 

↓ cAMP 

↓ Cell surface 

expression 

↓ cAMP 

= Cell surface 

expression 

↓↓ cAMP 

↓↓ completely or almost completely reduces effect, ↓ partially reduces effect compared to wild type receptor, = similar effect to wild type receptor, ↑ increased effect 

compared to wild type receptor 
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Many studies in various populations have explored association between individual 

MC1R variants and melanoma risk (Table 2). Meta-analyses have summarized results from 

different populations, confirming a strong link between MC1R RHC and NRHC variants and 

risk of melanoma (Antonopoulou et al. 2015; Pasquali et al. 2015; Williams et al. 2011) 

(Table 2). In addition MC1R comprising locus 16q24.3 also has reached significance in 

GWAS (Amos et al. 2011). Several studies have grouped various MC1R variants together and 

looked at their pooled effect. Study from the Melanocortin-1 receptor gene, Skin cancer and 

Phenotypic characteristics (M-SKIP) project shows that the presence of any MC1R variant 

significantly increases risk (OR=1.66, 95% CI=1.41–1.96) and in the presence of two or more 

variants risk is proportionally higher (OR=2.51, 95% CI=1.83–3.44) (Pasquali et al. 2015). 

When type of MC1R variants are taken into consideration, RHC variants (p.Asp84Glu, 

p.Arg151Cys, p.Arg160Trp, p.Asp294His) show comparatively high melanoma risk with 

OR=2.44, 95% CI=1.72–3.46, while NRHC variants (p.Val60Leu, p.Val92Met, p.Arg142His, 

p.Ile155Thr, p.Arg163Gln) increase melanoma risk to a lower extent with OR=1.29, 95% 

CI=1.10–1.51 (Williams et al. 2011). Another study compared RHC variants with NRHC 

variants as all other non-synonymous variants and discovered that the impact of the presence 

of any high-risk variant is comparable to presence of two low-risk variants (OR=1.9, 95% 

CI=1.3–2.8 and OR=1.7, 95% CI=1.0–2.8, respectively) (Kanetsky et al. 2010). The same 

study concluded that the risk was even higher in phenotypically low risk individuals—persons 

with dark hair (for any high risk variant OR=2.4, 95% CI=1.5–3.6 and two low risk variants 

OR=1.8, 95% CI=1.0–3.0), dark eyes (for any high risk variant OR=3.2, 95% CI=1.8–5.9) 

and who tan easily (for one high risk variant OR=2.4, 95% CI=1.6–3.6 and two low risk 

variants OR=2.0, 95% CI=1.1–3.6). In the presence of one RHC variant the risk is similar for 

individuals with skin type 1 and 2 (fair skin that does not tan well and burns in sun easily) 

(OR=2.2, 95% CI=0.9–5.1) and skin type 3 and 4 (darker skin that tans well) (OR=2.3, 95% 

CI=1.5–3.5) as well as persons with low (OR=2.2, 95% CI=1.5–3.2) and high recreational sun 

exposure (OR=2.0, 95% CI=1.2–3.3) (Kanetsky et al. 2010). A similar large study 

demonstrates that MC1R variants promote a higher risk in persons of European origins with 

darker pigmentation features. In the presence of any of the nine MC1R RHC or NRHC 

variants the association was strong in individuals with skin type 3 or 4 (OR=1.89, 95% 

CI=1.29–2.78), no red hair (OR=1.70, 95% CI=1.20–2.42), no freckles (OR=2.39, 95% 

CI=1.60–3.57) but was not significant in patients with skin type 1 or 2, red hair and/or 

freckles (Pasquali et al. 2015). Meta-analysis results from Raimondi et al. (2008) have 

showed that variants p.Asp84Glu, p.Arg142His, p.Arg151Cys, p.Arg160Trp and 

p.Asp294His are associated with the RHC phenotype and melanoma risk, p.Val60Leu and 

p.Val92Met are associated neither with the phenotype nor melanoma while variants p.Ile155T 

and p.Arg163Gln are associated only with melanoma (Raimondi et al. 2008) and altogether 

these data emphasize non-pigmentary roles of MC1R in melanoma development such as DNA 

repair and oxidative stress response (Wolf Horrell et al. 2016; Mitra et al. 2012).  
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Table 2. Individual associations between MC1R RHC variants and melanoma risk in various populations.  

Study 

Population 

Analysis type
a
 

Measures 

p.Val60Leu 

c.178G>T 

rs1805005 

p.Asp84Glu 

c.252C>A 

rs1805006 

p.Val92Met 

c.274G>A 

rs2228479 

p.Arg142His 

c.425G>A 

rs11547464 

p.Arg151Cys 

c.451C>A 

rs1805007 

p.Ile155Thr 

c.464T>C 

rs1110400 

p.Arg160Trp 

c.478C>T 

rs1805008 

p.Arg163Gln 

c.488G>A 

rs885479 

p.Asp294His 

c.880G>C 

rs1805009 

Gudbjartsson et al. 2008 

Icelander 

Per chromosome 

OR 

95% CI 

p 

1.06 

0.89–1.27 

0.50 

0.97 

0.59–1.62 

0.92 

1.03 

0.84–1.28 

0.77 

- 

1.11 

0.93–1.33 

0.25 

1.17 

0.68–2.01 

0.56 

0.87 

0.74–1.04 

0.12 

1.12 

0.87–1.44 

0.36 

1.05 

0.69–1.61 

0.81 

Helsing et al. 2012 

Norwegian MPM 

Per chromosome 

OR 

95% CI 

p  

0.83 

0.58–1.17 

- 

5.77 

1.97–16.89 

- 

1.16 

0.82–1.64 

- 

0.54 

0.13–2.16 

- 

1.80 

1.36–2.37 

- 

1.99 

0.73–5.42 

- 

1.20 

0.90–1.59 

- 

1.06 

0.73–1.55 

- 

1.83 

0.89–3.76 

- 

Gudbjartsson et al. 2008 

Swedish 

Per chromosome 

OR 

95% CI 

p 

1.10 

0.91–1.32 

0.33 

2.02 

1.15–3.56 

0.015 

1.03 

0.85–1.24 

0.76 

- 

2.32 

1.77–3.05 

<0.001 

1.2 

0.68–2.13 

0.52 

1.70 

1.44–2.00 

<0.001 

0.95 

0.77–1.18 

0.65 

2.16 

1.35–3.46 

0.001 

Höiom et al. 2009 

Swedish 

Per individual  

OR 

95% CI 

p 

1.54 

1.14–2.08 

- 

- 

1.27 

0.95–1.70 

- 

- 

2.24 

1.70–2.96 

- 

- 

2.07 

1.60–2.66 

- 

1.06 

0.80–1.42 

- 

- 

Ichii-Jones et al. 1998 

United Kingdom 

Per chromosome 

OR 

95% CI 

p 
- 

3.0 

0.9–9.6 

0.069 

- - - - - - - 

Debniak et al. 2006 

Polish 

Per individual 

OR 

95% CI 

p 

1.78 

1.20–2.64 

0.007 

- - - 

2.90 

1.82–4.67 

<0.001 

- 

1.76 

1.75–2.62 

0.006 

2.10 

1.10–3.97 

0.015 

- 

Brudnik et al. 2009 

Polish 

Per chromosome 

OR 

95% CI 

p 

1.02 

- 

0.957 

- 

- 

0.314 

1.02 

0.53–1.96 

0.957 

1.54 

0.91–2.56 

0.644 

4.35 

1.41–13.33 

0.006 

0.68 

0.11–4.00 

0.673 

1.96 

1.02–3.85 

0.041 

1.43 

0.43–3.54 

0.553 

- 

- 

0.155 

Mossner et al. 2007 

German 

Per individual 

OR 

95% CI 

p 

0.89 

0.62–1.29 

0.577 

4.96 

1.06–23.13 

0.032 

0.97 

0.65–1.44 

0.919 

1.74 

0.56–5.38 

0.406 

1.69 

1.12–2.55 

0.013 

1.97 

0.65–5.93 

0.283 

1.43 

0.96–2.12 

0.088 

0.90 

0.55–1.47 

0.709 

1.42 

0.62–3.29 

0.525 

Scherer et al. 2009 

German 

Per chromosome 

OR 

95% CI 

p 

0.92 

0.71–1.2 

0.46 

3.24 

1.04–7.69 

<0.01 

1.00 

0.74–1.30 

0.98 

3.27 

1.66–6.45 

<0.01 

1.89 

1.41–2.53 

<0.01 

- 

- 

<0.01 

1.73 

1.30–2.31 

<0.01 

- 

- 

0.53 

1.79 

0.96–3.35 

0.06 

Kennedy et al. 2001 

The Dutch 

Per chromosome 

OR 

95% CI 

p 

1.80 

1.10–3.00 

- 

5.30 

1.90–15.10 

- 

2.20 

1.30–3.70 

- 

2.30 

0.57–9.50 

- 

2.50 

1.40–4.50 

- 

- 

2.00 

1.30–3.20 

- 

1.80 

0.97–3.50 

- 

1.90 

0.36–9.80 

- 

Table follows on the next page. 
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Study 

Population 

Analysis type
a
 

Measures 

p.Val60Leu 

c.178G>T 

rs1805005 

p.Asp84Glu 

c.252C>A 

rs1805006 

p.Val92Met 

c.274G>A 

rs2228479 

p.Arg142His 

c.425G>A 

rs11547464 

p.Arg151Cys 

c.451C>A 

rs1805007 

p.Ile155Thr 

c.464T>C 

rs1110400 

p.Arg160Trp 

c.478C>T 

rs1805008 

p.Arg163Gln 

c.488G>A 

rs885479 

p.Asp294His 

c.880G>C 

rs1805009 

Matichard et al. 2004 

French 

Per chromosome  

OR 

95% CI 

p 

3.99 

2.03–7.82 

<0.001 

2.16 

0.24–26.14 

0.41 

- 

- 

- 

0.07 

6.48 

2.14–19.61 

0.001 

1.44 

0.10–20.08 

1 

4.73 

1.70–13.18 

0.001 

- 

3.84 

0.90–22.81 

0.058 

Guedj et al. 2008 

French 

Per chromosome 

OR 

95% CI 

p 

- 

2.10 

1.04–4.2 

0.04 

- 

1.73 

0.92–3.28 

0.07 

2.35 

1.78–3.11 

<0.001 

- 

1.88 

1.40–2.54 

<0.001 

- 

2.49 

1.67–3.71 

<0.001 

Fernandez et al. 2007 

Spanish 

Per individual 

OR 

95% CI 

p 

1.77 

1.07–2.92 

0.03 

1.63 

0.02–128 

1.00 

2.35 

1.07–5.16 

0.03 

0.60 

0.10–2.56 

0.50 

1.47 

0.55–3.93 

0.50 

7.82 

1.57–75.2 

0.004 

5.47 

1.10–59.6 

0.03 

2.71 

0.87–8.50 

0.08 

3.83 

1.14–10.38 

0.05 

Gudbjartsson et al. 2008 

Spanish 

Per chromosome 

OR 

95% CI 

p 

1.32 

1.03–1.69 

0.027 

1.49 

0.28–7.82 

0.64 

1.05 

0.71–1.55 

0.80 

- 

2.71 

1.63–4.52 

<0.001 

0.83 

0.40–1.74 

0.62 

1.88 

1.08–3.29 

0.026 

1.44 

0.80–2.59 

0.23 

2.75 

1.55–4.90 

<0.001 

Scherer et al. 2009 

Spanish 

Per chromosome 

OR 

95% CI 

p 

1.47 

1.11–1.90 

<0.01 

0.67 

0.11–4.00 

0.70 

1.39 

0.92–2.09 

0.12 

1.88 

0.79–4.50 

0.08 

1.48 

0.89–2.46 

0.03 

- 

- 

0.64 

2.41 

1.25–4.67 

<0.01 

- 

- 

0.37 

2.52 

1.45–4.39 

<0.01 

Ibarrola-Villava et al. 2010 

Spanish 

Per chromosome  

OR 

95% CI 

p 

1.34 

0.96–1.87 

0.09 

0.98 

0.16–5.89 

0.98 

1.18 

0.69–2.03 

0.54 

0.51 

0.20–1.31 

0.16 

1.67 

0.83–3.36 

0.15 

3.35 

0.96–11.68 

0.06 

4.18 

1.24–14.04 

0.02 

1.88 

0.70–5.08 

0.21 

3.10 

1.37–7.01 

0.01 

Stratigos et al. 2006 

Greek 

Per individual 

OR 

95% CI 

p 

2.76 

1.56–4.88 

0.001 

- 

1.58 

0.64–3.92 

0.32 

6.65 

1.33–33.2 

0.021 

4.18 

1.38–12.70 

0.012 

- 

3.17 

0.73–13.8 

0.125 

1.90 

0.26–13.9 

0.527 

- 

Fargnoli et al. 2006 

Italian 

Per individual 

OR 

95% CI 

p 

0.67 

0.42–1.08 

- 

- 

1.50 

0.72–3.11 

- 

1.43 

0.54–3.75 

- 

3.14 

1.34–7.36 

- 

- 

1.09 

0.48–2.47 

- 

- 

11.0 

1.42–85.1 

- 

Galore-Haskel et al. 2009 
Ashkenazi Jews 

Per individual 

OR 

95% CI 

p 

1.30 

0.80–2.10 

0.33 

- 

1.20 

0.60–2.40 

0.70 

2.70 

0.90–8.30 

0.09 

2.60 

1.30–5.30 

0.006 

6.80 

1.40–33.3 

0.024 

1.40 

0.60–3.10 

0.40 

0.80 

0.30–2.00 

0.60 

- 

Duffy et al. 2010a 

Australian 

Per chromosome 

OR 

95% CI 

p 

1.01 

- 

0.80 

1.61 

- 

0.013 

1.07 

- 

0.53 

2.25 

- 

0.055 

1.58 

- 

<0.001 

- 

1.68 

- 

<0.001 

1.15 

- 

0.54 

1.42 

- 

0.019 

Table follows on the next page. 
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Study 

Population 

Analysis type
a
 

Measures 

p.Val60Leu 

c.178G>T 

rs1805005 

p.Asp84Glu 

c.252C>A 

rs1805006 

p.Val92Met 

c.274G>A 

rs2228479 

p.Arg142His 

c.425G>A 

rs11547464 

p.Arg151Cys 

c.451C>A 

rs1805007 

p.Ile155Thr 

c.464T>C 

rs1110400 

p.Arg160Trp 

c.478C>T 

rs1805008 

p.Arg163Gln 

c.488G>A 

rs885479 

p.Asp294His 

c.880G>C 

rs1805009 

Dwyer et al. 2004 

Australian Tasmanian 

Per individual 

OR 

95% CI 

p 

0.75 

0.46–1.25 

- 

2.32 

0.63–8.47 

- 

- - 

1.08 

0.67–1.74 

- 

- 

1.78 

1.08–2.92 

- 

- 

0.51 

0.18–1.41 

- 

Han et al. 2006a 

US 

Per individual 

OR 

95% CI 

p 

1.38 

0.97–1.96 

- 

- 

1.56 

1.08–2.27 

- 

- 

2.49 

1.70–3.64 

- 

1.99 

0.90–4.42 

- 

1.59 

1.05–2.41 

- 

1.69 

0.98–2.93 

- 

2.66 

1.34–5.28 

- 

Council et al. 2009 

US 

Per chromosome 

OR 

95% CI 

p 

- 

- 

0.61 

- 

- 

0.32 

- 

- 

0.51 

- 

- 

0.60 

- 

- 

0.66 

- 

- 

0.46 

- 

- 

0.0035 

- 

- 

0.23 

- 

- 

0.018 

Nan et al. 2011b 

US 

Per chromosome 

OR 

95% CI 

p 

- - - - 

1.63 

1.32-–2.01 

6×10-6 

- - - 
- 

 

Guan et al. 2013 

US 

Per individual 

OR 

95% CI 

p 

- - 

1.24 

1.00–1.53 

0.054 

- 

1.77 

1.43–2.18 

<0.001 

- 

1.31 

1.05–1.63 

0.016 

- 

1.68 

1.14–2.47 

0.008 

Grazziotin et al. 2013 

Brazilian 

Per individual 

OR 

95% CI 

p 

- 

- 

0.542 

- 

- 

0.550 

- 

- 

0.159 

- 
- 

- 

0.188 
- 

- 

- 

0.386 

- 
- 

- 

0.576 

Williams et al. 2011 

Meta-analysis 

Per individual 

OR 

95% CI 

p 

1.18 

1.04–1.35 

- 

1.67 

1.21–2.30 

- 

1.32 

1.04–1.58 

- 

2.40 

1.64–3.5 

- 

1.93 

1.54–2.41 

- 

1.39 

1.05–1.83 

- 

1.55 

1.21–1.97 

- 

1.21 

1.02–1.4 

- 

1.89 

1.39–2.56 

- 

Williams et al. 2011 

Meta-analysis 

Per chromosome 

OR 

95% CI 

p 

1.10 

0.83–1.45 

- 

2.24 

2.06–2.45 

- 

1.30 

1.08–1.58 

- 

1.65 

0.99–2.73 

- 

1.81 

1.51-–2.17 

- 

1.73 

1.13–2.67 

- 

1.83 

1.59–2.12 

- 

1.44 

1.18–1.76 

- 

2.12 

1.76–2.54 

- 

Antonopoulou et al. 2015 

Meta-analysis 

Per chromosome 

OR 

95% CI 

p 

1.14 

1.03–1.26 

0.0097 

1.53 

1.26–1.86 

0.00002 

1.08 

1.00–1.16 

0.042 

1.47 

1.07–2.02 

0.017 

1.80 

1.58–2.06 

1.73×10-18 

1.29 

1.04–1.60 

0.0184 

1.51 

1.33–1.72 

3.85×10-10 

1.09 

0.98–1.21 

0.125 

1.89 

1.56–2.28 

5.90×10-11 

Pasquali et al. 2015 

Meta-analysis 

Per individual 

OR 

95% CI 

p 

1.47 

1.17–1.84 

- 

2.74 

1.53–4.89 

- 

1.55 

1.30–1.85 

- 

2.30 

1.35–3.92 

- 

2.32 

1.83–2.95 

- 

1.83 

1.16–2.89 

- 

2.17 

1.77–2.65 

- 

1.53 

1.18–1.98 

- 

2.60 

1.97–3.45 

- 

a 
OR calculated using MAF (per chromosome) or variant frequency per individual 
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MC1R variants also display various modifying effects on melanoma development. 

Melanoma patients with MC1R variants are younger—the median diagnosis age for patients 

with two variants (R/R, R/r or r/r) is more than 10 years lower compared to patients with at 

least one MC1R wild-type allele (Johansson et al. 2016). MC1R variants have been found 

more often in MPM compared to single melanoma patients, and MPM patients are also more 

likely to harbour multiple MC1R variants (Pastorino et al. 2008; Peris et al. 2004). MC1R 

variants also increase melanoma risk in a familial setting—a Swedish study shows that 

melanoma patients from melanoma families negative for CDKN2A variants harboured MC1R 

variants more often (54%) compared to controls (33%) (OR=2.4, 95% CI=1.6–3.4), 

supporting the role of medium and low risk genes in familial melanoma development 

(Helgadottir et al. 2015). MC1R also modifies the effect of other melanoma risk genes. In 

CDKN2A positive melanoma families MC1R increases CDKN2A penetrance, and patients 

with MC1R variants also have an approximately 10 years lower age of disease onset 

compared to patients with CDKN2A variants only (Fargnoli et al. 2010; Chaudru et al. 2005; 

Box et al. 2001a; van der Velden et al. 2001). In addition, as the number of MC1R variants 

increases, the risk becomes more pronounced (Demenais et al. 2010; Fargnoli et al. 2010) and 

the same principle can be applied when the type of MC1R variants is taken into consideration 

(Demenais et al. 2010). Presence of multiple MC1R variants in patients with CDKN2A 

variants has also been associated with MPM development (Goldstein et al. 2005). Besides 

CDKN2A, MC1R has also demonstrated interaction with other genes. There is some evidence 

about interplay between MC1R variants and germline variant in TP53 gene p.Pro72Arg 

(c.215C>G; rs1042522) on melanoma risk (Nan et al. 2008; Stefanaki et al. 2007). There is 

also interaction between germline MC1R variants and presence of somatic changes in 

BRAF—patients with non-chronic sun-induced damage as well as darker pigmentation 

characteristics and MC1R variants have a higher possibility to develop melanomas with BRAF 

changes and the risk increases proportionally to the number of MC1R variants (Thomas et al. 

2017; Fargnoli et al. 2008; Landi et al. 2006), however, other studies do not support that 

(Hacker et al. 2010; Thomas et al. 2010) and one study observed that the frequency of 

changes in BRAF is even lower in MC1R variant carriers (Scherer et al. 2010). 

Apart from melanoma MC1R is also associated with non-melanoma skin cancer—

basal cell carcinoma and squamous cell carcinoma (Tagliabue et al. 2015; Ferrucci et al. 

2012; Nan et al. 2011b; Brudnik et al. 2009; Scherer et al. 2008; Han et al. 2006a; Dwyer et 

al. 2004; Bastiaens et al. 2001b; Box et al. 2001b). 

MMeellaannooggeenneessiiss  aassssoocciiaatteedd  ttrraannssccrriippttiioonn  ffaaccttoorr  ggeennee——MMIITTFF  

Another medium melanoma risk gene is melanogenesis associated transcription factor 

(previously commonly called microphthalmia-associated transcription factor) gene (MITF) 

(OMIM 156845). MITF is associated with a couple of overlapping auditory-pigmentary 

syndromes. An association between MITF and the disease was demonstrated for the first time 

in 1994 when MITF variants affecting splice sites were discovered in two families with 

Waardenburg syndrome type 2A (Read & Newton 1997; Tassabehji et al. 1994; Waardenburg 

1951). MITF variants also have been found in families with the similar Tietz albinism-

deafness syndrome (Cortés-González et al. 2016; Léger et al. 2012; Izumi et al. 2008; Smith 

et al. 2000; Amiel et al. 1998; Tietz 1963). Recently MITF variants have been found in 

individuals with complex phenotype COMMAD characterized by coloboma, osteopetrosis, 

microphthalmia, macrocephaly, albinism, and deafness (George et al. 2016). 

MITF is located on chromosome 3 at position 3p13 and encodes basic helix-loop-

helix leucine zipper transcription factor MITF (Tachibana et al. 1994). There are at least 
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seven different human MITF isoforms that are either widely expressed or tissue specific, and 

they structurally differ in the first exons and promoter: MITF-A (Amae et al. 1998), MITF-C 

(Fuse et al. 1999), MITF-H (Steingrimsson et al. 1994), MITF-B (Udono et al. 2000), MITF-

M (Tassabehji et al. 1994), MITF-D (Takeda et al. 2002) and MITF-J (Hershey & Fisher 

2005). MITF-M is almost exclusively expressed in melanocytic lineage (Fuse et al. 1999; 

Amae et al. 1998) and is considered a key transcription factor for melanocyte development 

and differentiation as it regulates roughly a hundred genes involved in many crucial cellular 

functions i.e. pigmentation synthesis (mostly through cAMP and MC1R pathway, described 

above), melanocyte development and differentiation, homeostasis, metabolism, oxidative 

stress, cell cycle and apoptosis—functions that all are also exploited by transformed 

melanoma cells (Kawakami & Fisher 2017; Hartman & Czyz 2015; Hsiao & Fisher 2014; 

Yajima et al. 2011). It also suppresses melanoma senescence allowing melanoma cell 

proliferation (Bonet et al. 2017; Giuliano et al. 2010). MITF is expressed in practically all 

melanomas and can be detected through all stages of melanoma development (King et al. 

2001), is somatically amplified or mutated in 10-15% of primary melanomas and 20% of 

melanoma metastases, and is considered a ‘lineage specific’ oncogene (Hartman & Czyz 

2015; Hsiao & Fisher 2014; Cronin et al. 2009; Levy et al. 2006; Garraway et al. 2005). 

Depending on MITF expression levels and subsequently activated genes melanomas in 

general can be divided in two subgroups—‘MITF-low’ melanomas with high metastatic 

potential but weakly proliferative cells and ‘MITF-high’ melanomas that are less metastatic 

and more proliferative (Kawakami & Fisher 2017; Hoek et al. 2006), however, melanoma 

tumours are heterogeneous and comprise cell subpopulations with various MITF expression 

levels (Ennen et al. 2017; Ennen et al. 2015) possibly allowing melanomas to switch between 

proliferative and metastatic states in a ‘rheostat-like’ or ‘phenotype switching’ model (Hoek 

& Goding 2010; Hoek et al. 2008; Carreira et al. 2006) or even having simultaneous 

differential MITF activity thus explaining dynamic and plastic behaviour of melanoma cells 

(Wellbrock & Arozarena 2015). 

Melanoma associated MITF germline variant p.Glu318Lys (c.952G>A; rs149617956) 

was discovered simultaneously in two independent studies using different study approaches 

(Bertolotto et al. 2011; Yokoyama et al. 2011). Variant p.Glu318Lys is located at an 

evolutionarily conserved small ubiquitin-like modifier (SUMO) consensus site (ΨKXE) 

(Bertolotto et al. 2011; Yokoyama et al. 2011). Post-translational modification by adding 

small ubiquitin-like modifiers or SUMOylation is required for repression of MITF 

transcriptional activity (Murakami & Arnheiter 2005). Functional experiments demonstrate 

that amino acid substitution from Glu to Lys in codon 318 of MITF changes binding affinity 

for SUMO protein leading to severely impaired MITF SUMOylation, increased MITF 

transcriptional activity and disrupted up-regulation and down-regulation pattern of MITF 

target genes. In melanoma and RCC cells mutant MITF protein also displays characteristics 

associated with enhanced tumorigenic potential—increased clonogenicity, migration and 

invasion that are somehow opposite to characteristics of ‘MITF-high’ melanomas; however, 

mutated MITF protein also has altered transcriptional potential on various target genes and 

these changes together promote melanoma switching to a more invasive phenotype 

(Bertolotto et al. 2011). Altogether data from functional experiments suggests MITF variant 

p.Glu318Lys has a gain-of-function role in tumorigenesis (Bertolotto et al. 2011; Yokoyama 

et al. 2011). 

The first study that detected p.Glu318Lys used candidate gene approach proposing 

MITF’s role in genetic predisposition to co-occuring melanoma and RCC (Bertolotto et al. 

2011). The work was based on emerging evidence of MITF as a potential melanoma 
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oncogene (Garraway et al. 2005) and fact that one of the MITF targets—hypoxia-inducible 

factor 1-alpha (HIF1A) (Buscà et al. 2005) is involved in RCC genetic susceptibility (Linehan 

et al. 2010). The authors sequenced MITF in 62 French patients with co-occuring melanoma 

and RCC. A germline missense substitution in MITF gene p.Glu318Lys was identified in five 

of these patients. Further genotyping revealed that the frequency of this variant was at least 

fivefold higher in all patient groups (patients with melanoma and RCC, patients with 

melanoma only, and patients with RCC only) compared to 1659 healthy controls. MITF 

variant p.Glu318Lys also co-segregated in three melanoma families analysed (Bertolotto et al. 

2011). 

Concurrently, an Australian study identified the same MITF variant in a large 

melanoma family using whole-genome sequencing approach (Yokoyama et al. 2011). Variant 

p.Glu318Lys was found in three of seven patients in an eight-case melanoma family without 

changes in CDKN2A and CDK4. Family analysis was extended to 182 United Kingdom and 

88 Australian melanoma families with at least two melanoma cases and without changes in 

CDKN2A and CDK4 and the variant was identified in 30 of those families, resulting in 

altogether 31 melanoma families carrying p.Glu318Lys, and the variant fully co-segregated 

with melanoma in nine families (Yokoyama et al. 2011). 

Variant p.Glu318Lys is rare—minor allele frequency (MAF) in different populations 

is consistently lower than 0.01 (Berwick et al. 2014; Ghiorzo et al. 2013; Bertolotto et al. 

2011; Yokoyama et al. 2011). In a population setting the variant in melanoma patients is 

found more often than in controls and in most populations the difference is large enough to 

demonstrate statistically significant association with melanoma. Yokoyama et al. (2011) 

analysed individual and combined effects from Australian and United Kingdom case-control 

samples, and a joint variant carrier frequency in patients was 0.017 (68 of 3988 cases), 

corresponding to a 2.2-fold higher melanoma risk (OR=2.19, 95% CI=1.41–3.45, p=0.0003). 

In addition, the variant is found more often in patients with MPM and a family history of 

melanoma (Yokoyama et al. 2011). Similar results were obtained in the French population by 

Bertolotto et al. (2011), who found that p.Glu318Lys carriers have a 4.8-fold higher 

melanoma risk (OR=4.78, 95% CI=2.05–11.75, p=7.8×10
-5

) as well as 5.2-fold higher RCC 

risk (OR=5.19, 95% CI=1.37–16.87, p=0.008) with a MAF of 0.014 (17 of 603 cases) and 

0.015 (5 of 164 cases), respectively. Later, in a study from Italy, 2.85-fold higher melanoma 

risk (OR=2.85, 95% CI=1.31–6.18, p=0.011) was found, with a MAF of 0.009 (12 of 667 

cases) (Ghiorzo et al. 2013). The Italian study also highlighted a potential p.Glu318Lys 

association with not only RCC but also pancreatic cancer. Finally, a large Genes, 

Environment, and Melanoma (GEM) study from four countries (Australia, Italy, Canada, and 

the United States) supported p.Glu318Lys as a medium-penetrance melanoma susceptibility 

variant, with a MAF of 0.014 (44 of 1194 cases) and 1.7-fold melanoma risk (OR=1.7, 95% 

CI=1.1–2.6, p=0.03) (Berwick et al. 2014). In contrast to the previous studies, a study in the 

Polish population found no association between the MITF variant and melanoma risk. Among 

748 melanoma patients, there were only two heterozygous p.Glu318Lys carriers, resulting in 

a MAF of only 0.001 compared to four carriers among 2144 controls and with MAF of 

0.0009. This study also found no association between p.Glu318Lys and other types of cancer 

(kidney, colon, lung, breast, and prostate) (Gromowski et al. 2014). 

MITF variant p.Glu318Lys has also been demonstrated to have an association with 

high melanoma risk pigmentation phenotype features such as fair skin, increased number of 

naevi and freckles (Sturm et al. 2014; Yokoyama et al. 2011), however, an association also 

has been found with low melanoma risk phenotype features—non-blue eye colour (Berwick 

et al. 2014; Yokoyama et al. 2011), dark hair and contrary to the above mentioned—absence 
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of naevi (Berwick et al. 2014). Affected p.Glu318Lys carriers also more often have nodular 

melanomas (Ghiorzo et al. 2013) and MPM (Sturm et al. 2014; Bertolotto et al. 2011). In 

general, p.Glu318Lys’ partial co-segregation with disease in familial setting, relatively rare 

frequency in the population and OR values in the range ~2-5 for association with melanoma 

fully supports the classification of MITF as a medium melanoma risk gene (Bertolotto et al. 

2011; Yokoyama et al. 2011). 

SSoolluuttee  ccaarrrriieerr  ffaammiillyy  4455  mmeemmbbeerr  22  ggeennee——SSLLCC4455AA22  

The third currently known medium melanoma risk gene is solute carrier family 45, 

member 2 gene (SLC45A2) also known as membrane-associated transporter protein gene 

(MATP) or melanoma antigen AIM1 gene (AIM1) (OMIM 606202). SLC45A2 gene is located 

on chromosome 5 at position 5p13.1 and it encodes a membrane-associated transporter 

protein that is involved in melanin synthesis (Fukamachi et al. 2001; Newton et al. 2001). 

The gene was initially discovered in a person with oculocutaneous albinism who harboured an 

albinism causing variant within this gene (Newton et al. 2001). It was originally identified as 

a melanocyte differentiation antigen with high expression rate in melanoma cells (Harada et 

al. 2001) and now it is considered a promising target for melanoma immunotherapy (Park et 

al. 2017).  

Contrary to the genes and variations within them mentioned in the previous chapters, 

SLC45A2 variants are associated with protective effects against melanoma. In many 

populations, but especially in Southern Europe and Asia, variants in SLC45A2 coding region 

as well as promoter are associated with normal skin colour variation and some of the variants, 

particularly variant p.Phe374Leu (c.1122C>G; rs16891982), are associated with dark 

pigmentation features (Graf et al. 2007; Stokowski et al. 2007; Graf et al. 2005). While more 

than 90% of alleles in the European population are Phe, the actual ancestral allele in this 

position is Leu that reaches almost a 100% frequency in the African population (Yuasa et al. 

2006; Jackson 2006). Ancestral allele Leu displays a protective effect against melanoma, 

however, this effect is also evident in fair-skinned individuals that suggests some non-

pigmentary effect of this variant (Ibarrola-Villava et al. 2012; Ibarrola-Villava et al. 2011; 

Duffy et al. 2010a; Fernandez et al. 2008; Guedj et al. 2008) and it is also supported in meta-

analyses (Antonopoulou et al. 2015). A couple of studies have demonstrated a positive 

association between common allele Phe and melanoma risk (Kocarnik et al. 2014; Lopez et 

al. 2014). Besides melanoma, SLC45A2 locus also reaches significance in GWASs of 

squamous cell carcinoma and basal cell carcinoma (Chahal et al. 2016; Stacey et al. 2009). 

11..22..33..  LLooww  mmeellaannoommaa  rriisskk  ggeenneess    

Besides high and medium melanoma risk genes, at least 30 low melanoma risk loci 

have been identified using GWAS as well as case-control study approach (Table 3). Variants 

in these loci are common in the general population and their risk contributed to melanoma is 

comparatively low (Read et al. 2016). Low melanoma risk variants affect or are located in 

proximity of genes involved in various cellular functions, namely, cell cycle regulation and 

tumour suppression (CDKAL1, CCND1, CDKN2A, CDKN2B, CDK10, PTEN, TP53), DNA 

repair (ATM, BRCA1, BRCA2, ERCC5, PARP1, RAD23B), protection of telomeres (TERT, 

CLPTM1L, TRF1), pigmentation (TYR, TYRP1, ASIP, OCA2, HERC), metabolism (FTO, 

VDR), immunity (IRF4, MX2, PLA2G6), transcription regulation (CDKN2B-AS1, MAFF, 

NCOA6, TAL2), and other functions (AFG3L1P, AGR3, ARNT, CASP8, CYP1B1, MTAP, 

MYH7B, PIGU, RALY, RMDN2, STN1, TET2, TMEM38) (Table 3). 
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Table 3. Low melanoma risk loci and variants from GWAS, case-control studies and meta-analyses. 

Gene (affected or proximal) 
Top gene 

function 

Chromosomal 

localization 
Top variants References 

ARNT 

Aryl hydrocarbon receptor nuclear translocator 

Xenobiotic 

metabolism 
1q21.3 

rs7412746; g.150887995C>Ta 

rs3768013; c.228-3281C>T 

Antonopoulou et al. 2015; Barrett et al. 2015; Law 

et al. 2015a; Fang et al. 2013; Amos et al. 2011; 

MacGregor et al. 2011 

PARP1 

Poly(ADP-ribose) polymerase 1 
DNA repair 1q42.12 

rs3219090; c.1941+118A>G 

rs3219125; c.2406+230A>G 

rs1858550; g.226608104C>A 

rs2249844; g.226413434T>C 

Barrett et al. 2015; Law et al. 2015a; Peña-Chilet et 

al. 2013; MacGregor et al. 2011; Zhang et al. 2011 

CYP1B1, RMDN2 

Cytochrome P450 family 1 subfamily B member 1, 

regulator of microtubule dynamics 2 

Drug 

metabolism, 

cytoskeleton 

2p22.2 rs6750047; g.38049406A>G Ransohoff et al. 2017; Law et al. 2015a 

CASP8 

Caspase 8 
Apoptosis 2q33-q34 

rs13016963; c.942+1150T>C 

rs10931936; c.757+2237T>C 

rs700635; c.*153G>T 

rs1045485; c.904G>C; p.Asp302His 

rs2349073; c.675+8207G>T 

Antonopoulou et al. 2015; Barrett et al. 2015; Law 

et al. 2015a; Barrett et al. 2011; Li et al. 2008a 

TET2 

Tet methylcytosine dioxygenase 2 

Epigenetic 

regulation 
4q24 rs4698934; c.-46-15667T>C Song et al. 2014 

TERT, CLPTM1L 

Telomerase reverse transcriptase, cleft lip and palate 

associated transmembrane protein 1 like 

Apoptosis, 

telomeres 
5p15.33 

rs401681; c.1316-153G>A 

rs2447853; c.892-1079T>C 

Antonopoulou et al. 2015; Barrett et al. 2015; 

Llorca-Cardeñosa et al. 2014; Stefanaki et al. 2013; 

Yin et al. 2012; Nan et al. 2011a; Rafnar et al. 

2009; Stacey et al. 2009 

CDKAL1 

CDK5 regulatory subunit associated protein 1 like 1 
Cell cycle 6p22.3 rs6914598; c.1300-34333T>C Ransohoff et al. 2017; Law et al. 2015a 

IRF4 

Interferon regulatory factor 4 

Immunity, 

transcription 
6p25-p23 

rs12203592; c.492+386C>T 

rs9405705; n.482-4824C>G 

Barrett et al. 2015; Peña-Chilet et al. 2013; Han et 

al. 2011; Kvaskoff et al. 2011; Duffy et al. 2010b; 

Newton-Bishop et al. 2010 

AGR3 

Anterior gradient 3 
Protein folding 7p21.1 rs1636744; g.16984280C>T Ransohoff et al. 2017; Law et al. 2015a 

TRF1 

Telomeric repeat binding factor 1 
Telomeres 8q21.11 rs2981096; c.887+875A>G Nan et al. 2011a 

Table follows on the next page. 
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Gene (affected or proximal) 
Top gene 

function 

Chromosomal 

localization 
Top variants References 

MTAP, CDKN2A 

Methylthioadenosine phosphorylase, cyclin-dependent 

kinase inhibitor 2A 

Polyamine 

metabolism, 

cell cycle 

9p21.3 

rs7023329; c.121-185A>G 

rs10757257; c.33+3784G>A 

rs4636294; n.163+20021T>C 

rs869330; c.33+1837A>G 

rs1335510; n.163+10021A>C 

rs2218220; n.163+11735G>A 

rs751173; n.164-4236G>A 

rs1341866; g.21771242T>C 

rs10811629; c.450+2289A>G 

rs935053; g.21783923G>A 

rs10757257; c.33+3784G>A 

rs201131773; c.33+2426_33+2427insAC 

rs3088440; c.*69C>T 

rs3731204; c.193+6554A>G 

Yu et al. 2018; Ransohoff et al. 2017; 

Antonopoulou et al. 2015; Barrett et al. 2015; 

Kocarnik et al. 2014; Maccioni et al. 2013a; 

Stefanaki et al. 2013; Amos et al. 2011; 

Chatzinasiou et al. 2011; Kvaskoff et al. 2011; 

MacGregor et al. 2011; Gerstenblith et al. 2010; 

Bishop et al. 2009; Falchi et al. 2009 

CDKN2B, CDKN2B-AS1 

Cyclin-dependent kinase inhibitor 2B, CDKN2B antisense 

RNA 1 

Cell cycle 9p21.3 rs1011970; n.2158+109G>T 
Barrett et al. 2015; Maccioni et al. 2013a; Bishop 

et al. 2009 

TYRP1 

Tyrosinase related protein 1 
Pigmentation 9p23 

rs1408799; g.12672097T>C 

rs2733832; c.1261+20C>T 

rs72706189; g.11877260T>C 

Goldstein et al. 2017; Antonopoulou et al. 2015; 

Barrett et al. 2015; Gibbs et al. 2015; Duffy et al. 

2010a; Gerstenblith et al. 2010; Nan et al. 2009a; 

Gudbjartsson et al. 2008 

TMEM38B, RAD23B, TAL2 

Transmembrane protein 38B, nucleotide excision repair 

protein, TAL BHLH transcription factor 2 

Ca regulation, 

DNA repair, 

transcription 

9q31.2 rs10739221; g.106298549T>C Ransohoff et al. 2017; Kypreou et al. 2016; Law et 

al. 2015a 

PTEN 

Phosphatase and tensin homolog 
Cell cycle 10q23.31 Miscellaneous Bubien et al. 2013; Tan et al. 2012 

STN1 (OBFC1) 

STN1, CST complex subunit 

DNA 

replication 
10q24.33 rs2995264; c.229+1442C>T 

Ransohoff et al. 2017; Law et al. 2015a; Iles et al. 

2014 

CCND1 

Cyclin D1 
Cell cycle 11q13.3 

rs1485993; g.69547646A>G 

rs11263498; g.69567999T>C 

rs11604821; g.69537369G>A 

rs12422135; g.69378736A>G 

Antonopoulou et al. 2015; Barrett et al. 2015; 

Barrett et al. 2011 

Table follows on the next page. 

 



44 

 

Gene (affected or proximal) 
Top gene 

function 

Chromosomal 

localization 
Top variants References 

TYR 

Tyrosinase 
Pigmentation 11q14.3 

rs1126809; c.1205G>A p.Arg402Gln 

rs1393350; c.1185-6895G>A 

rs1806319; g.89304768T>C 

rs1847142; c.1366+3452G>A 

rs10830253; c.1367-268T>G 

rs17793678; c.820-2846C>T 

rs12270717; c.819+250T>A 

rs5021654; c.-533G>C 

Antonopoulou et al. 2015; Barrett et al. 2015; 

Gibbs et al. 2015; Ibarrola-Villava et al. 2012; 

Amos et al. 2011; Barrett et al. 2011; Hu et al. 

2011; Ibarrola-Villava et al. 2011; Duffy et al. 

2010a; Bishop et al. 2009; Council et al. 2009; Nan 

et al. 2009a; Gudbjartsson et al. 2008 

ATM 

ATM serine/threonine kinase 

DNA damage 

response 
11q22.3 

rs1801516; c.5557G>A; p.Asp1853Asn 

rs1800054; c.146C>G; p.Ser49Cys 

rs4753835; c.3284+1670C>T 

Antonopoulou et al. 2015; Barrett et al. 2015; 

Peña-Chilet et al. 2013; Barrett et al. 2011; 

Dombernowsky et al. 2008 

VDR 

Vitamin D receptor 
Metabolism 12q13.11 

rs1544410; c.1024+283G>A 

rs731236; c.1056T>C; p.Ile352= 

rs2228570; c.2T>C; p.Met1Thr 

rs4516035; c.-1172A>G 

rs10875712; g.48363253C>G 

rs4760674; c.-431A>C 

rs7139166; c.-1680G>C 

rs11168287; c.-83-8857C>T 

rs7305032; c.584-276C>T 

rs7965281; n.498A>G 

Antonopoulou et al. 2015; Lee & Gyu Song 2015; 

Zeljic et al. 2014; Orlow et al. 2012; Randerson-

Moor et al. 2009; Li et al. 2007; Povey et al. 2007; 

Santonocito et al. 2007; Hutchinson et al. 2000 

MDM2 

Mouse double minute 2 homolog 
Ubiquitination 12q15 rs2279744; c.14+309T>G 

Thunell et al. 2014; Cotignola et al. 2012; Firoz et 

al. 2009 

BRCA2 

Breast cancer type 2 susceptibility protein 
DNA repair 13q13.1 Miscellaneous 

Yu et al. 2018; Tuominen et al. 2016; Debniak et 

al. 2008 

ERCC5 (XPG) 

ERCC excision repair 5, endonuclease 
DNA repair 13q33.1 

rs17655; c.3310G>C; p.Asp1104His 

rs4150355; c.2679-1236C>G 

Antonopoulou et al. 2015; Gonçalves et al. 2011; 

Zhang et al. 2011 

OCA2, HERC2 

OCA2 melanosomal transmembrane protein, HECT and 

RLD domain containing E3 ubiquitin protein ligase 2 

Pigmentation 15q12-13.1 

rs1800407; c.1256G>A; p.Arg419Gln 

rs1129038; c.*50G>A 

rs12913832; c.13272+874T>C 

rs1800401; c.913C>T; p.Arg305Trp 

rs4778138; c.-22+8550T>C 

rs547148386; c.1364+25G>T 

rs150540829; c.1364+112C>A 

rs145720174; c.5465-870C>T 

Ransohoff et al. 2017; Antonopoulou et al. 2015; 

Barrett et al. 2015; Zhang et al. 2013; Amos et al. 

2011; Duffy et al. 2010a; Fernandez et al. 2009; 

Guedj et al. 2008; Sturm et al. 2008; Jannot et al. 

2005 

Table follows on the next page. 
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Gene (affected or proximal) 
Top gene 

function 

Chromosomal 

localization 
Top variants References 

FTO 

Alpha-ketoglutarate dependent dioxygenase 
Metabolism 16q12.2 

rs16953002; c.1365-30850G>A 

rs12596638; c.1365-29845G>A 

rs12933928; c.1239+8130A>G 

rs12932428; c.1240-7370C>T 

rs1125338; c.1364+73758C>T 

rs12599672; c.1365-29598T>A 

rs12600192; g.54127816C>G 

Antonopoulou et al. 2015; Barrett et al. 2015; Iles 

et al. 2013; Li et al. 2013 

CDK10, AFG3L1P 

Cyclin-dependent kinase 10, AFG3 like matrix AAA 

peptidase subunit 1, pseudogene 

Cell cycle, 

unknown 
16q24.3 

rs258322; c.160+171A>G 

rs4785763; n.1682A>C 

Ransohoff et al. 2017; Antonopoulou et al. 2015; 

Kocarnik et al. 2014; Fang et al. 2013; Stefanaki et 

al. 2013; Barrett et al. 2011; Han et al. 2011; 

Gerstenblith et al. 2010; Bishop et al. 2009 

TP53 

Tumour protein TP53 

Tumour 

suppression 
17p13.1 rs1042522; c.215C>G; p.Pro72Arg 

Geng et al. 2015; Ye et al. 2013; Oliveira et al. 

2013; Jiang et al. 2011; Li et al. 2008b; Stefanaki 

et al. 2007; Gwosdz et al. 2006; Han et al. 2006b; 

Shen et al. 2003 

BRCA1 

Breast cancer type 1 susceptibility protein 
DNA repair 17q21.31 Miscellaneous Brose et al. 2002 

ASIP, MYH7B, PIGU, NCOA6, RALY 

Agouti signaling protein, myosin heavy chain 7B gene, 

phosphatidylinositol glycan anchor biosynthesis class U 

gene, nuclear receptor coactivator 6, RALY 

heterogeneous nuclear ribonucleoprotein 

Pigmentation, 

myosin, 

cell division, 

transcription, 

immunity, 

splicing 

20q11.22 

rs4911414; g.32729444T>G 

rs1015362; g.32738612C>T 

rs6058017; c.*25A>G 

rs910873; c.926+1469C>G 

rs1885120; c.1714-554C>G 

rs4911442; c.514+1221C>T 

rs910871; c.2914+1403G>T 

rs819133; c.1168-1343A>C 

rs6059655; c.829-563A>G 

Ransohoff et al. 2017; Antonopoulou et al. 2015; 

Barrett et al. 2015; Maccioni et al. 2013b; 

Stefanaki et al. 2013; Helsing et al. 2012; Amos et 

al. 2011; Chatzinasiou et al. 2011; Ibarrola-Villava 

et al. 2011; Debniak et al. 2010; Duffy et al. 

2010a; Bishop et al. 2009; Nan et al. 2009a; Brown 

et al. 2008; Gudbjartsson et al. 2008 

MX2 

MX dynamin like GTPase 2 
Immunity 21q22.3 

rs45430; c.-71-2682C>T 

rs443099; c.-71-5436G>T 

Ransohoff et al. 2017; Antonopoulou et al. 2015; 

Barrett et al. 2015; Gibbs et al. 2015; Barrett et al. 

2011 

PLA2G6, MAFF 

Phospholipase A2 group VI, MAF bZIP transcription 

factor F 

Immunity, 

transcription 
22q13.1 

rs2284063; c.210-2638T>C 

rs6001027; c.210-3959T>C 

rs132985; c.209+1754G>A 

rs738322; c.-45-3528T>C 

rs3891103; c.610-983G>C 

rs4608623; c.-899G>T 

Antonopoulou et al. 2015; Barrett et al. 2015; Liu 

et al. 2013; Stefanaki et al. 2013; Amos et al. 2011; 

Barrett et al. 2011; Gerstenblith et al. 2010; 

Newton-Bishop et al. 2010; Bishop et al. 2009; 

Falchi et al. 2009 

Colouring in bold indicates the most important variants in the region; 
a
 genomic coordinated showed according to genome assembly GRCh38.p7. 

http://bioserver-3.bioacademy.gr/Bioserver/MelGene/Polymorphs.php?PolyID=rs819133&Meta=
http://bioserver-3.bioacademy.gr/Bioserver/MelGene/Polymorphs.php?PolyID=rs819133&Meta=


46 

 

22..  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

22..11..  OOvveerrvviieeww  ooff  ssttuuddyy  ssuubbjjeeccttss  

All patients included in the studies were consecutive consenting melanoma patients 

with histopathologically confirmed cutaneous melanoma recruited at the Riga East University 

Hospital, Latvian Oncology Centre (LOC) starting from 2001 to 2011. Initially patients were 

recruited within the framework of specific studies but later in collaboration with Latvian 

Genome centre and Genome Database of the Latvian population (described in Rovite et al. 

2018). Control individuals were healthy volunteers recruited through general practitioners 

and/or participants in the Genome Database of the Latvian population. Information about age, 

sex, family history of cancers and pigmentation phenotype was obtained from self-report 

questionnaires from all individuals enrolled in studies. More detailed information about 

history of familial cancer was then obtained by interview during the visit to dermatologist, 

and medical confirmation was sought for all relatives reported to have had melanoma. 

Additional family members of melanoma patients were enrolled in the study by a 

dermatologist. All participants have signed an informed consent form approved by the Central 

Medical Ethics Committee of Latvia. Data collection was performed according to Central 

Medical Ethics Committee protocols No. A-1, A-3 and A-7. All studies were performed 

according to the Helsinki declaration. All DNA samples were isolated from peripheral blood 

mononuclear cells using standard phenol–chloroform extraction method either in the 

melanoma laboratory or centrally at the Genome centre for those included in the Genome 

Database of the Latvian population. The following paragraphs describe patients and controls 

included in each study in more detail. 

For the comprehensive study of CDKN2A locus and CDK4 exon 2 in Latvian 

melanoma families (paper I) altogether 20 melanoma patients were selected and patients that 

were included were recruited at LOC between 2009 and 2011. The inclusion criteria were as 

follows: i) histopathologically confirmed melanoma; ii) at least one first-degree (n=15) or 

second-degree (n=5) relative with melanoma. Additional unrelated sporadic melanoma 

patients without melanoma history in family and healthy controls were included for individual 

variant genotyping (211 patients and 326 controls for the p14ARF promoter deletion analysis, 

309 patients and 150 controls for the CDK4 variant p.Arg24His, 174 patients and 212 controls 

for the CDKN2A intron variant IVS1+1569T>A and 180 patients and 228 controls for the 

CDKN2A variant IVS2+82C>T analyses). 

All members (n=14) of the three Latvian CDK4 melanoma families whose DNA was 

available, recruited in this as well as in previous studies between 2001 and 2011, were 

included in the international worldwide overview study of CDK4 families (paper II). Two of 

these families have been reported on before (Pjanova et al. 2009; Pjanova et al. 2007). 

Members of the third, novel CDK4 family were recruited as described above. Families with 

germline CDK4 variants were involved in the study either by contacting the authors of 

published studies or by requests for unpublished families via GenoMEL, the Melanoma 

Genetics Consortium. Altogether 17 families were recruited in the study, and information 

about pigmentation phenotype, number of common/clinically atypical naevi, presence/number 

of MPM, age at melanoma diagnosis, anatomic location (head/neck, limbs, and trunk), 

histological type (superficial spreading melanoma (SSM), nodular melanoma (NM), lentigo 

malignant melanoma (LMM), in situ melanoma, and melanoma unclassified/classification 

unknown), non-melanoma cancers as well as MC1R variant status was gathered about 

members of those families. DNA samples were available from 209 persons—62 melanoma 
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cases, 106 unaffected family members, and 41 spouses, and the DNA analysis of CDK4 and 

MC1R was performed by each research group individually. 

For the MC1R variant study in the Latvian population (paper III) 200 melanoma 

patients and 200 controls recruited between 2007 and 2011 were selected. The inclusion 

criteria were as follows: i) histopathologically confirmed melanoma; ii) complete information 

on skin type natural hair colour, eye colour, degree of freckling, and number of moles 

available. Exclusion criteria: i) no or incomplete information about pigmentation. 

For the chromosome 16 variant study (paper IV) 255 melanoma patients and 224 

controls recruited between 2007 and 2011 were selected. The inclusion criteria were as 

follows: i) histopathologically confirmed melanoma; ii) complete information about MC1R 

variants. 

The international, collaborative BioGenoMEL study of MC1R variants and melanoma 

survival (paper V) comprised altogether 3060 melanoma patients from 10 cohorts (Barcelona, 

Essen, Genoa, Leeds, Paris, Philadelphia, Riga, Stockholm, Valencia, Vienna), among them 

137 Latvian melanoma patients recruited between 2007 and 2011 who donated DNA samples 

no later than 2 years after diagnosis with survival data. Analysis of MC1R variants was 

performed by each research group individually and the most often used technique was 

conventional Sanger sequencing. 

The MITF study (paper VI) included 477 consecutive consenting melanoma patients 

recruited between 2001 and 2011 among whom 18 had a family history of melanoma, 11 had 

relatives with pancreatic cancer, 7 had MPM and 49 had developed melanoma early—before 

age 35. All of these patients were tested negative for the presence of variants in CDKN2A and 

CDK4. Additionally 225 controls were also included in the study. 

The study of low melanoma risk variant p.Pro72Arg in TP53 and c.14+309T>G in 

MDM2 in the Latvian populations (paper VII) included altogether 490 consecutive consenting 

melanoma patients and 356 controls recruited between 2001 and 2011. 

The international, collaborative BioGenoMEL study on PARP1 variant s2249844 

(paper VIII) comprises altogether 8599 cases from 10 different cohorts (Athens, Barcelona, 

Essen, Leeds, Lund, Riga, Stockholm, Tampa, Valencia, Vienna), including 243 cases from 

the Latvian population recruited between 2003 and 2011. Information about date of diagnosis, 

date of death, Breslow thickness, tumour site, age at diagnosis and sex were also collected 

from nine European BioGenoMEL cohorts, including Riga. The complete follow up 

information was available for 3965 and 175 cases, respectively, and these cases were included 

in the final analysis. 

22..22..  SSeeqquueenncciinngg  aanndd  ggeennoottyyppiinngg  

All primers for DNA fragment amplification, sequencing or genotyping were 

synthesized by Metabion International AG, Planegg/Steinkirchen, Germany. Detailed PCR 

conditions for each genomic region of interest are described individually below. Enzymatic 

clean-up of PCR products before sequencing was performed in 10 µl reaction volume 

containing 1 µl ExoI, 2 µl SAP/FastAP (Thermo Scientific
TM

, Thermo Fisher Scientific, 

Waltham, MA, USA) and 7 µl PCR product, and incubated for 30 min at 37°C followed by 15 

min at 80°C. All sequencing reactions were performed using the ABI PRISM BigDye 

Terminator v.3.1 cycle sequencing kit in 10 µl reaction volume containing 5 µl H2O, 2 µl 5x 

sequencing buffer, 1 µl primer, 1 µl BigDye and 1 µl PCR product in conditions as 

follows―25 cycles of 30 s at 94°C, 15 s at 53°C and 4 min at 60°C―and analysed on an ABI 

3100 Sequencer (Applied Biosystems
TM

, Thermo Fisher Scientific, Waltham, MA, USA). 
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Analysis of sequence electropherograms was performed manually using the Vector NTI 

software (Invitrogen
TM

, Thermo Fisher Scientific, Waltham, MA, USA).  

Comprehensive CDKN2A locus analysis was done in patients with a family history of 

melanoma and that included analysis of coding, flanking and promoter regions as well as the 

first and the second intron of the CDKN2A gene including deletion screening in locus 9p21. 

Coding and flanking regions of CDKN2A were analysed as described previously (Pjanova et 

al. 2007). Promoter region 1185 bp upstream of CDKN2A exon 1α and the first and second 

intron of CDKN2A were amplified as described previously (Harland et al. 2005a; Harland et 

al. 2000) and sequenced with the same primers. Locus 9p21 deletion analysis in patients with 

a family history of melanoma was carried out using the SALSA multiple ligation-dependent 

probe amplification (MLPA) kit ME024-A1 (MRC-Holland, Amsterdam, the Netherlands) 

according to manufacturer’s instructions. Precise size and location of the deletion was 

determined by direct sequencing and genotyping. Deletion comprising probe region was 

amplified and sequenced with primers: forward 5’-CCTAGTCCCGAATCCTCTGG-3’ and 

reverse 5’-CAACCATTCTACGCGAGGAC-3’. An alternative fluorescently labelled forward 

primer 5’-CTTAGACCGCGCTCAGGACC-3’ was designed for deletion genotyping in 

sporadic patients and controls, and fragments were analysed on an ABI 3100 Sequencer. 

The novel CDKN2A intronic variant IVS2+82C>T found in familial melanoma 

patients by sequencing was genotyped in sporadic patients and controls by the restriction 

fragment length polymorphism (RFLP) method using SmaI restriction enzyme (Thermo 

Scientific
TM

, Thermo Fisher Scientific, Waltham, MA, USA) under conditions recommended 

by the manufacturer. CDKN2A intronic variant IVS1+1569T>A (rs138967562) found in 

familial melanoma patients by sequencing was genotyped in sporadic patients and controls 

using custom TaqMan® probe in reaction conditions specified by the manufacturer on a 

ViiA
TM

 7 Real-Time PCR System (Applied Biosystems
TM

, Thermo Fisher Scientific, 

Waltham, MA, USA). 

The second exon of CDK4 was analysed as described previously (Pjanova et al. 

2007). CDK4 haplotypes in the third p.Arg24His positive newly described melanoma family 

were determined using four microsatellite markers flanking CDK4 (D12S305, CDK4M4, 

CDK4M1, D12S1691), three intragenic variants (rs2270777, rs2069502, rs2069506), one 

promoter variant (rs2072052), and one tetranucleotide repeat within intron 5 (rs2069504) as 

described previously (Molven et al. 2005). 

The entire MC1R coding sequence was amplified using primers: forward 5’-

GCAGCACCATGAACTAAGCA-3’ and reverse 5’-CAGGGTCACACAGGAACCA-3’ 

(Kanetsky et al. 2004). PCR was performed in 25 µl reaction volume containing 25 ng of 

template DNA, 1x Taq buffer, 10% dimethyl sulfoxide (DMSO), 1.5 mM magnesium 

chloride (MgCl2), 0.24 mM dNTPs, 4 mM of each primer and 1.25 U Taq DNA Polymerase 

(Thermo Scientific
TM

, Thermo Fisher Scientific, Waltham, MA, USA). Cycling conditions 

were as follows: an initial denaturation at 95°C for 10 min followed by 35 cycles of 

denaturation at 95°C for 50 s, annealing at 61°C for 30 s, extension at 72°C for 1 min, and a 

final extension at 72°C for 7 min. Amplicons were sequenced as described above using 

another set of four primers: forward-1 5’-AACCTGCACTCACCCATGTA-3’, reverse-1 5’-

CTGCAGGTGATCACGTCAAT-3’, forward-2 5’-TCGTCTTCAGCACGCTCTTC-3’, and 

reverse-2 5’-TTTAAGGCCAAAGCCCTGGT-3’ (Kanetsky et al. 2006). 

Chromosome 16 variants rs258322, rs4785763, and rs8059973 were genotyped using 

TaqMan SNP genotyping assays C_653812_1, C_2875849_10 and C_29970391_10, 

respectively) on ViiA
TM

 7 Real-Time PCR System (Applied Biosystems
TM

, Thermo Fisher 

Scientific, Waltham, MA, USA) according to manufacturer’s instructions. 
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The MITF sequence region encompassing variant p.Glu318Lys was amplified using 

primers: forward 5’-CAGGCTCGAGCTCATGGA-3’ and reverse 5’-

TGGGGACACTATAGGCTTGG-3’ (Yokoyama et al. 2011). Amplification PCR was 

performed in 25 µl reaction volume containing 25 ng of template DNA, 1x Taq buffer, 5% 

DMSO, 1.5 mM MgCl2, 0.24 mM dNTPs, 0.4 mM of each primer and 1.25 U Taq DNA 

Polymerase (Thermo Scientific
TM

, Thermo Fisher Scientific, Waltham, MA, USA). Cycling 

conditions were as follows: an initial denaturation at 95°C for 10 min followed by 35 cycles 

of denaturation at 95°C for 30 s, annealing at 58°C for 30 s, extension at 72°C for 1 min, and 

a final extension at 72°C for 7 min. Sequencing was performed as described above using the 

same primers as for initial fragment amplification. 

Fragment of TP53 exon 4 carrying variant p.Pro72Arg was amplified using primers: 

forward 5’-ATCTACAGTCCCCCTTGCCG-3’ and reverse 5’-

GCAACTGACCGTGCAAGTCA-3’ (Shen et al. 2003). MDM2 gene intronic promoter 

region harbouring variant c.14+309T>G was amplified using primers: forward 5’-

CGGGAGTTCAGGGTAAAGGT-3’ and reverse 5’-AGCAAGTCGGTGCTTACCTG-3’ 

(Bond et al. 2004). Both PCRs for TP53 variant p.Pro72Arg and MDM2 variant 

c.14+309T>G were performed in 25 µl reaction volume containing 25 ng of template DNA, 

1x Taq buffer, 5% DMSO, 1.5 mM MgCl2, 0.24 mM dNTPs, 0.4 mM of each primer and 1.25 

U Taq DNA Polymerase (Thermo Scientific
TM

, Thermo Fisher Scientific, Waltham, MA, 

USA). Cycling conditions were as follows: an initial denaturation at 95°C for 10 min 

followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 62°C for TP53 and 55°C 

for MDM2 for 30 s, extension at 72°C for 1 min, and a final extension at 72°C for 7 min. 

TP53 fragments obtained in PCR were cleaved with Bsh1236l (Thermo Scientific
TM

, Thermo 

Fisher Scientific, Waltham, MA, USA) in 20 µl reaction volume containing 1x Buffer R, 5 U 

enzyme, and 17 µl PCR product at 37°C overnight. Sequencing of the MDM2 promoter 

region fragment was performed as described above using the same primers as for initial 

fragment amplification. 

Genotyping of PARP1 variant s2249844 was performed using TaqMan® assay 

C__34511379_10 and ABI 7900HT Real-time PCR system according to the manufacturer’s 

instructions (Applied Biosystems
TM

, Thermo Fisher Scientific, Waltham, MA, USA). 

22..33..  CCoonnssttrruuccttiioonn  ooff  MMCC11RR  vvaarriiaanntt  cclloonneess  

For functional activity analysis MC1R variants with a frequency of less than 1% were 

selected. Three variants were excluded from the analysis— p.Asp84Glu, as its functional role 

is already known (Table 1 in the Literature); p.Tyr152*, as it creates a truncated inactivated 

protein; and p.Asp184His, due to its close position to the variant p.Val188Ile, assuming that 

their effects might be similar. For the remaining eight variants—p.Phe45Leu, p.Ser83Leu, 

p.Gly89Arg, p.Thr95Met, p.Asp121Glu, p.Val165Ile, p.Val188Ile, and p.Arg213Trp—

expression constructs were created. As a positive control sample, variant p.Arg151Cys 

construct was also created since it has previously been shown to have reduced cell surface 

expression and functional activity in the cAMP assay (Table 1 in the Literature). Polymorphic 

MC1R constructs were based on the vector pcDNA3.1+ with human consensus MC1R 

sequence (Missouri S&T cDNA Resource Center, Rolla, MO, USA) and created by site-

directed mutagenesis with overlap extension (Ho et al. 1989) using iProof High-Fidelity DNA 

Polymerase (Bio-Rad, Hercules, CA, USA) and primers containing polymorphic mismatch or 

restriction sites (Table 4). For the cAMP assay, amplified PCR fragments were subcloned into 

the pcDNA5/FRT vector (Invitrogen
TM

, Thermo Fisher Scientific, Waltham, MA, USA). For 
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the microscopy studies, MC1R variants without the stop codon were subcloned into the 

pGFP2-N3 vector (PerkinElmer
TM

, Waltham, MA, USA). For the microscopy, melanocortin 2 

receptor (MC2R) expression construct was used as negative control (Fridmanis et al. 2010; 

Hinkle & Sebag 2009). Sequences of all obtained constructs were verified by plasmid 

sequencing. 

Table 4. Primers used for creation of polymorphic MC1R constructs. 

Genetic variant/primer name Primer sequence 

p.Phe45Leu (c.133T>C) 5′-GACGGGCTCCTCCTCAGC-3′ 

5′-GCTGAGGAGGAGCCCGTC-3′ 

p.Ser83Leu (c.248C>T) 5′-GCCTTGTTGGACCTGCTGGT-3′ 

5′-ACCAGCAGGTCCAACAAGGC-3′ 

p.Gly89Arg (c.265G>C) 5′-GCTGGTGAGCCGGAGCAACG-3′ 

5′-CGTTGCTCCGGCTCACCAGC-3′ 

p.Thr95Met (c.284C>T) 5′-TGCTGGAGATGGCCGTCAT-3′ 

5′-ATGACGGCCATCTCCAGCA-3′ 

p.Asp121Glu (c.363C>G) 5′-ACAATGTCATTGAGGTGATCAC-3′ 

5′-GTGATCACCTCAATGACATTGT-3′ 

p.Arg151Cys (c.451C>T) 5′-CTACGCACTGTGCTACCACA-3′ 

5′-TGTGGTAGCACAGTGCGTAG-3′ 

p.Val165Ile (c.493G>A) 5′-GGCGAGCCATTGCGGCCAT-3′ 

5′-ATGGCCGCAATGGCTCGCC-3′ 

p.Val188Ile (c.562G>A) 5′-ACGTGGCCATCCTGCTGTGC-3′ 

5′-GCACAGCAGGATGGCCACGT-3′ 

p.Arg213Trp (c.637C>T) 5′-CATGCTGGCCTGGGCCTGC-3′ 

5′-GCAGGCCCAGGCCAGCATG-3′ 

For cAMP assay: 

MC1R NheI 5′-CATAGCTAGCCACCATGGCTGTGCAGGGATCCCA-3′ 

MC1R XhoI 5′-CATACTCGAGTCACCAGGAGCATGTCAGCA-3′ 

For microscopy studies: 

MC1R EcoRI 5′-CATAGAATTCCACCATGGCTGTGCAGGGATCCCA-3′ 

MC1R HindIII 5′-CATAAAGCTTCCAGGAGCATGTCAGCACCT-3′ 

22..44..  CCeellll  ccuullttuurree  aanndd  ttrraannssffeeccttiioonn  

For the MC1R variant functional study BHK cells (American Type Culture 

Collection, Manassas, VA, USA) were grown at 37°C with 5% CO2 and maintained in 

Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented 

with 10% (v/v) fetal calf serum and a penicillin–streptomycin mix (Sigma-Aldrich, St. Louis, 

MO, USA). When 70–90% confluence was reached, DNA constructs were transfected into 

the cells using TurboFect Transfection Reagent (Thermo Scientific
TM

, Thermo Fisher 

Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Cells were 

harvested and assayed 24 h or 48 h after transfection. 

22..55..  CCoonnffooccaall  llaasseerr  ssccaannnniinngg  mmiiccrroossccooppyy  

For MC1R construct expression visualization using confocal laser scanning 

microscopy, cells were fixed in 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) 

for 10 minutes and then stained with Alexa Fluor633 labeled wheat germ agglutinin (WGA) 

and 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI) (Invitrogen
TM

, Thermo Fisher 

Scientific, Waltham, MA, USA). Cells were examined with a Leica TCS SP2 confocal 
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microscope (Leica Microsystems, Wetzlar, Germany). For each construct two transfection 

reactions were performed and three images were obtained from each independent transfection 

reaction, resulting in a total of six images for each construct. 

22..66..  ccAAMMPP  aassssaayy  

For MC1R variant construct cAMP activity assay transiently transfected BHK cells 

were distributed into a 384-well plate (1×10
4
 cells/well) and stimulated with synthetic MC1R 

agonist NDP-MSH (PolyPeptide Group, Hillerød, Denmark) in serial dilutions (10
-12

 to 10
-6

 

M in 1X phosphate-buffered saline, 1% bovine serum albumin, and 0.5 mM 3-isobutyl-1-

methylxanthine (Sigma-Aldrich, St. Louis, MO, USA)) for 30 minutes at 37°C. The 

intracellular cAMP level was measured with a LANCE cAMP kit (PerkinElmer
TM

, Waltham, 

MA, USA) using a Victor3V multilabel reader (PerkinElmer
TM

, Waltham, MA, USA) 

following the manufacturer’s instructions. All experiments were performed in duplicate and 

repeated three times. Data was analyzed using the GraphPad Prism version 5.00 for Windows 

(GraphPad Software, La Jolla, CA, USA). 

22..77..  DDaattaa  pprroocceessssiinngg  aanndd  ssttaattiissttiiccaall  aannaallyyssiiss  

Two-sided Fisher’s exact test was used to estimate frequency differences of variants 

initially found in families in sporadic melanoma patients (paper I), as well as low risk variants 

(paper VII), and p-value<0.05 was considered to be statistically significant. The test was 

carried out using GraphPad Prism v.5.04 software (GraphPad Software, La Jolla, CA, USA). 

In the CDK4 family study (paper II) Pearson Χ2
 test or the Fisher exact test were used 

depending on the sample size to compare differences between subject groups (melanoma 

affected/unaffected CDK4 positive family members, CDK4 negative family members and 

spouses) and categorical variables (melanoma status, presence of clinically atypical naevi, 

phenotype categories, MC1R variants). The non-parametric Mann–Whitney or Kruskal–

Wallis tests were used to compare the continuous variable (age at time of diagnosis) with the 

categorical variables (melanoma status, tumour location, histological type, presence of 

clinically atypical naevi, MC1R variants). For statistical analysis purposes individuals were 

grouped according to the number of MC1R variants carried (consensus MC1R sequence, one 

and two MC1R variants) or type of MC1R variants carried (RHC (p.Asp84Glu, p.Arg142His, 

p.Arg151Cys, p.Arg160Trp, p.Asp294His), NRHC (all other non-synonymous MC1R 

variants), and RHC+NRHC variants). Unconditional logistic regression analysis was used to 

evaluate the presence of atypical naevi depending on melanoma and CDK4 variant 

p.Arg24His status when adjusted for age. P-values<0.05 were considered to be statistically 

significant. Analyses were performed using the IBM Statistical Package for the Social 

Sciences, v19 (SPSS Inc, Chicago, IL, USA) and SAS v9.1.3 software (SAS Institute Inc, 

Cary, NC, USA). 

In the MC1R study in the Latvian population (paper III) two-sided Fisher’s exact test 

was used to evaluate the associations between melanoma status, pigmentation characteristics, 

and MC1R variants using various types of stratification. Unpaired t-test was used to assess the 

difference in mean age between patients and controls. P-values<0.05 were considered to be 

statistically significant. For each MC1R variant, deviation from Hardy–Weinberg equilibrium 

was tested in controls as implemented in PLINK version 1.07 (Shaun Purcell, 

http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al. 2007). For more detailed analysis 

of MC1R variant association with melanoma risk, individuals were grouped according to 

number and type of MC1R variants. Individuals with no MC1R variant or only synonymous 

http://pngu.mgh.harvard.edu/purcell/plink/
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variants were considered as the wild type group. Others were grouped in a following manner: 

carriers of any MC1R variant, carriers of one MC1R variant, carriers of multiple MC1R 

variants, carriers of one or more RHC variant (and no NRHC variant), carriers of one or more 

NRHC variant (and no RHC variant), and carriers of one or more RHC and one or more 

NRHC variants. The RHC group consisted of previously reported RHC variants p.Asp84Glu, 

p.Arg151Cys, p.Arg160Trp (Raimondi et al. 2008) and additionally variants p.Ser83Leu, 

p.Gly89Arg, p.Asp121Glu, and p.Arg213Trp that were proved to be functionally relevant 

within this study. All remaining nonsynonymous variants were considered NRHC variants. 

Tests were carried out using GraphPad Prism v.5.04 software for Windows (GraphPad 

Software, La Jolla, CA, USA). 

The functional impact of the MC1R variants on the receptor function initially was 

assessed in silico using software tool PolyPhen-2 (Adzhubei et al. 2010). Statistical analyses 

of the confocal microscopy data were performed as described previously (Fridmanis et al. 

2010). Efficiency of green fluorescent protein (GFP) tagged receptor transport to the cell 

membrane was measured by calculating GFP and WGA fluorescence intensity ratios at 

multiple points on the cell using images from confocal microscopy. Using the tool 

implemented in the Leica Confocal Software (Las AF version 2.6.0), 10 arbitrarily selected 

linear regions of interest (ROI) were drawn across each image, resulting in 20 points of 

intersection with the cell membrane and giving at least 120 points for analysis for each 

construct. A nonparametric Kruskal–Wallis test was applied for uniformity analysis of the 

GFP/WGA fluorescence ratios per each construct with α=0.05. If statistically significant 

differences between medians were reported, Dunn’s multiple comparison test with α=0.05 

was used to determine which of the data sets were different and those data sets that 

significantly differed from more than two other data sets were replaced with data acquired 

from independent repeated experiments. Kruskal–Wallis test with α=0.05 was used to 

compare median values and interquartile ranges of fluorescence ratios from different 

constructs that was followed by Dunn’s multiple comparison test. Modules of differences in 

rank sums acquired by Dunn’s test were arranged in a matrix table that was then used to 

cluster constructs by their differences in expression on the cell surface. Clustering was carried 

out with the Euclidean distance method using the MultiExperiment Viewer software version 

4.3 (TM4 Development, Boston, MA, USA) (Saeed et al. 2003). 

In the chromosome 16 variant study (paper IV) MAFs of each variant were estimated 

using all controls having the genotype information for this variant (224 controls for the MC1R 

gene, 203 for rs258322, 204 for rs8059973 and 205 for rs4785763). In the subsequent 

statistical analyses, only the variants with ≥ 4% MAF, with at least one homozygote of minor 

alleles and those that did not significantly deviate from the Hardy-Weinberg equilibrium were 

considered. Univariate analyses with and without cofactors (age and sex) were carried out by 

fitting a logistic regression model for each variant and a melanoma case/control indicator. An 

additive model of the contribution of alleles to the disease was assumed. The significance of a 

genotype-phenotype association was measured by the Wald test applied to the genotype term 

with α=0.05. Logistic regression models were fitted by the function glm in R environment (R 

Core Team). Permutation tests to obtain empirical p-values of genotype-phenotype 

associations were carried out. In order to understand potential interactions of variants on 

chromosome 16, multivariate models with and without cofactors (age and sex) were built by 

stepwise regression using function stepAIC from the R package MASS (R Core Team). A 

generalized linear model was used throughout all multivariate analyses, together with the 

additive model of allele contributions. Associations of various haplotypes with the disease 

status were also assessed using the R library haplo.stats (Lake et al. 2002; Schaid et al. 2002). 
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Linkage disequilibrium (LD) for each pair of associated variants was estimated and the 

squared correlation coefficient (r
2
) was reported using Ldmatrix module from the web-based 

application suite LDlink 2.0 (Machiela et al. 2015). 

For the MC1R and survival study (paper V) MC1R variants were classified in ‘R’ and 

‘r’ variants using methodology that took into account previous existing classifications (Duffy 

et al. 2004), evaluation using in silico tools and properties of amino acid in the variant 

position. Then a numerical score in the range 0–4 was applied for each variant allele, where 

an ‘r’ variant allele was given value 1 and an ‘R’ variant allele was given value 2, thus 

individuals without MC1R variants were scored 0, but individuals with two ‘R’ variants were 

scored 4.  

Survival time was defined as the period between the date of surgical excision of the 

primary melanoma and date of death or last date of follow up. Linear regression analysis was 

performed in order to detect association between MC1R variants and tumour thickness in all 

cohorts using the ‘lm’ routine in R (R Core Team). Using data from a Leeds cohort Kaplan–

Meier analysis was done to evaluate overall survival with respect to hair colour and MC1R 

status using the ‘survfit’ routine in the ‘survival’ package in R and Cox’s proportional hazards 

model. Cochran’s Q test was used to test for study heterogeneity. Cases with 0.75 mm or 

thinner tumours were excluded from all analyses assuming that these cases have good 

prognosis and add little information to the estimation of the effect of predictors of survival.  

The hypothesis of association between MC1R variants and melanoma survival was 

initially tested by evaluating hair colour and survival as hair colour is largely determined by 

MC1R. Leeds cohort data was used for these tests. After an association was indeed 

discovered, the association between MC1R status and overall survival was also investigated in 

each of the 10 data sets. A combined estimate for the nine smaller data sets was created by 

including the study as a stratification variable in the model. Forest plots were used to compare 

the hazard ratio estimates across studies. For each research centre hazard ratio estimates for 

MC1R score, for no consensus MC1R alleles versus one or more consensus MC1R alleles 

were calculated and a pooled estimate was plotted. 

In the BioGenoMEL study of PARP1 variant s2249844 (paper VIII) survival time 

was defined as the period between the date of surgical excision of the primary melanoma and 

date of death or last date of follow-up. As melanoma specific survival data were not available 

from all groups, in order to exclude non-melanoma related deaths, overall survival time was 

truncated at 8 years of follow-up. Cox’s proportional hazards model was used for 

multivariable survival analyses using software R (R Core Team). Hazard ratio estimates were 

calculated for the effect of each of the variants on overall survival and adjusted for sex, 

tumour site, age of diagnosis and Breslow thickness. An additive genetic model was assumed. 

Fitted Cox’s proportional hazards models were used for each study to estimate per-allele 

effects and standard errors that were then used for random effects meta-analysis using R 

software. Several bioinformatic analyses using different tools were also carried out to 

determine whether rs2249844 has a putative functional effect. Additionally, gene expression 

levels were analysed with relation to survival, ulceration and presence of angiolymphatic 

invasion using primary and metastatic formalin-fixed, paraffin-embedded tumour samples 

from Leeds with the Cox proportional hazards model and Mann–Whitney U-test. 
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33..11..  OOrriiggiinnaall  ppaappeerr  II..  AAnnaallyyssiiss  ooff  LLaattvviiaann  ffaammiilliiaall  mmeellaannoommaa  

ppaattiieennttss  sshhoowwss  nnoovveell  vvaarriiaannttss  iinn  tthhee  nnoonnccooddiinngg  rreeggiioonnss  ooff  CCDDKKNN22AA  

aanndd  tthhaatt  tthhee  CCDDKK44  mmuuttaattiioonn  RR2244HH  iiss  aa  ffoouunnddeerr  mmuuttaattiioonn..    
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mmuuttaattiioonn::  pphheennoottyyppiicc  pprrooffiillee  aanndd  aassssoocciiaattiioonnss  wwiitthh  MMCC11RR  vvaarriiaannttss  
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33..33..  OOrriiggiinnaall  ppaappeerr  IIIIII..  MMeellaannoommaa  rriisskk  aassssoocciiaatteedd  wwiitthh  MMCC11RR  

ggeennee  vvaarriiaannttss  iinn  LLaattvviiaa  aanndd  tthhee  ffuunnccttiioonnaall  aannaallyyssiiss  ooff  rraarree  vvaarriiaannttss  
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33..55..  OOrriiggiinnaall  ppaappeerr  VV..  IInnhheerriitteedd  vvaarriiaannttss  iinn  tthhee  MMCC11RR  ggeennee  aanndd  

ssuurrvviivvaall  ffrroomm  ccuuttaanneeoouuss  mmeellaannoommaa::  aa  BBiiooGGeennooMMEELL  ssttuuddyy    
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33..66..  OOrriiggiinnaall  ppaappeerr  VVII..  TThhee  llaacckk  ooff  EE331188KK  MMIITTFF  ggeerrmmlliinnee  

mmuuttaattiioonn  iinn  LLaattvviiaann  mmeellaannoommaa  ppaattiieennttss  

  



103 

 

  



104 

 

  



105 

 

33..77..  OOrriiggiinnaall  ppaappeerr  VVIIII..  LLooww--ppeenneettrraannccee  mmeellaannoommaa  rriisskk  ggeennee  
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33..88..  OOrriiggiinnaall  ppaappeerr  VVIIIIII..  IInnhheerriitteedd  vvaarriiaattiioonn  iinn  tthhee  PPAARRPP11  ggeennee  

aanndd  ssuurrvviivvaall  ffrroomm  mmeellaannoommaa  
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44..  DDIISSCCUUSSSSIIOONN  

This thesis reports associations between various germline variants and melanoma risk 

using data from the Latvian population. Several previous studies have reported the role of 

genetic variants in CDKN2A and CDK4 on melanoma in the Latvian population mainly in a 

family setting (Pjanova et al. 2009; Pjanova et al. 2007; Pjanova et al. 2006a; Pjanova et al. 

2006b; Pjanova et al. 2003). This work has continued and expanded research of melanoma 

genetics in the Latvian population. 

Since the very beginning of the research of germline genetic factors underlying 

melanoma risk and development in 1990-ies, the field has largely expanded. The first studies 

were mostly dedicated for variations in two high melanoma risk genes CDKN2A and CDK4 in 

melanoma families, however, soon enough it was established that changes in these genes are 

found only in about half of melanoma families leading to the conclusion that there must be 

other still unknown genes involved in disease development in these families. 

44..11..  HHiigghh  mmeellaannoommaa  rriisskk  ggeenneess  iinn  tthhee  LLaattvviiaann  ppooppuullaattiioonn  

4.1.1. CDKN2A 

CDKN2A is known as the main high melanoma risk gene all around the world, and 

many studies have demonstrated its role in melanoma development in families all over the 

world (Potrony et al. 2015). Previous studies in the Latvian population have identified several 

variants in CDKN2A, however, none of them showed a convincing association with 

melanoma (Pjanova et al. 2009; Pjanova et al. 2007; Pjanova et al. 2003). These studies 

examined protein coding, 5’ and 3’ untranslatable regions of CDKN2A. In the study presented 

here analysis also included deeper CDKN2A intron sequences as well as both promoter 

regions.  

Using Multiplex Ligation-dependent Probe Amplification (MLPA) approach, a novel 

deletion c.-20677_ 20682delGTACGC in the promoter region of CDKN2A alternative product 

p14ARF was detected in a patient who had developed melanoma at a relatively early age of 

40. His father was diagnosed with melanoma at the age of 78. Unfortunately, DNA material 

from the father or other family members was not available for analysis therefore it was not 

possible to estimate deletion segregation with the disease within this family. Genotyping of 

211 sporadic melanoma patients and 326 control persons demonstrates a statistically 

significant association between the deletion and melanoma with OR=6.35 and p=0.02, 

however, data should be interpreted cautiously due to the limited study power. Previous 

studies have detected up to several kbp large melanoma-associated deletions affecting more 

than one exon of CDKN2A (Helsing et al. 2008; Lesueur et al. 2008; Knappskog et al. 2006; 

Mistry et al. 2005). The deletion found in this study is much smaller and located rather far 

from the coding region. However, several single nucleotide variants within promoter region 

of p16INK4A—the second product of the CDKN2A—have previously been demonstrated to 

have an association with familial melanoma and some of them are also proven to be 

functionally relevant (Andreotti et al. 2016; Bisio et al. 2010; Harland et al. 2000; Liu et al. 

1999). Deletion c.-20677_ 20682delGTACGC could also potentially affect p14ARF 

transcriptional regulation through an autoregulatory feedback loop that involves TP53 and 

MDM2 (Robertson & Jones 1998). 

Besides 6bp p14ARF promoter deletion, a novel intronic CDKN2A variant 

IVS2+82C>T was discovered in a melanoma patient with one case of melanoma and several 

cases of other cancer types in the family. Variant IVS1+1569T>A (c.150+1569T>A; 

rs138967562) was found in two melanoma patients with a family history of melanoma as well 



119 

 

as other types of cancer. This variant has not previously been described in relation to 

melanoma. Genotyping in the case-control sample did not reveal a statistically significant 

association within the sporadic melanoma patient group. Previous studies have described 

other variants located within CDKN2A introns associated with melanoma in families. Some of 

them are located in splice sites and cause aberrant splicing, for example, IVS1-1G>C (Sargen 

et al. 2016; Hocevar et al. 2006; Petronzelli et al. 2001) or IVS2+1G>T (Loo et al. 2003; 

Rutter et al. 2003; Hussussian et al. 1994). Intronic variants discovered in this study are 

located far from canonical splice acceptor and donor sites, however, other studies describe 

several deep intron variants such as IVS1+1104C>A, IVS1-1104C>G and IVS2-105A>G that 

are associated with melanoma development within families and the latter also creates a false 

splice donor site (Goldstein et al. 2006; Harland et al. 2005a; Harland et al. 2001). Thus, 

variants described in the current study could also potentially be functionally important, 

however, further studies are required. 

A plausible explanation for the absence of CDKN2A disease causing variants in 

Latvian melanoma families might be the fact that these two recurrent cases within the family 

are actually sporadic melanomas and segregation is a simple coincidence or there might be 

shared environmental factors. Given the fact that several other high risk genes have been 

discovered in recent years, and there is a wide spectrum of known medium and low 

melanoma risk genes, alternatively, disease in these families might be caused by some 

currently unknown underlying genetic factor or combination of them. 

4.1.2. CDK4 

The second high melanoma risk gene analysed within the framework of the thesis 

study was CDK4. Previously two Latvian melanoma families carrying variant in CDK4 hot-

spot position p.Arg24His have been described (Pjanova et al. 2009; Pjanova et al. 2007). This 

study reports the third CDK4 melanoma family in Latvia with the same missense change 

p.Arg24His. The patient was 40 years old at the time of diagnosis and his father, grandmother 

and two of the grandmother’s siblings also had melanoma. Besides melanoma, several other 

types of cancer were observed in the family history. Most of the known Latvian melanoma 

families described so far comprise two melanoma cases, however, all three currently known 

Latvian CDK4 families including the third family reported here have five confirmed 

melanoma cases. Haplotype analysis of the third Latvian CDK4 melanoma family showed 

that this haplotype is similar to that of the two previously described families indicating a 

founder effect (Pjanova et al. 2009). 

Besides p.Arg24His, another missense change p.Arg24Cys has been found in several 

melanoma families around the world. Haplotype analysis shows that these variants have 

independently arisen multiple times in different populations indicating that codon 24 is a 

mutational hot-spot (Molven et al. 2005). During the thesis study, a larger international 

collaborative study was carried out where information and data about all CDK4 melanoma 

families known at that time were analysed. As a part of the thesis information about all three 

Latvian melanoma families, including phenotype data, was collected and summarized as well 

as additional genotyping of MC1R gene within these three families was performed. Data was 

sent to the collaborative partners and included in the overall analysis. Altogether information 

was collected about 17 melanoma families from 8 countries. Given the fact that at the time of 

the study execution, only such a small number of CDK4 melanoma families had been 

reported, three families from Latvia is a relatively large number. Knowing that so far only one 

change in CDKN2A promoter has been associated with melanoma, CDK4 remains the main 

high melanoma risk in Latvia and, given the small population (less than two million 
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inhabitants), it exhibits a strong founder effect resulting in relatively high occurrence of 

CDK4 variant in the Latvian population. The overall study results demonstrated that CDK4 

melanoma families are phenotypically characterized by an early disease onset, development 

of MPM and increased number of atypical naevi—features that are all also characteristic to 

CDKN2A melanoma families (Taylor et al. 2017; Taylor et al. 2016; Pedace et al. 2011; 

Goldstein et al. 2007). Thus CDK4 and CDKN2A families phenotypically cannot be 

distinguished. Therefore CDK4 exon 2 should be tested whenever a melanoma family is 

negative for CDKN2A disease causing variants. 

44..22..  MMeeddiiuumm  aanndd  llooww  mmeellaannoommaa  rriisskk  ggeenneess  iinn  tthhee  LLaattvviiaann  ppooppuullaattiioonn  

Currently three genes have been titled as medium melanoma risk genes (MC1R, 

MITF, CLC45A2). Within the framework of this study two of these genes (MC1R, MITF) 

were analysed in the Latvian population. 

4.2.1. MC1R 

After the discovery and initial studies of CDKN2A and CDK4, MC1R was one of the 

next major melanoma risk gene candidates as it functionally is highly involved in 

pigmentation synthesis regulation. In the fair-skinned population, this gene is highly 

polymorphic in the general population (Pérez Oliva et al. 2009) with overall variant 

frequency in Europe ranging from about 20-40% in Mediterranean countries and increasing 

according to geographical latitude to 60% in the British Isles and Nordic countries (Höiom et 

al. 2009; Gerstenblith et al. 2007). The study presented here is the first study of MC1R gene 

variants and their association with melanoma risk in the Latvian populations. According to 

the results of this study, frequency of MC1R variants in the Latvian population is 58% that is 

close to the British Isles and Sweden (Höiom et al. 2009; Gerstenblith et al. 2007). 

Numerous association studies in different populations all over the world have 

investigated the influence of MC1R variants on genetic predisposition to melanoma and many 

of these studies have demonstrated associations between MC1R variants and the risk of 

melanoma development, with an OR up to seven (Table 2 in the Literature). The magnitude of 

risk also depends on the number and type of the MC1R variants present (Pasquali et al. 2015; 

Williams et al. 2011; Kanetsky et al. 2010). Gene dosage effect was replicated in the study 

presented here where presence of two or more MC1R variants is associated with twice higher 

risk than the presence of only one MC1R variant. Individually four MC1R variants display a 

statistically significant association with an increased melanoma risk in the Latvian population, 

namely, p.Val60Leu, p.Val92Met, p.Arg151Cys, and p.Arg160Trp, with the strongest 

association being for p.Arg151Cys (OR 4.47; 95% CI=2.19–9.14, p<0.001). Variants 

p.Arg151Cys and p.Arg160Trp demonstrate very strong association in most of the association 

studies as well as meta-analyses (Table 2 in the Literature) (Antonopoulou et al. 2015; 

Pasquali et al. 2015; Williams et al. 2011) and this study replicates these results in the 

Latvian population. Furthermore, functional consequences of both of these variants on 

receptor activity have been well described (Table 1 in the Literature).  

The association between the remaining two MC1R variants p.Val60Leu and 

p.Val92Met and an increased melanoma risk varies more among different populations. About 

half of the studies show no association between p.Val60Leu and the risk of melanoma, 

however, a positive association has been demonstrated in studies from Swedish (Höiom et al. 

2009), Polish (Debniak et al. 2006), Dutch (Kennedy et al. 2001), French (Matichard et al. 

2004), Greek (Stratigos et al. 2006) and Spanish populations (Scherer et al. 2009; 

Gudbjartsson et al. 2008; Fernandez et al. 2007) and it is also reflected in meta-analyses with 
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OR ranging from 1.14 to 1.47 (Antonopoulou et al. 2015; Pasquali et al. 2015; Williams et al. 

2011). Variant p.Val92Met shows no association with melanoma in the majority of the 

studies, still an association has been found in Dutch (Kennedy et al. 2001), Spanish 

(Fernandez et al. 2007) and US populations (Han et al. 2006a) as well as in meta-analyses 

with ORs 1.08–1.55 (Antonopoulou et al. 2015; Pasquali et al. 2015; Williams et al. 2011). 

While several other variants are associated with melanoma risk in different populations, none 

of them are associated with melanoma risk in the Latvian population; however, it could be 

explained by relatively low variant frequency and insufficient sample size. For example, 

variant p.Asp84Glu is associated with melanoma in Norwegian (Helsing et al. 2012), Swedish 

(Gudbjartsson et al. 2008), German (Scherer et al. 2009; Mossner et al. 2007), Dutch 

(Kennedy et al. 2001), French (Guedj et al. 2008) and Australian (Duffy et al. 2010a) 

populations and another variant p.Asp294His is associated with melanoma risk in Swedish 

(Gudbjartsson et al. 2008), French (Guedj et al. 2008), Spanish (Ibarrola-Villava et al. 2010; 

Scherer et al. 2009; Gudbjartsson et al. 2008; Fernandez et al. 2007), Italian (Fargnoli et al. 

2006), Australian (Duffy et al. 2010a) and US (Guan et al. 2013; Council et al. 2009; Han et 

al. 2006a) populations, and both of these variants are associated with melanoma risk in meta-

analyses (Antonopoulou et al. 2015; Pasquali et al. 2015; Williams et al. 2011). However, in 

the Latvian population variants p.Asp84Glu and p.Asp294His were found only in one patient 

each and were not found in controls, therefore association with melanoma risk could not be 

properly evaluated. A couple of other variants are associated with melanoma in several 

populations—p.Arg142His in German (Scherer et al. 2009) and Greek (Stratigos et al. 2006) 

populations, variant p.Ile155Thr in German (Scherer et al. 2009) and Spanish populations 

(Fernandez et al. 2007) and Ashkenazi Jews (Galore-Haskel et al. 2009), and variant 

p.Arg163Gln in Polish population (Debniak et al. 2006) as well as all three of these variants 

in meta-analyses (Antonopoulou et al. 2015; Pasquali et al. 2015; Williams et al. 2011), 

however, in our population they were found with similar frequencies in patients and controls. 

As sample size is the main limitation of this association study, a larger sample possibly would 

reveal effects of both rare variants and those with similar frequencies within these patient and 

control groups. The same should be mentioned with regards to subgroup analyses as some of 

the subgroups were small with limited ability to detect associations. It also should be noted 

that due to the sample size multiple testing for the association analysis was not performed, 

which might have led to the overestimation of some p-values. The results also could possibly 

not reflect the complete truth as the controls enrolled in the study on a volunteer basis, which 

may have caused a selection bias. 

Besides MC1R, some other variants within the chromosomal region encompassing 

MC1R have demonstrated association with melanoma risk in GWAS studies—rs258322 

(located within an intron of the cyclin-dependent kinase 10 gene, CDK10), rs4785763 

(located within the AFG3-like matrix AAA peptidase subunit 1 of the pseudogene AFG3L1P) 

and rs8059973 (located within flanking 5'UTR of dysbindin domain containing 1 gene, 

DBNDD1) (Barrett et al. 2011; Bishop et al. 2009). Moreover, meta-analyses indicate that 

rs4785763 and rs258322 are associated with melanoma risk (Antonopoulou et al. 2015; 

Gerstenblith et al. 2010) and recently the associations between both variants and melanoma 

were replicated in a two-stage GWAS (Ransohoff et al. 2017). However, none of the 

genotyping arrays used in these GWAS contained MC1R variants. Therefore a question 

existed, whether the risk conveyed by variants in the 16q24.3 region is independent or is it 

accounted for by MC1R variants. Variants rs258322 and rs4785763 have also demonstrated 

association with hair colour, skin pigmentation, and tanning in several pigmentation GWASs, 

and in these studies after the adjustment for MC1R variants p.Arg151Cys, p.Arg160Trp and 
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p.Asp294His these associations mostly disappeared (Gerstenblith et al. 2010; Nan et al. 

2009b; Han et al. 2008; Sulem et al. 2007). In order to characterize these interactions in 

conjunction with melanoma, variants in the MC1R were juxtaposed with the above mentioned 

non-coding variants in the 16q24.3 region as well as detailed haplotype analysis was 

performed. Results confirmed previous observation that variant p.Arg151Cys among all 

MC1R variants have the strongest association with melanoma in our population. Further 

analysis also showed that p.Arg151Cys retained its significance in multivariate models. 

Besides p.Arg151Cys, small nominal association with melanoma was also detected for variant 

rs258322, however, it did not enter any multivariate model after the inclusion of 

p.Arg151Cys. In addition, the LD analysis suggested a rather high correlation between 

p.Arg151Cys and rs258322. Altogether these results demonstrate that the observed influence 

on melanoma risk by rs258322 can most likely be accounted by p.Arg151Cys. Previously one 

study presented in a conference (Demenais et al. 2009) has also explored whether the 

association signals in the 16q24.3 region might be accounted for by MC1R variants using 

dataset in which the associations of chromosome 16 variants with melanoma were first 

discovered (Bishop et al. 2009). Both their stepwise regression models and haplotype 

analyses showed that the rs258322’s association was accounted for by MC1R variants 

p.Arg151Cys and p.Arg160Trp.  

Another variant nominally associated with an increased risk of melanoma was 

rs4785763. Unlike rs258322, variant rs4785763 was selected by stepwise regression, with and 

without cofactors, alongside the MC1R variant p.Arg151Cys thus suggesting some degree of 

independence between these variants. It was also supported by the respective haplotype 

analyses and by the rather small LD between these two variants (r
2
 = 0.160). Interestingly, 

rs4785763 demonstrates some interaction with age and sex, as the inclusion of age and sex in 

both univariate and multivariate regression models enhanced the power of detecting 

rs4785763 as significant. Variant rs4785763 is located ~80 kb away from MC1R and resides 

within the pseudogene AFG3L1P that is orthologous to the murine gene Afg3l1. Murine 

Afg3l1 encodes a subunit of the ATP-dependent proteolytic complex localized in the inner 

membranes of mitochondria, while the human orthologue only produces noncoding mRNA 

(Kremmidiotis et al. 2001). While rs4785763 is located only in a pseudogene, evidence 

suggests that pseudogene products play a variety of roles in cancer biology (Poliseno et al. 

2015) and one could speculate that genetic variants in these transcripts also might have some 

influence on the activity of pseudogene products. In the previous study (Demenais et al. 

2009) rs4785763 effect similarly to rs258322 was explained by the presence of MC1R 

variants, however, results from study presented here suggests that rs4785763 operate quite 

independently from p.Arg151Cys. 

Several studies have noted that the association of MC1R variants with melanoma risk 

was stronger or limited to persons with protective cutaneous phenotypes, that is, persons with 

darker hair and darker skin (Pasquali et al. 2015; Kanetsky et al. 2010; Raimondi et al. 2008; 

Matichard et al. 2004; Kennedy et al. 2001; Palmer et al. 2000). The study presented here 

also shows that after stratification for the different pigmentation characteristics, MC1R still 

contributes to melanoma risk, demonstrating that MC1R variants and pigmentation are 

independent melanoma risk factors and the MC1R genotype provides information about 

melanoma risk beyond that of the cutaneous phenotype. Thus the combination of MC1R 

genotype and phenotype data might be important to the prediction of melanoma risk in 

persons with otherwise protective cutaneous phenotypes. It should be noted that this study 

used self-reported pigmentation characteristics that, due to individual subjectivity, might be 

inaccurate. 
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Some evidence shows that MC1R variants are associated with one of the major 

measures of tumour progression—tumour thickness (Landi et al. 2005) especially in sun-

sensitive individuals (Taylor et al. 2015), however, similarly to the study of the Greek 

population (Stratigos et al. 2006) data from the study presented here does not support this 

finding. Low percentage of thin tumours in Latvian melanoma patients hampers the likelihood 

to find the difference between MC1R variant carriers versus non-carriers stratified by tumour 

thickness.  

This study, however, found an association between the presence of MC1R variants 

and age of melanoma onset. Carriers of MC1R variants were older than non-carriers (55 vs 49 

years) thus suggesting a possible protective effect of MC1R variants as indicated by the 

belated age of onset. Previous studies had not detected any association between MC1R 

variants and age of disease onset (Stratigos et al. 2006; Landi et al. 2005). Interestingly, a 

large collaborative study that explored effects of MC1R variants on the survival of melanoma 

in altogether 3060 patients from 10 cohorts found association between the presence of MC1R 

variants and improved disease survival (HR=0.78, 95% CI=0.65–0.94) thus supporting the 

observation from the Latvian population. A sample from the Latvian population was also 

included in this large survival study and while the sample size was relatively small (n=137), 

results from the Latvian population are in concordance with the combined results (HR=0.87). 

While initially these results seem counterintuitive as it is well known that MC1R variants 

increase melanoma risk and therefore it is very tempting to think that they might also be 

associated with a worse disease prognosis, however, underlying mechanisms of disease 

development are more complex. In this case the protective effect of MC1R variants could be 

explained by non-pigmentary effects of one of its downstream transcription factors MITF. 

MC1R is known to have a modifying effect in families with CDKN2A variants 

(Demenais et al. 2010; Fargnoli et al. 2010; Chaudru et al. 2005; Box et al. 2001a; van der 

Velden et al. 2001); however; it could not be tested in the Latvian sample due to the absence 

of disease causing CDKN2A variants in melanoma families. The comprehensive study of 

CDK4 families presented above revealed that there might also be some modifying effect of 

MC1R variants in CDK4 families. Summarized data showed that CDK4 positive unaffected 

family members had significantly fewer MC1R RHC variants compared to either CDK4 

positive affected individuals or a CDK4 negative control group. In addition, patients with 

MPM had more MC1R RHC variants than patients with single primary melanoma. This 

suggests some enhancing effect of MC1R variants on melanoma development.  

The study of the MC1R variants shown here also explored functional effects of the 

novel and rare variants found in the Latvian population. Previous studies have mostly 

explored functional effects of the nine most common and strong MC1R non-synonymous 

variants p.Val60Leu, p.Asp84Glu, p.Val92Met, p.Arg142His, p.Arg151Cys, p.Ile155Thr, 

p.Arg160Trp, p.Arg163Gln and p.Asp294His. These variants code partially ‘loss-of-function’ 

receptors with diminished plasma membrane trafficking and ability to activate the cAMP 

pathway (Table 1 in the Literature). However, there are some studies that have also 

investigated functional consequences of some not so common MC1R variants and 

demonstrate that ‘loss-of-function’ variants are found among them as well (Garcia-Borron et 

al. 2005; Sánchez-Más et al. 2002; Jiménez-Cervantes et al. 2001a; Jiménez-Cervantes et al. 

2001b). As a part of the MC1R study, an analysis of eight previously functionally 

uncharacterized rare MC1R variants found in the Latvian population was carried out. Four of 

the rare variants identified in the study p.Phe45Leu, p.Ser83Leu, p.Gly89Arg, and 

p.Thr95Met are located in the receptor region that is involved in the formation of a ligand-

binding pocket (Prusis et al. 1997) and thus potentially could alter receptor ligand binding 
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properties. One more variant potentially involved in ligand binding was p.Asp121Glu as 

previously p.Asp121Lys, another variant causing a different amino acid substitution in the 

same position, has been shown to be directly involved in the receptor ligand binding process 

(Yang et al. 1997). Using in silico tools all five variants p.Phe45Leu, p.Ser83Leu, 

p.Gly89Arg, p.Thr95Met and p.Asp121Lys participating in ligand binding were predicted to 

be damaging. Three other variants p.Val165Ile, p.Val188Ile, and p.Arg213Trp in silico were 

predicted to be benign, however, results from in vitro analyses were not completely consistent 

with in silico predictions. Variants p.Phe45Leu and p.Thr95Met, that in silico were predicted 

to be damaging, resembled wild type receptors in terms of both plasma membrane trafficking 

and signalling via the cAMP pathway (variant p.Phe45Leu even showed an increased level of 

cAMP response compared with wild type). Variants p.Val165Ile and p.Val188Ile that were 

predicted to be benign, indeed had normal cell surface density and normal or only slightly 

reduced signalling via the cAMP pathway therefore they most likely are benign as predicted 

in silico and their functional activity are comparable to the wild type receptor. The rest of the 

MC1R non-synonymous variants p.Ser83Leu, p.Gly89Arg, p.Asp121Lys and p.Arg213Trp in 

vitro displayed various degrees of diminished cAMP signalling, most likely due to the 

reduction in cell surface expression, as shown by confocal microscopy. Thus four of eight 

rare MC1R variants p.Ser83Leu, p.Gly89Arg, p.Asp121Glu, and p.Arg213Trp are comparable 

to ‘loss-of-function’ RHC alleles that have been widely described before (Table 1 in the 

Literature). One of the limitations of this study regarding the in vitro analyses of the MC1R 

variants was that the model system consisted of cells without melanocytic origin (BHK—

baby hamster kidney cells). However, previous studies on other MC1R variants were 

performed using different cell lines and the overall result tendencies remained the same 

(Beaumont et al. 2005). In addition, this study also successfully replicated effects of the well-

characterized variant p.Arg151Cys and therefore the overall results from this study should be 

comparable with data from similar studies. 

To sum up, results from the functional analyses demonstrate that a significant subset 

of rare MC1R variants is functionally relevant. Different association studies have used various 

approaches to categorising less common and novel MC1R variants and according to these 

results many of them should be treated similarly to commonly known RHC variants. 

Practically MC1R variants might influence risk of melanoma through various 

pathways. Firstly, diminished receptor activity leads to insufficient production of protective 

pigments in the skin that might lead to increased somatic mutation rate (Robles-Espinoza et 

al. 2016). There are also a couple of more direct observations of the effect of MC1R variants 

on the risk of melanoma. MC1R with variants might have an advantage in early melanoma 

development due to better proliferation rates and more effective binding of melanoma cells to 

the extracellular matrix (Robinson & Healy 2002). MC1R is also expressed in a variety of 

immune cells, which suggests potential roles in immune-related functions (Maaser et al. 

2006). 

4.2.2. MITF 

The second intermediate melanoma risk gene investigated within the thesis was a 

wide profile transcription factor coding gene MITF that functionally belongs to the same 

signalling pathway as the above described medium melanoma risk gene MC1R. Melanoma 

risk has been associated with a particular non-synonymous MITF variant p.Glu318Lys that 

has been demonstrated to have an association with familial as well as sporadic melanoma in 

several studies from different populations—Australian and the United Kingdom (Yokoyama 

et al. 2011), French (Bertolotto et al. 2011), Italian (Ghiorzo et al. 2013) as well as a large 
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Genes, Environment, and Melanoma (GEM) study from Australia, Italy, Canada, and the 

United States (Berwick et al. 2014). These studies showed that variant p.Glu318Lys is rare 

(MAF<0.01), it segregates with the disease in several melanoma families, has an association 

with sporadic melanoma with ORs ranging from 2 to 5 and also has an association with RCC 

and pancreatic cancer. However, a study from Poland found no association between 

p.Glu318Lys and melanoma risk. Among 748 melanoma patients analysed in the Polish 

study, there were only two heterozygous carriers of p.Glu318Lys, resulting in a MAF of only 

0.001. In addition, no association was found between p.Glu318Lys and other types of cancer 

(kidney, lung, breast, and prostate) (Gromowski et al. 2014). In the study presented here a 

screening of the MITF variant p.Glu318Lys was carried out in the Latvian population. 

Altogether 702 persons (477 melanoma patients and 225 healthy controls) were included in 

the study with a particular focus on patients with a family history of melanoma, pancreatic 

cancer, MPM and early onset patients who all were negative for high melanoma risk variants 

in CDKN2A and CDK4 genes. Therefore at the time of the study MITF variant p.Glu318Lys 

was a good melanoma risk gene candidate in the Latvian population. However, variant 

p.Glu318Lys was not found in any of the 702 persons analysed. A possible explanation is that 

this study simply was underpowered due to an insufficient sample size and a much larger 

sample is needed to detect variant alleles and carry out statistical analysis. These 

discrepancies between studies can also be explained by different characteristics of the cases 

that were included in the analyses. This study in the Latvian population similarly to the Polish 

study analysed unselected cases, whereas in studies that detected association between 

p.Glu318Lys and melanoma risk, genetically enriched cases were analysed. Another 

explanation is genetic differences between populations. Similar population stratification 

affecting relatively geographically close Polish and Latvian populations has been observed 

with the CDKN2A variant p.Ala148Thr, which has an association with melanoma in Latvian 

and Polish populations, unlike in several other populations (Pjanova et al. 2007). These 

results suggest that MITF variant p.Glu318Lys might not be considered a contributor to 

melanoma risk in this particular geographical region. 

4.2.3. TP53 and MDM2 

Besides high and medium melanoma risk genes, so far at least 30 low melanoma risk 

loci have been identified (Table 3 in the Literature). In this study closer attention was paid to 

TP53 and MDM2 that functionally are interconnected with MC1R in pigmentation synthesis 

signalling pathway. MC1R is activated by α-MSH that initiates an intracellular signal cascade 

leading to the production of the photoprotective pigment melanin (Hunt et al. 1995). 

Hormone α-MSH in turn is produced in posttranslational processing of pro-opiomelanocortin 

(POMC). It has been demonstrated that after UV irradiation POMC promoter is activated by 

one of the major tumour suppressor proteins TP53 (Cui et al. 2007). Almost half of human 

cancers harbour somatic TP53 mutations (Kandoth et al. 2013) and the impact of TP53 on 

cancer is not limited only to somatic changes but may also manifest itself through germline 

variants (Stracquadanio et al. 2016). 

The most studied TP53 germline variant with regard to melanoma is p.Pro72Arg 

(c.215C>G; rs1042522). It is located in a proline rich domain of TP53 that has an important 

role in TP53-mediated apoptosis (Sakamuro et al. 1997; Walker & Levine 1996). 

Interestingly, Arg and Pro display different functional activity and properties. Arg allele 

induces apoptosis better and faster than Pro (Pim & Banks 2004; Sullivan et al. 2004; 

Dumont et al. 2003; Thomas et al. 1999), while Pro allele induces cell-cycle arrest better than 

Arg (Pim & Banks 2004), more efficiently activates transcription (Thomas et al. 1999) and 
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induces TP53-dependent DNA-repair genes (Siddique & Sabapathy 2006). Both alleles also 

differ in their geographical distribution—Arg allele is more prevalent in individuals having 

lighter skin and living in higher latitudes while Pro allele is more widespread in populations 

with darker skin that live closer to equator, most probably due to evolutionary selection 

(Beckman et al. 1994). Results from the Latvian population are in concordance with this 

observation—Arg allele is more common in the Latvian population than Pro allele. In 

previous studies from other populations a positive association with melanoma has been found 

for both alleles—Arg in Brasilian and US populations (Oliveira et al. 2013; Li et al. 2008b; 

Shen et al. 2003) and Pro in Greek and German populations (Stefanaki et al. 2007; Gwosdz et 

al. 2006). In the Latvian population the common allele Arg is also more common in 

melanoma patients than controls, however, results from this study did not find a positive 

association between Arg allele and melanoma risk. Similarly, studies of several other 

populations also have not found an association between melanoma and any of p.Pro72Arg 

alleles—the Dutch population (Bastiaens et al. 2001c), US Nurses’ Health Study (Han et al. 

2006b), Scottish (Povey et al. 2007) and Italian population studies (Capasso et al. 2010). 

However, in a recent meta-analyses study a small effect attributable to Arg allele was 

identified when specific genotype subgroups (Arg/Pro vs Pro/Pro) were analysed (Geng et al. 

2015). 

Previously only one study has analysed relationships between p.Pro72Arg and MC1R 

gene variants where authors found that the association of Pro allele with melanoma risk was 

stronger for patients carrying Pro/Pro homozygote who simultaneously did not carry MC1R 

RHC variants p.Arg151Cys, p.Arg160Trp and p.Asp294His (OR=2.99, 95% CI=1.02–8.78) 

(Stefanaki et al. 2007). In the study presented here, when the presence of MC1R gene RHC 

variants were taken into consideration, there were more melanoma patients than controls with 

Arg/Arg genotype and MC1R variants (OR=2.76; 95% CI 1.02–7.52, p=0.040). No such 

association was found in the presence of p.Pro72Arg Pro/Pro or Pro/Arg genotype leading to 

the conclusion that Arg/Arg genotype of variant p.Pro72Arg in combination with MC1R 

variants has an additional impact on melanoma risk. 

TP53 is negatively regulated by an auto-regulatory feedback loop with E3 ubiquitin 

ligase MDM2. MDM2 intron 1 comprises an alternative promoter P2 to MDM2 that is 

induced by TP53 (Zauberman et al. 1995). MDM2 variant c.14+309T>G (rs2279744) is 

located within this promoter and it has been shown that the G allele of rs2279744 increases 

the affinity for transcription activation factor Sp1 thus leading to increased MDM2 expression 

and subsequently to TP53 inhibition that might promote tumour formation (Bond et al. 2004). 

Association studies for melanoma demonstrate an association between MDM2 variant 

rs2279744’s G/G genotype and melanoma risk depending on age and sex. A couple of studies 

have demonstrated an association between the rs2279744 minor allele homozygote G/G and 

melanoma risk, especially for younger women or women with hereditary melanoma (Thunell 

et al. 2014; Firoz et al. 2009). Contrary to the previous, another study showed that women 

with G/G genotype might actually be at lower risk for developing melanoma at a younger age 

(Cotignola et al. 2012). One study also gave evidence for an association between s2279744 

genotype G/G and presence of tumours with Breslow thickness >0.75mm (Capasso et al. 

2010). However, overall, studies do not tend to find a convincing association between the 

MDM2 variant and melanoma risk (Oliveira et al. 2014; Capasso et al. 2010; Nan et al. 

2009c), and meta-analysis supports this lack of association (Qin et al. 2015). This indicates 

that this variant’s association with melanoma risk is present only in smaller subgroups. In the 

Latvian population c.14+309T>G also did not show association with melanoma risk. 
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4.2.4. PARP1 

Another low risk gene briefly examined within this study is poly(ADP-ribose) 

polymerase 1 gene (PARP1), particularly variant rs2249844 that has previously been shown 

to be associated with a reduced risk of melanoma in GWAS (MacGregor et al. 2011). 

Altogether 243 cases from the Latvian population were included in a large collaborative study 

that comprised altogether 8599 cases from 11 melanoma cohorts all over the world. Results 

from all cohorts combined demonstrate that minor allele rs2249844 is associated with an 

increased risk of death (HR=1.16, 95% CI=1.04–1.28), and results from the Riga cohort were 

consistent with overall results (HR=1.11, 95% CI=0.75–1.66).  These results intuitively 

contradict with results from GWAS where minor allele of rs2249844 was associated with 

reduced risk, but here it shows association with poor survival. However later Law et al. 

(2015b) demonstrated similar opposite effects in study of another PARP1 variant 

rs3219090—variant, that is in strong linkage disequilibrium with rs2249844. Similarly 

paradoxical results were detected in another study of MC1R discussed above (Paper V) where 

presence of melanoma risk associated MC1R variants was associated with better melanoma 

survival. Such results illustrate complex underlying functional relations between these genes 

and variations within them, and other genetic and cellular factors. 

44..33..  CCoonncclluuddiinngg  rreemmaarrkkss  aanndd  ffuuttuurree  pprroossppeeccttss  

Studies of melanoma risk genes in the Latvian population so far have demonstrated 

that the main risk gene in Latvian melanoma families is CDK4. Apart from one deletion in 

p14ARF promoter, no other melanoma associated variants have been found in CDKN2A—the 

gene that is considered to be the main gene associated with familial melanoma development 

worldwide. Other medium and low risk genes examined in the Latvian population so far 

contribute a small effect in melanoma predisposition both in a family setting and sporadic 

cases, which is in concordance with overall findings in other populations worldwide. 

Researchers are still looking for other high risk genes in about half of the melanoma families 

with ‘missing heritability’ and several candidates have already been identified as shown in the 

literature review. We have also created a HaloPlex
TM

 targeted Ion Torrent sequencing panel 

that included three of these novel high melanoma risk genes—BAP1, POT1, TERT (as well as 

already well known high melanoma risk genes CDKN2A and CDK4) for analyses of patients 

with an increased likelihood to have a stronger genetic component contributing to disease 

development. Those were patients with a family history of melanoma and/or other types of 

cancers, patients with an early age of disease onset (<40 years) and patients with multiple 

melanoma. So far, we have found several novel or rare potentially functionally significant 

genetic variants in genes BAP1, POT1 and TERT. A rare BAP1 variant p.Pro293Leu was 

discovered in one of the UM patients. A novel nonsense POT1 variant p.Leu153* was 

detected in a melanoma patient with multiple other cancer cases in the family. A novel POT1 

splice donor site variant c.546+1G>A was found in a young (28 year old) melanoma patient 

with other cancer cases in the family. In several young patients with other types of cancer in 

the family rare TERT variants p.Ala279Thr and p.Ala1062Thr that previously have been 

associated with esophageal, lung cancer and leukaemia were identified. Thus, these initial 

results show that NGS approach has led to the discovery of several novel and potentially 

functionally significant variants associated with melanoma in Latvia; however, these are 

findings that need to be further validated.  



128 

 

CCOONNCCLLUUSSIIOONNSS  

1. For the first time in a Latvian melanoma family disease associated 6 bp deletion 

(c.–20677_ – 20682delGTACGC) in the CDKN2A locus has been discovered and is located in 

the promoter of CDKN2A alternative product p14ARF. 

2. CDK4 gene is the main high-risk gene in Latvian melanoma families so far.  

3. Melanoma families with CDK4 germline variants in codon 24 cannot be 

distinguished phenotypically from CDKN2A positive melanoma families―both are 

characterised by an early onset of disease, increased occurrence of clinically atypical naevi, 

and development of MPM indicating that in a clinical setting, the CDK4 gene should always 

be examined when a melanoma family is negative for CDKN2A disease associated variants. 

4. The highest melanoma development risk in the Latvian population is associated 

with MC1R variant p.Arg151Cys (OR=4.47, 95% CI=2.19–9.14, p0.001), and MC1R 

variants have a gene dosage effect—melanoma risk for carriers of two MC1R variants is twice 

as high (OR=3.98, 95% CI=2.15–7.38, p<0.001) than that of carriers of one variant 

(OR=1.98, 95% CI=1.26–3.11, p=0.003).  

5. After MC1R gene variant carrier stratification according to the pigmentation 

phenotype, the risk of melanoma remained in groups with otherwise protective phenotypes. 

6. A subset of the rare MC1R variants are functionally relevant and significantly 

hamper functional activity of the receptor, therefore they might be important in melanoma 

development and should be considered as the high risk variants in MC1R analysis. 

7. The absence of any consensus MC1R alleles is associated with a significantly 

lower risk of death suggesting a survival benefit for inherited MC1R variants in melanoma 

patients. 

8. In addition to MC1R variant p.Arg151Cys the association with melanoma in 

16q24.3 region was found for variant rs4785763 in pseudogene AFG3L1P, and this variant 

acts independently from p.Arg151Cys. 

9. Medium melanoma risk gene MITF and its variant p.Glu318Lys variant does not 

appear to be significant melanoma risk factor in the Latvian population. 

10. Variants in low melanoma risk genes TP53 (p.Pro72Arg) and MDM2 

(c.14+309T>G) are not associated with melanoma in the Latvian population, except for the 

small impact of TP53 gene variant p.Pro72Arg Arg/Arg genotype in the presence of MC1R 

RHC variants (OR=2.76, 95% CI=1.02–7.52, p=0.04). 

11. The inheritance of a genetic variant rs2249844 of PARP1 gene in melanoma 

patients is associated with an increased risk of death. 
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MMAAIINN  TTHHEESSIISS  FFOORR  DDEEFFEENNCCEE  

1. Variant p.Arg24His in CDK4 gene is the main genetic high melanoma risk factor 

in the Latvian population, and CDK4 families can’t be phenotypically distinguished from 

CDKN2A families. 

2. The main melanoma risk variant in 16q24.3 locus is MC1R variant p.Arg151Cys. 

3. Melanoma risk in the Latvian population increases depending on the number and 

presence of specific MC1R variants irrespectively to pigmentation phenotype. 

4. MC1R variants are associated with positive melanoma survival rate. 

5. Medium melanoma risk gene MITF variant p.Gly318Lys is not a significant 

melanoma risk factor in the Latvian population.  

6. Variants in low melanoma risk genes—p.Pro72Arg in TP53 and c.14+309T>G in 

MDM2—have a minor impact on melanoma risk, but low risk variant rs2249844 in PARP1 

gene is associated with an increased risk of death of melanoma. 
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