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IntroductionIntroductionIntroduction
Alreadly from the very beginnings, the theory of tangents and osculations

in classical differential geometry is an important chapter. This chapter in some
sense is even older than differential geometry itself, because constructions of
tangents was a problem of ancient Greek mathematicians.

Considering the material of this work in wider treatises of differential geom-
etry and calculus, it is easy to notice some inequality in the discussion of some
problems. While the touching of two curves or curves and a surface time to
time is examined quite completely, while investigating it also when the touch
point is singular, but when it comes to a given type of osculating figure, it tends
to be limited to determination of the order of touching, possibly mentioning
that the rank can become larger - i.e., superosculation occurs - only at certain
points of the given curve or surface. It seems that so far only in the case of
special osculating figures, which are uniguely determined, - for line, circle,
conic, and so on, in the plane; for line, plane, plane and sphere in the space -,
superosculation is investigated for each point of the curve.

∗Translated from Latvian by Dainis Zeps
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So the idea came to consider more general cases too, when osculating figure
is not determined uniquely, and as a special example to consider osculating
cylinder for spacial curves.

It turns out, that from such general view looking, mentioned osculating
figures correspond to some exceptional case that has very special features. In
the same time it was possible to ascertain that the notion of distance, that is
used to be applied to characterize order of touching, is not necessaary at all, at
least in the case when we exclude from consideration singular points. At last,
complete paralelism was discovered between problems: to determine osculating
figure for given line, and: to determine characteristic points for one parameter
family of figures.

The fact that this parallelism was not previously used seems to be a conse-
quence of two circumstances: In the study of characteristic points, the equation
to be consider is with one parameter, against which must be derived, and sev-
eral unknowns, - against coordinates of points. For osculating figure, equation
is given with several unknowns - determiners parameters of surface -, but the
only parameter of this equation is set in it only a posteriori, giving coordinates
of point as functions of parameter. To research curve or plane which equation
has only one coordinate and several parameters seems be undertaking without
sense while corresponding problem - to research points which are determined
by one equation with several coordinates and one parameter -, as was said,
sometimes is put in the basis of the theory of envelopes.

Second case, when it comes to looking at osculating figure and characteristic
points at a time, that is, looking at the relationship between the points of
spacial curve and its osculating planes, the perfect parallelism encountered there
time to time is atributed more or less intuitively to projective duality between
point and plane. In fact, not only projective transformations, but in general
continuous transformations of points and tangents keep the relation of second
order touching between transformed figures of curves and families of planes.
This fact is known for a long time, but it seems not to have been followed
enough.

This work is generally performed in the spirit of classical differential geome-
try, which requires all necessary derivatives for all functions, thereby bypassing
sigular points. While the assumption about the existence of derivatives for the
method used here is fundamental, the exclusion of singular points is made for
convenience in order to investigate what happens in general cases. This is done
because the study of singularities in any case is impossible already in fairly sim-
ple cases, for example, in the problem of envelope of one parameter family of
curves for a plane. More close dealing with singularities would require to raise
the volume of the work considerably.

In the first chapter of this work, on the basis of consideration, n dimensional
or arbitrarily characterized space is put. Order of touching of surface and curve,
as well as two curves, is characterized; possiblity to characterize order of touch-
ing of some varieties is shown, and it is checked that, determining in the space
some metric of general nature, characteristics of order of touching are equiva-
lent with usually used. It follows generalizations of two theorems of seemingly
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metrical nature.
When considering one-parameter families of surfaces, the already mentioned

parallelism with the problem of osculation is encountered and the geometric
locations of characteristic points and their properties are considered; also the
concept of a supercharacter point and its order are fixed.

In the third paragraph, the criterion for finding the order of solving the
system of equations is considered; this is necessary for further conclusions - we
could not find such a criterion in the literature.

Next, we study various possibilities for the implementation of superoscu-
lations, indicate the method for finding curves with a maximal tangent with
a given family of surfaces, and indicate the connection of this problem with
singular solutions of differential equations. Simplifications in calculations fol-
low in the study of properties that are invariant with respect to some given
transformation group.

In the second chapter, mainly to illustrate the conclusions of the first chapter,
some issues related to osculating cylinders of spatial curves of three-dimensional
Euclidean space are considered.

In Anninmuiza, April, 1943.
The elements of general theory of osculatation and superosculationThe elements of general theory of osculatation and superosculationThe elements of general theory of osculatation and superosculation
§1. On tangent, osculation and superosculation in a distinct point§1. On tangent, osculation and superosculation in a distinct point§1. On tangent, osculation and superosculation in a distinct point
Let us put in the basis of our consideration some n dimensional variety, the

elements of which we would call points. Let us assume that points of variety may
be equiped uniquely with mutually independent coordinates xi (i=1,2,...,n), and
that these coordinates may take all real and complex values. If differences of
all coordinates of two points tends to 0, we are to say that the point tends to
other point, or , that the points are infinitly close each to other. By giving all
points as one parameter t functions
(1) xi = xi(t) i=1,2,...,n ,
that are defined either for all values of t, or for some interval of values, we
determine family of points of n dimensions contained in the variety T, that we
are calling curve L. (1) are the parametric equations of the curve; points which
coordinates we receive with the expressions (1) for a chosen value t, are points
of the curve. Giving one relation between xi
(2) g (x1, x2, ..., xn )=0
we determine n-1 dimensionl variety V that is contained in the variety T, that
we are going to call surface. (2) is the equation of this surface; point which
coordiantes obeys the equation of the surface is the point of the surface; surface
goes through each of its point; points which coordinates obey severaly equations
of surfaces, are the points of intersection of these surfaces. If n=2 the notion
of surface is identical with the notion of curve. Considering further families of
surfaces S where general surface is depending from N independent paremeters
aj (j=11,2,...,N), let us assume that general surface of family has in correspon-
dence only one system of values of parameter aj , and that the system of values
aj has one definite surface in correspondence. The curve L is contained in the
surface V if all points of curve obey to the equation of the surface.
Example of the notions introduced: n dimensional afine space T, xi afine co-
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ordinates of this space, S - family of curves of second order curves (if n=2), of
surfaces (if n=3), hypersufaces (if n>3), respectively.
Higher asumptions on unambiguity of expressions for points and coordinates,
as well between surfaces and corresponding parameters, as for opportunity to
asign to coordinates xi and parameters aj arbitrary values is not necessary, but
only serves only for simplification of further conclusions. Leaving them we had
to introduce in the formulations certain confinements, or to deal with equations
of different type (e.g., in case of homogeneos coordinates). Because esentially
the theory to be cosidered shouldn’t change considerably, we confine ourselves
with the simpest and most transparent (generic) case, when all asumptions are
in force.
In order not to repeat further judgements, we perform them for most general
case, when n>2. In case n=2 they remain in force, only verbal expressions “sur-
face V”, “curve on surface V” should be replaced with “curve V”.
Further we use following designations and shortend expressions: the point with
coordinates xi (i=1,...,n) we call point X, as well surface, that has values of
parameters aj (j=1,2,...N) in correspondence, surface A. The fact that func-
tion f depends from all or some xi, and from all or some aj we are expressing
writing f(x, a). f[x(t), a] and f[x, a(t)] shall designate the functions that must
be converted to f(x, a) after replacing all xi, correspondingly all aj , with some
parameter t function xi(t), or aj(t) correspondingly.
The derivatives of one parameter t function f(t) after t we denote with the

usual symbols f’=df
dt , f

(k) = dkf
dtk

. Repeatedly we encounter equations that arise
equating left side derivative to zero from some given equation f=0 - in such case
we say that we derivate equation f=0. If some equation is identically satisfied,
all its derivatives are identically satisfied. All functions we encounter below are
unambiguous, unless otherwise specified, and continuous; they have continuous
derivatives of all orders in all formulae in all possible judgements.

2. We characterize general surface of family S with
(3) f(x, a) = 0.

We determine the curve L with parametric equations
(4) xi = xi(t) .

Surface A goes through p poins X1, X2, ..., Xp of curve L with parametric
values t1, t2, ..., tp in corresponce if expressions all at once are satisfied:

(5) { F (t1, a) = 0
F (t2, a) = 0.....F (tp, a) = 0

where
(6) F(t, a) =f [ x(t), a].

From further consideration we exclude singular points of surface (3), where
all ∂f

∂xi
vanish, and singular points of curve L, where all dxi

dt vanish.
Making points X1, X2, ..., Xp tend along the curve L to one of its points X0,

characterized by t = t0, using for this case usual judgement[1], we conclude that

(7) { F (t0, a) = 0
F ′ (t0, a) = 0.....F (p−1) (t0, a) = 0

The fact that expressions (7) hold and besides
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(8) F (p) (t0 , a) ̸= 0
we are to express in three different ways: a) surface A goes through p infini-

taly closed points (of curve L), that coincide with the point X0; b) the surface
A and curve L has in the point X0tangent of order p-1; c) solving the system
of equations of (3) and (4) with respect to unkown xi and t, just p systems of
solutions coincide with the system composed from coordinates of X0 and t0,
i.e., this system is p-fold solution of the system of equations. The last statement
we are to use also in the case when all ∂f

∂xi
wanish.

If the curve L is given arbitrarily, maximal available value for its general
point X is N. Truly, if p=N, putting t0 in t, system

(9) { F (t, a) = 0
F ′(t, a) = 0.....F (N−1)(t, a) = 0

has N equtions with N unknown aj . If identically

(10)
D(F,F ′,...F (N−1))
D(a1,a2,,...,aN ) =0

is not true for any values of aj , system (9) can be solved with respect to
parameters aj , obtaining them as functions of t. In the general case, if all
equations of (9) are not linear with respect to all aj , we obtain several systems
of solutions. Surface A corresponding to each such system we are going to call
the osculating surface to the curve L at point X. We have come to the known
fact (if words point, surface and curve regain their usual meaning): osculating
surface, which equation depends from N parameters, with general curve in its
general point, has tangent of order N-1.

It is easy to see that the touching of surface and curve doesn’t depend from
choice of parameter t. More precisely: expressing t as invertible unambiguous
function from some other pereameter s, t(s), where value of t, t0, hasvalues =
s0 in correspondence, function F(t,a) is replaced by some function G(s,a) of
parameter s:

G(s,a)=F[t(s), a].
From existence of relationships (7) and (8) follow existence of the same

relationship in the point where s = s0 for function G and its derivatives with
respect to s, and reversely; values of aj in both cases should be the same,
following, independent from choice of parameters. Really, h-fold derivative of
function G with respect to s is expressible as sum of memebers that contain
as factors derivatives of F with respect to t up to order h and derivatives of t
with respect to s; the only member containing F (h) is F (h)(dt/ds)h. If F and
F (h), where h=1,..,p-1, are equal to zero and F (p) ̸=0, when t = t0, these same
expressions hold both for quantities G, G(h) and G(p), when s = s0, reversely.

3. The notion of order of touching of surface and curve may be widened firstly
in place of one equation (3) taking several equations between xi, in number m<n:

(11) fk(x) = 0 k=1, 2, ..., n
They are to characterize in general case n-m dimensional variety V’. Let us

exclude from consideration eventual singular cases, when number of dimensions
of V’ is greater than n - m, and singular points, by requiring in point X0 the
rank of matrix
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(12)
(
∂fk
∂xi

) k = 1, 2, ...,m
i = 1, 2, ..., n

to be m. Then we may say: curve L and variety V’ really has p-fold touching
in point X0, it has at least p-fold tangent in this point with surfaces that are
determined by equations (11) each taken separately, and at least one of these
surfaces has just p-fold tangent.

Especially, when m = n - 1, system
(13) fk(x) = 0 k= 1,2,...,n-1

determines some curve of L’.
Let us determine the most convenient criterion for characterization of touch-

ing of two curves. If necessary renumerating coordinates, in accordance with
asumption about matrix (12) we may acieve that functional determinant

(14) ∆ =
D(f1,f2,....,fn−1)
D(x1,x2,....,xn−1)

is equal to zero neighter in point X0 nor in close to it, i.e., for points with
sufficiently small difference of coordinates from X0. Then the system may be
solved against x1, x2, ..., xn−1, receiving them as unambiguous functions of xn.
In turn, expressing xn as some invertible unique function of parameter s, we re-
ceive for by system (13) determined curve L’ parametric image of neighborhood
of point X0

(15) xi= ψi(s) i = 1, 2, ...., n
Besides

dψn

da ̸= 0
in the point X0 and its neighborhood. We determine curve L, using equation

of type (4),
(16) xi = ϕi(t) i = 1, 2,...,n

If curves L and L’ touch at point X0, they both pass through this point. So
that exist such certain values of s and t, s0 and t0 that

ψi (s0 ) = ψi (t0 ) = xi0 i = 1, 2,..., n ,
where xi0 are coordinates of the point X0.
If curve L has at point X0 just p-fold (p>1) touching with curve L’, then

according our definition equations are satisfied
(17) fk [ϕ(t)] = 0 k = 1, 2,...,n-1

as well as their derivatives up to order p, if t = t0, but at least at one k
(18) fk

(p+1) [ϕ (t0 ] ̸= 0.
Since equations

(19) fk(ψ) = 0 k = 1, 2,..., n-1
are satisfied identically, arbitrary value of s, s = s0 too, satisfy their deriva-

tives.
Curve L has at point X0 at least touching of first order; thus

(20)
∑n
i=1

∂fk
∂xi

dϕi

dt = 0 k = 1, 2 ...,n-1 (if t = t0)
exist. Deriving equation (19) and putting s = s0, we receive

(21)
∑n
i=1

∂fk
∂xi

dψi

ds = 0 k = 1, 2 ...,n-1 (if s = s0).
Systems (20) and (21) consist of n-1 linear homogen equations with respect

to values of first derivatives of ϕi and ψi at point X0. Both systems have the
same coefficients, because they are functions of xi0. Since rank of the matrix of
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these coefficients is n-1, according assumption about determinant (14), it follows
that at point X0 values of first order derivatives of ϕ and ψ are proportional
and besides

dϕn

dt ̸= 0
at point X0 and its neighborhood, because otherwise all derivatives of ϕi

against t would wanish, and X0would be singular point of L. Thus, ϕn(t) is
invertibly unique function in neighborhood of t = t0 (i.e., for sufficiently small
|t− t0 |). Equation

ψn(s) = ϕn(t)
determines s as invertibly unique function of t in neighborhood of corre-

sponding points s0 and t0. Inserting this value of s in the parametric equations
of curve L’, we receive new parametric image, that we can write in this way:

(22) xi = ψi(t) ,
besides

ψn(t) = ϕn(t)
and

{ ψi (t0) = ϕi (t0)
ψ′
i (t0) = ϕ′i (t0)

i = 1, 2,..., n

because marked values of the last row, as we stated, are proportional, and
for index value n they are equal.

Let us state, that in case of p-fold touching

(23) ψi
(h) (t0 ) = ϕi

(h) (t0 )
i = 1, 2, .., n
h = 0, 1, 2, .., n

ψi
(0)

ϕi
(0)

= ψi
= ϕi

(24) ψi
(p+1) (t0 ) ̸= ϕi

(p+1) (t0 ) at least for one i.
As we have already seen, conditions (23) are satisfied for the values of h 0

and 1. Assuming that they are satisfied if h ≤ r (r ≤ p-1), we can say that
they are also satisfied in the case of h = r + 1. Determined by (22) functioins
ψi indentically satisfy equations (19). Expressing that t = t0 satisfy derivatives
of order r+1 of equations (17) and (19), we receive two systems of equations of
this kind∑n

i=1
∂fk
∂xi0

ϕi
(r+1) (t0) + Gk = 0 k = 1, 2 ...,n-1∑n

i=1
∂fk
∂xi0

ψi
(r+1) (t0) + Hk = 0 k = 1, 2 ...,n-1 .

Quantities Gk and Hk are to be computed in the same way with derivatives
of functions ϕi, respectively ψi, up to order r, if t = t0, and values of partial
equations of functions fk at point X0. Subtracting from k-th equation of second
order k-th equation of first system, we receive

(25)
∑n
i=1

∂fk
∂xi0

[ψi
(r+1) (t0) - ϕi

(r+1) (t0)] = 0 k = 1, 2 ...,n-1
because according our assumptions all other members mutually disappear.

Since determinant of system (25) isn’t equal to zero, it follows that (23) holds
also in case h = r + 1.

Thus, conditions (23) are satisfied for all values of h from 0 to p. If (24) were
satisfied for no i, p+1-fold derivatives of all equations (17) in point X0 would be
satisfied, that would mean at least p+1-fold touching, contradicting hypothesis.

Reversely, if conditions (23) and (24) are satisfied, curve L touches curve L’
in point X0 with coordinates
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xi0 = ψi (t0 ) = ϕi (t0 )
Really, then functions fk(ϕ) and fk (ψ) with their derivatives up to order p

have the same values, so that (17) holds ( written with hand : ... up to p). If
(18) were not true, then would follow that system (25) with r=p would satisfy
values of brackets, that all are not equal to zero. But it isn’t possible, because
determinant of system is not equal to zero.

Since conditions (23) and (24) are symmetric with respect to current coordi-
nates of curves L and L’ and in place of parameter p they could be formulated
with help of s, in case of p-fold touching both curves have symmetric role: curve
L’ touches curve L with order p at point X0 too, or, saying otherwise: curves L
and L’ touch each other at point X0 with order p.

Collecting the previous we may say:
if two curves have at point X0 p-fold touching, their parametric equations

(16) and (22) may be chosen so that the same parametric value t0 characterize
point X0 on both curves, and conditions (23) and (24) are satisfied for this
value, and reversely.

The last statement allows without difficulty to construct curves L’ that have
with the given curve L in its given point X0 is just given order p touching.
Current coordinates of curve L’ may be taken even in general case as polynoms
of order p of parameter t, and in special cases - when no polinom determined
by expression (23) would satisfy condition (24) - as polinom of order p+1 of
parameter t.

4. As we have seen in the second part of this paragraph, surface A of family
S, that at point X0 osculates curve L, is determined by system (9). If besides
values of aj determined by this system satisfy relationships

(26)
F (k)(t, a) = 0
F (N+r)(t, a) ̸= 0

k = N, N+1, ...., N+r-1

curve L has with surface A exactly N+r-1-fold touching. Characterizing
this, we are going to say that curve L at point X0 superosculation of order r, or
also, that surface superosculates curve with order p.

Inserting given by system (9) values of aj in conditions (26) and, each of
them becomes equation with respect to t. Since, for an arbitrary given curve,
the roots of the first equation (26) will not satisfy the second equation, at the
points corresponding to these roots, the first order superosculation must occur;
higher order superosculation is impossible.

If to contrary curve L lies on one or several (in the finite number) surfaces
V, their corresponding values of parameter aj will satisfy equations (9) and
(26) for arbitrary high k. In this case we may speak of infinitely large order of
superosculation.

It is not difficult to construct examples with order of superosculation with
finite and arbitrary large order either at a separate point, if family S is given, or
in each point of given curve L. In the first case it sufices to take curve L that has
arbitrary large order p touching with arbitrary curve L’ of some surface V. In
the second case, we construct firstly second curve L’ for each point X of curve L
that has exactly p-fold touching with L in this point. Passing through each curve

8



L’ arbitrary surface V, it will have at least p-fold touching with curve L, and
we can always achieve that this order is exactly p. In this way we always may
attach to each given curve L family of surfaces S of one parameter where for each
surface at each point of L it touches with arbitrary large finite order p. Taking
family of curves L, that are depending from N-1 parameters, and attaching to
each family of surfaces of one argument in the way we just described, we will
get family of surfaces with arbitrary large number N of parameters, where each
separate surface will touch curve L in each its point with arbitrary large order
p.

Naturally the question arises: for a given family S of surfaces V, is it possible
to find such curve L having in each point order r superosculation with some of
surfaces V, where r>1 and finite. This problem we shall consider in paragraph
4, finding before that some other formulation, and finding order of solution of
system of equations in order to characterize the result to be obtained.

5. Using notion of order of touching of curves, we may in general way
characterize the touching order of any two varieties Q and Q’ of dimensions m
and m’ contained in variety T: at the common point X0 it is exactly p, because
for each curve L of first variety through point X0 may be found at least one
curve L’ of second variety, that has p-fold touching with L at point X0, and
besides in this variety exists at least one curve L which touching with L’ can’t
be higher than p. Similarly as in case of two curves, here too coordinates xi
of current point X of both varieties may be expressed as as m, respectively
m’, parameter functions, since all determining parameters of point of variety
are among parameters of second variety. In case of p-fold touching partial
derivatives of all xi against common parameters up to order p at point X0 has
the same values, but starting from p+1-th order derivatives differ at least at
pair of values.

Similarly we could seek, by giving some family of varieties S’, variety of this
family that touches given curve or given variety Q’ with possibly high order
at its point X. The augment of order of touching can’t be characterized by
one condition, as it was in case of curve and surface, but with several new
conditions. So in general case here should be infinitely many varieties Q of
family S’ with maximal order of touching. In order to characterize one (or
several in finite amount), that could be called osculating variety, we would need
to introduce some additional conditions. Such cases are already known in the
classical differential geometry of three dimensions in Euclidean space: there is,
e.g., simple infinity in case of simple srew lines, which have with given line in
given point touching of second order, whereas in the general case none of them
has order three.

Especially with these generalizations, we will not deal with, turning attention
mainly to points, surfaces and their one parameter families.

6. By binding to V a certain very general metric, we can characterize the
order of tangency by comparing an infinitely small distance, as is used in some
metric geometries. For this purpose will suffice as a distance ds between two
infinitisimally close points X with coordinates xi - we will write X (xi ) - and
Y (xi + dxi ) to take some function of xi and dxi, that should suit only following
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condition: the order of ds for arbitrary dxi is equal to smallest of orders of dxi.
Otherwise the function that characterizes this distance is completely arbitrary.

The distance of point from the surface will be called the smallest distance
from current point of surface. Let us determine the order of distance of point
Y (yi) from surface

(27) f(x) = 0 ,
assuming that Y is infinitesimally close to surface. Then we may find in-

finitesimally close points X (yi + dyi ), that belongs to the surface. Inserting
such point X coordinates in the equation of surface and finding expansion with
respect to growing orders of dyi, we receive

(28) f(y) +
∑n
i=1

∂f
∂xi

dyi + .... = 0 ,
where values of partial derivatives shall be computed by placing xi = yi,

and the dropped members are of order two and higher with respect to dyi.
Assuming that point Y is not infinitesimally close to singular point of the surface,
where all ∂f

∂xi
vanish, at least one of these quantities has finite value in point

Y. Consequently, the order of all quantities dyi can’t be higher than order of
f(y). In turn, one can find the value of dyi, the lower order of which is equal
to the order of f (y) and satisfying equation (28): e.g., all dyi may be set to
zero, except one, which coefficients are different from zero. The remaining dyi
are exactly of order of f (yi). Followingly, the distance of point Y to surface has
the same order than quantity f (yi) .

Let us consider curve L with current coordinates given as functions of pa-
rameter t

(29) xi = xi(t) ,
and its points X0 and X1 that have parametric values t0 and t0+dt in corre-

spondence, where dt is infinitisimally small quantity of first order. If all x′i (t0)
are not equal to zero, the distance between points X0 and X1is quantity of first
order too. Assuming that point X0 belongs to surface (27) , let us determine
order of distance of X1 to this surface. It may be done by replacing quantities xi
in the left side of equation of surface with their expressions (29) and determining
the order of values of function F(t) of t received in this way, when t = t0+dt.
Because X0 belongs to surface,

F (t0) = 0
and by expansion F (t0 + dt) with respect to growing orders of dt, the order

p of this quantity should be equal to smallest number k that
F (k) (t0) ̸= 0 .

Comparing characteristic of touching of curve and surface, denoting by X0

the point that is common to curve L and surface V and isn’t singular neither
for one nor other, and with point of curve X1 with distance from X0 as first
order infinitisimally small quantity, we see:

if curve L at point X0 has p-1 st order touching with surface V, the order of
distance of point X1 from surface V is of order p;

reversely, if distance of point X1 from surface V is of order p, curve L touches
at point X0 with order p-1.

Further, denoting by X0point that is common to two curves L and L’ and
isn’t singular neither to one nor other, and with poin X1which distance to X0is
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infinitisimally small of first order:
if curves L and L’ touch each other at the point X0, distance of each curve

to point X1 is infinitisimally small quantity of order p;
reversely, if point X1of one curve has distance to other curve is infinitisimally

small quantity of order p, both curves at point X0 has touching of order p-1.
The first property is direct consequence to last definition of order of touching

of two curves; the consequence of second property is first characteristic of order
of touching of L and L’.

In analogous way, comparing orders of infinitesimally small distances, we
could characterize order of touching of two any varieties in their common point
too.

The concept of an infinitely small distance, as can be seen, makes it pos-
sible to characterize the order of touching in a purely geometric way without
using in the task, seemingly unfamiliar analytic elements −−− the parameters
and derivatives of the function with respect to them. Besides, judgments and
formulations become easier. For example, if we define ds by setting to zero
homogenous form of ds and dxi, in each point isotropic directions arise, i.e.,
ds can become zero also in case, if all dxi are not equal to zero. Using such
metric, formulations above shall be true with restrictions caused by existence
of isotropic directions. To characterize the touch and in these exceptional cases,
one way or another it may be necessary to use any parameter. Secondly, the
metric of points assigns to the points an exceptional role among other geomet-
ric objects; excluding parametric images, we somehow give geometrical objects
globally. Both of these circumstances may hide various analogies.

Using parametric images and not defining any metric, we are not dealing with
any isotropic directions in the case of their absence. A curve is characterized
as a geometrical place of its points, which should allow us, mutatis mutandis,
to attribute its properties to families of surfaces of one parameter. For these
reasons, when considering a touch, the basis is the consept of parametric image
of a curve, and not the concept of distance.

7. It should be noted that all considered properties are invariant with respect
to any continuous unique and sufficiently many times differentiable transforma-
tion of basic variety T, that is characterized by relations

(30) x̃i = x̃i (xi)
between coordinates of some point X(xi) and modified point X̃ (x̃i). Really,

giving xi as unique funcion of one parameter, x̃i too should be unique function
of one parameter and reversely - transformation (30) transforms curves into
curves and surfaces into surfaces. Quantities xi(t) and their derivatives up to
order p, if t = t0, are determined by values of quantities x̃i and their respective
derivatives at the same value of parameter, and reversely. If for two curves some
initial members of expansion are equal, and reversely, then for modified curves
corresponding quantities will be equal; followingly, the order of touching of two
curves and similarly, of any two varieties is conserved.

Touching of order p is transitive property: if curves L and L’ has p-touching
with some third curve L’’ in this point. curves L and L’ have in this point
at least p order touching. Because of this we may use concept of element of
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touching to characterize order of touching. We define this by saying that two
curves that have order p touching at point X have common order p element
of touching with support X. Transformations (3) convert elements of touching
of each order into elements of touching of the same order. According Erlangen
program of Klein[2] we may say that related properties of orders of touching
create geometry of elements of touching. In this geometry many theorems
are valid, that in classical Euclidean differential geometry is seemingly metrical
character. We are to mention two of them.

If two curves in some m dimensional variety Q at point X, that is not singular,
p-fold touch m-1 surfaces, so that their intersection variety doesn’t touch variety
Q at point X, both curves has common element of touching of order p.

The theorem formulated in this way is trivial consequence of definition of p-
fold touching of two curves, because hypotheses create special case of condition
of this definition. Specifying for three dimensional Euclidean space, we get
a familiar theorem that two curves of surface that has at point X common
osculating plane has the same curvature there too.

For some surface V’ to have p+1-fold touching with all curves of given surface
V that pass through point X0, and that has in this point common elements of
order p, surface V’ must obey to p+n conditions; in other words: in any family
of surfaces of p+n parameters in general case may be found one or several (of
finite amount) surfaces with the required property. Besides, surface touches
surface V.

For all curves L passing through point X0 with common touching element
of order p in this point, as we saw in point 3, may be chosen such parametric
images

(31) xi = xi (t) ,
that for parametric value t0, not depending from the choice, xi (t0 ) are

coordinates of point X0, and derivatives of all xi against t up to order p has the
same values. If curve L stays in the given surface V with eqution

(32) f(x) = 0 ,
replacing in the equation (32) quantities xi with functions (31), the received

eqution and its derivatives should be satisfied with any value of t. Notably, if t
= t0, should hold

(33) {

∑n
i=1

∂f
∂xi

dxi

dt = 0

................. ...∑n
i=1

∂f
∂xi

dp+1xi

dtp+1 +Fp+1 = 0
where quantity Fp+1 is determined by values of partial derivatives of f against

xi up to order p+1, and derivatives of xi against t up to order p.
Surface V’, that depends from parameters aj (j= 1,2,,...,N), we characterize

with equation
(34) g(x, a) = 0 .

For surface V’to have with curve L touching of order p1, replacing in equation
(34) xi with functions (31), parametric value t = t0 should satisfy received
equation, as well as derivatives of order p+1:
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(35) {

∑n
i=1

∂g
∂xi

dxi

dt = 0

................. ...∑n
i=1

∂g
∂xi

dp+1xi

dtp+1 +Fp+1 = 0

.

Quantity Gp+1 is to be determined similarly as quantity Fp+1, in place of
function f taking function g.

Since for all curves L at point X0 quantities xi and their derivatives against
t have the same values, equation (34) and first p of equations (35) each gives
condition to quatities aj . In general case, all these conditions will be indepen-
dent, because each contains g partial solutions, that in previous didn’t. The
last equation from (35) should be satisfied for all these values of xi

(p+1) (t0) ,
that satisfy last equation of (35), so then coefficients of both these equations at
point X0 should be proportional, that gives n conditions:

(36)
dg
dx1
∂f
∂x1

= ....... =
dg

dxn
∂f
∂xn

=
Gp+1

Fp+1
at point X0 .

If these conditions are satisfied, equivalence of first n relations show that first
conditions in systems (33) and (35) are consequence of one to another, so that
surfaces V and V’ touches one another at point X0. Since all curves L satisfy
condtion (33), for determination of surface V’ we have left n+p independent
condtions in general case: (34), (35) exculing first, and (36).

Let us specify for three dimensional Euclid space (n=3), taking p=1, n+p=4.
In this case, as surface V’ we may take sphere that has with each curve L
touching of second order. Intersection of sphere with osculating plane of curve
L at point X0 is osculationg circle in this point, where from Meusnier’s theorem
follows.

Next to elements of touching that characterize touching of curves, it may
be considered these too that are characterized by touching of any two varieties,
varieties of such elements, a.s.o. We will not deal with such issues especially.
It should only be noted that the theory for this is closely related to the trans-
formations of S.Lie of touchings, when such elements are transformed into each
other, and the theory of differential equations. Each differential equation or
system of them characterize any variety Q of elements of touching. From view
of S.Lee to integrate differential equation isn’t anything else than to form from
elements of one variety another variety, that is subject to special rules[3].

8. The order of touching of surface V and curve L at pointX0 may be defined
also in case, when X0 is singualar with algebraic character of singularity, i.e., if
in this point either for equation of surface

f(x) = 0
disappear all partial derivatives from left side by deriving against xi up to

certain order, or disappear derivatives of all current coordinates
xi = xi (t) i = 1, 2, ...., n

against t up to certain order, or both conditions are satisfied at the same
time.

Let us assume that all points of surface are not singular, and that in neigh-
borhood of point X0 each point of curve has only one value of t. Equation

F(t) = f[x(t)] = 0
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at t = t0 should have multiple root, since derivative against t of function
F(t) at point X0 equals to zero because of singularity of point. Equating to
zero first derivative of F(t), that don’t disappear automatically, if t = t0, we
receive condition, for order of touching curve and surface to be at least one.
Conditions for higher orders of touching we should receive by equating to zero
further derivatives of F(t), if t = t0.

Another type of singularity arise, if the same point X0 give different values
of parameter t0, t1,..., tk. In this case curve has several branches, that pass
through X0; current coordinates of each branch we receive, considering values
of parameter in neighborhood of each value th (h=1,2,...,k). Then we can de-
termine for each separate branch order of touching with surface V, that passes
through X0. In general case theses orders may be different, so that here isn’t
possible to speak about order of touch of curve and surface - the kind of touch
is characterized by collection of orders of touching of all branches.

In both considered cases, in point X0 the number of points of intersection of
surface and curve that coincide would be by one unit more than order of touch,
respectively, order of touch of separate branches, and their sum. In order to
simplify our argumentation, if not said otherwise, we are to exclude points of
singularity.

§2. On families of surfaces of one parameter§2. On families of surfaces of one parameter§2. On families of surfaces of one parameter
1. Considering touching of curve L and surface, we firstly seek conditions

for certain surface to pass through infinitisimally close points of curve. For this
purpose, in the equation

(37) f (x1 , x2, ..., xn, a1, , a2, ..., aN ) = 0
of general surface A of family S, we took coordinates xi of point X as func-

tions of one parameter t, assigning values of argument ti, t2, ..., tp, and required
them to tend to one value t0. Now we are to act differently: let us give quantities
aj as one parameter functions:

(38) aj = aj(t) j = 1, 2,..., N
In this way determined j characterize family R of surfaces of one parameter.

Asigning values t1, t2, ..., tp to parameter t

(39) {

G (x, t1) = 0
G (x, t2) = 0
.... ...
G (x, tp) = 0

,

where
(40) G(x, t) = f{x, a(t)] .

Let us force all surfaces characterized by equation (39) to tend to surface
A0, that is determined by t = t0; each point that belong to all surfaces (39) in
the limit should belong to surfaces

(41) {

G (x, t0) = 0
G′ (x, t0) = 0
.... ...
G(p−1) (x, t0) = 0

.

In analogy with the notion of infinitisimally close points, also surfaces with
differences of parameter aj infinitisimally small we may call infinitisimally close
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surfaces. If relationship (41) holds, and besides
(42) G(p) (x, t0) ̸= 0 ,

we may say that point X is contained exactly in p infinitisimally close surfaces
of family R, that coincide with surface A0.

Equations (38) to (41) by their structure correspond to equations (4) to
(7) from previous paragraph, only roles of both series of quantities xi and aj
are exchanged, i.e., characterizing numbers of points X and surfaces A. Per-
forming the same replacing and exchanging also numbers n and N, that express
number of xi and number of aj , we could rewrite all equations of the whole
previous paragraph. The transformed would express properties that arise from
correspondind properties of original equations exchanging roles of points X and
surfaces A.

We have come to certain kind of principle of duality: general relations that
connect infinitisimally close points and surfaces of family S have in correspon-
dence dual relations where points and surfaces have exchanged roles, so that
connect infinitisimally close surfaces and points. If n=N, this duality is com-
plete - varieties of points of some dimension m should have variety of surfaces
of the same number of dimensions. If by contrast n̸=N, different ways how we
can characterize variety of m points may cause it to have two different kinds
of varieties of surfaces in corresponce. Really, we can determine Q by giving
all xi as functions of m independent parameters, or else by determining n-m
independent relations between xi. By replacing xi with aj , in the first case we
are to get variety of surfaces with m parameters, but in second case - variety
with N-n+m parameters. First representation may give trivial results, if m>N,
likewise second too, if N-n+m=0; if N-n+m<0, second representation would not
have any sense.

The mentioned principle is anything new at all. By integrating equations
of Pfaff, e. g., not only points and surfaces, but any point variety in general is
to be considered as equal formation (“ldzvērtgs veidojums”)[4]. But while in
mentioned and similar cases are considered usually some certain order elements
of touch, we consider in all conditions within give problem possible orders of
touch.

2. Let us transform some concepts that we encountered in the begining of
previous paragraph. In order to simplify text, determining parameters aj of
surface A we will call coordinates; if coordinates of point X and surface A are
connected with relation (37), we will say that point and surface incide or are in-
cident. Incident points X of one surface dually correspond to surfaces that incide
with one point X; curve L as geometric place of points has in correspondence
family R of surfaces as geometric place of surfaces.

From consideration excluded singular points of surfaces and curves are giv-
ing: for points X, singular surfaces of families of incident surfaces that lose all
∂f
∂aj

and singular surfaces of family R that lose all
∂aj
∂t ; the latter we will call

stationary surfaces. Also here we will exclude from consideration at all both
type singular surfaces.

Let us consider further some concepts that may be connected with family
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R, and let us determine their dual transformations. For all surfaces (41), their
common points we will call characteristic points of order p-1 of surface A0.
The variety created from these points we will call characteristic of order p-1 of
surface A0; in general case it has n-p dimensions, since it is determined by p
equations between xi; the number of dimensions will be greater, if one or several
equations are caused by others. By constructing for each surface of family R
characteristics of order p-1, their collection in general case will create variety of
order n-p+1, that we will call envelope Qp−1 of order p-1 of family R.

Let us find out that Qp−1 touches with order at least p-1 each surface of
family R in each its characteristic point of order p-1; this fact doesn’t depend
from number of dimensions of Qp−1. To prove this, it sufices to find out that
each curve L in the variety Qp−1 through some characteristic point of order p-1
of surface A0 touches in this point surface A0 with order at least p-1. Curves in
variety Qp−1 which all points have the same value t0 in correspondence belong
to one surface A0. It remains thus to consider only curves different points of
which have different values of t0 in correspondence. By denoting these changing
values with t, we may treat current point X coordinates of curve L as functions
of t. These functions, inserting t = t0, for each value of t0 satisfy equation (41)
- we may say that they are obtained from the first of them that are derivated
against t0;it should be proved that, inserting t = t0 , p-1 first derivatives against
t of first equation are satisfied too. Since we are to derivate both against t and
t0, for the sake of simplicity we will give to last quantity a new designation s.
The proved property obtain following formulation, denoting partial derivatives
with corresponding power of argument in the index:

if, inserting t=s, identically relationships

(42) {

G(t, s) = 0
Gs = 0
Gs2 = 0
... ...
Gsp−1 = 0

,

are satisfied, that the same value of t satisfies system

(43) {

G = 0
Gt = 0
... ..
Gtp−1 = 0

too.
Really, inserting t=s, and derivating in this way identically satisfied equation

(42) , substracting the last, we see that

(44) {

Gs +Gt = 0
Gs2 +Gst = 0
... ..
Gsp−1 +Gsp−2t = 0

Since equations (42) show that t=s identically turns to zero first members
of left side of this equation, identity
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(45) {

Gt = 0
Gst = 0
... ..
Gsp−2t = 0

holds too.
Derivating these with condition t=s identically satisfied equations, and com-

paring obtained equations with (45), we see that idetntically turn to zero also
all partial derivatives of G up to order p-1, that arise by derivating two times
against t, and other - against s, etc. At the end we see that t=s identically turn
to zero not only left members of equations (43), but also all partial derivatives
of function G up to order p-1 includingly.

The obtained result we may a little generalize: if condition t=s turn identi-
cally to zero function G(s,t) and also at one of its partial derivatives up to order
p-1, it turns to zero all partial derivatives of G up to order p-1. Really, if p=2,
this property follows from the first equation (44). If it holds up to order p=k-1,
derivating all k-1 -order partial derivatives, we obtain k mutually independent
equations that express that sum of two k-order partial derivatives vanish, if t=s.
Since according hypethesis one of these derivatives vanishes, vanish also other
ones too, causing mentioned property.

Rendering geometricall equivalence of systems (42) and (43), let us consider
curve L with coordinates xi(t) of current point X and family R of surfaces with
coordinates aj(s) of current surface A. Let us connect point X and surface A,
that has t=s. If each point X belongs to p infinitesimally close surfaces of family
R, that coincide with surface A, each surface A passes through p infinitesimally
close points of curve L, that coincide with point X.

Followingly, earlier mentioned property of envelope is proved, that is conse-
quence of just mentioned fact.

Dually transforming, family R and its general surface A gives curve L and
its general point X. p-order characteristic points of surface A have in corre-
spondence surfaces, that we may call p-order characteristic surfaces; they pass
through p+1 infinitesimally close point of curve L. Finally, characteristics corre-
spond to families of characteristic surfaces. Properties of these surfaces families
we may be obtained by dual transformation properties of characteristics.

Now we may give also characteristic to singular surfaces A, that incide with
point X1 and with all ∂f

∂aj
vanishing: for these surfaces, not depending from

choice of aj(s), both conditions (42) with p=2 are satisfied: first says nothing
else than incidence of A and X1; in second all derivatives of coefficients aj
vanish. Point X1 thus is in all first order characteristics of surface A. Surface A
in this point, if it is not singular, because of this, touch first order envelope of
each one parameter family R of surfaces, that contain X. Besides, from Gs=0
follows Gt=0; thus each curve L that consists only from considered points X1in
each of its points touch corresponding surface A. Geometric place of all points
X1 we may call common envelope U of family T, since this surface touch in
points X1corresponding surfaces A. This property follows from equivalence of
systems (42) and (43), where p=2. As we saw, for each point X1 condition (42)
is satisfied. Taking family of one parameter points X1, i. e., curve of surface
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U, (43) shows thatthis curve touches surface A. Thus, for singular points X of
separate surfaces correspong with dual transformation singular surface A that
in considered point X1 touches common envelope of family T.

3. If family R of surfaces A is given arbitrary, maximal order of its char-
acteristic points in general case is n-1. In dual way transforming, let us order
conclusions of previous paragraph points 2 to 4. Rewriting system (41) for case
p=n and replacing t0 with s, obtained system

(46) {

G(x, s) = 0
G′(x, s) = 0
... ...
G(n−1)(x, a) = 0

have equations with n unknowns xi. If identically holds

(47) D(G,G, ..., SuperscriptBox[G, (n - 1)])
D(x1,x2,...xn)

=0

for any values of xi, system (46) may be solved with respect to xi, obtaining
them as functions of s. If equations (46) are not all linear with respect to all
xi, we get several systems of solutions. For each system corresponding point X
will be called shorter characteristic point (not n-1 -order characteristic point)
of surface; it is determined in general case by n infinitesimally close surfaces of
family R. If values xi determined by system (46) satisfy also relations

(48)
G(h)(x, s) = 0
G(n+q)(x, s) ̸= 0

h = n, n+1,...,n+q-1

point X is staying in exactly in n+q infinitisemally close surfaces A of family
R. It will be characterized saying that point X is q-order supercharacteristic
point.

Inserting given by system (46) values of xi in conditions (48), each of them
will give on solution of system against s. For arbitrary given family R, roots of
first equation (48) will not satisfy second, that’s why in separate surfaces first
order supercharacteristic points will be possible; higher order points of this kind
in general case will be absent.

If on contrary all surfaces of family R pass through one or several (finite in
number) points X, they will be considered as arbirary high order supercharac-
teristic points. Last example of mentioned 4. part of previous paragraph show
that there exist one parameter family of surfaces with arbitrary high order su-
percharacteristic points.

Finaly, let us formulate right there mentioned problem dual transformation:
if family S of surfaces A is given, is there possible to unite them in one parameter
families, where each surface has q-order supercharacteristic point, so that q>1
and finite.

For a while postponing this question for more detailed examination, let us
note that for both problems:

to find curve L with maximal order supercharacteristic with one given family
S surface in each of its point, and

to find in family S contained one parameter family R of surfaces, that have
maximal order characteristic points

has the same solutions, if they exist at all. They are given by curves L and
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their osculation surfaces A of family R. Really, as existence of already several
times utilized systems (42) and (43) show: touching order of of some curve
L with osculating surface A in its current point X is equal with poin X, as
characteristic point of surfaces, order. If one of these numbers obtain in general
possible maximal value, also second becomes maximal.

4. Elements of basic variety T in the beginning of this work, that we due
to conveniency called points, we characterized only by possiblity to assign them
coordinates xi. In similary way we characterized also surfaces of family S with
coordinates aj and incidence condition

(49) f(x, a) = 0
of point X and surface A.
In examples we mentioned afine and Euclid space, assigning to words “point”

and “surface” their usual meaning. With same virtue we could with words
“point” and “surface” denote geometric objects of any two kinds, that may be
characterized by coordinates, and with equations between coordinates express-
ing some geometric feature. So, e. g., for “point” we could take line of Euclidean
space, for “surface” - sphere, and with “equation of surface” (49) express that
line intersects sphere under some defined angle. All properties already found
would hold, expressing them in suitable way.

In this way considered elements of theory of touching open way for essentially
identical but in form very different geometric researches.

Mentioned changing of names of objects we could have performed here too,
exchanging words for objects, that we called points and surfaces - with such
changing we could have achieved the same as with utility of dual transformation
- both basic objects would be replaced in roles.

§3. Determination of the order of solution of equations§3. Determination of the order of solution of equations§3. Determination of the order of solution of equations

If eqution with one unknow a
(50) f(a) = 0

has r-order root a = a0, as it is known, holds:
(51) f (a0 ) = f ′ (a0 ) = f” (a0 ) = ...= f (r−1) (a0 ) = 0 ,

f (r) (a0 ) ̸= 0 .
Expressing a as invertible unique funcition of some other quantity t

(52) a= ϕ(t) ,
so that a0= ϕ (t0 ) and ϕ′ (t0 ) ̸=0 ,
both system, composed from (50) and (52) , if (51) holds, t = t0, a = ϕ (t0 )

has r-order system of solutions. Considering a as coordinate of point of one
dimensional variety, using language of previous paragraph we may say that
surface (50) and curve (52) has r common infinitesimally close points. They
coincide with point that has coordinates a0 = ϕ (t0).

Let us seek analogous criterion that allows to determine order of solution to
system of equations that determine quantities aj

(53) fk (a1, a2, ..., aN ) = 0 k = 1, 2,..., N,
with solution aj = aj0 .
let us assume that for sufficiently small | aj- aj0| following conditions ar

satisfied:
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a) aj0 form unique system of solutions of (53) (this condition holds always
when total number of solutions of (53) is finite);

b) partial equations of functions f1, f2, ...., fN−1 with respect to all aj
form matrix of rank N-1. If this condition is holds, if necessary renumbering
quantities aj , we may achieve that

(54) (aj) =
D(f1,f2...,fN−1)
D(a1,a2...,aN−1)

̸= 0 .

In order to characterize order of solution aj= aj0, let us express all aj as
unique functions of one parameter t

(55) aj = ϕj(t) ,
and besides for some certain value t0 of t

(56) aj0 = 0 for all j
and

(57) a′j (t0 ) ̸= 0 for at least one j.
Inserting values (55) of aj in equations of system (53), we obtain equations

that all have roots t = t0. If it is possible to find such functions (55) that satisfy
(56) and (57) in a way that order of root t = t0 for each of equations is at least
r, but it isn’t possible to find such function that each root t = t0of eqution
(53) becomes greater than r, we will say that aj is r-fold (of order r) solution of
system (53).

Considering aj as coordinates of point A of some N dimensional variety,
we may characterize higher solution orders in a more geometric way: if it is
possible to find curve for which point A0 with coordinates aj0 is not singular
and for which in this point coincide at least r infinitesimally close points of
intersection with each of surfaces (53), and besides at least for one of surfaces
this number is exactly r, but is not possible to find curve for which this condition
would be satisfied for some r’ that is greater than r, aj0 is solution of system
(53) of order r.

Thanks to condition (54) for curve that gives maximally possible value of
r, we may take first N-1 surfaces from (53), that we may call surfaces V, and
call their curve of intersection L. Really, (54) show that system of equations
that would be formed from these surfaces may be solved against a1, a2, ....,
aN−1, obtaining them for sufficiently small |aj , aj0| as aN unique functions
that becomes aj0 (j = 1,2,...,N-1) , when aN= aN0. Expressing aNas arbitrary
invertible unique function ϕN (t), for which conditions (56) and (57) are satisfied,
we obtain system (55) with required features (56).

Obtained values of aj identically satisfy all equations (53), except last, for
which roots r0 according hypthesis are isolated and which because of this can’t
be identically satisfied. This gives some equation with respect to t

(58) F(t) = 0
where (59) F(t) = fN (ϕ1 , ϕ2, ..., ϕN ) .
Equation (58) has root t = t0 of order r, if holds

(60) { F (t0) = F ′ (t0) = F” (t0)=... = F (r−1) (t0) = 0
F (r) (t0) ̸= 0

.

Let us find out that no other curve L’ can intersect each of surfaces (54) more
than r infinitesimally close points that coincide with point A0. Let’s assume the
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opposite: curve L’ intersects each of surfaces (53) at least at r+1 infinitisemally
close point that coincides with A0 . Because of conditions (54) and (57) point
A0 is singular neighter for surfaces V, nor curve L’ too. Curve L’ thus at point A0

touches with order r each surface V and because of that their intersection curve
L. But then, as it was seen, may be chosen such parametric images of curves
L and L’ that in point A0 , where t = t0, their derivatives against parameter
up to order r of all corresponding current coordinates are equal. Then also by
relations (59) defined functioin F(t), if t = t0, together with their derivatives up
to order r have the same values, not depending, either we determine it with help
of parametric image of curve L, or curve L’. That’s why F (r) (t0 ) for both curves
will be with the same value, and for curves L and L’, contrary to assumption,
correspond the same number of infinitesimally close with point A0 coinciding
points of intersection with last surface (53).

Let us express now conditions (60) only with help of functions fk and quati-
ties aj0 . For this purpose, firstly let us compute derivatives against t of some
aj functions H (a1, a2..., aN ), if aj are given with relations (55), where ϕN (t) is
arbitrary and other ϕ determined with the help of first N-1 equations of system
(53). Derivating identically existing equations (53), we obtain N-1 equations∑N

j=1
∂fk
∂aj

daj
dt = 0 k= 1,2,..., N-1

Solving this homogenous linear equation systme with respect to all
daj
dt , we

obtain

{

da1
dt = ρD(f1,f2...,fN−1)

D(a2,a3...,aN−1)

... ...
daj
dt (−1)j+1ρ D(f1,f2...,fN−1)

D(a1,a2...aj−1,aj+1..,aN )

... ...
daN
dt = (−1)N+1ρD(f1,f2...,fN−1)

D(a1,a2...,aN−1)

Factor of proportionality ρ should be determined by last equations, because
daN
dt =dϕN

dt is known. In case its necessary, changing parameters, we may achieve
that ρ = (−1)N−1.

Then
dH
dt =

∑N
j=1

∂H
∂aj

daj
dt =

D(f1,f2...,fN−1,H)
D(a1,a2...,aN )

By denoting

(61) {

D1 = D(f1,f2...,fN−1,fN )
D(a1,a2...,aN )

... ...

Di+1 = D(f1,f2...,fN−1,Di)
D(a1,a2...,aN )

... ...
these functions are equal to derivatives against t of functions F(t) determined

by relations (59):
Di= F (i) (t)

So then:
if conditions of beginning of this paragraph, and for values of aj , aj = aj0

are satisfied both conditions (53) and also coditions
(62) D1 = D2 =... = Dr−1=0, Dr ̸=0 ,

system of values of aj0 is r-fold solution of equations (53).
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Conditions (62) characterize r-fold solution also in case A0 is singular point
of last surface (53), because opposite hypothesis wasn’t used anywhere.

In these conditions function fk only seemingly has different roles. Each con-
dition determines that matrix, where first partial derivatives of all functions fk
and left sides of previous condition are contained, has rank less than N; each
besides should work as new condition for coefficients and quantities aj0 of func-
tion f. If point A0 is not singular for last surface (53), in place of Di+1 may be
taken functional determinant that is calculated, replacing in expression D1some
of functions fk with Di, only satisfying that rank of matrix of remaining first
partial derivatives of fk should be N-1.

If at point X0 the rank of matrix of first partial derivatives of all functions
fk is less than N-1, our criterion is of no use of course, because values of all
quantities Di at this point are equal to zero. Also in this case, using before used
technique, we could find suitable criterion, what we are not going to do in order
not to distract too far from main subject.

By defining order of touching with help of infinitesimally small distance,
as we have seen, we obtained the same number as using derivatives. Due to
this, the criterion (62), if the condition of its utility is satisfied, is equivalent
to the criteria of multiplicity of solutions of systems using the concept of an
infinitesimal distance. Since this way we can characterize the multiple roots
of a system of algebraic equations[5], our criterion is also useful in the case of
algebraic equations.

It would be interesting to find out whether it is possible to establish use-
fulnees of criterion (62) and its generalization for systems of algebraic systems
in purely algebraic way without use of concept of continuity - most posibly the
answer should be positive.

§4. On criterions of order of superosculation and superosculation§4. On criterions of order of superosculation and superosculation§4. On criterions of order of superosculation and superosculation
at each point of curve.at each point of curve.at each point of curve.
1. Let’s first look at the conditions so that the curve L with its osculating

surface at some particular point has a superosculation of finite order. We are
giving curve L with current point X (xi ) with equations

(63) xi= xi(t) i = 1,2,...., n
and surface A that is dependent from parameters aj (j=1,2,...,N) with its

equation
(64) f1(x,a) = 0 .

We rewrite equation that expresses osculation of curve and surface, high-
lighting in them orders of derivatives of x1

(65)

f1(x, a) = 0
f2(x, x

′, a) = 0
.....

fN
(
x, x′, ..., x(N−1), a

)
= 0

Each of functions fk we obtain by derivating previous agaist t, while we
consider xi as functions defined by (65) and aj as parameters. Simbolically we
may express this as

(66) fk+1 = ∂fk
∂x

dx
dt k>1
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Equations (65) in general case give one or several aj as systems of t valued
functions. Let us take one of them. Corresponding surface A to have with curve
L at point X at least first order superosculation, in this point besides should
hold

(67) fN+1

(
x, x′, ..., x(N) ,a) =0

Since functions xi, their derivatives and aj identically satisfy relations (65),
we may derivate them, that gives, taking (66) into accoount

fk+1 +
∑N
j=1

∂fk
∂aj

daj
dt =0 k=1,2,..., N

Consequently due to relations (65) and (67)

(68)
∑N
j=1

∂fk
∂aj

daj
dt =0 k=1,2,..., N

System of N equations (68) is linear and homogenous with respect to quan-

tities
daj
dt . It may be satisfied in two ways:
either
(69)

daj
dt = 0 for all j

in this case we say that surface A is stationary;
or determinant of system (68) is zero, that with designations of (61)

express
(70) D1= 0 .

Seeking conditions for to occur in point X exactly r-1-order superosculation,
two cases should be considered: D1 ̸=0, and D1= 0 .

2. Let us consider first case when D1 ̸=0. Besides equations (65), if exactly
r-1-order superosculation occurs, at point X also should hold

(71)
fN+1

(
x, x′, ..., x(N), a

)
= 0

..............
fN+r−1

(
x, x′, ..., x(N+r−2), a

)
= 0

(72) fN+r

(
x, x′, ..., x(N+r−1), a

)
̸= 0

Deriving i times with respect to parameter t identically satisfied equations
(65), we obtain equations of kind

(73) fk+i +
∑N
j=1

∂fk
∂aj

diaj
dti +Fki=0 k=1,2,..., N

Functions Fki are sums of monoms that contain as factors derivatives of aj

up to order i-1, and their multiplications. Since determinant of coefficients
diaj
dti

for N equations (73) is D1 ̸= 0, setting in order i=1,2,..., r , and taking into
account (65) and (71), conclude that at point X

(74)
diaj
dti = 0

i = 1, 2, ..., N
j = 1, 2, ..., r − 1

and
(75)

diaj
dti ̸=0 for at least one j.

Reversely, if condition (65) is observed in each point of curve, and besides
(74) and (75) at point X, relations (73) show that (71) and (72) hold. So that:

in order osculating surface to have with curve L at its point X exactly r-1-
order superosculation, it is sufficiently that conditions (74) and (75) hold, and
(70) is wrong.

If osculating surface A with curve L in each of its point has at least first order
super osculation and throughoutD1 ̸=0, (69) shows that aj are constant. In such
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case curve L sits on one determined surface A, and order of superosculation is
infinite.

3. Let us now consider case when values of aj obey (70). If matrix

(76) ∥ ∂fk∂aj
∥ k = 1, 2, ..., N − 1

j = 1, 2, ..., N
has rank N-1, as we are to assume further, order of superosculation is at

least r, where r is number for which at point X hold (74) and (75). Really,
equations (73) with k=N and i=1,2,...,N-1 give equations (71). Setting i=r,
and k=1,2,...,N, and observing obtained equations (71), we obtain relations

(77)
∑N
j=1

∂fk
∂aj

draj
dtr =0 k=1,2,..., N-1

(78) fN+r +
∑N
j=1

∂fN
∂aj

draj
dtr =0

Since D1= 0 holds, and matrix (76) has rank N-1, from equation (77) follows∑N
j=1

∂fN
∂aj

draj
dtr =0

because this equation is linear combination of (77), thus
(79) fN+r = 0

If superosculations occurs at separate point X of curve L, condition that
allows to determine its exact order, can’t be expressed yet only with equation
(65) and help of derivatives aj , but equations (71) and (72) should be taken as
help, or kind of similar equations. Thus, in this case we are to keep conditions
(71) and (72).

4. More interesting than previous cases is case when osculating surface is
not stationary and it has in each point of curve L r-1-order superosculation. In
this case by equation (65) determined values of aj identically satisfy relations
(71), and (72) holds. Replacing in functions aj argument t with s, left sides
of equations (65), (71) and (72) are functions of f1 and its partial derivatives
against t up to order N+r-1. All these quantities, except last, identically vanish,
if s=t. Then, as we have seen, in part two of paragraph 2, all partial derivatives
of function f1 against t, s or both arguments up to order N+r-2 including
are identically zero, s=t, but N+r-1-order partial derivatives all differ from
zero. Especially derivatives of left sides of against s up to order r-1 vanish,
but ∂rfN

∂sr ̸=0. In previous paragraph we saw that this condition together with
assumption about rank of matrix (76) and

(80)
daj
ds ̸= 0 for at least one j

characterize r-fold solution of system (65).
Reversely, if aj is r-fold solution of system (65), conditions about matrix

(76) are in force, and (69) doesn’t hold for at least one j, it may be concluded
that (71) and (72) hold. Really, from (65) follow that∑N

j=1
∂fk
∂aj

daj
ds =0 k=1,2,..., N-1

and (70) expresses that∑N
j=1

∂fk
∂aj

daj
ds - ∂fN

∂s = 0

is consequence of previous equation, that in turn causes
(81) ∂fN

∂s - fN+1= 0.
In order to express higher order superosculation, we thus may replace equa-

tion (81) and its partial derivatives against t with equation (70) and its deriva-
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tives, because, holding (65), first follows from second. If besides
(82) D2 = 0,

first derivative of equation (70) follows from equations (70), thus derivatives
of (70) we may replace with (82) and its derivatives, and os on. From

Dr−1= 0
we conclude that partial derivations of all Di (i=r-2,r-3,...,1) of order r-i-1

vanish, thus giving
fN+r−1 = 0 .

Finally,
Dr ̸= 0

together with (80) show that Di (i=r-2,r-3,...,1) partial equations against t
of order r-i don’t vanish, that gives

fN+r ̸= 0 .
So then: if osculating surface is not stationary and its rank of matrix of

values of parameters is N-1, to occur at general point X exactly r-1-order su-
perosculation, is necessary and sufficiently that A is exactly r-order osculating
surface, i.e., its values of parameters are r-fold solution of system (65). In spe-
cial points, where surface A becomes stationary, or else represents more than r
osculating surfaces, order of superosculation in general should increase.

In general case, if system (65) may have r-fold solutions, it is not expectable
that corresponding surface A is not changing and corresponding curve L in
general sits on some non changing surface A; with concrete examples of such
cases we are to meet in next chapter.

5. If in turn system (65) don’t have r-fold solutions, requirement for super-
osculation of order r-1 in each point of curve L may be equivalent with condition
that curve L sits in one or several non changing surfaces A.

Let us consider simplest corresponding case, when equation of surface A is
linear against parameter aj , as it is in all classical figures of osculation: for line,
circle, conic in plane, plane and sphere in space:

(83)
∑N
j=1 ajϕj(x) + ϕN+1(x) = 0 .

Setting
aj =

bj
bN+1

with homogeneous parameter bh equation of surface A may be written
(84)

∑N
j=1 bhϕh(x) = 0 .

Requiring to occur at least first order superosculation, except equation (84),
where current point coordinates xi of curve L are replaced with corresponding
t functions, should hold also equation that we obtain k times (k=1,2,..., N)
derivating (84) against t. Obtained linear homogeneous N+1 equation systems
with respect to determinants of bj that are Vronsk determinants of functions
ϕh [x(t)], should be equal to zero. If rank of this determinant for some interval
of values of t is N, follow relation of kind

(85)
∑N
j=1 ch ϕh[x(t)] = 0 ,

where all constants ch are not equal to zero; if rank is N-1, follow several rela-
tions of kind (85), etc. In any case, if necessary dividing values of t in intervals,
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for each interval should correspond at least one relation (85); corresponding arc
of curve L sits in surface (84), where

bh = ch .
If functions ϕ and x are analytic functions of their arguments, each relation

(84) holds for all interval of t values, where these functions are defined, if it
holds for arbitrary small part of this interval. By contrast, requiring only that
functions xi have continuous derivatives against t up to finite although arbitrary
great order p, it may happen that different arcs of curve L has in correspondence
different surfaces (84). As example we may mention following curve: in three
dimensional Euclid space we take two spheres with common real circle C, and
we construct in each sphere arc that in the same point X0 of order p touches
circle C, besides in a way that point X, passing through X0 from one arc into
second, doesn’t change direction of movement; both arcs together form curve
L that have for current point X coordinates continuous derivatives up to order
p against suitable parameter, e.g., length of arc, and which arcs are in two
different not changing spheres.

The property of family (83) of surfaces A that each curve that has in each
of its point at least first order superosculation with some of surface of family all
sits on one or several surfaces of family, of course, is independent from choice
of parameters and arguments used. Taking coordinates yi and parameters cj of
other type, in place of equation (83) should stand equation

(86) F(y,u) = 0 .
So, for example, equation of plane in polar coordinates

ρ cos(ϕ-α)=p
is not linear with respect to parameter α.
Naturally question arises: what should be the equation (86) so that it can be

brought to the form (83), and with the help of what transformation it would be
achieved; finally it should be checked either the obtained equation (83) display
the same family than (86). The fact that the latter does not always occur can
be seen by a trivial example of a family of one parameter: if equation (86) has
only one parameter c1, solving it against c1, we get

(87) c1 = f(y) ,
that corresponds to form (83), but it display family of other type than (86):

if former surfaces have characteristics, the latter never have any. Difference be-
tween families displayed by (86) and (87), as it is known, arise because in general
case function f in the latter equation is not unique function of its arguments yi.

In principle simply, but because of length of computations practically unen-
forceable way, criterion for reduction of equation (86) may be obtained in the
following way: taking quantities xi as constants, this conditions relations be-
tween all aj , namely, one of quantities, e. g., aN , is linear function of all other.
Let us characterize this relation with system

(88) ∂2aN
∂aj∂ah

= 0 j, h = 1,2,...,N-1 ,

that contain N(N−1)
2 independent equations. If transformation

(89) aj = aj (c) ,
exist, that together with suitable transit from quantities xi to xi transform
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equation (86) to equation (83), taking one from cj , e. g., cN as function of
other, condition (88) may be replaced with condition where come in partial
derivatives against cj of both first orders of cN , and partial equations against
cj of both first orders of quantities aj . These conditions should characterize
relation (86) between quantities cj , i. e., taking in these equations quantities
yi as constants, derivating it two times against all cj , and excluding quantities
yi in between obtained equations, we are to get system of conditions of equal
kind. By identification corresponding coefficients in both obtained systems, we
obtain partial differential equation of second order for determination of unknown
functions (89) of systems. The conditions for the integrability of this system
are the searched criteria of possibility of reduction.

Using Pfaff form theory created by E. Cartan, J. Dubourdieu[6] has deter-
mined criteria of reduction for cases n=N=2. With the same question, or, more
correctly, problem: equation

y’’ = f(x, y, y’)
to transform with point transformation into

y’’ = 0
was engaged S. Lie[7]. Trying to find conditions for integrability, he has

showed that reduction, if possible at all, require intergration of one linear simple
differential equation if third order.

To find out either given family of surfaces belong to considered type, or
not, practically most useful way seems to be consideration of system (65) for
determination of osculating surfaces: if so, not depending from character of
curve L, only one osculating surface is determined, though it would have in
correspondence several or even infinitely mane systems of values of parameters
(as, e. g., for line in plane, using polar coordinates), equation of family would
be reducible to form (83).

6. We have to consider only two more cases, when values of aj given by
system (65) assign to matrix (76) rank less than N-1. In this case, corresponding
osculating surface has in correspondence system of at least two-fold solutions of
system (65). The touching order not always will be greater than N-1; if though
superosculation happens, its order in general case will be more than one unit
less than order of solution of (65). Thus case is analogous to curve intersection
with line, if latter passes through multiple point; if though point of intersection
becomes multiple, not always lines will touch curves. To determine exact order
of eventual superosculation here, once more basis equation (71) should be used.

7. Transforming dually results of this paragraph, we are to get corresponding
results for one parameter family of surfaces, and characteristic points of X. If
corresponding to matrix (76) matrix has rank N-1, and characteristic point
is stationary or multiple, it will be point of supercharacteristic. Notably, if
condition about matrix is satisfied, and if coordinates of X are r-fold solution of
its determining system, X will be r-1-fold supercharacteristic point. Finally, in
part 5 of this paragraph considered families of surfaces have in correspondence
surfaces of points that equations are linear with respect to coordinates. Taking
xi as affine coordinates, the considered problem obtain following formulation:
determine when N parameter family of surfaces may be transformed, using point
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transformation, into family of hyperplanes. That gives one more new criterion
for possibility of this transformation: option should exist to create topologicaly
equal configurations of figures of projective geometry with respect to curves of
intersections of surfaces.

§§§ 5. On envelopes of maximal order5. On envelopes of maximal order5. On envelopes of maximal order
1. Assuming that the system (65) that determinate osculating surfaces gives

sufficiently large amount of such surfaces, in general case it should be possible
to find curve that has in each point at least n-1 order superosculation with some
non stationary osculating surface. Really, in accordance with our assumption,
system (65) may be solved solved against aj , obtaining them as functions of i,
xi , x

′
i, ... , x

(N−1)
i . Setting these values in equations

D1 = 0 D2 = 0 .... Dn−1 = 0
we get differential equation system that doesn’t contain variable t, and is

homogenous with respect to dt. Freeing from choice of parameter of indetermi-
nance, we may take one from xi as arbitrary function of t. Then system of
n-1 equations arise that connect values of n-1 unknowns and their derivatives
up to order N-1. In general case, if this system is not contradicting, and if it
can be solved with respect to N-1 - order derivatives of all unknowns, curve
L characterized by its derivatives will be dependant from (n-1)(N-1) arbitrary
constants, for example, from initial values of all unknowns and their derivatives
up to order N-2 for some parametric value t = t0. In special cases of course
may occur that it is possible to exclude all N-1-orders, eventually also further
all unknown derivatives (???). Number of constants determining curve L will
then decrease, or even such constants will be absent.

Curves L that are given by maximal compatible number of just considered
equations we will call maximal order envelopes of family S of surfaces. As we
just saw, it had in general case order of touching N+n-2. Thereby, its current
point X is point of supercharacteristic of order n-1 of family of osculating sur-
faces. Configuration of curve L and family R could be obtained also considering
quantities xi in equations of family S as constants, aj as functions of t, and
derivating it n-1 times against t. If we want that determined xi by obtained
system are not constant and correspond to n-1-order supercharacteristic point,
similarly as in previous paragraph, we are to find out that xi should be N-fold
solutions of this system of equations. Expressing this property, we obtain N-1
equations more. Excluding quantities xi from all obtained equations, we obtain
N-1 equations that contain aj and its derivatives up to order n-1. They, similarly
as higher considered differential equations for quantities xi, allow to determine,
if they are compatible, maximal order envelope L - values aj just determine fam-
ilies R, and curves L are n-1 order envelopes of these families. Current point X
of curve L represent N coinciding characteristic points of corresponding family
R.

If system (65) may have several solutions, but their maximal possible order
p is less than n-1, equations of number p that characterize realization of this
maximal order, gives the same number of differential equations for quantities xi.
In this case maximal order envelope depends not only from arbitrary constants,
but also from arbitrary functions.
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Simple example, where besides once with existing “superelement” and sec-
ond time without, is given by curve L of three dimensional Euclid space, and its
family of spheres S, so that general surface depends from 4 parameters. Here,
n=3, N=4. Since equation of sphere may be made linear with respect to aj ,
none of curves L have superosculating non-stationar spheres. Three infinites-
imally close spheres A determine two characteristic points, general sphere of
one parameter family R has second order touching with geometric place of each
characteristic point. Choosing family R in a way that both characteristic points
coincide at one supercharacteristic point, sphere has third order touching whith
its place in L. Maximal in general possible multiplicity 4 of characteristic point
is not reachable, but family R and maximal order envelope L depends from two
arbitrary functions.

With other examples we will meet in second chapter.
2. The problem of maximal order envelope and in general of superoscu-

lation has close contact with singular solutions of certain type of differential
equations. In this work considered cases, when changing quantities are one
parameter functions, corresponding equations should be those that determine
following functions, namely, simple (n=2) and certain special Mong’s (n>2)
differential equations.

Let us consider first case, when n=2. In this case, family S is N parameter
family of curves A; each curve A is characterized by constant values of aj , thus
quantities xi, expressing them as functions of t, satisfying equations (65) and
(67). Excluding from them quantities aj , we obtain N-order differential equation
for quantities x1, x2 :

(90) g(x, x’, ..., x(N)) =0.
First equation (65), with constant aj , gives general solution of this equation.

For all curves L, that have non-stationar superosculating curves A, also current
coordinates satisfy equations (65) and (67), so then also (90). Since to these
curves corresponding quantities ej are not constant, they doesn’t go into general
solution of (90). Thus curves L display singular solutions of equation (90). As
we have seen, in general case curves L form N-1 parameter family of curves,
that in each their point X touch with order N some curve A.

Curves L may be determined also directly from equation (90). Since sin-
gular points were from our consideration excluded, when necessary changing
coordinates, we may achieve that curve L under consideration has x′1(t) ̸= 0;
x1 may be taken as parameter t, x2 denoted x. Then equation (67) is linear
against x(N). Systems (65), where unknowns are aj , and (65) together with
(67), where unknowns are aj and x(N) have their corresponding solutions of
the same multiplicity. But then also each value x(N) , that belong to multi-
ple solution of systems formend from (65) and (67), should be multiple root of
equation (90). Opposite feature should not always be true: x(N) value , that
is (90) multiple root, may have in correspondence several different systems of
values of aj . Only fact is safe that for all elements of touching of order N of
curve L corresponding value x(N) is multiple root of equation (90). Expressing
with remaining members of equation (90) condition that characterize existence
of multiple root x(N), we receive N-1 order differential equation that is satisfied
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by all elements of order N-1 touching of curve L. Integrating this equation, its
general integral display N-1 parametric family of curves. This integral together
with eventual singular integrals besides curves L can display geometric places
for points that are singular for curves A, where for different curves A are the
same value of x(N), etc. In each separate case should be checked, if and which
obtained part of family consist from curves L. If equation (90) is given arbi-
trary, and not obtained with the help of exclusion of constants, as it is known,
in general case singular integrals and thus also curves are absent[8].

In case n>2, from equations (65) and (67) may be excluded, similarly as
before, all quantities aj , obtaining equation of type (90) that now contain n>2
quantities xi and their derivatives against t, i.e., Monge’s differential equation.
This equation doesn’t have anymore form of corresponding type of equation,
as we had in case n=2, because general Monge’s differential equation doesn’t
have first integrals. Obtained equation however has N first integrals, that are
given by expressions aj that are computer from eqution (65). Besides, this first
integral has special character, because from them all derivatives of xi may be
excluded, getting first equation (65).

Here too, maximal order envelopes L, if they exist, may be obtained by help
of equation (90), utilizing similar considerations as in case n=2. If curve L has
with non-stationary surface A r-1 order superosculation, N-1 order elements
of touching of curve turn system of values of aj determined by system of
equations (65) into r-fold solution. Equation (67) is linear with respect to all
xi

(N); giving also all xi
(N) except one, e.g., xn

(N), corresponding systems of
values of ajand xn

(N) formed by equations (65) and (67), should form r-fold
solutions. Considering xn

(N) in equation (90) as unknown, this equation too
should have at least r-fold root. Similarly each other value of xn

(N) should be
at least p-fold root of equation (90). In the considered element of touching it
should be

(91) ∂kg
∂xi

k = 0
k = 1, 2, ..., r
i = 1, 2, ..., n

Conditions (91) in general shouldn’t be independent, because they are con-
sequence of

(92) D1 = 0 D2 = 0 ... Dr = 0
that characterized also r-1 order superosculation. In any case however,

should be possible to exclude all xi
(N) between equations (90) and (91), ob-

taining maximum r independent condition that connect xi and their values of
derivatives up to order N-1, and are conclusions of condition of (92). Writing
condition (91) for maximal value of r, at which (90) and (91) form soluble system
and it integrating, we obtain family of curves that in any case should contain
at least maximal order envelopes, but can contain different other curves too,
similarly as in case n=2. Similarly as before, here too, varieties that at each
point (91) hold with r>1 correspond to singular integrals of equation (90).

Passing by, we have obtained interesting result: each N parameter family of
surfaces may be characterized with Monge’s (respectively simple ∂, if n=2) dif-
ferential equation (90), that is satisfied by current coordinates and their deriva-
tives of arbitrary curve of each family of surfaces.
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The question arises: what Monge’s equations (90) characterize family of
surfaces. Without doing computations, let us make some possible ways that
could give answer. Let us first observe that equation (90) should be homogenous
with respect to all xi

(N), because it is equal to of the sort to equation (67) ,
where aj are replaced with own values. Solving equation (90) with respect
to one of xi

(N), we are to obtain equation that is linear and homogenous with
respect to all xi

(N) - if such equation can’t be obtained, (90) is not of type
considered. Further should be said that obtained equation , where all members
are brought to left side, has there N integral factors, that fact makes left side
exact differential of independent functions. ??? Finally should be said that
from obtained N first integrals

(93) gk (x, x’, ... , x(N−1)) = const. k=1,2,..,N
all derivatives of xi may be excluded.
Finally, we could replace equation (90) with corresponding system pf Pfaff

equations, express that from this corresponding integrals from first integrals
(93) might be obtainable.

§6. The simplification of computations in case of fundamental group§6. The simplification of computations in case of fundamental group§6. The simplification of computations in case of fundamental group
1. Let us connect with the basic variety T some continuous S. Lie group

of transformations of r parameters that be elementary transitive, i.e., allows
convert one in other two arbitrary given tangent elements that may be char-
acterized by at most r numbers. To examine general/generic cases, in place of
unchangeable coordinate system it is convenient to take some changing coordi-
nate system that is connected with the figure to be examined, namely, Cartan’s
movable reference system (“repere mobile”)[9]. As such reference system could
be taken any basic figure of variety with the following properties:

a) it is determined by r parameters;
b) the group is simply transitive with respect to this figure;
c) each figure F is left unchanged only by identical transformations.

In order to examine some point of variety, for each of its point X uniquely is
attached some reference system F. We characterize, with the help of F, infinitesi-
mal group transformation that transforms F into to point X infinitesimally close
point Xi attached figure F1. Such obtained numbers, that Cartan called relative
components of motion, give differential forms and differential invariants of the
group under consideration. This all allow rather simply to create differential
geometry corresponding to this group.

Example: In the Euclidean space of three dimensions, as figure F may be
taken mutually orthogonal unit vectors with common origin. Attaching possibly
closely this figure to current point of curve L, and determining relative compo-
nents of the motion of F, we get Frenet frame and formulas and, together with
arc element and both lower differential invariants, - curvature and twist.

Considering some other geometric objects that are connected with the variety
of points X under examination, we characterize them with relative coordinates
with respect to reference system attached to the point X. Each relation between
these relative coordinates, that is nothing other than invariants of the figure
under examination, expresses some geometric property. This approach already
before Cartan’s general theory creation has been used in special cases, e.g.,
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in differential geometry of Euclidean space and plane, it was widely used by
Darboux[10] and Cesaro[11]. The notion of condition of immobility used by the
last author, with proper generalization, is very useful in research of touching
and infinitesimal close varieties intersections.

Let us consider criteria that characterize p-fold touching, if coordinate sys-
tem is unchanged, and let us determine how they are to be modified in case
system changes. It is naturally to assume that the family of surfaces S under
examination are invariant with respect to fundamental group; we are going to
do this in what follows.

In case of unchanging coordinates, we wrote incidence condition of point
X (xi) and surface A (aj), and we derivated it p-1 times, taking xi for coordi-
nates of current point of curve L and aj for constants, i.e., we used conditions:

(94)
daj
dt = 0 j=1,2,...,N.

Using movable reference system F, that is connected with some current
point Y of the curve L’, we do similarly p-fold derivation of incidence equation,
assuming xi to be relative coordinates of current point of curve L. Only now,
in order to characterize that surface A is changing, the condition (94) doesn’t
suit, that should be replaced with the condition of immovability in the following
form:

(95) dj/ ds = fj(a, Y ) j=1, 2,..., N.
Now we denote with aj relative coordinates with respect to changing refer-

ence system. Now we do derivation not with respect to arbitrary parameter t,
but w.r.t. length of arc of the group, that is detected by its differential - the
lowest differential form connected with the curve touching element. Concluding,
with writing fj(a, Y ) we express that fj depends not only from values aj , but
from differential invariants in the point Y of the curve L’.

That the immovable surface relative coordinates aj should satisfy condition
of type (95), show the following argument: aj and aj + daj are relative coordi-
nates of the same surface A that are connected with reference systems F and F1

, determined by two curve L’ infinitisimally close points Y and Y1 . Infinitesimal
transformation that changes F1 to F is the infinitesimal transformation (Y) of
the basic group. It changes surface A into some surface A1 that has in the ref-
erence system F the same relative coordinates bj that surface A in the system
F1. Thus,

bj = aj +dsj j=1, 2, ..., N.
The inverse transformation (Y1) of transformation (Y) that changes F into F1

is characterized by the relative components of movement that are determined by
values of differential invariants of curve L’ in the point Y and its arc element ds.
Characterizing numbers of transformation (Y) are opposite to characterizing
numbers (Y1 ); applying this to some surface A with coordinates aj , we get
surface with coordinates

cj = aj +ϕ (a,Y) ds j=1, 2, ..., N ,
where symbol Y as argument has the same meaning as before. Because bj

and cj characterize the same surface A1, relation (95) follows with fj = ϕj .
Forcing curve L’to coincide with curve L, coordinates of the point X become
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constants and the incidence equation of this point and surface contain only
relative coordinates of the surface. By derivation, we are to get relation that
besides these coordinates should contain only curve L differential invariants that
are contained in the relative coordinates, and derivation with respect to s of the
latter. It is clear that equations obtained in this way should be incomparably
dimplier than using immovable system of coordinates.

Parameters of osculating surface we are to get by solving system that is
composed from incidence equation and its N-1 first derivatives with respect to
s. Putting obtained values of aj into further derivatives, we are to get condi-
tions for superosculation. Equations (95), in place of former (94), characterize
stationary surface. If left side partial derivatives with respect to aj of first N-1
equations that determine osculating surface give a matrix of rank N-1, the p-fold
superosculating surface that is not stationary has in correspondence p+1-fold
solution of the system determined by it, and reversely. Multifoldness of solu-
tions is characterized by conditions that interrelate differential invariants with
their derivatives. Maximal number of these conditions, that determine solution
of the system, is determined by envelope of upper order.

Computations could be still simplified starting not with condition of inci-
dence that express that surface A goes through point X of curve L, but as
starting point taking some surface A that already has p-fold touching in the
point X. Such surface has less then N number of free arbitrary parameters, be-
cause of touching in between aj are realized p+1 relations. Expressing that such
surface A is unchanging in infinitesimally small transformation that F turns into
F1 we receive both conditions of immobility for remaining free parameters and
one relations in between those that characterize p+1-fold touching. Derivating
this relation, with the help of condition of immobility, we are to get condi-
tions that the order of touching is p+2, p+3, a.s.o. Concrete examples of this
approach we are to consider at the end of this paragraph.

2. If number of quantities aj is N, excluding aj from equation of incidence
and its N first derivatives, we obtain Monge’s equation, that characterize the
family S of surfaces. As we see in the page 59, this equation comprise derivatives
of coordinates up to order N - in case of fundamental group it should contain
differential invariants up to order N.

If family S contains all surfaces that are congruent to one surface A, i.e.,
surfaces that we get from A by all group transformations, maximal value of N is
r. It is directly r, if fundamental group doesn’t have continuous subgroup that
turns the group into itself; It is r-r’, if exists such subgroup with r’ parameters.
The considered equation characterize curves that are contained in this surface
A.

As example let us consider three dimensional Euclidean space. Fundamen-
tal group, that is group of transfer r=6. Differential invariants of curve are:
curvature - of second order - and its derivatives, twist - of third order - and its
derivatives. The equation characterizing curves of the surface should contain
curvature and its derivatives - up to order k+1, twist and its derivatives - up to
order k, where k=3-r.

For arbitrary surface k=3; for srew surface, including cylinder and surface
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of rotation, k=2; for rotational cylinder k=1; for sphere and plane k=0. These
values of k correspond to curves that are contained in a definite surface and
congruent to it surface. For the curves of definite type these values should of
course be greater: for curve in rotational cone k=3, in rotational cylinder k=2,
in sphere k=1.

In the principle the indicated technique gives general method to fix consid-
ered equation that may be called natural equation of curves of family S.

Droping case n=2 and very simplest cases, if n>2 (e.g., for Euclidean sphere
in space or for plane), already before last excluding of aj , we get rather compli-
cate equation, so that in the end, in the best case, we could give the result not
explicitely but in form of determinant. Thus it is expected that the equation
itself we are after should be of complicate form.

Using different methods, that do not allow to go further than determinant
too, respectively, exclusion of one quantity in between two equation, determi-
nation of this equation has been considered in several cases for n=3.

To find equation for curves in rotational cylinder seems firstly has tried
H.Piccioli[12], using intervals of lines.

After receiving correct equations in the beginning, he gets equation of sec-
ond order with respect to line direction cosines with coefficients of as sums of
elements of different dimensions. To eliminate direction cosines equation should
be derivated 6 times; received determinant of the system of equations equated
to zero as if should determine the relationship to be found, though author him-
self indicates that the expression can be simplified, noticing that elements of
colons are linearly dependent.. It is strange that Salkowski who was referee of
the article, didn’t find anything to oppose.

V. Hlavaty[13], determining surface in three dimensional Rieman’s space
with its fundamental tensors, using tensor calculus finds two equations, within
which one auxiliary quantity is to be eliminated.

E. Cotton[14], according reference that doesn’t mention method, gives cor-
rect k values (the work itself wasn’t accessible).

In the case of Euclidean planes, E. Cesaro[15] characterize family of curves
with equation between length of arc and radius ρ of curvature, that contains
yet arbitrary parameters:

(96) f(s, ρ, a1, a2, ..., an−2) = 0
and claims that osculating curve of such family touches given curve n-fold.

This statement is true only when within parameters directly or indirectly doesn’t
figure arbitrary auxiliary constant, that arise by change of the point from which
arcs are counted: The equation

(97) f(s + a0, ρ, a1, a2, ..., an−2) = 0
characterizes the same family that (96). it’s not entirely clear either Ce-

saro acknowledges superosculation in each point of the given curve possible,
or not. In speaking about touching order/foldness, he says (in translation of
Kowalewski): Dies hindert jedoch nicht, dass eine solche Berührung wegen einer
der Curve (M) innewohnender Eigentümlichkeit thatsächlich eintreten kann”-
possibility of such superosculation seems to be acknowledged. Nevertheless, fur-
ther we read: “... nur in besonderen Punkten von (M) kann es eintreten, dass die
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Ordnung der Berührung die Zahl n überschreitet”, that such possibility seems
to exclude.

Derivating equation (96) n-1 times with respect to arc and excluding s and
constants aj , Cesaro obtains relation within first n curvature radii

(98) F (ρ, ρ1, ..., ρn−1 ) = 0 ,
that characterize family of curves (96). Here once more is to be noted that

such exclusion is possible only when condition about additive constant is satis-
fied. Secondly, as we saw, equation (98) characterize not only family (96), but
also all curves L for which in each point superosculating family curve??. Writing
(98) as differential equation, its general solution should give general curve of
family, which are singular solutions of curve L.

3. Considering for one parameter family R of surfaces characteristic points
of separate surfaces, we may arrange calculations dual to previous, i.e., to
use changing reference system that is connected with general surface A of the
family. In order not to find relative components of movement for this new
reference system, we may use here the reference system that is connected with
some auxiliary curve L’ in the current point Y. With the use of such technique
the examination of the geometric points simplifies, because obtained data may
be easy compared with the results of research mentioned in the beginning of
this chapter.

The principle of computations in all cases is the same: incidence condition is
written and derivated, taking into consideration that now immovable should be
considered point, therefore point X, not anymore coordinates of surface A should
satisfy immobility condition. If reference system is directly connected with the
surface A, the condition of incidence is expressible only with the coordinates of
the point. By connection reference system with point Y, condition of incidence
in general case should contain both point X and coordinates of the surface A.

Similarly how we previously found natural equations of curves that are con-
tained in some surface of the family S, also here may be found natural equation
in the family R of surfaces of one parameter that go through some point of
variety T. This equation is to connect differential invariants of family R up to
order n.

In the end are to be mentioned flaws of the method of movable reference
system: technique by which distinct F is connected with current element of
general variety doesn’t work for special varieties where one or more differential
invariants of lower order has values zero. Thus, e.g., Frenet formulas doesn’t
work for isotropic curves and curves in isotropic planes in Euclidean space. To
consider such varieties, in another way determined reference systems F are to
be taken, where also relative components of motion are expressible in other
way. Sometimes one can help with casual calculation, expressing figure F and
relative components sufficiently generally in order to apply results with suitable
specification to all or at least several cases.

4. Let us consider some simple examples of computations. While we through-
out considered one parameter families of surfaces or points, we are going to char-
acterize relative motion components not with differentials, as Cartan is doing,
but with derivatives with respect to arcs of corresponding group.

35



a) In the Euclidean three dimensional space, let us consider curves that
Frenet formulas hold:

(99)

X ′ =
⇀
t

⇀
t = ρ

⇀
n

⇀
n
′
= −ρ

⇀
⇀
t + τ

⇀

b
⇀

b
′
= − τ

⇀
n

,

assuming that ρ ̸=0. The current point is denoted by X,
⇀
t ,

⇀
n ,

⇀

b corre-
spondingly unit vectors of tangent, main normal and binormal.

To find the sphere that osculates the curve, we take sphere that is tangent
to curve. If the radius of the sphere is a, its center C is given by

C = X + a[cos ϕ
⇀
n + sin ϕ

⇀

b ],

where ϕ, the angle between vectors
⇀
n and

⇀

XC, is the second parameter that
determines the sphere. For sphere to be unchanging/fixed, a and C should be
unchanging/fixed that gives the condition of immobility

a’= 0
ϕ’= - τ

and the condition to get second order touching/tangent
(100) 1 - a ρ cos ϕ = 0.

Mulitplying by radius of curvature R = 1
ρ and derivating, we get

(101) R’ - a τ sin ϕ = 0.
Conditions (100) and (101) uniquely determine osculation sphere. Muli-

plying (101) by radius of twist T = 1
τ and derivating, we get condition of

superosculation
(T R’)’ + a τ cos ϕ = 0.

Excluding a and ϕ, we get natural equation of curves of the sphere
(102) (T R’)’ + R

T = 0.
If the radius of the sphere is given, (100) determines osculating sphere, ex-

cluding ϕ from (100) and (101) we get natural equation for curves in the sphere
with radius a:

(103) (R′T )2 + R2 = a2 .
The equation (102) doesn’t have singular solutions, equation (103) gets them

at
R = a,

that characterize envelope of maximal order for spheres with radius a.
b) In the same space, we consider family of spheres of one parameter. Taking

as a reference system the Frenet frame of the geometric locus L of the center Y
of sphere, we get equation for the sphere with radius a and current point X :

(104) (X − Y )2 = a2.

The condition of immobility of the point X is
⇀

X’=0. Derivating (104) and
observing the condition, we get

-
⇀
t (X-Y) = a a’

-ρ
⇀
n (X-Y) + 1 = (a a’)’
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This eqution together with (104) determines two characteristic points X,
that are symmetric with respect to osculating plane at point Y of curve L . Su-
percharacteristic point we get forcing these two points coincide, i.e., expressing
that point X is in the osculating plane:

(105) (a a′)2 + R2 [(a a′)′ − 1]2 = a2 .
Derivating again equation that determines the point X and excluding the

components of the vector X - Y, we get the natural equation for spheres through
one point

(a a’) + R2 [(a a′)−−1]2 + T 2

R2

{
RR′[(aa′)′ − 1] +R2(aa′)” + aa′

}2
= a2.

(115) is the singular solution of this equation.
It is easy to get condition (105) and its interpretation by derivating last three

equations, taking as variables only X (on pages 28., 29. partial derivations with
respect to t):

(116)

⇀

X ′(X − Y ) = 0
⇀

X
′⇀
t = 0

⇀

X
′
⇀
n = 0

Both last conditions are independent. For point X to be immovable, vector

X-Y should be coplanar with
⇀
t and

⇀
n , i.e., point X should be in the osculating

plane. Modifying the family of spheres so that neighter a nor ρ changes, but
curve L becomes plane, both last conditions in (106) show that point X becomes
immovable/fixed[16].

Here we encounter both with example for singular case, that was excluded
by us from general consideration, namely, when both first equations in (106)

aren’t independent, i.e., X-Y and
⇀
t are colinear. In this case ‘izejas’ equations

give

X = Y + a
⇀
t

-1 = a’
Thus, point X describes filarevolute of curve L. X isn’t point of supercharac-

teristic, though it represents {‘pārstāj ?’} two coincident characteristic points,
because the last equation of (106) is satisfied in the case when L is line and X
- immovable point of this line.

c) In the Euclidean plane we look for an osculating conic of curve L, taking
as axes of references system tangent and normal of L in the current point X.
Each point Y may be expressed in the form

Y = X + x
⇀
t + y

⇀
n .

Taking
⇀

Y ’= 0, with help of Frenet formulae ( with τ = 0) we get condition
of immobility

x’= -1 + ρ y
y’= -ρ x

Conic that touches curve L in the point X we may give with equation
(107) a x2 + 2 b x y + c y2 + 2 y = 0 .

We us seek the condition of immobility of its coordinates a, b, c that are
changing by moving the point X along L. We reach this by derivation of the
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equation of conic, observing the condition of immobility of points, and express-
ing that the equation

(a’- 2 b ρ)x2 +2 (b’ +a ρ - c ρ) x y + (c’+ 2 b ρ) y2 -2 (a + ρ) x - 2 b y = 0
is the consequence of the equation of conic (107). It gives

a’= - a b + 2 b ρ
b’= - b2 + (c-a) ρ
c’= - b c - 2 b ρ

and a condition that the touching is of second order
a + ρ = 0.

Observing in this way obtained upper values of conditions of immobility, we
get the conditions of immobility of conic with the second order touching:

b’= - b2 + c ρ + ρ2

c’= - b c - 2 b ρ
and condition

- ρ’= 3 b ρ,
for order of touching to be three. Replacing b with the value obtained in

this way, we get the touching condition of order four
9 c ρ3 = -3 ρ ρ’’ + 4 (ρ′)2 - 9 ρ4,

that allows uniquely to find c and thus osculating conic. Expressing that c
obeys too the condition of immobility, we get the normal/natural? equation of
conic

9 ρ2 ρ’ -45 ρ ρ’ρ’’ ? + 40 (ρ′)3 + 36 ρ4 ρ’ = 0.
Chapter IIChapter IIChapter II
On rotational cylinders osculating spacial curvesOn rotational cylinders osculating spacial curvesOn rotational cylinders osculating spacial curves
§1. Basic equations§1. Basic equations§1. Basic equations
Discussion of some special casesDiscussion of some special casesDiscussion of some special cases
1. In the Euclidean space of 3 dimensions rotational cylinder (further called

simply cylinder) may be determined by giving some of its axis point C, arc

unit vector
⇀
u and radius a; further we assume a̸=0. If the current point of the

cylinder is X, its equation is

(108) (X − C)2 −
[
⇀
u(X − C)

]2
= a2.

Equation (108) is the incidence equation of point X and cylinder. Taking X
as some current point of the curve L and other elements of equation (108) as
constant, derivating this eqution with respect to arc s of L, we could get first
and further conditions of touching curve with cylinder. Because cylinder in the
space is determined by 5 independent parameters, osculation cylinder should
have touching of order four (i.e., 4-fold tangent).

Calculations become simplier if we take cylinder that already is touching
curve, and we determine it with suitable coordinates.

If cylinder touches the curve in the point X, the normal to cylinder in this
point is the normal of the curve too. Placing C in the point of its crossing point
with the axis of cylinder, it holds

(109) C=X + a(cos ϕ
⇀
n + sin ϕ

⇀

b ),
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where ϕ is the angle between vetors
⇀
n and C-X. The unit vector of axis is

perpendicular to the vector C-X that goes along the normal of cylinder, so that
it can be expressed in the way

(110)
⇀
u=cos ψ

⇀
t - sin ϕ sin ψ

⇀
n + cos ϕ sin ψ

⇀

b ,

where ψ is the angle between vectors
⇀
u and

⇀
t .

The cylinder, determined in this way, to be immovable, a should be constant,

vector
⇀

C’ should be collinear with
⇀
u , and

⇀
u should be unchanged. Deriving

expressions (109) and (110) with respect to arc using Frenet formulae and ex-
pressing mentioned conditions, we get the conditions of immovability:

(111) {
a′ = 0
ψ = ρ sinϕ

ϕ′ = − τ + sinψ cosψ
a

and the condition that the order of touching/tangent were equal to two:
(112) a ρ cos ϕ = sin2 ψ

Derivating this eqution with the help of conditions (111), we get
(113) a(ρ’cos ϕ + ρ τ sin ϕ) = 3 ρ sin ϕ sin ψ cos ψ

Derivating once more and taking into consideration expression (112), we get
(114) a[(ρ’’-ρ τ2)cos ϕ+(2ρ’τ+ρ τ ’)sin ϕ]=3 ρ∧2 cos2ψ
-3 ρ2 sin2ϕ sin2ψ +4(ρ’sin ϕ - ρ τ cos ϕ)sin ψ cos ψ.

Just the same equations we were to get derivating (108) and putting (109)
and (110) in there. The values of a, ϕ and ψ, that satisfy first, both two
first or all three equations, from (112) to (114), characterize the cylinder with
second, third and forth order touching point in the point X with the line L
correspondingly.

On the back of the page with hand:
(**)
The last techique is used by A.Tamerl[17], who seems to be the only up

to now who more widely has researched rotational cylinder with higher order
touching with spatial curve. He researches mainly some configurations of axes
of cylinders, the geometric place of the point C, if the order of touching is three,
and some special cases, determining the number of different osculating cylinders,
but researches neighter their multifoldness, nor degenerated cylinders. As long
the received results are already in Tamarl’s paper, is pointed out in the end of
this chapter.

Equations (112) and (113) can be solved with respect to a and ψ, giving

(115) a = 9ρ3 sin2 ϕ cosϕ
(ρ′ cosϕ+ρτ sinϕ)2+9ρ4 sin2 ϕ cosϕ2

(116) tg ψ = 3ρ2 cosϕ sinϕ
ρ′ cosϕ+ρτ sinϕ

These expressions uniquely determine a and tg ψ, if at least one of conditions

(117) { ρ sinϕ cosϕ ̸= 0
ρ′ cosϕ+ ρτ sinϕ ̸= 0

holds. Putting values of a and tg ψ in the equation (114) we get equation of
order six against t=tg ϕ:

(118)
[
ρ2τ2t4 − 3ρ2τ ′t3 +

(
5(ρ′)2 − 3ρρ”

)
t2 −−2ρρ′τt+ (ρ′)2

] (
t2 + 1

)
−9ρ4t4 =

0
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In the general case, determined by (118) values of t are distinct, and their
given ϕ values satisfy both conditions of (117); each of these values of t has one

point C and two oposite directed vectors
⇀
u in correspondence, that characterize

only one determined cylinder. Thus, general spatial curve has six osculating
cylinders in correspondence.

Without performing complete analysis of equation (118), we are to mark
some properties of it.

One of the roots satisfy none of conditions (117) only in the case when one
of the quantities, ρ, ρ’, τ equals to zero. These special cases we are to examine
further, for the moment asuming that all mentioned quantities differ from zero.

In the distinct point of the curve and, next to it, in sufficiently little piece
of the curve, it is possible to chose real values of curvatures and their derivative
values in such a way that all roots of equation (118) are distinct and besides
with number of real roots 6,4,2 or 0, correspondingly. Thus, real curves are
available with all osculating cylinders being imaginar.

The summ of angles ϕi, determined by equation (118), are equal to multiple
of π. Realy,

tg (ϕ1 + ϕ2 + .. + ϕ6) =
S1−S3+S5

1−S2+S4−S6
,

where by Sj is designated sum of all multiplications of tg ϕi with respect
to j. Calculating right side of the expression with the help of coefficients of
equation (118), counter is equal to zero and denomnator in general case differs
from zero.

The coefficients of equation (118) depend from quantities ρ and τ , that may
be arbitrary functions of s. Therefor, we may put two conditions on them to be
satisfied for all points of curve L, e.g., we may require for equation (118) to be
throughout with one threefold or two double roots, similarly to require for some
osculating cylinder two quantities from a, ϕ , ψ to be given functions of s, i.e.,
to be constant, respectively, and so on. Using such conditions, if for obtained
curves for each of osculating cylinders at least one of quantities a, ϕ, ψ, doesn’t
satisfy the condition of immobility, the curve can’t be located on unchanging
cylinder. Some of such curves osculating cylinders of which satisfy certain
conditions we are going to consider in the following chapter.

2. Let us now consider cases when at least one of the quantities ρ, ρ’, τ
turns to zero in the distinct point X.

a) If ρ = 0, (112) gives ψ = 0: the axis of cylinder is parallel to tangent in
point X. (113) and (114) turns into

a ρ’cos ϕ = 0
a [ρ’’ cos ϕ + 2 ρ’ τ sin ϕ] = 0

If ρ’τ ̸= 0, the only solution is a = 0, i.e., all osculating cylinders have turned
into tangent to L in point X. If τ = 0, osculating cylinder becomes undefinite:
its axis can be any parallel to tangent, if ρ’= ρ’’=?0, or else arbitrary parallel
to tangent in the plane of rectification, if one of quantities ρ’, ρ’’ differs from
zero.

For remaining special cases too we may assume that ρ ̸=0.
b) If ρ’= 0, equation (113) is satisfied in two-fold way: either
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sin ϕ = 0
or else

a τ = 3 sin ψ cos ψ
In the first case we may take cos ϕ = +1, (112) gives

a ρ = sin2 ψ
and this value putting in equation (114) gives
(119)ρ”ρ sin2ψ = (3 ρ cos ψ - τ sin ψ)(ρ cos ψ - τ sin ψ)

As follows from (119), this value of ϕ has in correspondence two, in general
case distinct, osculating cylinders. If ρ ‘’= 0 and τ ̸= 0, they surely are distinct,
because they are characterized by

(120) tg ψ= ρ
τ and tg ψ =3 ρτ

The second posibility to satisfy (113) gives four, in general case distinct,
cylinders, that have roots of (118) with ti ̸= 0 in correspondence, and for which
formulae (115) and (116) are suitable.

c) (with hand added: if ρ ̸=0, ρ’=ρ’’=0)
If ρ ρ’̸=0, τ = 0, τ ’ ̸= 0, equations, (112) to (114), have solution

ϕ = x
2 , ψ = 0 , a τ ’= 3 ρ ,

that corresponds to the only infinite root of equation (118).On the other
hand, four other roots are finite, and (115) and (116) are suitable. In this
case infinite roots of (118) have infinite values of a in correspondence, i.e., two
osculating cylinders have turned into plane osculating curve L in point X. Curve
has five infinitely close points with this plane, thus exist also conic in this plane,
that has 4-fold touching with curve. All four osculating cylinders, which every
two are symmetric in relation to osculating plane, go through this conic, because
conic with each of them has common five points. From four osculating cylinders
that don’t coincide with the osculating plane, for real curves in general case
two are imaginare; other two are imaginare, and either coincide with osculating
plane or are real, depending from either conic is hyperbole, parabola or ellipse.
In the case of a circle, all four osculating cylinders coincide with a cylinder
whose circle is the exact intersection.

If we want at each point one of values ρ, ρ’, τ to be zero, ρ =0 gives the
trivial case of a straight line, τ=0 gives curves of plane for which at each point
there exist osculating conic with tangency of order four and for which, thus, all
conclusions of point c) are true. It remains only to consider interesting case ρ’
= 0, i.e., transverse circle (šērsi rii ???) - curves with constant curvature. To
be easier to characterize multiplicity of their coinciding osculating cylinders,
let us determine for equations (112) to (114) equivalent equations in sufficiently
general way to suit in other cases too, e.g., for isotropic curves.

In a similar way as before we could consider also cases of singular points X
for which coefficients of some of equations (118) become infinite, that we are
not to consider here.

3. Instead of Frenet formulas, we take the derivative formula

(121)
⇀

X
IV

= p
⇀

X’ + q
⇀

X’’ + r
⇀

X’’’ ,

that we may use for every point of spacial curve whereonly
⇀

X’,
⇀

X’’ and
⇀

X’’’
are not coplanar. Since corresponding case for curves where Frenet formulas are
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suitable is considered, we may assume that this condition is satisfied.

To express relatioin (108) in a handy way, we will define vector
⇀

Z with
relation

(122)
⇀

Z =X - C -
⇀
u [

⇀
u (X-C)] .

Since
⇀
u is vector of unity,

(123)
⇀
u
2
= 1

and vectors
⇀
u and

⇀

Z are perpendicular

(124)
⇀
u
⇀

Z = 0

Derivating relations where vector
⇀

Z is contained, if
⇀
u and C are constant,

we are to set

(125)
⇀

Z ’ =
⇀

X’ -
⇀
u (

⇀
u X’) .

Expressing equation (108) with the help of vector
⇀

Z , we get

(126)
⇀

Z
2

= a2 .
To characterize oscilating cylinder, this equation should be derivated four

times, following conditions of derivation (125) and (121), taking a as constant.
Derivating once, we get

⇀

Z
⇀

X’ - (
⇀
u
⇀

Z)(
⇀
u

⇀

X’) = 0 .
We are to note that last memeber we may drop: (124) show that its value

is zero, and (125) , that by its derivation identically derivative of
⇀
u
⇀

Z vanish,

thus, derivatives of all members contain factor
⇀
u
⇀

Z too, and are equal to zero.
Derivating four times, we get

(127)

⇀

Z
⇀

X
′
= 0

⇀

Z
⇀

X”−
(
⇀
u
⇀

X
′)2

+
⇀

X
′2
= 0

⇀

Z
⇀

X”’− 3

(
⇀
u
⇀

X
′)(

⇀
u
⇀

X”

)
+ 3

⇀

X
′⇀
X” = 0

⇀

Z

(
p
⇀

X
′
+ q

⇀

X” + r
⇀

X”’

)
− 4

(
⇀
u
⇀

X
′)(

⇀
u
⇀

X”’

)
− 3

(
⇀
u
⇀

X”

)2

+ 4
⇀

X
′⇀
X”’ + 3

⇀

X
′2
= 0

First three equations uniquely determine vector
⇀

Z , if
⇀
u is known, because

according assumption
⇀

X
′
,
⇀

X
′
’,
⇀

X
′
’’ are not colinear. Equation (126), knowing

⇀

Z , gives a. To determine
⇀
u , we will use equation (123) and both equations that

we obtain by exclusion of Z from (124) and (127). Introducing
⇀
u = x

⇀

X’ + y
⇀

X’’ + x
⇀

X’’’ ,

exclusion of
⇀

Z from (124) to (127) we may perform by adding these equa-
tions, previously multiplying them correspondingly by: 1) +1, -x, -y, -z, 0 and

2) 0, p, q, r-1. Together with (123), obtained equations for determination of
⇀
u

give system
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(128)

(
⇀
u = x

⇀

X
′
+ y

⇀

X” + x
⇀

X”’

)
2 = 1

3z

(
⇀
u
⇀

X
′)(

⇀
u
⇀

X”

)
+ y

(
⇀
u
⇀

X
′)

2 − 3z
⇀

X
′⇀
X”− y

⇀

X
′2
= 0

4

(
⇀
u
⇀

X
′)(

⇀
u
⇀

X”’

)
+ 3

(
⇀
u
⇀

X”

)
2 − 3r

(
⇀
uX̃ ′

)(
⇀
u
⇀

X”

)
− q

(
⇀
u
⇀

X
′)

2−

−4
⇀

X
′⇀
X”’− 3

⇀

X”2 + 3r
⇀

X
′⇀
X” + q

⇀

X
′
2 = 0

.
This system, for which equations are correspondingly second, third and

fourth order with respect to components of
⇀
u , determine 12 vectors

⇀
u , which

every two are opposite. Since two opposite vectors
⇀
u determine the same cylin-

der, we see that in all cases, when formula is suitable, in general there exist six
osculating cylinders. The seemingly cases of exception, when for system (128)

not all systems of solutions give finite values of components of
⇀
u , may be in-

terpreted as cases of degenerate cylinder. In any case, by multiplication of first
equation (128) with handy factor, and adding it to both other, we obtain two
homogeneous equations, that always should determine six relational systems of
x, y and z.

In case of transversal circles we may choose unit of length (or do homothety)
in a way that ρ = 1. After that, dropping simple case of circle τ = 0,

⇀

X
′
=
⇀
t

⇀

X” =
⇀
n

⇀

X”’ = −
⇀
t + τ

⇀

b
⇀

X
IV

= − (1 + τ)2
⇀
n + τ ′

⇀

b

so that q = -1 -τ2 , r= τ ′

τ . Putting also x = b + z, (128) for determination
of b, y and z, making in the mentioned way both last equations homogenous,
we obtain

(129) {
b2 + y2 + τ2z2 = 1
y
[
3bz − y2 − τ2z2

]
= 0

−3b2 + y2
(
3− τ2

)
− 3 τ

′

τ by + 4bzτ2 − τ4z2 = 0

.

Both ways, by which we may satisfy second equation, correspond to already
in end of page 78 mentioned cases. Both last equations (129) are satisfiet, if

(130) { y = 0(
3b− τ2z

) (
b− τ2z

)
= 0

or else

(131) { y2 = 3bz − τ2z2

3 τ
′

τ by +
(
3b− τ2z

)
(b− 3z) = 0

,

That shows that

(132) { y = 0
3b− τ2z = 0

is double solution. For these values of b, y, z, partial derivatives of both
first equations (129) are proportional - we have come to case, when condition
for matrix of values of partial equations are not satisfied. Because of this corre-
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sponding cylinder in general case is not cylinder of osculation. It can be seen,
repeatingly derivating some of 4th order conditions of osculation, e.g., (114),
where we put ρ’= 0 and obey (111). Values

(133) {
a = 9ρ

9ρ2+τ2

ϕ = 0

tgψ = 3ρ
τ

,

that correspond to solution (132), if ρ is arbrary and constant, satisfy 5th
order touching condition (where ϕ = 0 is already set)

(134) ρ τ ’[-3 a τ + 5 sin ψ cos ψ] = 0
only if τ ’ = 0 (assuming ρ ̸= 0). (133) characterized cylinder, thus, super-

osculate curve L only at points where τ ’ = 0. If we wish that superosculation
occur in each point of L, τ too must be constant, so that curve should be simple
srew line.

If curve L is simple srew line, cylinder on which it sits, and which is charac-
terized by

(135)

a = ρ
ρ2+τ2

ϕ = 0
tgψ = ρ

τ
is encountered among solutions of (132) only once, while cylinder, that has

(133) in correspondence, is 3-fold in general case, and 5-f≤old, if τ = 3 ρ.
Simple srew lines with τ = 3ρ is maximal order envelope of cylinders; they have
supeosculation order 3, not 4, as was expectable according number of coinciding
cylinders due to already mentioned property of partial derivatives.

To find out exact order of tangency and to check obtained results, let us
take simple srew line L on cylinder with radius l. Denoting by x, y, z current
coordinates of curve in non moving ortogonal system of coordinates, we may
take

x = cos t
y = sin t
z = 3t

.

For this curve ρ = 1
10 , τ = 3

10 and (133) gives a = 5, tg ψ =1. Corresponding
cylinder, that osculate L at origin point, has equation

40 (x-1) + 5 z2 - (y - 2 z)2 = 0 .
Insterting in left side of this equation values of current coordinates of L and

expanding in power series, we obtain
40(cos t-1)+45 t2- (sin t -6 t)2 = 9/7!t8 + ...

Curve L has with cylinder common 8 infinitemally close points and not 5,
as in general case, thus, order of superosculation is exactly 3.

4. Let us use formula (128) in case of minimal curves. For theses curves
Frenet fomulae are replaced by[18]
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⇀

X
′
=
⇀

I 1
⇀

I
′

1 =
⇀

I 2
⇀

I
′

2 = k
⇀

I 1 −
⇀

I 3
⇀

I 3 = k
⇀

I 2

where
⇀

I 1

⇀

I 3 = 1 ,
⇀

I 2
2 = 1

and remaing squares and scalar multiplications of these vectors are equal to
zero. With help of these formulas, we obtain

p = k’ , q = 2 k , r = 0
Inserting in system (128) and adding first equation to last, we obtain

−2xz + y2 − 2kz2 = 1
yz2 = 0

2xz + 4y2 + 4kz2 = 0
Both last equations give: five times, y = z = 0 and once y = x + 2 k z =

0. The first system of values expresses that vector
⇀
u is collinear with isotropic

vector
⇀

X’. It may, thus, not have length 1; however, to obtain interpretation
for such vector, we may imagine that isotropic curve occured by deforming some
curve that were not isotropic, and for this curve to be deformed in corresponding

equation of cylinder (108) to replace
⇀
u with

⇀
u
d , where d is length of vector

⇀
u ,

that passes along axis of cylinder. Finally, (108) with d2 and in boundary case,

when as
⇀
u may be taken

⇀

X’, putting d=0, we obtain as equation of 5-fold
degenerated cylinder

[
⇀

X’(X - C) ]2 = 0 ,
that characterize taken two fold osculating plane of curve. This interpre-

tation is accordance with number of common infinitisemally close points of
two-fold plane and curve, that is 6, thus, even by one more than oscilating
cylinder should have.

For remaining the only non-degenerate cylinder
⇀
u = z[-2 k

⇀

X’ +
⇀

X’’’] , where z2 = 1
2k

and
⇀

Z = z2
⇀

X’’,
thus, a = z2 = 1

2k .
The radius of cylinder, thus, is equal to half from inverse quantity of lower

differentialinvariant k. This interpretation for invariant gives without proof al-
ready Scheffers[19], only his utilized differentialinvariant is 16 k and, due to
mistake or overwrite, is written as 3-fold (“vierpunktig”), and not 4-order tan-
gency ???.

E. Cartan’s[20] finds out that minimal curves with unchanging k̸=0 are min-
imal simple srew lines; for arbitrary minimal curve L at each of its point X,
where k ̸=0, exist such skrew line that touch it with order 4; this skrew line has
the same curvature than curve L at point X.

45



E. Cartan’s first result may be obtained also from our equations, expressing
that (when?) occur superosculation, that gives k’=0. Since degenerated cylinder
is single then superosculation at each point may occur onle when curve L sits on
cylinder. E. Cartan’s considered osculating srew line sits on osculating cylinder.

5. From results obtained in this paragraph Tameri consider only curves
where Frenet formulae work and ignores imaginary cylinders, on p. 76 of cited
work he mentions: that exist at most six osculating cylinders, not giving, how-
ever, explicit equations for their determination; that, in case ρ’=ρ’’=0 there
exist 2 to 5 osculating cylinders; that, if τ ’=0 then condition is necessary to
occur superosculation, that is sufficient for simple srew lines, that have 2 to 4
osculating cylinders, including cylinder on which they sit.

§2. On curves for which oscillating cylinders obey specified conditions§2. On curves for which oscillating cylinders obey specified conditions§2. On curves for which oscillating cylinders obey specified conditions
1. As already noted on p. 77, osculating cylinder of spatial curve may be

subdued by two given conditions, because five functions of arc s a, ϕ, ψ, ρ, τ , that
characterize curve and its family of osculating cylinders, are determined only
by three relations (112) to (114). Giving two conditions more, that link these
quantities and their derivatives, we will receive in all five differential equations
with five variables. If equations are not incompatible, their solutions in general
case will be dependent from arbitrary constants. Cases, of course, are possible,
when equations have common solutions that depend from arbitrary functions.
Requiring, e.g., that axis of cylinder were tangent to geometric place of point C
- projection of current point X of curve on axis of cylinder - obviously all curves
and on some unchanging cylinder give solution.

Depending from given conditions, it could be handy to eliminate among (112)
to (114) not a and ψ to obtain relation (118) between t, ρ, τ and derivatives of
both two, but some other two quantities, or, at all, express a, ϕ, ψ, ρ, τ with
help of some other aids. Let us consider one such reduction with help of which
it is possible to reduce solution of considered problem to solution of one first
order differentian equation along with following quadratures. Assuming that ρ
τ ̸=0, we put

(136) A = ρ′

ρτ , B = -3 τ ′

�τ2 , D = 3 ρ
τ , E = 5ρ′2−3ρρ”

ρ2τ2

Then equation (118) transforms into
(137)

[
t4 +Bt3+E t2 + 2A t + A∧2]

(
t2+1) - D2 t4 = 0 .

Quntities A, B, D, E are linked mutually with relation
(138) (B − 3A)dA =

(
AB+ E − 2A2 ) dD

D
If A, B, D, E are obtained as one parameter functions, that satisfy this

equation, value of curvature, twist and arc s we obtain with two quadratures,
because

dρ
ρ = 3AdD

(3A−B)D = 3AdA
−2A2+AB+E ,

that give curvature. Twist is given by
τ = 3 ρ

D
and arc by

ds = dD
ρ(B−3A)=

ρdD−Ddρ
ρ2B .

Both expressions dρ
ρ and ds give the same values.
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Arbitrary constant, that arise by determination of ρ, is constant of dimension
- not knowing it, we obtain curves that are mutually similar. Constant that arise
by determining s determine only point of the curve from where we start to count
arcs.

Let us note yet values of quantities A, B, D, E for special curves. For general
screw line D is constant and B=3A; to determine ρ and s we are to take last
expressions of differentials, because first are indetermined. Cylindrical screw
lines have four quantities as constants and besides

(139) B=3A, E = −A2 .
Previous formulas for determination of ρ and s, of course, are not suitable

here, but if B and A are given, with one quadrature we obtain τ and ρ as
functions of s. Finaly , simple screw lines have arbitrary constants, A=B= E =
0.

2. Let us find curve L for which exist three-fold osculating cylinder. Ex-
pressing that t is three-fold root of equation (137), and eliminating every two
from obtained three equations quantities B, D, E , we obtain

(140)

B
(
3t5 − t3

)
= −8A2 + 2A

(
t3 − 3t

)
− 8t6

D2
(
3t6 − t4

)
= −

(
t2 + 1

)3 (
3A2 + 2At + t4

)
B
(
3t4 − t2

)
= A2

(
−3t4 − 9t2 + 6

)
+ 2A

(
−t5 − 6t3 + 3t

)
− t8 + 3t6

Let us first find out whether among solutions of problem is not general screw
lines. They, as noticed, D is constant and B=3. Inserting latter condition in
first equation (140), we obtain

8A2 +A
(
9t5 − 5t3 + 6t

)
+ 8t6 = 0 .

With equation (140) we have two equations with constant coefficients that
link values of A and t. It may be checked that these equations are independent;
they, thus, constants A and t. But then curve is cylindrical screw line or simple
screw line. Since for last our problem is already solved, remains there case of
cylindrical screw line. Then condition E = −A2 gives second equation only
linking A and t

A2
(
−10t2 + 6

)
+ 2A

(
−t5 − 6t3 + 3t

)
− t8 + 3t6 = 0 .

Excluding A from both equations, we obtain

10t4
(
3t2 − 1

)2 (
t2 + 1

) (
t2 − 2

) (
t4 − t2 -2) = 0

Root t=0 gives already considered case ρ’=0. 3t2-1=0 gives case, when (140),
though, are satisfied, but these conditions are not equivalent with condition of
existence of three-fold root, what are not satisfied all. t2+1=0 give ρ=0. The
remaining six t values give imaginare cylindrical srew lines, that are solution of
the problem.

The rest lines for which at each point exist three-fold osculating cylinder,
we get assuming that t

(
3t2 -1) ̸=0, expressing B, D, E with formula (140) as

functions of A and t, and inserting obtained expressions into equation (13*),
that gives

(141)
t2
(
t2 + 1

) (
3t2 − 1

)
MdA+

+3
(
2A− t3 + t

) [
A
(
5t2 − 1

)
+ 2t5

]
Ndt = 0

where
N = A3

(
−30t2 + 26

)
+A2

(
3t5 − 43t3 + 30t

)
+

+A
(
6t8 + 10t6 − 6t4 + 6t2

)
+ 7t9 + 3t7
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N = 8A3 +A2
(
9t5 + 5t3

)
+A

(
10t6 + 12t4 − 6t2

)
+ t9 − 3t7.

Integrals of (141) for which dA̸=0, dt ̸=0 give curves, that are not screw lines
and for which at each point exist three-fold osculating cylinder with order of
superosculation 2. We didn’t succed in finding such integrals. Solution that
are given by equating M dA to zero where just considered.

In analogoues way as before, we may seek curves L for which at each point
exist two two-fold cylinders. Here A, B, D, E may be expressed as correspondign
functions of t for both cylinders. Among solutions one more both cylindrical
screw lines, and curves, that are not screw lines, and may be determined by on
first order and first order algebraic differential equation.

We note yet that requirement for three roots of equation (137) to be constant
characterize simple and cylindrical screw line for which roots are constants. For
cylindrical screw lines eqution (137), it putting down, obtain form

t6 + 3At5 +
(
1−A2 −D2

)
t4 + 5At3 + 2At +A2 = 0 .

Since quadratic memebers are absent, as well as coefficients of t3 and t, if
A and A are real, h

have the same signs, we conclude that at least one pair of roots is imag-
inare. Thus, for real cyclical screw linews at least two osculating cylinders are
imaginare.

3. If the given conditions link quantities a, ϕ, ψ, it is handy to take the
same as basic variables in order easy to interpret obtained relations. To simplify
expressions we take denotations

p = sinϕ x = sinϕ
q = cosϕ y = cosψ

The conditions of immobility (111) can be written as

{
a′ = 0

ψ′ = px2

aq

ϕ′ = −τ + xy
a

The conditions that actually characterize the immobility of the cylinder are
the first two. The expression ϕ’ is a consequence of these two due to the existing
relations (112) and (113).

The quantities a, ϕ, ψ and their derivatives agains arc of the curve corre-
sponding to one osculating cylinder are linked by relations

a′2q
ap2 +a’[-2ψ’ qy

p2x -
ϕ′

p + 3 pxy
a ] +

(142)

+(ψ′- px2

aq ) -
a′qy
p2x +4 ψ’ aqy

2

p2x2 +2 ϕ’ aypx +3p
(
x2 − y2 ) = 0 .

This shows that the requirement that the radius a of a rotating cylinder be
constant can be used in two ways: eighter using

(143) ψ’- px2

aq = 0 ,

then curve will sit/be on immovable/stationary cylinder, or else, putting

(144) 4 ψ’ aqy
2

p2x2 + 2 ϕ’ aypx + 3 p
(
x2 - y2) = 0 .

Curves for which this relation holds will not be on cylinder at all, because
(144) and (143) obviously are not equivalent. By requiring for (143) and (144)
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to hold at the same time, we characterize curves of determined type which could
be found by integrating differential equation

(145) 2c(1+c)db+(3bc+b+4)dc=0 ,
that arise between b = tg2ϕ and c = tg2ψ, eliminating arc s from rela-

tions (143) and (144). Integration and following determination of curve may
be replace/postpone with geometric considerations. If for cylinder V on which
curve L sits condition (144) holds, it may taken as limit state of some non-
stationary/variable osculating cylinder with radius a1 , that in limit has a1= a
and a1’= 0. Curves L, thus, should be characteristic curves of some/separate
surfaces V of family of one parameter cylinders with constant radius a.

Derivating equation (108) of general cylinder of such family, where as vari-

ables only C and
⇀
u are taken, we obtain

(146)
⇀

C’(X-C)+[
⇀
u(X-C)][

⇀
u(X-C)-

⇀
u
⇀

C] = 0 .
To characterize the curve L, determined by equation (108) and (146), as

simple as possible, we take as the point C the center point of the axis of cylinder,
considering this axis as generatrix of surface. Then

⇀

C’
⇀
u ’ = 0 .

Taking orthogonal coordinate system with origin point C, axes x and z are
passing correspondingly in directions of vectors u’ and u, we express with help
of parameter λ coordinates of current point of curve L in a way

X (a cos λ, a sin λ, k tg λ) ,

where k is component of
⇀

C’ parallel to axis y. Computing here expressions
of b and c corresponding to this curve and stationary cylinder, we find

b = 4k2tg2λ
a2 cos4 λ+k2 c = a2

k2 cos4λ .
Excluding λ, we obtain

c(b c+ b+ 4)2 = 16 a2

k2 = const. ,
that is general integral of (145).
Simple curves are so called horotropic curves.
4. As the natural equation of curves on cylinder with radius a may be

considered equation (143), or any of last two equatiions (111), if ϕ and ψ are
ρ, ρ’ and τ functions determined by equations (112) and (113). To express this
equation only with ρ, τ and their derivatives, ϕ should be excluded from between
equations (115) and (118) . It is not difficult to write down obtained equation,
equating some determinant of order six to zero, but usefulness of this would be
minor: to check whether any curve L is on a rotating cylinder, one should check
whether the corresponding determinant is equal to zero or not. This attempt
practically could be used, if curve L were given, because then sufices to find
out that two sixth order equations against a corresponding to two points, that
might be received by equting determinant to zero, don’t have common roots,
to find out that curve doesn’t sit on cylinder; if, however, natural equation of
curve L have any freely determinable parameters more, also this attempt to get
negative answer is not practically useful. Because of this we will not mention this
equation. Practically more useful, though long, would be such attempt: with
help of relations (112) and (113), ρ and τ and their derivatives are expressed as
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functions of constant a and variable s ϕ, ψ and their derivatives. Then should
be checked whether relation that characterize given curve and (143) may be
satisfied with such values of a, ϕ and ψ. If it is possible, and quantities are
determined/expressed as one parameter functions, equation of curve in final
form is obtainable with help of two quadratures, because angle between tangent
and unit vector of stationary axis is known; if such values of a, ϕ and ψ don’t
exist, curve doesn’t sit on cylinder.

Since oscilating cylinders we considered mainly to illustrate general result of
first chapter, in order not to make this work too heavy, we will not consider also
some other interesting features, that are determined by tangency of cylinder
and curve, hoping to return to this in some future work.
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