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ABSTRACT 

 

In recent years, the success of speech technologies like speech recognition and speech synthesis 

for languages like English has prompted a new excitement about spoken interfaces and an interest in 

further research of these technologies. However, most of the research and development are 

concentrated around “big” languages and smaller languages like Latvian are not covered. For example, 

no speech recognition technology for Latvian was publicly released until 2015. 

The aim of this doctoral thesis is to research methods and models for automatic speech 

recognition for Latvian language and develop practical tools and systems. Both theoretical and 

practical aspects are covered, including a research on acoustic and language models, system 

adaptation for specific tasks, automatic data collection and augmentation, inverse text normalization 

(punctuation restoration) and practical system development. 

A practical application of the research resulted in a public online Speech-To-Text service for 

Latvian and an integration of audio transcription and dictation functionality into a desktop and mobile 

applications (e.g. Tildes Birojs software package and Tildes Balss). In 2015 these were the first 

services of this kind for the Latvian language.  

The developed ASR system is evaluated on different evaluation corpora, which emulate 

different usage domains. On a general domain evaluation set the developed ASR achieves a word 

error rate of 10.1% and significantly outperforms Google (error rate of 36.2-50.6%) and Speechmatics 

(error rate of 25.2%) ASR solutions for Latvian that recently became available. 

 

Keywords: automatic speech recognition, acoustic modelling, language modelling 

  



3 

ACKNOWLEDGEMENTS 

 

Unreserved thanks are due to Dr.sc.comp. Inguna Skadiņa, for guiding me through the research 

process and providing insight, encouragement, feedback for the thesis and the involved publications.  

Special thanks have to be expressed to the Tilde company for giving me the possibility to 

participate in the various research projects and for being a great place for me to work and develop 

myself as a researcher. My gratitude to several current and past comrades-in-work for giving advice 

from their professional experience, participating in thought provoking discussions and development 

process of the methods described in the thesis. In particular, Jevgenijs Strigins, Mārcis Pinnis, Indra 

Ikauniece and Andris Varavs, who have been great colleagues in my research and are co-authors of 

my scientific papers. 

The thesis is based on the research and development done in several research projects at Tilde 

that has been supported by EU Structural funds. Without this support, the goals of the thesis would 

be very difficult (if not impossible) to achieve. 

Also, thanks to all the anonymous reviewers of the publications for their constructive criticism, 

which has been very useful for further studies and contributed to the progress of the work of the thesis. 

On a personal note, I would like to warmly thank parents, brother and unnamed friends, thank 

you all for your patience and support. 

This dissertation is dedicated to the memory of my grandfather Alexander Sobolevsky, who has been 

my childhood inspiration. To a large extent, thanks to him, I am the person I am today. Together with 

my parents, he laid the fundamentals of my personality and lust for knowledge, that is the basis of all 

my further life's journey and this work in particular.



4 

 

CONTENTS 
1. INTRODUCTION ....................................................................................................................... 7 

1.1. Research Area ........................................................................................................................ 7 

1.2. Relevance of the Research Problem ...................................................................................... 8 

1.3. Aim and Objectives ............................................................................................................. 10 

1.4. Research Hypotheses ........................................................................................................... 11 

1.5. Research Methods ............................................................................................................... 11 

1.6. Main Results ........................................................................................................................ 12 

1.7. Approbation and Publication of the Author’s Work ............................................................ 12 

1.8. Outline ................................................................................................................................. 15 

2. CONCEPTS OF SPEECH RECOGNITION ............................................................................. 16 

2.1. Nature of Sound................................................................................................................... 17 

2.2. Speech ................................................................................................................................. 18 

2.3. Speech Recognition Problem .............................................................................................. 19 

2.4. Feature Extraction ............................................................................................................... 22 

2.5. Acoustic Model ................................................................................................................... 24 

2.5.1. Hidden Markov Models ............................................................................................... 25 

2.5.2. Context-dependent Phonemes and Tied States ............................................................ 27 

2.5.3. Neural Network Models ............................................................................................... 28 

2.5.4. Speaker Adaptation ...................................................................................................... 29 

2.6. Language Model .................................................................................................................. 30 

2.6.1. Regular Grammars ....................................................................................................... 30 

2.6.2. Count-based Models .................................................................................................... 31 

2.6.3. Neural Network Models ............................................................................................... 32 

2.6.4. Entropy, Perplexity and OOV ...................................................................................... 34 

2.7. Discriminative Training ....................................................................................................... 35 

2.8. End-to-end Speech Recognition .......................................................................................... 37 

2.9. Related Work for Languages of Baltic States ...................................................................... 39 

2.9.1. Protocol of the Review ................................................................................................. 40 

2.9.2. Results of the Review .................................................................................................. 40 

2.10. Related Work for Latvian Language ................................................................................ 41 

3. ACOUSTIC MODELLING FOR LATVIAN ............................................................................ 44 

3.1. Acoustic Model Training Data ............................................................................................ 44 

3.2. Evaluation Data ................................................................................................................... 45 

3.3. HMM-GMM Speech Recognition Models.......................................................................... 47 

3.3.1. Initial HMM-GMM Acoustic Models .......................................................................... 47 

3.3.2. Grapheme-to-phoneme Model ..................................................................................... 48 



5 

3.3.3. Statistical Grapheme-to-phoneme Model .................................................................... 50 

3.3.4. Filler Word and Noise Models ..................................................................................... 51 

3.3.5. Advanced HMM-GMM Models .................................................................................. 52 

3.4. Feed-forward DNN Acoustic Model ................................................................................... 53 

3.5. Acronym Recognition ......................................................................................................... 55 

3.6. Automatic Acquisition of Training Data ............................................................................. 56 

3.6.1. Processing of Saeima Transcripts ................................................................................ 57 

3.6.2. First Alignment ............................................................................................................ 58 

3.6.3. Second Alignment ........................................................................................................ 59 

3.6.4. Pseudo-Force Alignment .............................................................................................. 60 

3.6.5. Evaluation .................................................................................................................... 61 

3.7. TDNN Sequence Discriminative Acoustic Model .............................................................. 62 

3.7.1. Revised Grapheme-to-phoneme Modelling ................................................................. 63 

3.7.2. Training Data Augmentation ........................................................................................ 64 

3.7.3. Experimental Setup ...................................................................................................... 66 

3.7.4. Evaluation .................................................................................................................... 67 

4. LANGUAGE MODELLING FOR LATVIAN.......................................................................... 69 

4.1. Language Model Training Data ........................................................................................... 69 

4.2. N-gram Language Model .................................................................................................... 69 

4.3. Language Model Size .......................................................................................................... 71 

4.3.1. Language Model Pruning Problem .............................................................................. 71 

4.3.2. Higher Order N-gram Models ...................................................................................... 74 

4.4. Automatic Spell-checking of the Monolingual Corpus ....................................................... 75 

4.5. Sub-word Language Model ................................................................................................. 77 

4.5.1. Word Decomposition ................................................................................................... 78 

4.5.2. Word Reconstruction .................................................................................................... 79 

4.5.3. Evaluation .................................................................................................................... 80 

5. DOMAIN ADAPTATION ......................................................................................................... 82 

5.1. Latvian Speech-to-Text Transcription Service .................................................................... 82 

5.2. Dictation Task ...................................................................................................................... 85 

5.2.1. Acoustic Model Adaptation ......................................................................................... 85 

5.2.2. Language Model Adaptation ........................................................................................ 85 

5.2.3. Dictation Software ....................................................................................................... 86 

5.2.4. Performance and Memory Usage ................................................................................. 87 

5.2.5. Evaluation .................................................................................................................... 89 

5.3. Saeima Session Transcription .............................................................................................. 91 

5.3.1. Language Model Adaptation ........................................................................................ 91 

5.3.2. Post-editing .................................................................................................................. 93 

5.4. Punctuation Restoration ...................................................................................................... 94 



6 

5.4.1. Data .............................................................................................................................. 96 

5.4.2. Hidden-event Language Model .................................................................................... 97 

5.4.3. Bidirectional LSTM ..................................................................................................... 97 

5.4.4. Model Architecture ...................................................................................................... 98 

5.4.5. Evaluation .................................................................................................................. 100 

5.5. Street Address Recognition ............................................................................................... 101 

5.5.1. Data ............................................................................................................................ 102 

5.5.2. Adaptation Method and Post-processing ................................................................... 102 

5.5.3. Evaluation .................................................................................................................. 103 

6. RESULTS ................................................................................................................................. 105 

6.1. Speech Recognition Evaluation......................................................................................... 105 

6.2. Punctuation Restoration Evaluation .................................................................................. 106 

CONCLUSIONS .............................................................................................................................. 107 

REFERENCES................................................................................................................................. 111 

APPENDICES ................................................................................................................................. 121 

1. appendix. Papers Selected for Review and Analysis ............................................................... 121 

 



7 

1. INTRODUCTION 

1.1. Research Area 

The research area in the focus of this thesis is the Automatic Speech Recognition (ASR). ASR 

is the inter-disciplinary sub-field of computational linguistics and natural language processing (NLP) 

that develops methodologies and technologies that enables the recognition and translation of spoken 

language into text by computers. It is also known as "speech recognition" (SR), "computer speech 

recognition", or just "speech to text" (STT). The speech recognition field deals with the following 

problems: 

• how to convert analog audio signal to digital form and extract speech relevant information; 

• how to model acoustic properties of the phonemes and how to distinguish among phonemes; 

• how to integrate the linguistic and world knowledge into a recognition process; 

• how to obtain the data for statistical model training, how to process this data and how to train 

the models; 

• how to deal with variability in environments, voices, accents, recording equipment, syntax 

and semantics; 

• how to make recognition process efficient, as the search space of all possible sentences is 

enormous; 

• how to adapt ASR for specific tasks and domains; 

• etc. 

It is a diverse field that relies on knowledge of language at the levels of signal processing, 

acoustics, phonology, phonetics, syntax, semantics, pragmatics, and discourse. The foundations of 

spoken language processing lie in computer science, electrical engineering, linguistics, and 

psychology. 

From the technology perspective, speech recognition has a long history with several waves of 

major innovations. First attempts on speech recognition can be traced back to 1950s. In 1952 three 

Bell Labs researchers built a system for single-speaker digit recognition (Davis et al, 1952). The 

1950s era technology was limited to single-speaker systems with vocabularies of around ten words. 

Speech recognition research in the 1980’s was characterized by a shift in methodology from 

the more intuitive template-based approach (a straightforward pattern recognition paradigm) towards 

a more rigorous statistical modelling framework. Although the basic idea of the hidden Markov model 

(HMM) was known and understood early on in a few laboratories, e.g., IBM (Jelinek et al, 1975) and 



8 

the Institute for Defense Analyses (IDA) (Ferguson, 1980), it wasn’t until mid- 1980’s that the hidden 

Markov model became the preferred method for speech recognition. The popularity and use of the 

HMM as the main foundation for automatic speech recognition and understanding systems has 

remained constant over the past two decades, especially because of the steady stream of 

improvements and refinements of the technology. 

In the beginning of 2010s a new technology wave emerged. Using hybrid HMM and deep neural 

networks (DNN) allowed to greatly improve speech recognition accuracy by 30%-50% (Dahl et al., 

2012; Hinton et al., 2012). 

Today, however, many aspects of speech recognition have been taken over by a trend of moving 

away from HMM’s and adopting pure neural network approach, using a deep learning methods like 

Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997), Connectionist Temporal 

Classification (CTC) (Graves et al., 2006), and etc. As of 2017, neural network based CTC-trained 

(or using similar approaches) ASR systems have outperformed the hybrid HMM-DNN in almost all 

areas and dominate the field in terms of accuracy of recognition.  

Where does the state-of-the-art speech recognition system stand today? The answer very much 

depends on the specific task and language. For a “big” and widely used languages like English, 

automatic speech recognition is almost approaching human parity in the cases where audio recordings 

are clean and vocabulary is limited. There have also been claims that ASR achieve human parity on 

a test set of conversional speech with telephone quality (Xiong et al., 2016). However, when 

conditions are not ideal, we can see that humans are far more robust, and there is still a large gap. 

Noise, persons speaking simultaneously in the background, reverberations, far-field recognition and 

other adverse conditions still pose a great challenge to an ASR system. 

 For smaller languages, the situation can be completely different. Modelling languages for ASR 

requires sufficiently large annotated speech corpora, monolingual text corpora, natural language 

processing tools, computing power to train statistical models etc. For “small” under-resourced 

languages ASR solutions, as well as language technologies in general, are not as well developed due 

to the lack of linguistic resources and technological approaches that enable ASR solutions to be 

developed cost effectively. This has resulted in a technological gap between these two groups of 

languages, because of the lack of research and resources even the simplest scenarios of ASR can be 

impossible or pose a lot of trouble for smaller languages. 

1.2. Relevance of the Research Problem 

Most of the research in speech recognition (as well as ready-made tools and language resources) 

is usually focussed on “big” most spoken languages, like English, Mandarin, French, German, 

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
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Spanish etc. (Rehm & Uszkoreit, 2012). For languages with small number of speakers, the situation 

can be completely different. For such languages, ASR solutions, as well as language technologies in 

general, are not as well developed due to the lack of linguistic resources and technological approaches 

that enable ASR solutions to be developed cost effectively. This has resulted in a technological gap 

between these two groups of languages. For example, the amount of research and effort on speech 

recognition for languages of Baltic states (i.e. Estonian, Latvian and Lithuanian) is incomparable to 

work performed for widely-spoken languages. However, there is a strong interest in research that 

allows to make this technology available for such languages. 

In recent years, the success of spoken interfaces in smartphones and tablets has prompted new 

excitement about the speech technologies. This success has stimulated many developers to embrace 

speech technologies for their native languages. Automatic speech recognition can have many useful 

applications, e.g.: 

• Speech is a natural communication interface for humans, the ability to control PC, smartphone, 

car etc. by voice can be convenient and efficient in many cases. For example, you can select 

destination and start navigation in a car without taking your hands off the steering wheel and 

going through many tangled menus.  

• For many people dictating text is much faster than typing, older or not experienced users can 

really benefit from ability to enter text just by speaking.  

• Speech recognition is very useful for people with disabilities, they can use speech recognition 

as an input device for their personal computer. One could also use speech recognition as a 

type of hearing aid.  

• Speech recognition can be used to transcribe audio recordings, for example, meetings, court 

hearings, dictaphone recordings, lectures, interviews etc. The transcription then can be used 

for keyword search or, after some processing, as a usual text. 

Such applications were not possible for Latvian as there were no automatic speech recognition 

solutions. This necessity for speech recognition technology for Latvian language has been the driving 

force of this work. Moreover, before starting the research, the author conducted a small-scale 

literature review about “speech recognition research for languages of Baltic States, Estonian, 

Lithuanian and Latvian”. This small-scale literature review showed that there is a clear knowledge 

gap and Latvian language is the least researched among languages of Baltic States. Therefore, this 

work addresses an unsolved problem of modelling Latvian language for ASR. 
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1.3. Aim and Objectives 

The aim of the research is to find efficient algorithms and create optimal models and systems 

for Latvian language speech recognition. Therefore, the research seeks to answer the following 

questions: 

1. What data is needed to train statistical models for speech recognition for Latvian? 

2. How to get this data and how to process it before training? 

3. What modelling methods and algorithms are the most appropriate for Latvian?  

4. What are the best model parameters? 

5. How to design speech recognition systems and adapt them to specific applications? 

6. How to process the raw output of speech recognition systems in order to adapt it for some 

specific application? 

It is also important to consider the complexity of Latvian language: 

• Latvian language is inflective; each word can have many different surface forms with different 

endings. Word endings must agree with other words in sentence. 

• Latvian language has a rich word-formation options. New words can be formed by adding 

suffixes, prefixes or by making compounds. 

• Word order in sentence is relatively free. 

These features of Latvian language create additional difficulties for speech recognition and 

finding solutions for these problems is important part of this research. 

At the end of this study the author expects that all research questions will be answered, and 

research hypotheses will be proven. The ability to answer selected research questions will: 

• Facilitate data collection and processing for Latvian speech recognition. 

• Provide guidelines for creating general and application-specific systems for Latvian speech 

recognition. 

• Provide a baseline for future Latvian speech recognition research. 

• Possibly help speech recognition research for languages similar to Latvian (e.g. Lithuanian). 

It was also anticipated that after the end of the research a speech recognition system for Latvian 

will be developed and integrated into real business applications. 
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1.4. Research Hypotheses 

The following research hypotheses have been proposed: 

1. It is possible to develop statistical models for large vocabulary general-purpose automatic 

speech recognition for Latvian. 

2. It is possible to achieve high accuracy of recognition with standard or modified versions of 

methods, developed for “big” languages. 

3. Developed general-purpose Latvian speech recognition models have reasonable 

computational requirements, therefore can be used in practical applications and deployed as 

publicly available services. 

4. Developed general-purpose Latvian speech recognition models can be adapted for specific 

domains and tasks. 

Research hypotheses in the thesis are proved using experimental methods. 

1.5. Research Methods 

The following main contemporary research methods are used by the author: 

• Scientific literature review – author analysed different literature (books, journals, arxiv 

preprints and publications in the natural language processing) in order to identify baseline and 

state-of-art methods speech recognition and also to prove the existence of knowledge gap – a 

lack of research on speech recognition for Latvian language. 

• Iterative development – the tools and models developed in this work have been designed, 

implemented and deployed in an iterative manner, improvements were proposed and 

implemented after reviewing results of previous iteration.  

• Controlled experiments – suitability and effectiveness of algorithms and trained statistical 

models were evaluated in controlled experiments (Wohlin et al., 2003). 

• Automatic quantitative evaluation – the evaluation methods used in the scope of thesis are 

fully automatic and provide quantitative results that enables objective comparison of various 

approaches and models. 

• Error analysis – where necessary, the author has performed manual error classification in 

order to identify possible error causes and directions for future improvements. 
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1.6. Main Results 

The main contributions of this thesis are as follows: 

• Analysis of different acoustic and pronunciation modelling methods for Latvian language, 

that shows that the best results can be achieved using pure grapheme-based approach, training 

data augmentation and time-delay neural network models. 

• Implementation of method for extracting acoustic model training data from inaccurately 

annotated speech recordings from Web. This method allows to increase the amount of the 

training data fully automatically without any additional manual transcription. Increasing the 

amount of training data enables of more advanced and more accurate acoustic models. 

• A corpus of 186 hours of annotated speech data from Saeima session recordings from 2011-

2014, which was created using above mentioned method. 

• Solutions for monolingual text data filtering methods, which allow to filter noise and garbage 

from a fully automatically crawled text corpus and train accurate Latvian language models for 

ASR. 

• Implementation and approbation of large vocabulary general-purpose Latvian automatic 

speech recognition system, which achieves word error rate of 10.1% on general domain test 

set and outperforms the Latvian ASR by Google.  

• Adaptation of general-purpose speech recognition models to various specific tasks like 

dictation, address input and Saeima session transcription and approbation of adapted systems. 

The adapted systems achieve word error rate of 12.6% on dictation, 7.9% on street address 

input and 5.9% on Saeima transcription. 

• Implementation of first punctuation restoration statistical model for Latvian language. This 

model is used to restore punctuation in ASR transcripts and significantly improves the 

readability of transcripts. 

1.7. Approbation and Publication of the Author’s Work 

The Latvian automatic speech recognition system developed in this research, is published as a 

Latvian Speech-To-Text transcription service (Salimbajevs & Strigins, 2015a). The web-service 

provides ASR for several applications: 

• A free online file transcription service http://www.tilde.lv/balss, which provides audio and 

video file transcription. 

• A software package Tildes Birojs, which provides audio and video file transcription, as well 

http://www.tilde.lv/balss
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as dictation functionality.  

• A mobile app Reizrēķins (available in Google Play store), which teaches kids multiplication. 

• A mobile app Tildes Balss (available in Google Play store), which enables any Android OS 

user to speak to their smartphone in Latvian language. 

• A number of commercial applications developed for Tilde clients (names cannot be given 

according to non-disclosure agreements). 

The results of this research were presented at the following international conferences: 

• The 8th Conference on Human Language Technologies - The Baltic Perspective (Baltic HLT 

2018), Tartu, Estonia, 2018; 

• 11th International Conference on Language Resources and Evaluation (LREC 2018), 

Miyazaki, Japan, May 7-12, 2018; 

• 18th Annual Conference of the International Speech Communication Association 

(INTERSPEECH 2017), Stockholm, Sweden, 2017; 

• The 7th Conference on Human Language Technologies - The Baltic Perspective (Baltic HLT 

2016), Riga, Latvia, 2016; 

• The 10th Conference on Language Resources and Evaluation (LREC 2016), Portorož, 

Slovenia, 2016; 

• 16th Annual Conference of the International Speech Communication Association 

(INTERSPEECH 2015), Dresden, Germany, 2015; 

• The 20th Nordic Conference of Computational Linguistics (NODALIDA 2015), Vilnius, 

Lithuania, 2015; 

• Recent Advances in Natural Language Processing (RANLP 2015), Hissar, Bulgaria, 2015; 

• The 6th Conference on Human Language Technologies - The Baltic Perspective (Baltic HLT 

2014), Kaunas, Lithuania, 2014. 

Research results are reported in the 10 papers published in the proceedings of the international 

conferences:  

• Salimbajevs, A., & Kapočiūtė-Dzikienė, J. (2018). General-purpose Lithuanian Automatic 

Speech Recognition System. In Human Language Technologies - The Baltic Perspective - 

Proceedings of the Seventh International Conference Baltic HLT 2018, Tartu, Estonia, 

September 27-29, 2018. 
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• Salimbajevs, A. (2018). Creating Lithuanian and Latvian Speech Corpora from Inaccurately 

Annotated Web Data. In LREC 2018, 11th International Conference on Language Resources 

and Evaluation, Miyazaki, Japan, May 7-12, 2018. 

• Salimbajevs, A., & Ikauniece, I. (2017). System for speech transcription and post-editing in 

Microsoft Word. In INTERSPEECH 2017, 18th Annual Conference of the International 

Speech Communication Association, Stockholm, Sweden, August 20-24, 2017 (pp. 825–826).  

• Pinnis, M., Salimbajevs, A., & Auzina, I. (2016). Designing a Speech Corpus for the 

Development and Evaluation of Dictation Systems in Latvian. In N. C. (Conference Chair), 

K. Choukri, T. Declerck, M. Grobelnik, B. Maegaard, J. Mariani, S. Piperidis (Eds.), 

Proceedings of the Tenth International Conference on Language Resources and Evaluation 

(LREC 2016). Paris, France: European Language Resources Association (ELRA). 

• Salimbajevs, A. (2016a). Bidirectional LSTM for Automatic Punctuation Restoration. In I. 

Skadina & R. Rozis (Eds.), Human Language Technologies - The Baltic Perspective - 

Proceedings of the Seventh International Conference Baltic HLT 2016, Riga, Latvia, October 

6-7, 2016 (Vol. 289, pp. 59–65). IOS Press. http://doi.org/10.3233/978-1-61499-701-6-59 

• Salimbajevs, A. (2016b). Towards the First Dictation System for Latvian Language. In I. 

Skadina & R. Rozis (Eds.), Human Language Technologies - The Baltic Perspective - 

Proceedings of the Seventh International Conference Baltic HLT 2016, Riga, Latvia, October 

6-7, 2016 (Vol. 289, pp. 66–73). IOS Press. http://doi.org/10.3233/978-1-61499-701-6-66 

• Salimbajevs, A., & Strigins, J. (2015a). Latvian Speech-to-Text Transcription Service. In 

INTERSPEECH 2015, 16th Annual Conference of the International Speech Communication 

Association, Dresden, Germany, September 6-10, 2015 (pp. 723-725) 

• Salimbajevs, A., & Strigins, J. (2015b). Error Analysis and Improving Speech Recognition 

for Latvian Language. In Recent Advances in Natural Language Processing, RANLP 2015, 7-

9 September, 2015, Hissar, Bulgaria (pp. 563–569).  

• Salimbajevs, A., & Strigins, J. (2015c). Using sub-word n-gram models for dealing with OOV 

in large vocabulary speech recognition for Latvian. In B. Megyesi (Ed.), Proceedings of the 

20th Nordic Conference of Computational Linguistics, NODALIDA 2015, May 11-13, 2015, 

Institute of the Lithuanian Language, Vilnius, Lithuania (pp. 281–285). Linköping University 

Electronic Press / ACL.  

• Salimbajevs, A., & Pinnis, M. (2014). Towards Large Vocabulary Automatic Speech 

Recognition for Latvian. In Human Language Technologies – The Baltic Perspective (pp. 
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236–243). IOS Press. 

1.8. Outline 

The remainder of this document is structured as follows:  

• Section 2 is devoted to theoretical background of speech recognition, description of basic ASR 

components, advantages and disadvantages of different approaches. It also contains review of 

related research on speech recognition for Latvian and other Baltic languages. 

• Section 3 describes the acoustic modelling for automatic speech recognition for Latvian 

language, presents experiments on different acoustic models, grapheme-to-phoneme 

modelling, training data augmentation and collecting new training data from the Web. The 

section is based on the publications Salimbajevs & Pinnis (2014), Salimbajevs & Strigins 

(2015b) and Salimbajevs (2018). 

• Section 4 presents language models for Latvian ASR, experiments on training data filtering 

and sub-word recognition. The section is based on the publications Salimbajevs & Pinnis 

(2014), Salimbajevs & Strigins (2015b) and Salimbajevs & Strigins (2015c). 

• Section 5 focusses on adaptation of general domain ASR system to specific tasks: dictation, 

Saeima session transcription, address recognition and punctuation restoration. In the of this 

section the Latvian Speech-To-Text transcription web-service is presented, which is the first 

publicly available speech recognition service for Latvian. The section is based on the 

publications Salimbajevs (2016a), Salimbajevs (2016b), Pinnis et al. (2016) and Salimbajevs 

& Ikauniece (2017). 

• Section 6 summarizes results of the research and gives conclusions about this work. 
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2. CONCEPTS OF SPEECH RECOGNITION 

Spoken language is used to communicate information from a speaker to a listener. Speech 

production and perception are both important components of the speech chain. Spoken interaction 

can be divided into several distinct elements (see Figure 1). Speech begins with a thought, some 

semantic message, and intent to communicate in the brain. The computer counterpart to the process 

of message formulation is the application semantics that creates the concept to be expressed. After 

the message is created, the next step is to encode the message into a sequence of words. This is done 

by some language system. Words are combined into utterances, a continuous piece of speech 

generally beginning and ending with a voiced or un-voiced pause. Each word consists of a sequence 

of phonemes that corresponds to the pronunciation of the words. Each utterance also contains a 

prosodic pattern that denotes the duration of each phoneme, intonation of the utterance. Once the 

language system finishes the mapping from semantic concepts to utterances, a series of 

neuromuscular signals activate muscular movements to produce speech sounds. The speaker 

continuously monitors and controls the vocal organs using his or her own speech as feedback.  

Figure 1. Speech generation and understanding. 

The speech understanding process works in reverse order. First the signal is passed to the 

cochlea in the inner ear, which performs frequency analysis. A neural transduction process follows 

and converts the spectral signal into activity signals on the auditory nerve, which are then processed 

by the brain and the message is extracted. Currently, it is unclear how neural activity is mapped into 

the language system and how message comprehension is achieved in the brain. 

From computer programming point of view the task of speech recognition is to convert speech 

into a sequence of words by a computer program. The long-term goal of speech recognition is to 

enable people to communicate more naturally and effectively, as speech is the most natural 

communication modality for humans. Achieving this ultimate objective requires deep integration with 

Semantic message formulation 
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Vocal tract system 

Speech generation 
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many NLP components, which would enable computer program to understand the semantic messages 

encoded in the speech and execute the requested task or simply engage in a dialog. However, in this 

work we will only focus on a core speech-recognition task – conversion of speech into a sequence of 

words.  

2.1. Nature of Sound 

Sound is a longitudinal pressure wave formed of compressions and rarefactions of transmission 

medium (typically air) molecules, in a direction parallel to that of the application of energy. 

Compressions are zones where air molecules have been forced by the application of energy into a 

tighter configuration, and rarefactions are zones where air molecules are less tightly packed. Although 

there are many complexities relating to the transmission of sounds, at the point of reception (i.e. the 

ears or microphone), sound is readily dividable into two simple elements: pressure and time. These 

fundamental elements form the basis of all sound waves. They can be used to describe, in absolute 

terms, every sound we hear. 

The alternating nature of compression and rarefaction of air molecules along the path of an 

energy source can be described by the graph of a sine wave as shown in Figure 2. In this 

representation, crests of the sine curve correspond to moments of maximal compression and troughs 

to moments of maximal rarefaction. However, real life sound waves are a lot more complex and are 

a combination of various sound wave frequencies (and noise). 

 

Figure 2. Sound as series of compressions of air molecules and as a pressure wave. 

This complexity can be reduced by decomposing a sound wave into sinusoidal plane waves, 

which are characterized by these generic properties: 

• Frequency, or its inverse, the Wavelength 
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• Amplitude 

• Sound pressure / Intensity 

• Speed of sound 

• Direction 

At the point of reception, the air pressure variations of a sound wave cause vibration of 

diaphragm in human ear or sound sensing material in a microphone. The most common type of 

microphone is the dynamic microphone, which uses a coil of wire suspended in a magnetic field; the 

condenser microphone, which uses the vibrating diaphragm as a capacitor plate, and the piezoelectric 

microphone, which uses a crystal of piezoelectric material. 

2.2. Speech 

Speech is the vocalized form of communication produced by air-pressure waves emanating 

from the mouth and the nostrils of a speaker. Speech is based upon the syntactic combination of 

lexicals and names that are drawn from a very large vocabulary. Each spoken word is created out of 

the phonetic combination of a limited set of speech sound units, called phonemes. These vocabularies, 

the syntax which structures them, and their sets of speech sound units differ, creating many thousands 

of different, and mutually unintelligible, human languages. 

Because every speaker has a unique vocal anatomy, vocalizations of speech sounds are also 

unique, so perception is based on commonality of form. For example, the Figure 3 shows 

spectrograms of the same phoneme produced by two different speakers.  

 

Figure 3. Spectrograms of the same phoneme pronounced by two different speakers. 

The dark horizontal bands are called formants. Formants are distinctive frequency components 

of the acoustic signal. Each phoneme has a characteristic combination of formants and their 

trajectories. In theory, that means that the information required to distinguish between phonemes, can 

be represented purely quantitatively by specifying peaks in the amplitude/frequency spectrum. 

However, in real life, as it can be seen on Figure 3, the acoustic representation of the same phoneme 

can be very different, there is a great variability because of different environment, unique speaker 

voice characteristics etc. This makes speech recognition a very non-trivial task, which requires 
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complex solutions to address this variability. 

2.3. Speech Recognition Problem 

A source-channel mathematical model is often used to formulate speech recognition problems. 

As shown on Figure 4, the communication starts when speaker decides the source word sequence T 

and produces it through his/her text generator. The source sequence is passed through a noisy 

communication channel, the speech generator (speaker’s vocal apparatus) produces the speech 

waveform, the acoustic signal X, that is then processed by a signal processing component of the 

speech recognizer. This channel is called noisy, because some information can be lost during 

conversion of source into waveform, during transmission of the audio signal and in the signal 

processing component. At the other end of communication channel is the speech decoder, that decodes 

the acoustic signal X into a word sequence T’, which we hope is close to the original sequence T. 

Text
Generator

Speech
Generator

Signal
Processing

Speech
Decoder

Communication Channel

T X T 

Speech Recognizer
 

Figure 4. Speech recognition as noisy communication channel problem. 

Typical speech recognition system can be divided into basic components shown in the Figure 

5. Voice data from a microphone or other source is first received by a signal processing component, 

that typically perform pre-emphasis, automatic gain control and feature extraction. The extracted 

feature vectors are passed to the decoder, which produces the recognition results. Applications 

interface with the decoder to get recognition results. The decoding of the speech signal requires at 

least three models to generate the word sequence that has the maximum posterior probability for the 

extracted input feature vectors.  
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Figure 5. Decomposition of speech recognition into major components. 

Acoustic model contains the knowledge about acoustics, phonetics, microphone and 
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environment variability, gender and dialect differences among speakers, etc. Pronunciation or 

grapheme-to-phoneme model refer to knowledge of which phonemes sequences constitute possible 

words. Pronunciation model often is viewed as a part of acoustic or language model. Language model 

represents a system’s knowledge of word semantics, which words are likely to co-occur, and in what 

sequence. Knowledge of operations a user may wish to perform may also be included in the language 

model. 

Another way to look at the speech recognition problem, is to formulate it mathematically as 

follows: 

𝑇′ = 𝑎𝑟𝑔 max
𝑊̂

𝑃(𝑊|𝑋) 

where X is the acoustic signal and T’ is decoded word sequence.  

In other words, we are trying to find word sequence that has the maximal conditional probability 

given acoustic signal X. For this we need to train a statistic model 𝑃(𝑊|𝑋) . Unfortunately, it’s 

practically impossible to estimate this probability directly, for example, one would need to collect 

training set of acoustic signal examples with multiple different transcripts for each audio recording, 

but there are no naturally occurring data of this kind.  

This problem can be solved by evaluating this probability indirectly by using Bayes rule, thus 

the problem is rewritten as follows:  

𝑇′ = 𝑎𝑟𝑔 max
𝑊̂

𝑃(𝑋|𝑊)𝑃(𝑊)

𝑃(𝑋)
 

where 𝑃(𝑋|𝑊) is the conditional probability of acoustic signal X given word sequence 𝑊, or 

acoustic model, 𝑃(𝑊)  is unconditional probability of word sequence 𝑊 , or language model, and 

𝑃(𝑋) is unconditional probability of acoustic signal X.  

Because optimal value of 𝑊̂  is independent of 𝑃(𝑋) , this probability can be ignored in the 

optimization process and the decoder works only with non-normalized probability. However, some 

estimate of this probability might be necessary if one would want to calculate normalized probability 

of T’ given acoustic signal X. For example, for calculating the confidence of the decoder for given 

recognized word sequence. 

The language model can be estimated from large text corpora. But acoustic model can be 

naively estimated from the large collection of audio recordings of the same word sequences. In 

practice, however, decoder recognizes not the word sequences, but phoneme sequences, because they 

have much less variability (word count is not limited, but there are only dozens of phonemes). This 

makes it much easier to prepare the training data and to perform the recognition. The mapping 



21 

between words and phonemes are performed by so called pronunciation or grapheme-to-phoneme 

model, which can be separate or a part of acoustic or language model.  

Word error rate (WER) is a common metric of the performance of a speech recognition system. 

The WER is derived from the Levenshtein distance, working at the word level instead of 

the phoneme level. The WER is a valuable tool for comparing different systems as well as for 

evaluating improvements within one system. This kind of measurement, however, provides no details 

on the nature of translation errors and further work is therefore required to identify the main source(s) 

of error and to focus any research effort. 

The WER is calculated by first aligning the recognized word sequence with the reference 

(spoken) word sequence using dynamic string alignment and then computing: 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 

where 

• S is the number of substitutions, 

• D is the number of deletions, 

• I is the number of insertions, 

• N is the number of words in the reference (N=S+D+C). 

Many questions arise when training acoustic and language models and building practical speech 

recognizers, associated with speaker vocal tract differences, speech style and rate, likely words and 

phrases, unknown words, grammatical variation, noise interference, nonnative accents, getting and 

processing training data, determining best modelling methods and parameters, understanding how to 

design speech recognition systems and adapt them to specific applications, and confidence scoring of 

results. A successful speech recognition system must address most if not all of these uncertainties. 

In many cases the solutions to these questions are applicable across different speech recognition 

systems and different languages. So, for example, methods successfully applied for close-talk 

prepared speech, can be to some extent reused for close-talk spontaneous speech. Or methods 

successfully adopted for English speech recognition, can be transferred to Latvian. However, when 

developing speech recognition for a new language (i.e. a language for which there is no (or very little) 

previous research), there will be always new questions, that needs to be addressed. For Latvian 

language, these questions include: 

1. What data is needed to train statistical models for speech recognition for Latvian? 

2. How to get this data and how to process it before training? 

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Phoneme
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3. What modelling methods and algorithms are the most appropriate for Latvian?  

4. What are the best model parameters? 

5. How to design speech recognition systems and adapt them to specific applications? 

2.4. Feature Extraction 

Acoustic signal, including human voice, is difficult to process and recognize directly, as it 

contains a lot of noise and much unnecessary information which may trouble the speech recognition. 

Also, a speech signal is a time-series signal, but the information that is needed to recognize speech is 

contained in the frequency-domain (as formants). That means, that we need to use some feature 

extraction method (that performs a Fourier or similar transform, among other things) or use a model 

that can learn such transformations. 

The second approach requires a very complex model engineering and huge amount of training 

data. So, historically, the first approach is much widely adopted. 

During feature extraction, a discretized acoustic wave is converted into a series of feature 

vectors, which capture the spectral information necessary to make recognition, remove unnecessary 

information and reduce noise. These feature vectors can then be passed to a statistical model. 

Two of the most popular feature vector types are MFCC (Mel-frequency Cepstral Coefficients) 

(Mermelstein, 1976) and PLP (Perceptual Linear Prediction) (Hermansky, 1990). There are also many 

other features types, however they all have much in common. In this subsection, a more detailed 

description MFCC feature extraction will be given as an example. 

The MFCC feature vectors are typically extracted by performing the following steps: 

1. Audio signal is divided into a small segments (frames), a special windows function is applied 

for each frame. 

2. Each frame is projected into frequency domain by Fourier transform. 

3. Power spectrum is calculated from Fourier transform for each frame. 

4. Mel filters are applied to obtained spectrum. 

5. Absolute filter values are replaced with logarithms and discrete cosine transform is applied, 

as if it were a signal. There result is called cepstrum. 

6. MFCC vectors are formed from the amplitudes of the resulting spectrum. 

In the first step, audio signal is typically divided into 20-30ms frames which overlap by 10ms. 

Each frame is transformed into a N-dimensional feature vector. This setup is considered to contain all 

the necessary information for making decisions on which phoneme is contained in the frame (Atal, 
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1976).  

Next, in order to calculate correct Fourier transform of each frame, we need to apply a window 

function. In MFCC and other features typically Hamming window function is used.  

A Fourier transform then projects the data from time domain to the frequency domain. From 

this transform a power spectrum is computed, i.e. we calculate the energy of the signal per unit time 

in the each of Fourier transform frequency bins in the current frame. 

At this step, one could reduce number of frequency bins to some N and use them as N-

dimensional feature vector. This type of feature vectors is called – “filter-bank features” (because, so 

called filter-bank is applied to the frequency bins of the frame). 

MFCC idea is to position the filters so that most important information is captured with most 

precision. For this so-called Mel-scale (Stevens & Volkmann, 1937) is used, which is a perceptual 

scale of pitches judged by listeners to be equal in distance from one another. Or in other words, it 

describes how well human ear can distinguish between frequencies. Using this scale, we align filters 

in such way that frequency area that is well recognized by human ear has higher density of filters. 

Figure 6 shows few examples of Mel-filters. Triangular filters are typical used, which have a 

value of 1 for the central frequency and linearly decline to zeros in the boundaries. Mel-filters are 

applied to the power spectrum. 

 

Figure 6. Mel filters 1,5,7 and 10 in the frequency interval 300-8000Hz. 

In the final step, a discrete cosine transform (DCT) is performed on logs of filter values and 

first N values a taken as MFCC feature vector (N is usually 13). Sometimes, DCT can be skipped 

(Fook et al., 2013).  

The MFCC feature vector describes only the power spectral envelope of a single frame, but as 

it was mentioned in Section 2.2 speech also have information in the dynamics i.e. what are the 
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trajectories of the MFCC coefficients over time. It turns out that calculating the MFCC trajectories 

and appending them to the original feature vector increases ASR performance (if we have 12 MFCC 

coefficients, we would also get 12 delta coefficients, which would combine to give a feature vector 

of length 24). 

To calculate the delta coefficients (differential coefficients), the following formula is used: 

𝑑𝑡 =
2 ∑ 𝑛(𝑐𝑡+𝑁 − 𝑐𝑡−𝑁)𝑁

𝑛=1

2 ∑ 𝑛2𝑁
𝑛=1  

 

where dt is a delta coefficient from frame t computed in terms of the static coefficients ct+N to ct-N. A 

typical value for N is 2. Delta-Delta (Acceleration) coefficients are calculated in the same way, but 

they are calculated from the deltas, not the static coefficients. 

To further improve the classification power of features, a frame splicing is typically performed. 

For example, we concatenate nine consecutive frames together, 4 previous frames as left-context, 

central frame and 4 next frames as right-context. This helps the recognition, but creates another 

problem – dimensionality of the input is increased. Many of the new dimensions are redundant and 

correlated. So, in order to reduce the dimensionality and decorrelate input data usually a Linear 

Discriminant Analysis (LDA) transform is applied (Yu et al., 1990; Haeb-Umbach &Ney, 1992). LDA 

features are then fed into a statistical model for speech recognition. 

2.5. Acoustic Model 

From section 2.3 we know that the acoustic model is a conditional probability of some acoustic 

signal X given the word sequence 𝑊 and is typically written as 𝑃(𝑋|𝑊). In simple words, acoustic 

model tells us what is the probability that word sequence 𝑊 sounds like X. When performing speech 

recognition, acoustic signal X is given as an input and the goal of the decoder is to find the word 

sequence 𝑊 that maximizes this probability. 

To learn how to estimate these probabilities we train a statistical model on a large set of 

examples, called speech corpus. Each example is a word sequence and a corresponding audio 

recording. The more diverse and bigger set of examples we collect, there more reliable model can be 

obtained. 

Let’s suppose we are developing a speech recognizer, that can only recognize word sequences 

W1 and W2. For this we ask 10 speakers to say both W1 and W2 each 20 times. From these recordings, 

we can get the necessary statistics to estimate 𝑃(𝑋|𝑊1) and 𝑃(𝑋|𝑊2). However, it is easy to see that 

this approach has several problems: 

• If we would like to add word sequences W3 to our speech recognizer, we would need to 
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record new audio examples. Moreover, if change just one word in W1 or W2, we would 

have to make new recordings again. 

• W1, W2 and W3 can have a lot of common words and sounds, but we cannot use these 

similarities.  

• Our speech examples are designed for specific purpose; we cannot use naturally 

occurring audio for training our model.  

The solution to this problem is to use smaller modelling units, i.e. words or better phonemes. 

Word models can be used when only a small vocabulary of words should be recognized. Phoneme 

models are necessary to build large vocabulary speech recognition systems. Nowadays, almost all 

practical speech recognition systems use phonemes as acoustic modelling units, because phoneme 

models like can use recordings of any words for training and recognize any word sequence without 

recording new audio samples.  

That way word sequence 𝑊 is replaced by phoneme sequence P: P1, P2 … PN, where each Pi is 

trained and estimated independently. A grapheme-to-phoneme (G2P) model describes the mapping 

between a sequence of phonemes and a word. In its simplest form, a G2P model is a dictionary – a 

list of words and their corresponding canonical phonetic pronunciations. It can also be a finite state 

transducer (FST) or a statistical model. 

The adoption of Hidden Markov Models (HMM) for acoustic modelling marks an important 

milestone in a speech recognition research. The statistical approach of HMMs put less emphasis on 

emulating the way the human brain processes and understands speech and was controversial with 

linguists since HMMs are too simplistic to account for many common features of human languages 

(Huang et al., 2014). However, the HMM proved to be a highly useful way for modelling speech and 

became the dominant speech recognition algorithm in the 1980 (Juang & Rabiner, 2006).  

2.5.1. Hidden Markov Models 

Hidden Markov Model based acoustic models act on the assumption that a series of observed 

feature vectors, which represent word or phoneme, are generated by the Markova chain. In the large 

vocabulary ASR, each phoneme has its own HMM and words are obtained by contacting them into 

one single HMM. During decoding word HMMs are concatenated into utterance HMM, which are 

then matched to audio signal. 

As it can be seen on Figure 7, HMM is finite state machine, an abstract machine that can be in 

exactly one of a finite number of states at any given time point. Hence, acoustic HMM can change its 

state only once per input frame. 
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At each time point t HMM can change its state from i to j with probability aij. The current state 

at each time point is not known (hence, the name – Hidden Markov Model). However, at each time 

point HMM can emit an observation vector xt from probability distribution bj(xt). In the acoustic 

modelling context, an observation vector xt  is the feature vector which is derived from the input audio 

signal. Observations vectors are emitted when HMMs is in one of the so-called emitting states.  

1 2
a12

3 4 5
a23 a34 a45

a22 a33 a44

B3(x) B4(x)B2(x)

 

Figure 7. HMM with 3 emitting states and Bakis topology. 

Most speech modelling and recognition engines use HMMs with so-called Bakis topology. In 

other words, at each time point HMM can either stay in the current state or go to the next state.  Also. 

there are only two non-emitting states: (1) the start state and (2) the end state. Both states are visited 

only once and are necessary for making implementation easier.  

Probability density bj(xt) describes the distribution of observation vectors in position j. For 

continuous density HMM, bj(xt) is typically modelled by Gaussian Mixture Model, hence such 

acoustic model approach is typically referred as HMM-GMM. 

Model for distribution bj(xt) for some state j describes some sound event, and this model should 

be sufficiently complex to distinguish between different sounds and should be sufficiently generalized 

and robust to deal with the variability of natural speech. 

There are three important algorithms for HMMs: 

• Baum-Welch algorithm, which is used during acoustic model training to estimate of the 

parameters of a hidden Markov model given a set of observed feature vectors.  

• Forward-backward algorithm, which is used during decoding to find the probability of a given 

HMM state sequence given the observations vectors. 

• Viterbi decoding, which is used to effectively find most probable sequence of hidden state 

given the observation vectors.  

To sum up, the Baum-Welch algorithm is used during training to find aij and bj given hidden 

state sequences (generated from reference text) and feature vectors (extracted from audio). Then, if aij 
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un bj are known, the probability of the PA(X|W) can be calculated, i.e. the probability of a feature 

vector X for given word or phoneme W: 

 𝑃𝐴(𝑋|𝑊) = ∑ 𝑃(𝑋, 𝑠|𝑊)

𝑠

   

where s=s1,s2,s3...sT is the sequence of HMM states, which generates the sequence of feature 

vectors X=x1,x2,...,xT. P(X,s|W) is calculated as follows: 

 
𝑃(𝑋, 𝑠|𝑊) =  ∏ 𝑏𝑠𝑡

(𝑥𝑡)

𝑇

𝑡=1

𝑎𝑠𝑡𝑠𝑡+1
 

  

where sT+1 is the end state of HMM. 

Direct estimation of these probabilities is too computationally intensive, also the number of 

possible HMM state sequences that generate the given observations might be very large or unlimited, 

especially when T is large (and it’s typically is large, because input frames should be very short, like 

10-20 msec). In order to solve this problem above mentioned Viterbi and forward-backward 

algorithms are used. Forward-backward algorithm efficiently calculates P(X,s|W), and Viterbi 

algorithm is used to find the most probable HMM state sequences. 

2.5.2. Context-dependent Phonemes and Tied States 

The acoustic properties of the phonemes frequently vary depending on the previous and 

following phonemes. The position of the phoneme in the word or syllable also frequently has an 

impact on the articulation. Therefore, in modern ASR systems, the modelling unit is not individual 

phonemes, but context-dependent phonemes. Models for individual or context-independent 

phonemes are typically called monophone models. Two of the most popular context-dependent 

phonemes types are triphones and quinphones.  

The triphone is dependent on the one phoneme before and one phoneme after. The context of 

the quinphone is two phonemes before and after. For example, tuple (a,l,i) is a triphone for phoneme 

“l”, which is preceded by phoneme “a” and succeeded by phoneme “i”.  

When using triphones, the number of model parameters is dramatically increased. If previously 

it was necessary to find HMM parameters for each of 33 phonemes, now we need to find HMM 

parameters for 33*33*33=35937 triphones. Collecting training data which would sufficiently cover 

all these triphones is too expensive or even impossible. Therefore, the numbers of parameters should 

be optimized.   

The solution to this problem is to share the parameters across similar context-dependent 

phonemes. In modern ASR systems, the parameters sharing is even more deeper as parameters are 
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shared across individual HMM states.  

The parameter sharing is usually implemented as follows: 

• All HMM states are clustered. Number of clusters is much smaller than number of possible 

triphones and is determined by triphone occurrence statistics. 

• A classifier is built to assign clusters for unseen triphones and their HMM states. Usually a 

decision tree is used (Bahl et al., 1991).  

• HMM states that belong to the same cluster share parameters, i.e. aij and bj are the same for 

all HMM states in one cluster. 

Parameter sharing is sometimes called “state tying”, hence HMM states with shared parameters 

are called tied states. State clusters are sometimes called senones. A senone's dependence on context 

could be more complex than just left and right context. It can be a rather complex function defined 

by a decision tree, or in some other way. 

Sharing is not limited to triphones of the same phoneme and can occur across different 

phonemes, which is sometimes called “phone tree crossing”. This option is particularly useful for 

grapheme-based pronunciation models which use graphemes (letters) instead of real phonemes. State 

tying between phonemes allows to connect different graphemes that correspond to the same sound.  

2.5.3. Neural Network Models 

In the end of 1980s neural networks became an attractive method for acoustic modelling. Since 

then, the neural networks were used in many aspects of speech recognition: phoneme classification 

(Waibel et al., 1989), isolated word recognition (Wu & Chan, 1993) and speaker adaptation.  

However, despite being effective in classifying short time units, such as individual phonemes 

or isolated words, the neural networks we rarely successful in continuous speech recognition, mainly 

because of their lack of ability to model temporal dependencies. 

In recent years, significant progress in speech recognition studies has been linked with adoption 

of deep learning techniques together with HMM. For example, TANDEM method uses a deep neural 

network for feature extraction and then these features are passed to classic HMM-GMM model 

(Hermansky et al., 2000).  

Another approach is to use deep neural networks for modelling HMM state emission probability 

distributions, i.e. instead of GMM models. This approach was shown to be very effective. State-of-

the-art ASR systems employing this approach achieve 33% to 50% relative improvement over best 

HMM-GMM models (Seide et al., 2011). Also, there have been claims that on some evaluation sets 

models using this approach can even outperform humans (Stolcke & Droppo, 2017; Xiong el al., 
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2016).  

The input of hybrid HMM-GMM model are feature vectors and the output is a probability 

distribution between senones, which is typically implemented using a soft-max layer. The input layer 

may consume multiple consecutive input frames to increase the context of decision making. There is 

at least one hidden layer between input and soft-max layer. Hybrid HMM-GMM models are usually 

trained as follows: 

• First, a strong HMM-GMM model is trained; 

• HMM-GMM model is used to produce alignments between feature vectors and individual 

HMM states at each frame; 

• Alignments are used to train the DNN. 

Then during decoding, the input vectors are fed into the DNN and HMM state probabilities are 

calculated by performing a forward-pass of DNN.  

2.5.4. Speaker Adaptation 

As was shown in Section 2.2 the pronunciation of the same phoneme can be very different 

between various speakers. That means the acoustic model should be able deal with speaker variability. 

One of possible approaches is to make acoustic model adaptable. In most modern ASR systems, 

this is typically achieved using a method called Speaker Adaptive Training (SAT) (Anastakos et al., 

1997).  

During SAT, acoustic models are trained using adapted features. For HMM-GMM systems this 

is typically achieved using feature-space Maximum Likelihood Linear Regression (fMLLR). Each 

input feature vector is multiplied with special adaptation matrix, which is calculated for each speaker. 

The values in the matrix are trained to maximize the likelihood of the reference text given the input 

vectors.  

Then, in the first recognition pass, the fMLLR matrix is estimated in the unsupervised way, and 

then used in the second recognition pass to produce the final result. 

For HMM-DNN models one of the most popular and successful methods is i-vectors speaker 

adaptation (Miao, 2014). I-vectors is a special technique introduced for speaker recognition (Dehak 

et al., 2011). In simplified terms, i-vector is 100 to 1000-dimensional vector which convey the speaker 

characteristic among other information such as transmission channel, acoustic environment or 

phonetic content of the speech segment. A detailed description of i-vector paradigm is beyond the 

scope of this work.  
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I-vectors can be integrated in various ways:  

• I-vector extractor can be trained externally or on the same training data as acoustic 

model. 

• I-vectors can be fed into a separate neural network, which will calculate a linear 

transformation (e.g. shift) of input features.  

• Alternatively, i-vectors can be concatenated with acoustic feature vectors and fed 

directly into an acoustic DNN. 

The steps to train SAT-DNN acoustic models with iVectors can be summarized as follows: 

1. Extract i-vectors for training speakers; 

2. Update features (by simple concatenation or by some transform); 

3. Train DNN model in the new speaker-adapted feature space. 

 During decoding, we simply need to extract the i-vector for current speaker. Feeding the i-

vector to the SAT-DNN architecture will automatically adapt it to this speaker. No initial decoding 

pass and no DNN fine-tuning are needed on the adaptation data. 

2.6. Language Model 

2.6.1. Regular Grammars 

The purpose of language modelling is to build a mathematical model which describes the 

language and assign the probability that given sentence belongs to the language. The model could be 

statistic and estimated from some large text corpus, or it can be deterministic and built manually, to 

assign binary values (or some weights) for sentences. 

The deterministic models typically limit the language to some controlled subset and use a fixed 

small vocabulary. They are particularly useful in scenarios like recognition of voice commands.  

The most common type of limited deterministic language models are grammars, particularly 

regular grammars. Regular grammar can be defined as follows:  

𝐺 = (𝑁, 𝑋, 𝑃, 𝑆) 

where 

• N – finite set of non-terminal symbols; 

• X – finite set of terminal symbols; 

• P – finite set of production rules; 



31 

• S  N – start symbol. 

Production rules is a pair [non-terminal symbol, sequence symbols from alphabet N  X], 

which usually is written in one of the following forms: 

 A → aB  

or 

 A → a  

or 

 A → ε  

where  A, B  N and a  X. 

In simple terms, production rules describe how to replace non-terminal symbols with terminal 

symbols. If grammar is well defined, this replacement process will end, as only terminal symbols will 

remain. 

There are alternative definitions which simplify design of grammars (for example, by allowing 

right side to contain multiple non-terminal symbols), however they describe the same language class 

and can be transformed into form described here. 

In speech recognition systems, terminal symbols are words, and production rules generate 

sentences that this system should be able to recognize. If we assign weight (or probability) to each 

production rule, we get a stochastic grammar. This allows to calculate probabilities for whole 

sentences. Using these probabilities, speech recognition system can score multiple hypotheses and 

select the one with higher score. 

The grammars are usually written manually which is a long and hard work. While designing a 

grammar one must be able to predict a typical end-user phrases, variations in them, be able to find a 

compromise in the complexity, i.e. a simple grammar will be increase the accuracy of ASR, but users 

will find it hard to use, on the other hand, a complex grammar will be much more flexible and easier 

to use, but will adversely affect the quality of recognition. So there have been suggested various ways 

to train grammars from data (Baker, 1979), both supervised (Clark, 2007) or unsupervised (Clark & 

Lappin, 2010; Tu & Honavar, 2008). 

2.6.2. Count-based Models 

Word n-gram language models (LM) are probabilistic models that attempt to predict the next 

word based on the previous n-1 words. To approximate the underlying language in this way, the 

assumption that each word depends only on the previous n-1 words must be made. This assumption 
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is very important, because it massively simplifies the estimation of such a model from the given data. 

To estimate an n-gram language model, a large text corpus is used. For an estimated model, 

probabilities are calculated in the following way: 

𝑃(𝑤𝑖|𝑤𝑖−1, . . . , 𝑤(𝑖−𝑛)+1) =
𝑐𝑛𝑡(𝑤(𝑖−𝑛)+1, . . , 𝑤𝑖−1, 𝑤𝑖)

𝑐𝑛𝑡(𝑤(𝑖−𝑛)+1, . . , 𝑤𝑖−1)
 

where cnt is the count of given word sequences in a text corpus. 

Class-based n-gram models are similar to word n-gram models, but they model relationships 

between classes, which contain multiple words. 

The number of classes is much smaller than the number of words, which make the model 

smaller, but more robust, the model’s generalisation capacity is increased while slightly losing the 

precision. 

The mapping between words and classes, can be defined as following deterministic function: 

𝐶: 𝑤 → 𝐶(𝑤). 

Then probability of some word wi can be computer using following equitation (Whittaker, 2000): 

 𝑃(𝑤𝑖|𝑤1, … , 𝑤𝑖−1) = 𝑃(𝑤𝑖|𝐶(𝑤𝑖))𝑃(𝐶(𝑤𝑖)|𝐶(𝑤𝑖−𝑁+1, … , 𝐶(𝑤𝑖−1)) 

A probabilistic function can also be used for mapping words to classes. Such function will 

assign word to some class with some probability. This allows word to belong to multiple classes 

simultaneously, with some probability assigned for each class. This can be particularly useful for 

words that can change their classes depending on the context. Then, in order to calculate probability 

of the word wi it is necessary to perform summation over all possible word class histories (Ney et al., 

1994): 

 𝑃(𝑤𝑖|𝑤1, … , 𝑤𝑖−1) = ∑ 𝑃(𝑤𝑖|𝑐) [∑ 𝑃(𝑐|𝑠)𝑃(𝑠|𝑤𝑖−𝑁+1, … , 𝑤𝑖−1)

𝑠

]

𝑐

 

2.6.3. Neural Network Models 

Researchers suggested many other methods for language modelling, which do not perform any 

n-gram counting. One of the most successful and important alternative methods are neural networks, 

which was first introduced by (Bengio et al., 2003). 

The advantage of neural network approach is better generalization on unseen word sequences. 

The reason for this is that in neural network language models sparse word histories are projected into 

a low-dimensional space. In this space, similar word histories are tied together even if they were never 

observed in the training data. 
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The theoretical advantage has been experimentally proven many times, however count-based 

models still remain popular in many cases. This is usually because neural network language models 

are much harder to train and use, due to: 

• much higher computational requirements, especially during training; 

• large number of hyperparameters; 

• the complexity of implementation. 

As of current day, most widely used and successful neural network architecture for language 

modelling are recurrent neural networks (RNN). Such languages models were first adopted by 

Mikolov et al. (2010).  

In simple case, the RNN model consists of three layers: input layer, output layer and hidden 

layer (see Figure 8). 

 

Figure 8. Recurrent neural network language model 

The input is a vector wt which represents the current word using a one-hot encoding. This vector 

is transformed using the input layer (transform U) and then fed into a hidden layer.  

Another input is a vector ht-1, which is calculated by the hidden layer for the previous word. 

This vector is also transformed (transform W) before passing to the hidden layer. At the start of the 

process, ht-1 is initialized with zeros.  

Next, the hidden layer calculates the values ht, which are passed to the output layer, which 

outputs probability distribution for the next word and usually is implemented as soft-max over 

language model vocabulary. Hidden layer activation ht is also passed to the computation for the next 
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word. 

RNNs can theoretically use an unlimited previous context for their decisions. In practice, 

however, the ability of pure RNNs to remember long-term dependencies is limited, so there exists 

number of extensions to make remembering long contexts possible (Hochreiter & Schmidhuber, 1997; 

Cho et al., 2014).  

For inflective languages like Latvian there is also another problem – large number of surface 

forms for each word. As the result the word dimension of the input (word embedding) and outputs 

layers can be more than 600 000. That makes convergence of the models almost impossible and also 

requires a lot of computational resources for training and inference, therefore making models not 

practical. Convergence can be achieved by reducing vocabulary, however this increases out-of-

vocabulary rate and makes models less accurate than traditional n-grams. Also, even if such large 

vocabulary RNN model will provide better WER, the performance drop and hardware requirements 

can be too big, therefore making it not suitable for commercial deployment. 

2.6.4. Entropy, Perplexity and OOV 

The probability that the language model assigns to any text that was not in the training data 

gives a sense of how well the model works on the previously unseen data. The higher is the average 

probability that is assigned to fluent and grammatically correct sentences, the better is the model. 

From information theory point of view language model can be viewed as an information source, 

which generates a sequence of tokens w1,w2,w3....wn with probability P(w1,w2,w3....wn). Tokens can 

be words, words pairs or sequences, word classes, sub-word units (e.g., syllables). When one token 

is outputted, information source reduces the uncertainty of the next token.  The average information 

(entropy) for each token can be calculated as follows: 

 𝐻 = − lim
𝑛→∞

1

𝑛
∑ 𝑃(𝑤1, … , 𝑤𝑛) log2 𝑃(𝑤1, … , 𝑤𝑛)

𝑤1,…,𝑤𝑛

 

 

The source can be assumed to be ergodic, as people can successfully use the language without 

having to know and remember all the previously spoken words, we can distinguish the words in the 

conversation based on some of the previous words. This assumption allows to replace the summation 

of all possible token sequences with one infinite token sequence, which then can be approximate with 

sufficiently long sequence: 

 𝐻̌ = −
1

𝑛
log2 𝑃(𝑤1, … , 𝑤𝑛) 

 

Then language model perplexity can be defined as: 
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 PP = 2𝐻̌ = 𝑃(𝑤1, … , 𝑤𝑛)−
1
𝑛  

Perplexity can be perceived as the branching factor, i.e. as the average number of possible 

tokens that can follow any given token. That means the complexity of the speech recognition task can 

be interpreted as the uncertainty that occurs when choosing one correct token from PP tokens with 

the same probability. The higher the PP, the more difficult is the recognition task. 

To sum up, the lower is the perplexity, the better is the model. So, in order to improve the speech 

recognition accuracy, perplexity should be minimized. Though sometimes there are exception to this 

rule. Clarkson (1999) gives an in-depth analysis of the relationships between recognition accuracy 

and perplexity. 

Language models are limited by their vocabulary, which is typically formed by the words that were 

found in the training corpus. Words outside the model vocabulary can always be found. That means 

two languages model can be compared in terms of out-of-vocabulary (OOV) rate. OOV is calculated 

by taking some text T and counting words that are not in vocabulary V: 

 𝑂𝑂𝑉𝑇(𝑉) =  
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑓𝑟𝑜𝑚 𝑇 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛 𝑉

𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑇
  

Usually the lower is the OOV, the better model is suited for recognizing texts like T. 

2.7. Discriminative Training 

The count-based language models, HMM acoustic models and Gaussian mixture models are all 

generative models. In probability theory and statistics, a generative model is a model for randomly 

generating observable data values, typically given some hidden parameters. It specifies a joint 

probability distribution over observation and label sequences. 

Generative models contrast with discriminative models, in that a generative model is a full 

probabilistic model of all variables, whereas a discriminative model provides a model only for the 

target variable(s) conditional on the observed variables. In simple terms, a generative method models 

how the data was generated in order to categorize a signal. It asks the question: based on my 

generation assumptions, which category is most likely to generate this signal? A discriminative 

method does not care about how the data was generated, it simply categorizes a given signal. 

The positive properties of generative approach for ASR are: 

• the problem is described completely; 

• a natural training criterion, maximum likelihood estimation (MLE); 

• almost closed form solutions by EM (expectation/maximization) algorithm; 

• nice from the mathematical point view. 
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However, there is also a negative side: 

• During training, we learn model 𝑃(𝑊, 𝑋) = 𝑃(𝑊) ∙ 𝑃(𝑊|𝑋), while what we actually need is 

𝑃(𝑊|𝑋). 

• Density estimation 𝑃(𝑋|𝑊)  is a harder problem than classification 𝑃(𝑊|𝑋) , there is no 

guarantee that the observed data X from sentence W actually have a higher likelihood 

probability 𝑃(𝑋|𝑊) than the likelihood 𝑃(𝑋|𝑊′) of some other competing sentence 𝑊′.  

• Integrating hybrid components like neural networks is either hard or “break” generative 

properties. 

The idea of discriminative approach for speech recognition is to estimate  𝑃(𝑊|𝑋) directly: 

𝑃(𝑊|𝑋) =
𝑃(𝑊, 𝑋)

∑ 𝑃(𝑊′, 𝑋)𝑊′
=

𝑃(𝑊) ∙ 𝑃(𝑊|𝑋)

∑ 𝑃(𝑊′) ∙ 𝑃(𝑊′|𝑋)𝑊′
 

However, there is one very important problem - the sum over all possible sentences in 

denominator, which results in a very complex optimization problem. In the simpler versions of 

discriminative training, this is solved by performing optimization on phoneme or word level, however, 

as the end goal of an ASR system is to recognize utterances, not single phonemes, there have been 

proposed methods for sequence discriminative training: maximum mutual information (Bahl et al., 

1986), minimum classification error (MCE)(Juang et al, 1997), minimum word/phone error 

(MWE/MPE) (Povey & Woodlang, 2002), minimum Bayes risk (MBR) (Vesely et al., 2013) etc. All 

these methods use various types of approximations and short-cuts to compute the distribution in the 

denominator. 

Also, usually discriminative training is performed after initialization of 𝑃(𝑊, 𝑋)  using 

maximum likelihood training. So, there are no gains in simplifying the training. Nevertheless, most 

experiments show that there are relative improvements by 5-10% in WER over maximum likelihood 

approach. 

One of most popular discriminative training objective functions is maximum mutual 

information (MMI): 

ℱ𝑀𝑀𝐼(𝑀) =  ∑ 𝑙𝑜𝑔
𝑃𝑀(𝑊𝑟)𝑘 ∙ 𝑃(𝑊𝑟|𝑋𝑟)

∑ 𝑃(𝑊′)𝑘 ∙ 𝑃𝑀(𝑊′|𝑋𝑟)𝑊′

𝑅

𝑟=1

 

where M represents the acoustic model parameters, Wr are the training utterances, Xr is the feature 

vector sequence corresponding to the training utterance r, k is the acoustic scale as used in decoding 

and P(W) is a language model (usually weakened such as a unigram). 

Although likelihood and posterior probability are transformable based on Bayes’ rule, 
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generative and discriminative criteria often generate different results, training of ASR acoustic models 

using discriminative approach has been shown to provide significant reduction in word error rates. 

Arthur Nadas (1983) showed that if the prior distribution (language model) and the assumed 

likelihood distribution family are correct, both MLE and MMI are consistent estimators, but MMI 

has a greater variance. However, when some of those premises are not valid, it is desirable to use 

MMI to find the estimate that maximizes the mutual information (instead of likelihood) between 

sample data and its class information. The difference between these two estimation techniques is that 

MMI and other discriminative criteria not only aims to increase the likelihood for the correct class, 

but also tries to decrease the likelihood for the incorrect classes. Thus, discriminatively trained 

acoustic model in general possesses more discriminating power among different competing 

hypotheses. 

2.8. End-to-end Speech Recognition 

Consider there is some input sequence x (of length T) and the output is some output sequence y 

(also of length T). As long as we have an objective function on the output sequence y, we can train a 

classifier to produce the desired output. However, in speech recognition output sequence (text) is 

much shorter than the input sequence (audio wave), which poses a problem for many machine 

learning methods, especially for neural networks. 

One of the great advantages of hidden Markov models is their ability to be trained on an 

unaligned data. This inherent property of HMMs and corresponding training and inference algorithms 

makes them a very good choice for speech recognition task. 

State-of-the-art ASR acoustic models combine HMMs and neural networks by using neural 

networks for modelling HMM state emission probability distributions. In simple words, HMMs are 

used to produce alignments, but acoustic event recognition is performed by neural network. HMMs 

are also used to produce aligned data (e.g. by inserting “blank” labels) for neural network training. 

While pure HMM and hybrid HMM-DNN approaches have proved successful, they have 

several drawbacks:  

1. there are explicit assumptions while designing the state models for HMMs;  

2. there are explicit (and often questionable) dependency assumptions to make inference 

tractable, e.g. the assumption that observations are independent for HMMs;  

3. for standard HMMs, training is generative, even though sequence labelling is discriminative; 

4. HMM, DNN and language models are all optimized separately, while joint optimization might 

give better results. 
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5. during training it’s necessary to train a number of intermediate HMM models, this makes 

training process long and complex, also errors or non-optimal choices for intermediate models 

will typically affect end model performance. 

This gives a motivation to remove HMM’s from speech recognition systems and perform 

speech recognition using neural networks only. However, it was largely impossible before wide 

adoption of RNN with LSTM or GRU units, and, most importantly, before the introduction of 

Connectionist Temporal Classification (CTC) (Graves et al., 2006). 

The key idea behind CTC is that instead of somehow generating the label as output from the 

neural network, we instead generate a probability distribution (via soft-max layer) at every timestep 

(from t=1 to t=T). Suppose that for each input sequence x (acoustic feature vectors) we have a label 

ℓ. The label is a sequence of phonemes from some phoneme set L, which is shorter than the input 

sequence x; let U be the length of the label. We can then decode this probability distribution into a 

maximum likelihood label. Finally, we train our network by creating an objective function that 

coerces the maximum likelihood decoding for a given sequence x to correspond to our desired label 

ℓ. 

This requires some clever tricks, objective functions, and output decoding algorithms; which 

are covered in (Graves et al., 2006) and (Graves, 2008), as well as in many other following research 

papers (Miao et al., 2015; Chorowski & Jaitly, 2016). 

The introduction of CTC inspired many similar methods (Povey et al., 2016) and enabled end-

to-end speech recognition. End-to-end models jointly learn all the components of the speech 

recognizer. Thus, it simplifies the training process and deployment process. There have also been 

work that shows that feature extraction from raw audio can be performed by neural networks (Sainath 

et al., 2015). Joint optimization and automatic pronunciation learning may also result in reduction 

WER.  

While CTC has shown tremendous promise in end-to-end speech recognition, it is limited by 

the assumptions of independence between frames - the output at one frame has no influence at the 

outputs at the other frames. The only way to ameliorate this problem is through the use of a strong 

language model (Zhang et al., 2017), which is trained independently on large text corpus. Thus, such 

CTC-based system is end-to-end-trained, but it is not an end-to-end model when decoding. 

An alternative approach to CTC-based models are attention-based models. Attention-based 

ASR models were first introduced simultaneously by Chan et al. (2016) and Bahdanaua et al. (2016). 

Unlike CTC-based models, attention-based models do not have conditional-independence 

assumptions and can learn all the components of a speech recognizer including the pronunciation, 
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acoustic and language model directly. This makes it not only an end-to-end trained system but an end-

to-end model. By the end of 2016, the attention-based models have seen considerable success 

including outperforming the CTC models (with or without an external language model) (Yu et al., 

2016; Chorowski & Jaitly, 2016). 

The drawbacks of the end-to-end speech recognition approach are: 

1. “end-to-end” approaches attempt to take structure out of the system, like language model, the 

knowledge of pronunciations of words, or the concept of speech feature extraction, this makes 

such system less controllable and more difficult to adapt to new domains; 

2. by taking out the structure such methods require much larger amount of training data; 

3. currently end-to-end ASR systems are unable to outperform state-of-the-art results of hybrid 

systems, especially if used without the classic language model (thus breaking the pure end-

to-end process). 

Because of these reasons, this thesis will focus on a more traditional hybrid HMM-DNN 

methodology and end-to-end methods will be left for future research. 

2.9. Related Work for Languages of Baltic States 

Before starting the research, the author conducted a small-scale literature review about “speech 

recognition research for languages of Baltic States, Estonian, Lithuanian and Latvian”. This was 

necessary to verify that there is indeed a knowledge gap and a motivation for a research. 

Because review was performed in the beginning of 2014, only papers published in period of 

2000-2013 were reviewed. Papers before 2000 were ignored to get selection of recent articles and 

modern methods. 

The research question that the literature review should answer is as follows: 

• Is there any research on speech recognition for Estonian, Latvian, and Lithuanian? 

• What kind of speech recognition systems are being developed for these languages? Isolated 

words, continuous speech, large vocabulary, small vocabulary etc. 

• What methods are being used? 

• What are the state-of-the-art results? 

The literature review is expected to answer to these questions and hopefully identify a gap 

where research has not yet been done or where results are unsatisfactory and could be improved by 

further research.  
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2.9.1. Protocol of the Review 

At the start the review, a search query was created in order to reflect possible paper titles in the 

general speech recognition research area. The search query was as follows: 

“(latvian|lithuanian|estonian) ("speech recognition"|"speech to text")” 

The search in the Google Scholar index returned 1027 documents published between 2000 and 

2013 including. Normally, this would mean that we should make our search query more specific and 

narrow the results. However, because Google Scholar sorts results by relevance, it was decided to 

perform first filtering step in batches of 10 and stop when all papers in the batch are rejected. As the 

result, first 100 papers from 1027 were analysed. 

In the first step documents were filtered based on the titles. Papers filtered out were on different 

research topics or focused on a narrow specific subtopics of speech recognition and did not describe 

any speech recognition system. I.e. authors of this papers concentrated on some specific questions in 

speech research, but did not perform any actual speech recognition experiments. 100 papers were 

analysed and 19 papers remained after this filtering step. 

In the seconds filtering step, articles were removed based on the publication type, only peer-

reviewed articles from journals and conference proceedings were left. 14 papers remained after this 

filtering step. 

For the third filtering step, the abstracts of the remaining papers were analysed. 3 papers were 

filtered out because they did not contain any real speech recognition experiments.  

The remaining 11 papers were skimmed. Unfortunately, author could not find full text of 1 

paper, so it was filtered out. However no more papers were filtered out and all of the remaining 10 

were considered relevant to the topic.  

List of papers selected for detailed review and analysis can be found in Appendix 1. The 

findings are summarized in the next section. 

2.9.2. Results of the Review 

The analysis of the 10 papers on the topic of speech recognition for languages of Baltic states 

revealed the following: 

• Only one paper is devoted to developing speech recognition for Latvian. 4 papers are focused 

on Estonian and 5 on Lithuanian. This maybe a good indication that speech recognition 

problem for Latvian is underresearched. 

• Subjective comparison of rankings of journals and conference proceedings in which these 10 
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papers where published, showed that there might a significant difference in quality of research 

for different languages. Most of the papers on Estonian speech recognition (as well single 

paper on Latvian) were presented in international well-known conferences on speech and 

natural language processing. On the other hand, papers on Lithuanian language have been 

published in local or more general topic journals.  

• Also, it should be noted, that 2 papers on Lithuanian speech recognition present a very 

disputable method – using English or other foreign language recognizer language for 

recognizing Lithuanian words. This is achieved by emulating Lithuanian word pronunciation 

with foreign language phonemes. While this method may be an interesting theoretical exercise, 

it’s applicability in practice is disputable. 

• The most used acoustic modelling method in 10 analyzed papers is Hidden Markov Model 

models. This is a classic method, however it’s considered outdated, as most of the state-of-

the-art systems use Deep Neural Networks. 1 paper on Latvian and 1 on Lithuanian also 

experimented with Artificial Neural Networks. 1 paper on Lithuanian speech recognition also 

used classic, but outdated Dynamic Time Warping method. The conclusion what we can draw 

from this is that there is a lack of research using modern state-of-the-art methods for speech 

recognition for Estonian, Latvian and Lithuanian. 

• All 4 papers for Estonian language, 2 papers for Lithuanian and 1 paper for Latvian present 

continuous speech recognition systems. 3 other papers for Lithuanian focus on a simpler 

isolated word scenario which is not considered relevant nowadays. 

• There were 3 papers on large vocabulary speech recognition for Estonian and 1 for Latvian. 3 

papers focused on medium vocabulary speech recognition for Lithuanian. 1 paper described 

limited (or small) vocabulary recognition system for Estonian and 2 for Lithuanian.  

• All papers reported evaluation scores however it is not possible to compare one to another 

(because of different testing sets, different vocabularies etc.).  There is for a standardized 

testing sets for each of the reviewed languages. 

To sum up, this small-scale literature review helped to identify a clear knowledge gap – there 

is very little research on speech recognition for Latvian language. As the result author decided that 

this will be the main topic of his research. 

2.10. Related Work for Latvian Language 

Automatic speech recognition technologies for Latvian have a relatively short history. Before 

2014 there was no speech corpus, which could be used for ASR purposes, available. Therefore, only 
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one paper was found during literature review above.  

Oparin et al., (2013) developed a broadcast speech recognition system for the Quaero project 

(Lamel, 2012) using acoustic model bootstrapping. This system was developed in about a month 

period without use of a transcribed audio training data. The only supervision was mapping of Latvian 

phones to the ones existing in other languages to select cross-lingual seed models, text normalization 

and grapheme-to-phoneme conversion. Iterative application of various methods and tools led to a 

reduction from the initial word error rate of 74% down to 19%. A WER of 20.2% was achieved in the 

Quaero 2012 STT evaluation. Unfortunately, the results of this work are not reproducible as neither 

the ASR, nor the training and evaluation data were made publicly available.  

Later, as the result of work by Pinnis et al. (2014) a Latvian Speech Recognition Corpus (LSRC) 

was created to facilitate the speech recognition research for Latvian language. The corpus consists of 

100 hours manually annotated speech audio data. More detailed description of LSRC is presented in 

section 0. 

Since the creation of the LSRC, ASR technologies for Latvian have been actively researched 

simultaneously by many researchers. The author of this work performed a more general and 

comprehensive research, which aims to provide baseline solutions for all components of speech 

recognition for Latvian, while other authors typically focussed on single components of ASR and/or 

smaller tasks. 

Dargis & Znotiņš (2014) created a baseline system for keyword spotting Latvian Broadcast 

Speech, which was using a large vocabulary ASR trained on a LSRC corpus. This baseline system 

was then used in the development of Media Monitoring System for Latvian TV and Radio (Znotiņš 

et al, 2015). The word error rate of this system is rather high - 51%, however in keyword spotting 

task the system achieves 81% F1 score (90% precision and 73% recall). 

Auzina et al. (2014) used phonetically annotated part of LSRC to compared various rule-based 

and statistical methods for grapheme-to-phoneme modelling (which is an important part of ASR). 

This work is continued in the bachelor thesis of Darģis (2014), where grapheme-to-phoneme and 

language modelling for Latvian are investigated. In this bachelor thesis language models are trained 

on small corpora and only old HMM-GMM acoustic models are used. Also, this bachelor thesis does 

not report any WER, but uses other performance measures for some reason. 

Master thesis of Strigins (2015) also focusses on language modelling, but it uses modern HMM-

DNN acoustic models and a large text corpus. The text processing methods proposed in this Master 

thesis allowed to significantly improve the quality of a large vocabulary speech recognition system 

for Latvian. Experiments with sub-word recognition are performed to better model the infective 
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nature of Latvian language, however results show that using larger training data and vocabulary works 

better and is much simpler. The work was advised by author of this thesis. 

The success of Latvian Speech Recognition corpus lead to the development of Latvian Dictated 

Speech Corpus (Pinnis et al, 2016), which contains about 9h of dictated speech with special 

commands (like text formatting and naming punctuation). This corpus allowed to develop and 

evaluate the first dictation system for Latvian language. 

Finally, in August 2017, Google added Latvian speech recognition to its services1. For obvious 

reasons, the methodology and data that was used in the development of this ASR is not publicly 

available, however it is an important milestone for automatic speech recognition for Latvian, as it 

enables wide audience of Latvian-speaking Google product users to use their native language. Google 

also provides an API, so developers all around the world can implement Latvian speech recognition 

in their applications. Around that time UK company Speechmatics also started to provide ASR service 

for Latvian. Both companies have not published any information on data and methods that they use 

for Latvian. 

The comparison between Google Latvian ASR, Speechmatics Latvian ASR and ASR developed 

by author of this work can be found in the final section of the thesis. 

  
1 https://www.blog.google/products/search/type-less-talk-more/ 

https://www.blog.google/products/search/type-less-talk-more/
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3. ACOUSTIC MODELLING FOR LATVIAN 

This section is devoted to acoustic modelling for Latvian language. It describes training and 

evaluation data, methods used for acoustic modelling, grapheme-to-phoneme modelling, acronym 

recognition, other parts of acoustic modelling and obtained experimental results. 

The section 3.6 on the automatic data collection methods is based on the publication 

Salimbajevs (2018). Other results of this section are published in Salimbajevs & Pinnis (2014), 

Salimbajevs & Strigins (2015b) and Salimbajevs (2018). 

3.1. Acoustic Model Training Data 

As described in previous section, speech recognition relies on statistical models that are built 

using large data sets. That means the very first question that needs to be solved to build speech 

recognition models for Latvian is finding or collecting the data. A large collections of transcribed 

audio recordings are called speech corpora. Collection and annotation of speech corpora is expensive 

process. Fortunately, such data for Latvian language became available when author of this thesis 

started his research on speech recognition for Latvian. Table 1 summarizes speech corpora used for 

training acoustic models in this work. 

Table 1. Acoustic model training corpora 

Corpus Size, h % of all 

LSRC 100 34.0% 

LDSC 8 2.7% 

Saeima11 186 63.3% 

Total 294 100% 

The first speech corpus created for speech recognition research for Latvian language is the 

Latvian Speech Recognition Corpus (LSRC) by Pinnis et al. (2014). The corpus consists of 100 hours 

of orthographically annotated speech audio data and 4 hours of phonetically annotated speech audio 

data. The corpus is both phonetically rich (has a good triphone coverage) and balanced in many 

dimensions. It captures both spontaneous (61%) and prepared speech (39%), both genders (54% men 

and 46% women) and different ages groups (16-25: 12%, 26-50: 62.4%, 51-75: 25.6%). The audio 

recordings were done in different environments (office, street, car …) and with various recording 

devices. The audio is stored WAV format, with 44.1kHz sampling rate and 16 bits allocated per sample. 

Corpus contains approximately 837K words by 1851 different speakers. 

The second corpus used to train acoustic models in this work is the Latvian Dictated Speech 

Corpus (LDSC). The LDSC is the speech corpus created specifically for speech recognition in Latvian. 

The total length of the DSC is 9 hours 19 minutes and 46 seconds. It consists of 287 speeches (22,763 

running words) that are spoken by 30 speakers (15 men and 15 women; however, the data distribution 

is not equal, as length of male recordings is only 3 hours and 52 minutes) of two age groups (16-25 
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and 26-50). From 9 hours of LDSC, 8 hours are appended to the training data and the remaining data 

is used for evaluation tasks. 

The speeches were recorded using 23 different recording devices (15 smartphones, 4 tablet 

computers, 2 desktop computers and 2 laptops). Each speech was recorded simultaneously with one 

to four different devices (therefore, the unique total length is smaller – 4h and 15 minutes).  

The corpus features 36 different speech commands, which are used in dictation scenarios, and 

93 different pronunciation variants of the commands. The most frequent commands are punctuation 

commands (over 68%), followed by special symbol commands (over 22%). The corpus contains both 

spontaneous and prepared (read) speech.  

While 100 hours is enough to train baseline acoustic models, more complex models that use 

methods like deep neural networks can make use of much larger amounts of data (like thousands and 

tens of thousands of hours). Because manual collection and annotation of new speech recordings is 

an expensive process, a fully automatic method was developed which allows to create speech corpora 

from inaccurately transcribed speech recordings that can be found on the web. This method was 

developed as part of this research and allowed to obtain additional 186 hours of acoustic model 

training data from the Latvian Saeima webpage. More details on the method and the results of using 

this corpus in the training are presented in section 3.6 

3.2. Evaluation Data 

The speech recognition systems are evaluated by decoding some evaluation recordings and then 

comparing the recognized text with reference and calculating WER. Evaluation data should be 

accurately annotated and represent the intended usage scenario, if one wants to choose the best model 

for telephone speech recognition, then the evaluation should be performed on real telephone speech 

data. The summary of evaluation corpora used in this work is presented in Table 2. 

Table 2. Evaluation corpora 

Corpus Domain Size, h 

LSRC held-out General 0.83 

EvalWebNews General/news 0.38 

EvalGeneral General 2.50 

LDSC-test Dictation 1.00 

Saeima-test Saeima 1.00 

Address-test Street addresses 0.13 

In first experiments a held-out set of 1500 utterances (about 50 minutes) from Latvian Speech 

Recognition Corpus was used. This held-out set has several issues: 

• It consists of very short utterances (2 seconds in average). 

• Test utterances are not semantically segmented (utterances can begin in the middle of 



46 

sentence and end abruptly) and therefore can have low language model scores. 

• Because LSRC was created from recordings from many various sources, the held out 

set also contains very different utterances from various domains and environments.  

Due to these reasons, it was decided to create other evaluation sets, which would contain longer 

semantic utterances from a single domain.  

The first test set to be created, was a small 23-minute long annotated speech corpus was 

recorded using a smartphone. The corpus contains records of 10 unprofessional speakers who read 

random news from web news portals. For conciseness, we will call this corpus - “EvalWebNews”. 

System that is more accurate on average, can be outperformed by a worse system on some small 

subset of data (small sample size problem), so it’s important that evaluation set is large enough to 

show real differences between ASR systems. As Latvian ASR became more and more accurate, the 

probability of such evaluation errors increased, so it was decided to create a larger test set for general 

domain. The test set is called “EvalGeneral” (900 utterances by 480 speakers) and consists of 

EvalWebNews, Saeima-test and more than one hour of Riga city council session recordings. 

Next, roughly 1 hour of the LDSC recordings is used for ASR evaluation on dictation scenario 

(this test corpus will be called LDSC-test). It contains about 1800 utterances with various dictation 

commands from 9 speakers. 

Finally, for the Saeima adaptation task the evaluation corpus was collected and annotated as 

follows: 

• First about 10h of recordings of sessions from 2014 to 2016 were downloaded from Saeima 

webpage.  

• Recordings were chosen semi-randomly, prioritizing recordings of more recent sessions with 

large speakers count, but without actually looking inside recordings. 

• Next these recordings were segmented into single speaker short utterances. By randomly 

picking from all utterances a 1.5 hour subset was selected. 

• This 1.5 hour subset was processed by general domain Latvian ASR and then corrected by 

human annotators. 

• Finally, recordings that are incorrectly annotated, too noisy or simply not in Latvian were 

filtered out.  

As the result, a 1 hour long speech corpus of the debates in the Parliament of Latvia was 

collected (or “Saeima-test” for short). The corpus contains 439 segments, which were recorded by 
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about 300 different speakers (estimated). 

For evaluation of street address recognition system, a small test set, called “Address-test” was 

recorded. This test set consists of 136 audio recordings (16 MB, 8 minutes 44 seconds, 506 words). 

The audio data were recorded by 35 different speakers (12 women and 23 men). 81 recordings were 

done in office rooms, and 55 entries in cars (with and without background music). 

3.3. HMM-GMM Speech Recognition Models 

Developing a speech recognition for a new language is non-trivial task which involves solving 

many sub-problems. Before starting to train complex neural network models, one must find answers 

to some smaller questions like: what will be phoneme set, how words will be transformed into 

phoneme sequences, what data will be used for acoustic model training, how to prepare data for 

language model training and so on. This subsection is based on results of publication Salimbajevs & 

Pinnis (2014). 

Training most of the modern neural networks requires to build simpler HMM-GMM models 

first. End-to-end or “flat-start” trainable neural network models appeared only recently and, in most 

cases, are behind of traditional hybrid systems in terms of recognition quality. 

3.3.1. Initial HMM-GMM Acoustic Models 

The initial acoustic model developed at the beginning of this research was a 40 phoneme, 3-

state Hidden Markov Model with 3000 tied states, each described by 8 Gaussian mixture components. 

There was no speaker adaptation, feature transformation, or multi-pass decoding methods. The goal 

was to identify problems in the training dataset and get understanding of very basic core methods 

before investigating more advanced acoustic modelling and acoustic model adaptation methods. For 

conciseness and easy disambiguation let’s call this initial model - “INT-GMM-8”. 

The model was trained using the CMU Sphinx toolkit (Lee et al., 1990) with 13-dimensional 

Mel Frequency Cepstral Coefficient (MFCC) features on a 100-hour Latvian Speech Recognition 

Corpus (LSRC) (see section 0 for more details). A held-out set of 1500 utterances (about 50 minutes) 

from training data (called “LSRC held-out”) was used for testing and optimization.  

Because any speech recognition experiment requires both acoustic and language models, a 

“stub” 3-gram language model was trained on the raw transcripts of the LSRC held-out set. The idea 

was that such language model would “simulate” perfect language knowledge for testing sentences 

and it will be possible to concentrate on acoustic model only. 

After performing multiple experiments with different feature extraction parameters, we 

identified parameters which work best with LSRC. The most notable changes were: (1) using DCT-
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II transform instead of the default “legacy” transform and (2) adding liftering (cepstrum filtering).  

When the initial model was trained, it was used in experiments with different phoneme sets, 

voiced fillers, and grapheme-to-phoneme models. The PocketSphinx (Huggins-Daines, 2006) 

decoder from the CMU Sphinx toolkit was used for decoding and evaluating speech recognition 

quality.   

3.3.2. Grapheme-to-phoneme Model 

As large vocabulary ASR models use phonemes to recognise words, it is important to select an 

optimal phoneme set which would allow us to (1) acquire sufficient statistics for phonemes and build 

more accurate models and (2) unambiguously and effectively recognize words from recognised 

phoneme sequences. 

Latvian language has a highly phonemic orthography, i.e., pronunciation and spelling mostly 

correspond in a predictable way. Therefore, it is natural to use a grapheme-based model, the initial 

phoneme set was formed by 33 phonemes which have a one-to-one correspondence to letters of the 

Latvian alphabet and 7 most frequently used diphthongs (Latvian has 10 diphthongs in total, although 

some diphthongs are mostly limited to proper names and interjections): [ai], [au], [ɛi], [iɛ], [oi], [ui] 

and [uo].  

A rule-based grapheme-to-phoneme (G2P) algorithm was developed, which basically maps 

letters directly to phonemes using one-to-one correspondences. The algorithm also replaces two letter 

combinations “ai”, “au”, “ei” etc. with corresponding diphthongs, which is its only difference from a 

pure grapheme-based approach. 

Several experiments were performed in order to find optimal phoneme set and G2P rules. The 

experiments consisted of the following actions: 

• Making changes to the phoneme set and G2P algorithm 

• Retraining the acoustic model. 

• Calculating the WER on the test set. 

Experiments were performed using acoustic model “INT-GMM-8” and stub language model. 

At this stage, we achieved a WER of 14% on the held-out set. Such a good result should not be 

surprising, considering the “ideal” language model that was used in this experiment. 

Not every possible variation of phoneme set was evaluated, because in many cases 

implementation of reliable G2P algorithm, would be too complex. Instead experiments focused on 

variations that are phonetically motivated and easy to implement reliably. For example, there are 3 

types of ‘o’ in Latvian and rules that describe the usage of each ’o’ are relatively simple and robust. 
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The following changes to initial phoneme set and G2P were tested: 

• Removing diphthongs one by one from initial diphthong list; 

• Distinguishing between different ‘o’ phonemes; 

• Replacing [c] grapheme-phoneme with [t]+[s] combination (because such separate 

phoneme does not exist); 

• Replacing long vowels with two short ones (e.g. [ā] -> [a] + [a]); 

After these experiments the best performing phoneme and rule set was identified. This phoneme 

set, which will be called baseline phoneme set, contains (1) 33 phonemes which have a one-to-one 

correspondence to letters of the Latvian alphabet and (2) 4 diphthongs ([ai], [au], [ɛi] and [iɛ]). Any 

small deviation from this baseline set resulted in a small increase of WER (see examples in Table 3). 

Table 3. Experiments on changing the baseline phoneme set 

Phoneme set description Word error rate 

Baseline phoneme set 13.7% 

Baseline phoneme set (no phone tree cross) 18.2% 

Separating ‘o’ into [o] and [uɔ]  14.2% 

Phoneme [ss] is added 14.1% 

Phoneme [c] is replaced by [t]+[s]  14.2% 

Long vowels replaced with two short vowels 14.9% 

[ɛi] diphthong is removed 13.9% 

[ui] diphthong is added 14.2% 

The experiments also show that turning on the phone tree crossing option in CMU Sphinx gives 

a strong improvement. This option enables sharing HMM states of different phonemes, which is very 

useful for grapheme-based models. When using this option in the described setup the WER is 

improved by 3-5% absolute over a setting where the option is turned off. 

The LSRC includes 4 hours of data that are annotated both phonetically and orthographically. 

This allows to evaluate the quality of the automatic G2P conversion algorithm. 

The G2P and LSRC phoneme sets are not identical, the LSRC phoneme set is much more 

detailed and includes all G2P phonemes as a subset. That means phonetical transcriptions in LSRC 

can be simplified and transformed to G2P set. Depending on how to define this transformation, one 

can obtain a phoneme error rate of 9-13% for given G2P algorithm. Almost half of these errors are 

substitutions, deletions constitute less than 1% of the errors, and the remaining errors are insertions 

(i.e., a phoneme is inserted by the rule-based G2P where the human transcription does not have one).  

Several experiments have been also performed in order to understand how different G2P errors 

can influence the WER. In these experiments, synthetic errors were injected into the G2P algorithm, 
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then the acoustic model was retrained, and WER evaluation was repeated. Table 4 shows some 

examples of these experiments. It was concluded that there is no simple correspondence between the 

G2P error rate and the WER, because the resulting WER depends on the character of specific errors, 

e.g., two G2P algorithms can have a similar phoneme error rate, but a very different WER. Some 

errors such as substitutions between similar phonemes have little effect on WER, while errors such 

as the insertion of an extra phoneme can lead to noticeable WER degradation. 

Table 4. Effect of different G2P errors 

Error description G2P phoneme error rate Word error rate 

Insertion of extra phoneme 

“g” after “k” in some cases 

+ 24% absolute + 0.5% absolute 

Insertion of extra phoneme 

“k” after “e” in some cases 

+ 15% absolute + 3% absolute 

Using separate phonemes 

instead of diphthongs 

+ 4.8% absolute + 0.5% absolute 

Deletion of phoneme “o” 

after consonants in some 

cases 

+ 0.5% absolute + 2% absolute 

Substitution between 

similar sounds “p” and “b” 

+ 4.8% absolute + 0.2% absolute 

3.3.3. Statistical Grapheme-to-phoneme Model 

To address and lower the number of insertion errors, experiments with two more complex G2P 

models were performed. The first one was trained with Phonetisaurus (Novak et al., 2012), which 

utilises weighted finite-state transducers (WFST) for decoding a representation of a grapheme-based 

n-gram model trained on data aligned by an advanced many-to-many alignment algorithm (which is 

a variant of the EM algorithm) (Jiampojamarn et al., 2007). The second one is a statistical machine 

translation (SMT) model which translates from “grapheme” language to “phoneme” language 

(Auzina et al., 2014).  

Both models were evaluated on a small held out data set from the phonetically annotated corpus. 

The phoneme error rate for both models is given in Table 5. 

Table 5. Advanced G2P models 

G2P model Phoneme error rate 

Phonetisaurus WFST model 5.24% 

Statistical machine translation 3.26% 

Baseline G2P 9-13% 

Both models achieved significantly better results in terms of phoneme error rate than previously 

described rule-based G2P algorithm. The superiority of the SMT model can be explained by the fact 

that the Phonetisaurus model is trained on a pronunciation dictionary which was extracted from the 

phonetically annotated 4-hour corpus and includes all pronunciations from this corpus. At the same 

time, the SMT model was trained on the full phoneme transcriptions of the training set, not just 
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isolated words. This allows the SMT model to take into account word boundaries and phonemes from 

adjacent words. After training is done, the SMT model is used to translate all transcriptions. This 

translation is then processed, and a static pronunciation dictionary with multiple pronunciation 

variants is created.  

Despite the better phoneme error rate, no improvements in WER were observed. Moreover, the 

result degraded significantly in the case of the SMT-based G2P model, because it introduced a lot of 

ambiguous pronunciation variants. This ambiguity comes directly from the nature of human speech 

which is captured by precise training labels. As a result, words in our static dictionary have a large 

number of pronunciations, many of which overlap with the pronunciations of other words, making 

the “recovery” of the right word strings from such a dictionary difficult. This result corresponds with 

the findings by Saraçlar et al. (2000). 

As we were unable to improve upon the baseline rule-based G2P, it was decided to use this 

model for future experiments. 

3.3.4. Filler Word and Noise Models 

While speaking, humans can make grammar mistakes, repeat words, make corrections and 

restart whole sentences, laugh, breath into microphone, insert so called “filler words” (voiced pauses 

like “ah”, “uh”, “er”, “um”). Ideal speech recognition system must be able to deal with all these 

defects of spontaneous speech (Butzberger et al., 1992). 

Table 6. Noise and filler models 

Noise/filler Occurrences in training corpus 

[e], [ē], and their variations 13,192 

[m] and its variations 1,060 

[a], [ā], and their variations 1,263 

[h], [hmm], [kh], etc. 126  

Mix of [n], [en], [s], [u] 162 

Mix of rare voiced fillers 114 

Non-speech noise 4,481 

Breathing            45,041 

Laughing            431 

Silence               18,290 

In this work, we train noise and filler models for filtering out non-speech noises and voiced 

pauses. The LSRC has 107 unique labels for voiced pauses and non-speech events. It quickly became 

evident that training such a large amount of noise/filler models is not effective. Some of these labels 

are almost identical, while some are too rare for acquiring sufficient statistics for training and 

generalisation of reliable acoustic models.  

Therefore, when training HMM-GMM acoustic models using CMU Sphinx these labels were 
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grouped into 10 more generic noise and filler models (listed in Table 6). While it is possible to use 

the same list of fillers for Kaldi framework (Povey et al., 2011), it would require changes inside 

training procedures or adding fillers as words to the language model. For Kaldi models a more natural 

choice is to combine 10 filler models into 2 models: 

o 1 filler\silence model for non-speech noises. E.g. sounds that are not spoken words, 

such as breathing, laughing etc. 

o 1 garbage model for spoken noise. For example, fillers, foreign words and fragmented 

words that were not fully pronounced.  

3.3.5. Advanced HMM-GMM Models 

After initial experiments have been successfully performed and initial INT-GMM-8 system has 

been built, it was decided to proceed with more complex models, that perform multiple input feature 

transformations and are able to adapt to vocal characteristic of current speaker.  

There are number of ways how to improve previous HMM-GMM model for Latvian, which 

can be categorized into following main groups: 

• Collecting more training data. 

• Using more advanced features, e.g. increasing context information, advanced 

preprocessing and normalization. 

• Using more complex and larger models, e.g. increasing number of Gaussians, increasing 

senone count etc. 

• Speaker adaptation, e.g. training gender-specific models, training speaker adaptive 

(SAT) models etc.  

• Discriminative training.  

Initial HMM-GMM models were trained using Sphinx toolkit. Many of the above-mentioned 

options are not available in Sphinx. Moreover, more advanced neural network models are also not 

available.  Implementing these methods from scratch may take considerable time. Also, it would not 

be very reasonable, as many of these options are available in Kaldi framework. Therefore, the rest of 

research and experiments were performed with Kaldi. 

The stub language model which was used previous sections, can be useful when making some 

initial decisions, but it’s not adequate for more serious speech recognition experiments. Therefore, 

when evaluating updated HMM-GMM acoustic models, 3-gram WebNews-LM-1-100 language 

model (described in section 4.1) is used. This LM is trained on WebNews text corpus (version 2014) 
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and vocabulary is limited to 100 thousand most frequent words. Because of RAM constraints the 

model is pruned to about 50MB (creating Kaldi decoding graph from 100MB language model 

requires 8+ GB of RAM which was not available for first experiments). 

Table 7. Comparison of Sphinx, Kaldi and different advanced methods 

Model Toolkit Features WER, % 

3000 senones, 24000 Gaussians Sphinx MFCC 52.8 

3000 senones, 96000 Gaussians Sphinx MFCC 50.9 

5000 senones, 40000 Gaussians Sphinx MFCC 53.1 

5000 senones, 160000 Gaussians Sphinx MFCC 55.6 

4000 senones, ~90000 Gaussians Kaldi MFCC 47.5 

3000 senones, ~70000 Gaussians Kaldi PLP 49.7 

4000 senones, ~90000 Gaussians Kaldi PLP 47.5 

5000 senones, ~97000 Gaussians Kaldi PLP 47.9 

4000 senones, ~90000 Gaussians, LDA Kaldi MFCC 44.9 

4000 senones, ~90000 Gaussians, LDA Kaldi PLP 44.3 

4000 senones, ~90000 Gaussians, LDA, SAT Kaldi PLP 42.5 

4000 senones, ~90000 Gaussians, MMI Kaldi PLP 42.5 

4000 senones, ~90000 Gaussians, bMMI Kaldi PLP 42.2 

4000 senones, ~90000 Gaussians, LDA, SAT, MMI Kaldi PLP 40.9 

4000 senones, ~90000 Gaussians, LDA, SAT, bMMI Kaldi PLP 40.5 

Table 7 contains results of experiments performed to evaluate effect of different speech 

recognition toolkits, features and advanced techniques. Evaluation was performed on the 

EvalWebNews test set.   

Several conclusions can be drawn from these results: 

• Kaldi outperforms CMU Sphinx using models of comparable complexity and the 

difference is even bigger when using more advanced methods not present in Sphinx. 

• 4000 seems to be the optimal senone count for HMM-GMM models and LSRC corpous. 

• PLP features perform better than MFCC when combined with LDA and other advanced 

methods. 

• The best result is obtained when all the advanced methods are combined together. 

Kaldi framework has its own system for acoustic model names, so for conciseness and 

according to Kaldi practices, we will call this acoustic model - “LSRC-tri3b”. 

3.4. Feed-forward DNN Acoustic Model 

The word error rate achieved by previous LSRC-tri3b system is still very high for a general-

purpose speech recognition. Also, it uses traditional HMM-GMM based methods that are surpassed 

in all areas by deep learning methods. Starting around 2009-2010 (Hinton et al., 2012) modern 
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successful speech recognition systems widely use deep neural networks. Moreover, the use of deep 

neural networks in speech recognition remains a very active research field. Every year several new 

methods are introduced that further improve the quality of speech recognition. 

So, it was decided that further improvement of Latvian ASR is not possible without adopting 

state-of-the-art neural network approach. The following acoustic model was trained: 

• 13-dimensional PLP features. 

• 37 base phonemes. 

• 2 filler/garbage models from section 3.3.2. 

• 100h LSRC training corpus with alignments obtained from LSRC-tri3b model. 

• i-vectors for speaker adaptation (Miao et al., 2014).  

• HMM-DNN (Kaldi nnet2) approach with the following neural network architecture: 

o the input of neural network is one audio signal frame, that is described with 113 

dimensions (13 PLP dimensions + 100 i-vector dimensions); 

o special input layer, that combines input vector with input vectors from 7 previous and 

7 next frames, this create input of 113*15=1695 dimensions; 

o special LDA layer, which performs LDA transform and reduces dimension count to 

295; 

o 4 hidden layers with Euclid-norm as non-linearity (activation) function; 

o SoftMax output layer with 3161 dimensions (corresponding to senones). 

Because this model uses Kaldi nnet2 framework and LSRC for training, it will be called LSRC-

nnet2. The model can be further improved by performing discriminative SMBR training (Vesely et 

al., 2013), the improved model will be called LSRC-nnet2-smbr accordingly. Table 8 shows the 

results of evaluation of new LSRC-nnet2 and LSRC-nnet2-smbr acoustic models on the 

EvalWebNews test corpus. In this evaluation the WebNews-LM-1 language model from section 4.1 

is used, vocabulary is 200K word units and model is pruned to 50 and 100 MB.  

Table 8. Evaluation of LSRC-nnet2 model 

Acoustic model Language model size, MB WER, % 

LSRC-tri3b 50 38.26 

LSRC-nnet2 50 37.39 

LSRC-nnet2 100 35.50 

LSRC-nnet2-smbr 50 36.89 

LSRC-nnet2-smbr 100 35.05 
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At least three conclusions can be from these results. First, as expected deep neural network 

outperform classic HMM-GMM models. Second, using less aggressive pruning and increasing size 

of language model allows to achieve significant improvements. Finally, word error rate is still high. 

3.5. Acronym Recognition 

The ASR prepared in previous section cannot recognize any acronyms and brand names. This 

is due to several reasons: (1) during language model training corpus pre-processing, tokens that are 

written in uppercase can be lowercased, but tokens containing digits are filtered out, (2) baseline G2P 

algorithm provides incorrect pronunciations for acronyms. 

Our test corpus contains only few words like this (and they were out-of-vocabulary), so this 

error was not identified during previous error analysis.  

Before doing any modifications to the ASR, it was important to evaluate the current situation. 

For this, 253 utterances with 267 acronyms were selected from LSRC audio corpus.  

First, the current system was evaluated on this subset. As expected no acronyms were 

recognized correctly. Next, acronyms were added to the WebNews-LM-2 language model (by adding 

list of exceptions to the filtering), but G2P model was left unchanged. The result was the same. After 

that, G2P was extended by adding special rules for acronyms. This time 30% of acronyms were 

recognized correctly (see details in Table 9). 

Table 9. Acronym recognition using special rules in G2P 

Acronym Occurrences Correctly recognized, % 

TV 85 20 

LV 72 44 

LNT 31 29 

ASV 24 21 

PSRS 17 29 

LNNK 11 36 

PCTVL 6 17 

LTV 6 0 

LMT 6 67 

ABLV 5 0 

SS 1 0 

RNA 1 100 

MFFF 1 100 

LP 1 0 

Next, it was decided to collect a bigger list of acronyms and provide manually checked 

pronunciations. For this, words in uppercase or mixed with digits were extracted from WebNews text 

corpus and sorted by frequency. This resulted in a giant (tens of thousands of words) list of candidates, 

many of which were noise in the corpus.  
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Intuitively correct acronyms should be more frequent in the text corpus than some noisy tokens. 

So, it was decided to take 1000 most frequent candidates, process them with adapted G2P algorithm. 

After manual check, all of the selected candidates were identified as true acronyms. However, 

pronunciations created by automatic method were not always correct and were manually edited. 

Then, acronyms were added to the exceptions list of text filtering procedures and acronym 

pronunciations were added as exceptions into G2P. The updated and retrained language model is 

called WebNews-LM-2-ABBR. 

Because EvalWebNews corpus have only few acronyms, a new small test corpus was created - 

“AbbrTest”. 110 most frequent acronyms were selected from the previous list of 1000 and for each 

acronym a sentence have been manually created. 5 people were asked to say these sentences (22 

sentences each) and make audio recordings using microphone. 

The updated ASR was evaluated on this AbbrTest corpus and WER of 16.42% was achieved 

for whole sentences. 24% of acronyms in test sentences were not recognized correctly. The WER on 

EvalWebNews decreased by 3.5% relative This result allows to conclude that ASR language model 

and G2P was successfully adapted to recognize most popular acronyms in Latvian.  

3.6. Automatic Acquisition of Training Data 

Training of a Deep Neural Network acoustic model for an automatic speech recognition (ASR) 

system requires large amounts of transcribed audio. For a general-purpose ASR, the training data 

should be as diverse as possible. Recordings should contain both prepared and spontaneous and 

isolated and continuous speech by various speakers in various conditions. 

For Low Resource Languages (LRLs), where there may only be a few hours of transcribed 

audio, this is a very serious issue. Latvian language is a little bit luckier, as there are a 100h Latvian 

speech corpus. However, even this is not much when compared to the resources available for 

languages like English. 

In recent years, improvements in data storage and networking technology have made it feasible 

to provide Internet users with access to large amounts of multimedia content. This content can be 

automatically collected and processed for the purpose of training statistical models. However, in 

many cases, this content is not structured or organised in an accurate and machine-readable form.  

For example, the Latvian Parliament (Saeima) website contains a large archive of video 

recordings of parliamentary sessions and edited transcripts. One may want to collect this data and use 

it for the development of a general-purpose speech recognition system. This data can also be used for 

adapting existing ASR for transcription of Saeima sessions.  
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Unfortunately, edited transcripts do not have any timing information.  Also, these transcripts 

are not normalised and are not 100% accurate. There are differences between what was said and what 

is written in the edited transcripts, and this is due to several reasons: 

• While speaking humans can make grammar mistakes, repeat words, make corrections and 

restart whole sentences, edited transcript contains only final, grammatically correct and re-

formulated sentences without these kinds of typical speech defects.  

• Edited transcript is a written document, and it should obey specific formatting rules and 

contain additional information, like speaker names and summaries, that is embedded into the 

text. 

• This also means that numbers, dates, percent signs, etc. are written with digits and symbols, 

not as words. Converting these tokens back to words is complicated and error-prone for 

inflected languages like Latvian and Lithuanian. 

This section describes the method what was used to obtain additional training data by aligning 

audio and edited transcripts from Latvian parliament websites (Salimbajevs, 2018). This helped to 

get noticeable improvement for the Latvian ASR. The process is fully automatic and does not require 

any human labelling of audio data. The described method is not specific to Saeima session transcript 

and can be applied to other sources of audio with imprecise or partial transcription. 

The alignment between long audios and their corresponding transcripts has been previously 

studied in the context of various applications. Panayotov et al. (2015) use existing ASR and audio-

alignment techniques for creation of a large training corpus from public domain audio-books, and 

Anguera et al. (2014) use ASR for different languages and a clever phoneme-based alignment 

approach for training speech recognition with very limited language resources. Prahallad & Black 

(2011) describe the creation of aligned corpora for building text-to-speech systems, and Hazen (2006) 

focuses on the automatic alignment and correction of inaccurate text transcripts through an iterative 

process. 

The method that are used in this work is similar to Panayotov et al. (2015) and Hazen (2006). 

The main differences are the use of the SpkDiarization toolkit (Rouvier et al., 2013) for segmenting 

large audio recordings into smaller manageable segments and for providing speaker diarisation, an 

optional intermediate step where the retrained model is used for better alignment, a different utterance 

extraction process and the fact that it is being done for the less-researched and less-resourced Latvian 

language. 

3.6.1. Processing of Saeima Transcripts 

Latvian Saeima website contains a huge archive of audio and video recordings of parliamentary 
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sessions. A web-crawler script was implemented and used for collecting video files and the 

corresponding human-edited reference transcripts from the website. As the result, 300 hours of video 

recordings were downloaded (downloaded files correspond to recordings during period of 2011-2014).  

Next, audio is extracted from each video file and processed by the LIUM SpkDiarization toolkit, 

which segments audio into smaller parts and groups them into clusters (that should correspond to 

different speakers). This is important because the end goal is to add these segments to the training 

data, so each segment should be reasonably short and contain speech only from one speaker. Also, 

clustering by speaker is important for correct Speaker Adaptive Training. 

Reference transcripts are normalised with the same tools that are used for language model 

training corpus preparation. Some obvious garbage and punctuation are removed, and all words are 

lower-cased. Numbers and dates are converted from digits to words. 

Audio segments are then processed by ASR, that uses LSRC-nnet2-smbr acoustic model 

(section 3.4) and WebNews-LM-3 language model (section 0). Clustering information is used during 

recognition for speaker adaptation.  

After all these processing steps, from each video file the following files are obtained: 

• A corresponding inaccurate reference transcript in normalised form. 

• A set of short audio files that roughly correspond to separate utterances. This set is sorted in 

chronological order and clustered into different speakers.  

• A raw ASR transcript for each short audio file. 

• Word alignment information (when each word is pronounced and length of pronunciation) 

from ASR for each audio file. 

3.6.2. First Alignment 

Next, each inaccurate reference transcript file is aligned with the per-utterance ASR transcripts. 

Similarly to Panayotov et al. (2015), the Smith-Waterman alignment algorithm (Smith & Waterman, 

1981) is used for text alignment. An example of such alignment is shown in Figure 9. The grey boxes 

represent boundaries between different utterances obtained by the LIUM SpkDiarization toolkit.  
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Figure 9. Alignment between the reference transcript and ASR output. 

After the alignment, in each utterance, continuous sequences of matched words that are longer 

than some threshold (e.g. 3 in Figure 9) are selected. Using word alignment from ASR, these word 

sequences are extracted from utterance audio files and are added to the new training data set together 

with their transcripts from ASR. Speaker diarisation is also preserved, so that utterances from the 

same speaker are more or less grouped together.  

A length threshold is needed to filter out possible alignment errors, for example, short word 

sequences like "un tas ir" ("and that is"), "un ir" ("and is"), etc. are rather frequent and can be either 

misrecognised by ASR or misaligned. Also, it’s assumed that ASR word alignment for longer 

sequences is more accurate, so extracting longer sequences is less likely to cut off word beginnings 

and endings. A threshold of 5 or more consecutive words is used in this work in the first alignment 

step. 

3.6.3. Second Alignment 

Word sequences extracted in the first alignment step can already be used for training acoustic 

models. However, the improvement from adding these sequences to the training data will be limited 

because existing ASR already recognised them correctly; they already match the acoustic model quite 

well. The parts that were not recognised accurately (and not aligned) can be much more useful, as 

they are examples of when the existing acoustic model is not good enough. 

Successfully extracted segments could be used as "anchor points" so that the audio between 

anchor points will be mapped to the text between anchor points. This mapping then can be used to 

help ASR to recognise this part correctly and produce a better alignment.  

However, before that, there is an optional intermediate second alignment step that is needed to 
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improve the alignment and get more anchor points. The data extracted in the first alignment step is 

appended to the training data, retrain the acoustic model (only the DNN part of the acoustic model is 

retrained) and repeat decoding and alignment. Again, the data is extracted and appended to the 

baseline training set. The model is retrained again. 

Next, the extraction threshold is relaxed from 5 consecutive words to 22 consecutive phones. 

The number 22 represents the average length of 3 average words in Latvian and is calculated on 

vocabularies of general domain ASR for Latvian. This less strict threshold creates more anchor points. 

3.6.4. Pseudo-Force Alignment 

After obtaining mappings between misrecognised audio segments and reference text, the 

natural choice would be to perform a classic force alignment. However, in our case, the reference text 

is not 100% accurate, so classic force alignment won’t be able to produce a good alignment. Instead 

a pseudo-force alignment step similar to (Hazen, 2006) was performed.  

 

Figure 10. Example FSA for the pseudo-forced alignment of the word sequence w1, w2, w3 with insertions, deletions and 

substitutions allowed. 

Previously matched and extracted segments are used as "anchor points" so that the audio 

between anchor points is mapped to the text between anchor points. In the case of edited transcripts, 

reference text can contain long regions of insertions and audio can contain long non-speech regions, 

so there are limits for text and audio length. Mappings that are too long are filtered out. 

In pseudo-force alignment, it’s assumed that errors in the transcript are possible, therefore 

insertions of new words and substitutions for existing words are allowed. Deletions are also allowed. 

This process is realised through the composition of a pseudo-forced alignment finite state acceptor 

(FSA) with a lexical transducer from the baseline ASR. An example alignment FSA that allows 

insertions, substitutions and deletions is shown in Figure 10. 

Insertions are modelled through the use of an out-of-vocabulary (OOV) word filler model. In 

Latvian ASR with have 2 filler models, silence model and garbage model. Both are single phone 

models with 5 HMM states. Garbage model was used only during training to capture foreign words, 
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fragmented words and spoken noise. This model is used in pseudo-force alignment as OOV model. 

After decoding the pseudo-force aligned audio segments, segments with a length of 22 or more 

phonemes are extracted and appended to the training data. 

3.6.5. Evaluation 

For evaluation two test corpora are used: (1) 1h EvalWebNews corpus, that was recorded using 

smartphones and contains recordings of non-professional speakers reading news from web pages and 

(2) a 1hr evaluation set from randomly chosen utterances from sessions of the current 12th Saeima 

(see section 3.25.3.1). Both corpora were manually annotated. 

All downloaded 300 hours of the Saeima data were processed at once. As a result, 120 hours of 

aligned data were extracted after the first alignment. 

An improvement in recognition quality was observed (see Table 10) after adding these 120 

hours of Saeima recordings to the acoustic model training data. Experiments were performed using 

WebNews-LM-3 3-gram general domain language model (described in section 0). Word error rate 

was reduced from 19.6% to 17.0% (13% relative).  

Table 10. Evaluation of Latvian speech recognition on the general domain test set. 

 Training data, h WER, % 

Baseline (LSRC) 100 19.4 

+ Saeima (1st step) 220 17.0 

+ Saeima (2nd step) 249 17.0 

+ Saeima (3nd step) 286 16.9 

As described in the intermediate second alignment step, ASR improved by 120h extracted in 

the first step is used to repeat the decoding and alignment procedure. This allowed to improve the 

alignment, first to 136 hours and then, by changing the threshold to 22 characters, to 149 hours. 

However, no improvement in WER was detected in either case.  

Because a large part of the data has been successfully decoded in the first two steps, only 57 

hours of data were selected for pseudo-force alignment. 37 hours were successfully aligned and added 

to the training set, the WER of ASR trained on all of the data combined is 16.9%. 

Table 11. Evaluation of lattice oracle word error rates. 

 Training data, h WER, % 

Baseline (LSRC) 100 8.1 

+ Saeima audio (1st step) 220 7.5 

+ Saeima audio (2nd step) 249 7.4 

+ Saeima audio (3rd step) 286 7.1 

It was decided to minimize the effect of language model scores and calculate oracle word error 

rates on lattices obtained after decoding (see Table 11) as previous evaluation showed very small 
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improvement from pseudo-force alignment step, 

Finally, because the data was collected from Saeima recordings, it was interesting to know if 

the recognition of Saeima sessions have improved.  Only the best system trained on 296h was 

evaluated. Experiments were performed using Saeima-LM 3-gram domain adapted language model 

(described in section 5.3.1). 

Table 12. Evaluation on Saeima session transcription task. 

 Training data, h WER, % 

Baseline (LSRC) 100 8.6 

+ Saeima audio (3rd step) 286 7.2 

Results in Table 12 clearly show that adding this automatically collected training data helps to 

significantly improve the recognition quality, even for high quality recordings of Saeima. WER is 

improved by 16.2% relative from 8.6% to 7.2%. 

In the first and second alignment steps, segments of data that have a 100% match with the 

reference transcript are extracted. This means that existing ASR already recognises such segments 

correctly. Interestingly, after adding these segments to the training, an improvement in WER is seen. 

This can be caused by (1) better senone coverage in the larger training set and (2) a large 

"language model bias" that allowed some segments to be recognised correctly even when the acoustic 

score was too low. 

When doing pseudo-force alignment, this "language model bias" is even larger, so adding 

pseudo-force aligned data should improve word error rate even more. However, experiments showed 

only a small improvement. This means that only a small part of the pseudo-force aligned data is 

complementary to the data extracted in the first two steps. 

For conciseness, the 186h of Saeima audio recordings obtained using method described in this 

section, will be called “Saeima11” in other sections of this thesis. The acoustic model trained on this 

corpus will be called “AUG1-nnet2-smbr” correspondingly. 

To conclude, automatic data collection from the Web turned out to be very useful method for 

improving the acoustic models for Latvian speech recognition models and allowed to significantly 

improve the word error rate on different testing corpora. Importantly, there is still a room for future 

improvement as there exist many other sources of inaccurately annotated data on the Web. 

3.7. TDNN Sequence Discriminative Acoustic Model 

Increasing the amount of data enables training more complex models, that can better capture 

the long-term dependencies between acoustic events, which is important for accurate speech 

recognition.  
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LSRC-nnet2 acoustic models described in previous sections use a fixed small context window, 

that can be enlarged by scaling up the model input layer. However, this is undesirable as it makes 

model too large and too difficult to train. Also, despite being a feedforward architecture, computing 

the hidden activations at all time steps multiple times is computationally expensive. Thus, an acoustic 

model which can effectively deal with long temporal contexts without becoming too large is required. 

Recurrent neural networks (RNNs) which use a dynamically changing contextual window over 

all of the sequence history rather than a fixed context window have been shown to achieve state-of-

art performance on LVCSR tasks (Sak et al., 2014). However due to recurrent connections in the 

network, parallelization during training cannot be exploited to the same extent as in feed-forward 

neural networks. 

Another neural network architecture which has been shown to be effective in modelling long 

range temporal dependencies is the time delay neural network (TDNN) proposed in (Waibel et al., 

1989). TDNN networks are little bit behind RNNs in terms of recognition accuracy, but they require 

less data and are much faster to train and tune, so TDNN were chosen in this experiment. 

Sequence discriminative training of neural networks has been shown to provide significant 

reduction in WER (Kingsbury, 2009; Su et al., 2013; Vesely et al, 2013).  For this Kaldi uses the 

lattice-free version of the maximum mutual information (MMI) criterion LF-MMI, that can be used 

with GPU training. 

To make such computation feasible they use a phone n-gram language model, in place of the 

word language model. To further reduce space and time complexity the computation is performed at 

one third the standard frame rate. Because of this conventional 3-state left-to-right HMM topology is 

replaced with 1-state HMMs that can be traversed in one frame. 

Reduced framerate and the fact that LF-MMI maximizes the conditional log-likelihood of the 

correct transcript makes it in somewhat similar to CTC, but the difference is that in CTC the 

probabilities are locally normalized, but in MMI they are globally normalized. 

TDNN acoustic model for Latvian are trained on augmented audio corpora using alignments 

and lattices obtained by LSRC-Saeima11-nnet2-smbr. Following Kaldi recommendations feature type 

is changed from 13 dimensional PLP to 40 dimensional MFCC. Similarly, to previous model, i-

vectors are used for speaker adaptation. 

3.7.1. Revised Grapheme-to-phoneme Modelling 

Initial decisions on grapheme-to-phoneme modelling were made using stub LM and INT-

GMM-8 models. It is possible that these decisions are not optimal for more complex acoustic models 

that work on much larger context and real large vocabulary language models.  
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So, it was decided to repeat some of the G2P experiments on LSRC-tri3b model (which is much 

faster to train) and check if previous decisions are still the most optimal. The experiments were 

performed on EvalWebNews data set using WebNews-LM-3 and Saeima-LM. The Saeima language 

model is used in this experiment because it’s out-of-domain for EvalWebNews, so the importance of 

acoustic model for correct recognition is increased.  

The following modifications to baseline G2P were evaluated: 

• Using G2P algorithm from Latvian TTS by Goba & Vasiljevs (2007); 

• Removing all “diphones” and modelling only letters; 

• Replacing [c] grapheme-phoneme with [t]+[s] combination (because such separate phoneme 

does not exist); 

• Replacing long vowels with two short ones (e.g. [ā] -> [a] + [a]). 

The results in Table 13 show that the optimal G2P is the simplest one which treats every letter 

as separate phoneme. The results are consistent for both language models used in this experiment. 

Table 13. Experiments on changing the baseline G2P 

G2P model Lang_general, WER Lang_saeima, WER 

Baseline 35.9% 37.3% 

TTS G2P 36.3% 38.2% 

No diphones 35.7% 36.0% 

No [c] phoneme 36.2% 36.8% 

No diphones and no long vowels 36.2% 37.0% 

No diphones and no [c] phoneme 35.9% 36.7% 

3.7.2. Training Data Augmentation 

In section 3.6 additional training data was collected by crawling Web and aligning audio 

recordings with imperfect transcriptions. Another way of getting more training data is by adding 

distorted or other way modified copies of the original data. Potential distortions can include:  

• Adding various types of stationary noise; 

• Adding artificial or real non-stationary noise; 

• Adding volume and speed perturbation;  

• Modelling acoustic of different environments through applying different room impulse 

responses; 

• And many others. 

Many of these distortions have been shown to effective. Some of them might not be easy to 

implement and databases of noises can be required, however it’s still much cheaper than recording 
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and/or annotating new training data.  

In recent years volume perturbation, speed perturbation and room impulse methods were shown 

to be particularly effective and easy to implement (Ko et al., 2015; Peddinti el al., 2016; Ko et al., 

2017). Both can be implemented using standard signal processing algorithms and there are free and 

publicly available room impulse response libraries on the Internet.  

The idea behind volume perturbation is the fact that usually speech training corpora contain 

recordings will normalized volume. Also, while it’s easy to normalize volume when training and 

decoding the whole audio recording at once, in the online setup normalization will be always not 

accurate. Therefore, in order to make the acoustic models more robust to changes of volume and 

normalization inaccuracies, the training data is augmented with copies of the same recordings, but 

with randomly perturbated volume.  

The idea behind speed perturbation is to better cover the variability of the pace of speaking by 

augmenting the training data with slowed down or speed up versions of the original utterances. This 

method should be particularly useful for smaller datasets, as bigger sets will be naturally more diverse 

with respect to speaking speed. However, it was shown this method can be effective even for bigger 

speech corpora (Ko et al., 2015). 

Both perturbations are performed on the utterance level. Though in perturbation inside 

utterances might also be useful, as theoretically speakers can change the pace of speech and/or volume 

multiple time in the same utterance. It is an open research question if such perturbation will help to 

improve the accuracy. 

Adding copies with different room impulse responses applied helps to simulate different rooms 

and environments. This method aims to make the acoustic model more robust to reverberation effects 

of different environments, this should also help in the scenarios where microphone is located at some 

distance to the speaker’s mouth. One of features of this method is that, alignments from original data 

can be re-used, thus simplifying the training process. 

Another way to distort audio samples in order to make ASR more robust is to train acoustic 

model on a mixed bandwidth data (e.g. 8kHz an 16kHz). This approach has been shown to improve 

both wideband and narrowband recognition (Seltzer&Acero, 2007; Li et al, 2012; Deng et al, 2013).  

In this work, a publicly available database2 of the simulated room impulse responses is used. 

This data includes simulated room impulse responses with various room configs, that were created 

by randomly sampling room parameters and speaker positions. This database was created for 

  
2 Availabe on OpenSLR site. http://www.openslr.org/26/ 

http://www.openslr.org/26/
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comparing the performance of acoustic models trained with data reverberated with real and simulated 

impulse responses (Ko et al., 2017). 

3.7.3. Experimental Setup 

First, volume perturbation was performed. The perturbation is performed on the original 

recordings without creating additional copies, so that amount of the training data is not increased. 

This is motivated by the fact that it has been shown that improvement from volume perturbation is 

almost non-existent (Ko et al., 2015), but by adding copies training time is significantly increased. 

Next, speed perturbation is performed. Here 2 copies of each training utterance are created, one 

is slowed down to 90% speed and the other is speed up to 110%. As the result, the amount of training 

data is increased 3 times. 

In order to simulate different environments and variation in distance between speaker and 

microphone a 1 copy of each volume and speed-perturbed utterance was created, and randomly 

chosen room impulse response was applied on each. As the result, the amount of training data is 

doubled. Moreover, a mixed bandwidth training is simulated by randomly applying lowpass filter to 

about the half of the data. The filter attenuates frequencies above 4kHz and emulates the recognition 

of upsampled narrowband audio.  

To sum up, the following recipe for TDNN acoustic models was created: 

• All available training data corpora (LSRC, LDSC, Saeima11) are combined into single data 

set (294 hours). 

• 3-way speed perturbation of audio data (90%, 100% and 110% speed) to make model robust 

to different speech tempo.  

• Applying simulated room impulse responses to make model robust to reverberation. 

• Randomly applying lowpass filtering to about 50% of corpus to make model robust to 

narrowband audio. 

• The total amount of training data is increased 6 times, from 294 hours to 1764 hours. 

• Using pure grapheme-based pronunciation model (no diphones, one-to-one letter to phoneme 

mapping) 

• Factorized TDNN with multisplicing and skip connections: 

o 40-dimensional MFCC vectors and 100 dimensional i-vectors as input. 

o 13 layers: input layer with LDA transform, 11 TDNN layers and 1 output SoftMax 

layer. 
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o ReLU activation function and BatchNorm.  

o LF-MMI discriminative training. 

The acoustic model trained using this recipe will be called “AUG2-TDNN” in this work. All 

experiments were performed using WebNews-LM-3 3-gram language model (described in section 0). 

3.7.4. Evaluation 

The effect of performing various training data augmentations was evaluated (shown in Table 

14) on 2 test sets: 

• EvalGeneral, to evaluate WER on good quality wideband (16kHz) audio.  

• Narrowband version of EvalWebNews, to evaluate acoustic model robustness to 

mismatched audio conditions. For this a special version of EvalWebNews was created, 

where all frequency information above 4kHz was filtered. 

Table 14. Evaluation of models trained with data augmentation 

Data augmentation WER, % 

Reverb Speed Lowpass Total size, h EvalGeneral EvalWebNews (narrowband) 

No No No 294 10.5 52.5 

Yes No No 588 10.0 18.9 

Yes Yes No 1764 10.1 17.0 

Yes Yes Yes 1764 10.1 13.9 

The results show that proposed data augmentation methods help in both matched and 

mismatched acoustic conditions. The best result on EvalGeneral is obtained by augmenting the 

training data by applying different reverberations (room impulse responses), adding other 

augmentation methods results in small increase of WER, but it’s still lower than for non-augmented 

version. The improvement is especially significant in mismatched conditions, where each data 

augmentation method contributes to significant improvement of WER and the best result is achieved 

by performing all proposed data augmentations. 

To sum up, results show that the data augmentation improves the accuracy and especially the 

robustness of the Latvian ASR. It seems that original training data is not enough capturing variability 

of different environments. This is particularly true for added 186 hours of Saeima data, because all of 

them were recorded in the same environment with the same microphones. 

To conclude, the updated acoustic model (AUG2-TDNN) was compared to previous best model 

(AUG1-nnet2-smbr) on several testing corpora using WebNews-LM-3 3-gram general domain 

language model. The results in Table 15 show that the new model significantly outperforms the 

previous model in all evaluations.  
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Table 15. Comparison with previous best model 

Test corpus WER, % 

AUG1-nnet2-smbr AUG2-TDNN 

EvalWebNews 16.8 10.3 

Saeima 10.4 8.3 

LDSC-test 39.1 17.1 

EvalWebNews(narrowband) 22.0 13.9 

The difference is especially noticeable on LDSC-test and can be explained by the fact that 

AUG2-TDNN model is trained on LDSC. Section 5.2.1 describes an adapted acoustic model with the 

same feed-forward design as AUG1-nnet2-smb, which is trained for dictation task using LSRC and 

LDSC corpora. This model achieves WER of 35.7%, which is better than 39.1% by AUG1-nnet2-

smbr and demonstrates the influence of LDSC data. Nevertheless, AUG2-TDNN outperforms this 

adapted system by more than 50% relative. 
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4. LANGUAGE MODELLING FOR LATVIAN 

In first experiments with acoustic modelling for Latvian a “stub” language model was used, 

however for serious speech recognition experiments a real language model is required. A language 

model represents a system’s knowledge of word semantics, which words are likely to co-occur, and 

in what sequence. In this work the language model should represent the general domain knowledge 

of Latvian language, that should enable continuous large vocabulary “free-form” speech recognition.  

This section is based on author’s work published in Salimbajevs & Pinnis (2014), Salimbajevs 

& Strigins (2015b) and Salimbajevs & Strigins (2015c). 

4.1. Language Model Training Data 

In order to train statistical language models, a monolingual text corpus is needed.  Text corpora 

used in this work are listed in Table 16. 

Table 16. Sources of Latvian monolingual text corpora 

Corpus Size, sentences Description 

WebNews corpus (version 

2014) 

44.5M Automatically crawled collection of 

texts from Latvian news portals  

WebNews corpus (version 

2016) 

46.6M Automatically crawled collection of 

texts from Latvian news portals 

Saeima corpus 1.3M Official Saeima session transcripts 

WebNews corpus is a collection of automatically crawled and automatically segmented text 

from biggest Latvian news portals. The crawled texts are not restricted to any particular domain, that 

means the corpus represents general domain. Because corpus is collected automatically, it can be 

periodically updated by rerunning crawling software. Two versions of WebNews corpus, 2014 and 

2016, are used in this work. 

For automatic speech recognition system adaptation task, transcripts of all previous Saeima 

sessions were automatically collected from Saeima webpage. Saeima transcript text corpus consists 

of 1.3M sentences and 21M words. The corpus is used to train domain specific language model for 

the adapted ASR system. 

4.2. N-gram Language Model  

After initial decisions on pronunciation model and initial acoustic model were made the next 

step was to replace the “stub” language model with an initial large vocabulary model.   

In order to train statistical language models, a monolingual text corpus is needed. Initial 

statistical language models for Latvian were trained on WebNews corpus (version 2014).  

Before training, the text corpus is pre-processed in the following way: 
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• First, the text was tokenised and split into sentences. 

• Then, non-alphanumeric tokens, punctuation, URLs and other unrecognized tokens 

(tokens that contain both digits and characters, tokens using mixed casing) are filtered 

out. 

• Next, number conversion from digits to words with correct inflection. For this, a module 

from the Latvian text-to-speech system was used (Goba&Vasiljevs, 2007). This module 

also expands some abbreviations like “km” to kilometres if they are next to some 

number. 

• First word of each sentence was true-cased based on statistics from whole corpus. If 

word is more frequent in lowercased form, then it is lowercased, otherwise, it is left 

capitalized. 

After pre-processing, the corpus consisted of 38.5M sentences (40% of them were 10-20 words 

long) and 592M running words. The vocabulary of the whole text corpus was 2.8M word surface 

forms. 

From this large WebNews corpus, a smaller corpus of 3M (called WebNews3M) sentences was 

also created using the Moore & Lewis (2010) data selection method. Using this method, sentences 

from larger “out-of-domain” corpus can be selected based on their similarity to the sentences in the 

smaller corpus “in-domain” corpus. Here, above mentioned 38.5 corpus is used as out-of-domain 

corpus and training transcripts as in-domain corpus. As the result, 3M sentence corpus is created. 

From both corpora, several 3-gram language models were trained. Because WebNews corpus 

is collected automatically it can contain spelling errors and various noise tokens. In order to filter 

these tokens and also make LM loadable (working with 2.8M vocabulary can require a lot of RAM 

and CPU) the vocabularies of different sizes were selected from the most frequent words in the corpus. 

To further reduce the size of language models, they are pruned to the same size of about 50 MB.   

A recurrent neural network language model was trained on the same filtered small WebNews3M 

corpus using limited 50K word vocabulary. Unfortunately, experiments with larger vocabulary and 

larger training corpus failed – model was unable to converge and showed very poor results. 
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The models were combined with “INT-GMM-8” acoustic models and evaluated (see Table 17) 

in terms of perplexity and speech recognition WER on LSRC held-out set (described in section 3.2).  

Table 17. Experiments with 3-gram models 

Language model Corpus Vocabulary Perplexity OOV WER, % 

WebNews-LM-1 WebNews 50K 423.964 8.1% 37.5% 

WebNews-LM-1-100 WebNews 100K 528.162 4.3% 48.5% 

WebNews3M-LM-1 WebNewsSmall 50K 496.401 7.3% 41.7% 

WebNews3M-LM-1-100 WebNewsSmall 100K 610.328 4.3% 45.5% 

WebNews3M-RNNLM WebNewsSmall 50K n/d 7.3% 36.6% 

 

The best result was achieved by RNN LM model with 50,000 words, however, the improvement 

is only 1% WER absolute and the model performs several times slower. Because of this and inability 

to train larger models with large vocabulary (also see Section 2.6.3) it was decided to leave neural 

network language models out of scope of this work and focus on N-gram language models. 

The second-best result was achieved by a 3-gram model with the vocabulary size of 50,000 

words. Interestingly, while the out of vocabulary (OOV) rate is smaller with larger vocabulary, the 

WER degraded. The idea of selecting sentences from the large corpus that are similar to the sentences 

in the acoustic training set transcripts turned out to be unsuccessful. Again, OOV rate is lower, but 

perplexity and WER degraded.  

At the time when these experiments with initial speech recognition model were performed, the 

cause of these results was unknown. That lead to erroneous conclusion, that usage of smaller 

vocabularies is better. Later, it was discovered that the cause of this result is overly aggressive pruning 

procedure, which significantly degraded larger models.  

4.3. Language Model Size 

4.3.1. Language Model Pruning Problem 

From literature (Huang et al., 2001) it is known that for English 3-gram models significantly 

outperform 2-gram model in speech recognition tasks. The improvement from 4-gram is usually not 

as big. It was decided to compare 2-gram models with 3-gram models for Latvian.  

Table 18. 2-gram vs 3-gram language model comparison 

N-gram order Size, MB RAM, GB WER, % 

2 50 1.33 36.58 

2 100 2.21 35.94 

3 50 1.68 37.39 

3 100 3.48 35.50 

Results of comparison are shown in Table 18. The evaluation was performed on the 

EvalWebNews test corpus using acoustic models LSRC-nnet2. The language models were trained 
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following WebNews-LM-1 recipe, but vocabulary size was increased to 200K and different pruning 

parameters were used for 100MB version. Surprisingly, the difference between 2-gram and 3-gram is 

very small and 2-gram model even outperforms 3-gram model when language model size is 50MB.  

Next, the trigram hit rate was calculated on transcripts of EvalWebNews. Hitrate value indicates 

what percentage of words were scored using 3-grams, 2-grams or 1-grams entries in a n-gram 

language model. It was found that 3-gram hit rate from 100MB 3-gram model on the EvalWebNews 

corpus is only 9%. In other words, language scores of only 9% of words were calculated using 3-

grams.  

These findings can be interpreted as follows: 

• The model is pruned so hard, that 3-grams are almost not used at all. 

• It is possible that pruning process filters out too many “useful” 3-grams. 

• The current language models are too small and are the main cause of high error rate. 

• It is necessary to find a solution how to work with larger, preferably not pruned language 

models. 

This result leads to a logical question: why so small models were used in the first place? 

First reason is the size of the full model trained on WebNews corpus – about 20GB in ARPA 

format and vocabulary is 2.8M surface forms. Sphinx tools that prepare language model for Sphinx 

engine cannot handle model of such size. It is even bigger problem in case of Kaldi framework, the 

construction of decoding FST takes 13GB of RAM for 100MB model. So, it is necessary to limit the 

vocabulary and prune the model. 

Second reason is the RAM usage during decoding. Using 100MB language model with Sphinx 

requires about 3.3GB of RAM during decoding and 3.6GB with Kaldi. The primary machine that was 

used for experiments had 4GB of RAM, so working with larger models was impossible. 

The solution is to use two-pass decoding approach. In the first pass a small pruned language 

model (called “decoding” LM) is used during decoding to produce lattices (instead of single best 

hypothesis). Then, in the second pass, a large language model (called “rescoring” LM) is used to 

rescore these lattices.  

Number of questions can arise when considering using this method: 

• How is the accuracy and performance affected when using rescoring? 

• What is the optimal size for smaller decoding language model? 

• What is the optimal size for large rescoring language model? 
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• What is the memory usage during rescoring with large language models? 

In order to answer these questions a number of experiments with models of different sizes were 

performed. 2-gram and 3-gram models were used for 1-pass and rescoring was performed with 3-

gram models. EvalWebNews test corpus and LSRC-nnet2 acoustic models were used. The results are 

summarized in Table 19. 

It can be seen, for example, that WER difference between decoding with 3-gram language 

model pruned to 1000 MB and using the same model to rescore lattices produced by 200 MB 3-gram 

model is only about 0.5 % absolute. However, the RAM usage is much smaller for 2-pass decoding: 

6.65 GB in the 1st pass, and 0.62 GB in the 2nd pass. That is comparing to 30.59 GB when using 1-

pass decoding. That illustrates that the 2-pass decoding is efficient method to work with large n-gram 

models and the reduction of the accuracy can be acceptable.  

Table 19. Experiments with two-pass decoding 

Decoding LM Rescoring LM WER, % RAM, GB Time, min 

Order Size, 

MB 

Size, GB 1st-

pass 

2nd-

pass 

1st-

pass 

2nd-

pass 

1st-

pass 

2nd-

pass 

2 

 

 

 

 

 

50 

 

 

 

 

 

1 36.58 31.73 1.33 0.35 20:02 0:34 

2 30.03 0.67 0:40 

3 29.31 0.99 0:54 

4 28.8 1.28 1:05 

5 28.54 1.59 1:11 

11 (full) 27.69 1.99 0:54 

2 100 1 35.94 32.41 2.21 0.35 20:25 0:34 

2 200 1 35.77 32.41 3.28 0.35 20:46 0:34 

3 

 

 

 

 

 

50 

 

 

 

 

 

1 37.39 32.07 1.68 0.38 21:47 0:34 

2 30.8 0.67 0:40 

3 29.9 0.99 0:54 

4 29.35 1.28 1:05 

5 29.05 1.59 1:11 

11 (full) 28.12 1.98 1:20 

3 

 

 

 

 

 

100 

 

 

 

 

 

0.2 35.5 34.14 3.48 0.38 21:20 0:34 

0.4 32.91 0.38 0:40 

0.6 31.72 0.38 0:54 

0.8 31.59 0.38 1:05 

1 31.12 0.38 1:11 

11 (full) 27.65 1.98 1:20 

3 200 0.4 34.06 31.78 6.65 0.62 21:59 0:40 

0.6 31.5 0.62 0:54 

0.8 31.29 0.62 1:05 

1 30.74 0.62 1:09 

3 400 - 32.78 - 12.49 - 22:53 - 

3 600 - 30.95 - 18.47 - 24:36 - 

3 800 - 30.86 - 24.35 - 24:45 - 

3 1000 - 30.23 - 30.59 - 25:47 - 
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Moreover, rescoring allows to outperform 1-pass decoding in terms of WER while using 

reasonable amount of RAM. For example, rescoring with full 11 GB unpruned language model 

consume about reasonable 2 GB of memory and achieve WER of 27.65.  

Also, it can be seen that decoding with smaller language models and rescoring with large 

models is faster than 1-pass decoding with large language model.  Actually, rescoring lattices takes 

only about 1 minute for given test corpus (EvalWebNews). 

4.3.2. Higher Order N-gram Models 

Introduction of 2-pass decoding allowed to use higher order N-gram models. Experiment on 

rescoring with unpruned 4-gram language model were also performed (see Table 20). Decoding was 

performed using 2-gram model pruned to 50MB and LSRC-nnet2 acoustic model. 

Table 20. Rescoring with 4-gram model 

Order of rescoring model WER, % RAM, GB 

3 27.69 1.9 

4 27.48 5.2 

WER improvement was very small, however memory usage increased more than 2.5 times. 

Therefore, after analysing all results and trade-off between performance, WER and memory usage, 

the following configuration was selected for a baseline: 

• A 2-gram model pruned to 100MB for decoding and producing lattices. 

• A full not-pruned 3-gram model for rescoring lattices. 

Both language models were trained on the WebNews monolingual text corpus with vocabulary 

limited to 200K most frequent words (surface forms). For shortness this LM is called WebNews-LM-

2 in other parts of this thesis. To enable acronym recognition, an exception list containing acronyms 

and other similar tokens is added to the filtering and preprocessing steps. The updated and retrained 

language model is called WebNews-LM-2-ABBR. 

Later, similar experiments were performed using 5-gram LM with improvements from Section 

0 and TDNN acoustic models (unfinished version of AUG2-TDNN). The results in Table 21 showed 

very little improvement on Saeima-test and no improvement on EvalWebNews. 

Table 21. Rescoring with 5-gram model 

Order of model WER, % 

Decoding Rescoring EvalWebNews Saeima-test 

2 3 12.9 8.8 

2 5 12.9 8.7 

3 5 12.9 8.5 

4 5 13.3 8.7 

Additionally, oracle WER on lattices obtained in the decoding step was evaluated (see Table 
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22). Oracle WER shows the best possible WER that can be obtained by rescoring these 1-pass lattices.  

Table 22. Lattice oracle WER 

Decoding LM order EvalWebNews Saeima-test 

2 5.9% 9.4% 

3 6.0% 9.3% 

4 6.3% 9.6% 

Results show that all tested configuration are almost equal (except 4-gram decode, 5-gram 

rescore combination which is little bit worse). We can conclude that the previously chosen 

configuration is still optimal and allows to achieve low WER while consuming less memory during 

1-pass decoding. 

4.4. Automatic Spell-checking of the Monolingual Corpus 

During previous experiments, it was also found that ASR can sometimes output misspelled or 

non-existing words. This happens because the corpus that is used for training language model, is 

automatically crawled from the Web. It contains “noise”: misspelled words, words in other languages, 

code and “garbage”. Some of this noise is already filtered, but some cases are very difficult, like 

misspellings or non-existing words, that look just like regular words.  

One possible solution is to use spell-checker. For example, one could use spell-checker to 

correct spelling errors in training sentences and filter out sentences that cannot be repaired. In practice, 

however, spell-checker is not perfect and can introduce new errors, mark correct words as errors 

(because they are not in spell-checker vocabulary) etc. This could lead to removing too many good 

sentences and words and training a weaker model. 

The proposed solution is to filter out sentences that contain N or more errors using automatic 

spell-checker, therefore several experiments were performed to find the best filtering strategy, 

different vocabularies were also tested. 

The experiments were performed using WebNews corpus (version 2016), which was prepared 

by crawling news web articles. The acoustic model used was LSRC-nnet2 and language modelling 

procedures for this experiment are as described in 4.3 for WebNews-LM-2.  

The goal of these experiments was to find the best filtering strategy for training corpus of 

decoding 2-gram model. Two different types of vocabularies were tested: (1) small 200K vocabulary 

and (2) large 1M vocabulary. Both vocabularies were created by taking most frequent words in the 

corpora. The idea is that by taking subset of most frequent words, misspellings and noise are filtered 

out. Also, it should be noted that after filtering out all sentences that contained words unrecognized 

by the spell-checker, the vocabulary is reduced to 900K. So, vocabularies larger than 1M were not 

evaluated.  
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Table 23. Filtering LM training corpus with spell-checker 

Vocabulary size Max allowed errors Sentences after filtering WER, % 

200K 0 24M 34.54 

200K 1 35M 34.84 

200K 2 40M 35.81 

200K 3 42M 35.86 

200K 4 43M 36.32 

200K 5 43M 36.28 

200K Unlimited 45M 36.58 

900K 0 24M 29.22 

1M 1 35M 30.67 

1M 2 40M 31.35 

1M 3 42M 31.43 

1M 4 43M 31.60 

1M 5 44M 31.73 

1M Unlimited 47M 35.25 

The results of experiments are presented in Table 23. The best result (WER is 29.22%) was 

obtained when using large 900K vocabulary and not allowing any errors. Allowing errors resulted in 

gradual increase of WER. But using 200K vocabulary resulted in much higher error rate, because of 

increased out-of-vocabulary rate. Rescoring with 3-gram LM trained on the same filtered corpus, 

allowed to achieve significant WER improvement, from 27.69%, to 23.61%.  

Even better result was achieved by performing discriminative SMBR training of acoustic 

models and adding adaptations for acronyms by providing an exception list for the spell-checker and 

other filters, WER was reduced to 20.31%. 

In previous experiments the same filtering strategy was used for both decoding and rescoring 

language models. This was done for several reasons: 

• Experimentation with 2-gram model is more interactive as results are available much quicker. 

• Vocabularies are automatically synchronized if the same strategy is applied when training 3-

gram LM. 

• There was a hypothesis that, applying the same strategy to 3-gram LM will also be optimal.  

The next batch of experiments verifies last hypothesis and also tests new idea: allowing 

language model training corpora to have sentences with 1 error (as marked by spell-checker), but 

later limiting vocabulary to words that are recognized by spell-checker only. The intuition behind this 

idea is that, when filtering whole sentence because of only one error, useful information is lost. So, 

finer filtering can be achieved if such sentences are left in training corpus, but after training 

vocabulary is limited only to words that are recognized, i.e. only n-grams that are recognized as 

correct are selected. Results of this batch of experiments are presented in Table 24. 
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Table 24. Different filtering strategies for 2 and 3-gram models 

Max errors in 2-gram 

training corpus 

Max errors in 3-gram 

training corpus 

Max errors in vocabulary WER, % 

0 0 0 20.31 

1 1 1 21.33 

0 1 0 19.76 

1 1 0 19.63 

2 2 0 20.87 

The results support the hypothesis when no special vocabulary filtering is used, however when 

we filter vocabulary separately, different strategy achieve the best WER. Allowing 1 error in sentences 

during 2-gram and 3-gram training, but allowing no errors in vocabulary enabled to achieve WER of 

19.63%. Increasing number of errors resulted in increase of WER, so it can be concluded that optimal 

value for spelling error filtering is 1.  

As a by-product, processing with spell-checker also allows to perform true-casing. All words 

are lowercased and checked by the spell-checker. If after lowercasing the word is marked as error, 

then it is changed back to the initial form. True-casing is performed without context, so spell-checker 

does not know if word is first in the sentence. There is also a list of exceptions, like acronyms, for 

which lowercasing is never performed. Applying this method instead of corpus statistics-based 

method in 4.1 allowed to make a small WER improvement from 19.63% to 19.46%. The resulting 

language model is called WebNews-LM-3. 

4.5. Sub-word Language Model 

N-gram models treat inflected forms of the same word as separate independent words and does 

not recognize their similarity. For a closed vocabulary system, this means: 

• If an inflected form is not presented in the training corpus, then it will not be recognized 

correctly.  

• The full vocabulary of such a LM will contain about a million or more surface forms. 

The number of n-grams will be more than 200 million for 3-gram model. This leads to 

high memory and computational resource requirements (e.g. section 4.3) or to high 

OOV rates and increased perplexity if vocabulary is limited or model is pruned. 

• Estimation of model of this size requires a huge amount of training data in order to get 

reliable probability estimates for all possible surface forms. 

One of possible solutions for inflected form modelling is decomposition of whole words into 

smaller units, called sub-words. These smaller units are selected to be common for a large number of 

words. Sub-word based search vocabularies and language models can reduce the OOV rate of a 

speech recognition system (Salimbajevs & Strigins, 2015c).  
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Using sub-word vocabulary requires the following steps to be taken: 

• Decomposition: The original words need to be decomposed into smaller sub-word units. 

The units need to be common for many words, so that the new sub-word vocabulary 

size is clearly smaller than that of the whole word vocabulary.  

• Pronunciation Generation: In this step, sub-word unit pronunciations are being added 

to the speech recognition engine. In general, deducing the pronunciation of a sub-word 

unit from the pronunciation of a whole word is often challenging and even impossible 

in some cases. However, Latvian has a strong correspondence between written form and 

phoneme sequence, and this makes it possible to use a grapheme-based approach in this 

step. 

• Language Model Training: A new language model needs to be trained for recognition 

of sub-word units. A model is usually trained on the same text corpus that was used for 

deriving the vocabulary. 

• Word Reconstruction: After decoding, the recognized sub-words need to be 

recombined in order to obtain a valid word sequence. 

4.5.1. Word Decomposition 

One approach to decomposing words into sub-word units is to use probabilistic machine 

learning methods. In this work, Morfessor 2.0 is used (Creutz & Lagus, 2005; Virpioja et al., 2013) – 

a family of methods for unsupervised learning of morphological segmentation. The Morfessor model 

is trained on a text corpus, and then this or another corpus is segmented using this model. The result 

is a corpus made from sub-word units, which can be used to train an n-gram language model and 

derive a vocabulary of noticeably smaller size and which has almost zero OOV rate on original 

WebNews (see Table 25). 

Table 25: OOV rate comparison  

Method Size OOV, % 

Baseline 100K 11.2 % 

Baseline 200K 8.7 % 

Baseline 400K 7.2 % 

Baseline 900K 5.9 % 

Morfessor 76K <0.01 % 

Other methods include: modified stemmers, byte-pair encoding (Sennrich et al, 2016) or 

morphological analysers, that can split words into grammatically correct morphemes. In this work, 

un addition to Morfessor author also test byte-pair encoding approach (BPE). This method is based 
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does not try achieving morphological segmentation and instead relies on a data compression 

algorithm (Gage, 1994). This method represents the most frequent words with single units, but less 

frequent words are represented by combining multiple more frequent units (morphemes, syllables, 

characters). For example, frequent word “and” is encoded as single unit “AND”, but some rare word 

like “solander” can encoded as “sol + and + er”. 

Both approaches are tested in this work because of the following reasons: 

• Stemmer approach have been shown to be less effective (Salimbajevs & Strigins, 2015c). 

• Morfessor and BPE showed very similar results for other morphologically complex languages 

(Smit et al., 2017). 

• Both Morfessor and BPE are purely data-driven and there is no need for complex proprietary 

morphological analysers which can do segmentation. Also, it is not clear if such 

grammatically correct segmentation is useful for speech recognition.  

4.5.2. Word Reconstruction 

The output of the sub-word speech recognizer will be a sequence of sub-word units, thus, 

regardless of the chosen method and units, it is important to be able to reconstruct words from the 

sub-words to produce readable text.  

Table 26. Four methods of marking sub-word units so that the original word sequence can be reconstructed 

Marking style Example 

Boundary tag <w> kā <w> pie dzīv ojums <w> 

Left-marked kā pie +dzīv +ojums 

Right-marked kā pie+ dzīv+ ojums 

Left+right-marked kā pie+ +dzīv+ +ojums 

After word decomposition is important to mark the boundaries between words. This can be 

done by introducing a word boundary tag (like <w>) or marking sub-words (by adding prefixes and/or 

suffixes) to indicate their position in a word (examples shown in Table 26). All these markings satisfy 

the requirement that the word text can be reconstructed in a trivial manner. 

The choice of the marking style is not just a matter of taste, because it affects the efficiency of 

the ASR system. For example, using word boundary tags increases the number of tokens in a sentence 

and requires a higher n-gram order in language modelling. Also, a default ASR decoder does not 

produce word boundary tags, as they don’t have any pronunciation.  However, using the marked sub-

word approach increases the vocabulary of the ASR but has less tokens in the segmented sentences.  

Tags and markings can be restored in a raw output of ASR by using a separate hidden-event 
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language model (Stolcke et al., 1998). This model is trained on a corpus in which the places where 

the words were decomposed are treated as “hidden events” and are marked accordingly. Applying it 

to a sequence of sub-word units produces a sequence of the most likely sub-word units and connector 

tags from which full words can be reconstructed. 

However, a much better results can be achieved if sub-word reconstruction is integrated directly 

into decoding progress (Smit et al., 2017). This method has at least two major advantages:  

1. Pronunciation of sub-word units is modelled using correct context-dependent phones 

(which can be difficult to implement if reconstruction is performed separately from 

recognition). 

2. Decoder is forced to produce valid output sequences. Systems that do not apply these 

restrictions will not be able to make an unambiguous decision how to reconstruct words 

from the sub-word sequence. This also improves the performance by making the search 

space smaller.  

Smit el. al. (2017) performed a comparison between different styles of sub-word marking and 

found, that (1) difference between different marking styles is very small, (2) for all but one experiment 

the “left-right” style of marking sub-words was the most effective. Considering these results, in the 

following experiment left-right markings are used.  

4.5.3. Evaluation 

A Morfessor 2.0 tool and BPE methods were used to segment filtered WebNews corpus (section 

0) and extract sub-word vocabularies with left-right markings. For Morfessor this resulted in 

vocabulary of 234K units and 130K sub-word units for BPE. Each word in WebNews corpus was 

split into 2 sub-word units on average. 

Next, in order to evaluate the influence of sub-word vocabularies on the speech recognition task, the 

following procedures were performed: 

• A 6-gram language model was trained from sub-word segmented and marked WebNews 

corpus. A higher order n-gram model is used because after splitting a single word can 

be longer than 1-gram. In these experiments the average splitting factor for both 

methods was about 2, so a 6-gram sub-word LM was chosen to catch approximately the 

same context as 3-gram word LM. 

• From this large two smaller language models were created, 3-gram model for decoding 

and 6-gram model for rescoring. Both models are pruned, so that the total n-gram count 

is similar to baseline 2-gram and 3-gram models. 
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• Using above mentioned 3-gram model and AUG2-TDNN acoustic models the decoding 

graph for sub-word recognition is created similarly to Smit el. al. (2017). 

• A WebNews-LM-3 language model with AUG2-TDNN acoustic model is used as 

baseline. 

The evaluation was performed for non-adapted general domain ASR systems. During 

evaluation baseline full word, Morfessor and BPE sub-word ASR systems were compared with each 

other on EvalWebNews, EvalGeneral and Saeima-test test corpora.  

Table 27. Evaluation of general domain sub-word ASR 

Test corpus WER, % 

 Baseline Morfessor sub-words BPE sub-words 

EvalWebNews 10.3 10.2 10.1 

EvalGeneral 10.4 9.8 9.6 

Saeima-test 8.3 7.9 7.8 

The evaluation results presented in Table 27 show that sub-word ASR performs better than 

baseline full word ASR. Also, it can be seen that BPE sub-word approach outperforms the Morfessor 

based approach. 

Next, the performance of sub-word recognition was evaluated (see Table 28). The results show 

that, because sub-word language models use higher order n-grams the decoding a graph is more 

complex, thus the decoding performance is slower. However, the difference is minimal and rescoring 

time remained unchanged. Therefore, it can be concluded that sub-word approach for Latvian ASR is 

practical and allows for WER improvements. 

Table 28. Evaluation of sub-word ASR performance 

Test corpus Process Baseline ASR Sub-word ASR 

EvalWebNews 
Decoding 184 seconds 189 seconds 

Rescoring 16 seconds 16 seconds 

Saeima 
Decoding 560 seconds 586 seconds 

Rescoring 21 seconds 21 seconds 

 

Finally, a small OOV analysis was performed on EvalWebNews. This test set contains 36 words 

that are not in the WebNews (version 2014) corpus, so they can not be recognized by baseline ASR. 

Sub-word ASR correctly recognizes 14 of 36 (38.9%), therefore it can be concluded that sub-word 

approach is able to partially overcome sparsity created by inflected forms and improve the speech 

recognition quality. 
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5. DOMAIN ADAPTATION 

5.1. Latvian Speech-to-Text Transcription Service 

Although there exist many services and software that transcribe speech to text for widely used 

languages, such as English, German, etc., there is were no such service for the Latvian language 

before 2015 (also, it must be noted that in August 2017 Google released speech recognition for 

Latvian). One explanation for this might be that Latvian is spoken by only about 1.5 million people, 

which becomes a reason why big companies, who actively research and make ASR applications 

available for the public, do not develop ASR systems for Latvian. It should also be noted that Latvian 

is an under-resourced language, and there is not much language and acoustic corpora available for 

Latvian, for example, LSRC was created only in 2014.  Another reason could be the fact that Latvian 

is a very different language and reusing models and methods from “big” languages is impossible.  

In spite of these difficulties, there is quite strong motivation to develop a good performing 

LVASR system for Latvian, as it would allow people to use it in various areas, such as business, 

education, security, etc. So, after Latvian ASR achieved sufficient quality (WER of 19.4% on 

EvalWebNews, using WebNews-LM-3 and LSRC-nnet2-smbr models), the development of Latvian 

Speech-To-Text transcription service quickly started and in 2015 the service was published online 

(Salimbajevs & Strigins, 2015a). 

The main purpose of this service was to enable regular users to automatically transcribe their 

speech recordings in Latvian, which was impossible before. The service accepts most of the popular 

audio formats and provides the transcription in a plain text or in a subtitle format (i.e., text with time 

marks). This service allows to test the Latvian LVASR system in some real-life scenarios, which is 

valuable both for potential future users of this technology and for developers, because it gives useful 

information about what people need to transcribe, which will help to develop more optimized speech 

recognition systems.  

The transcription service is based on the Alumae Full-duplex Speech-to-text System for 

Estonian (Alumae, 2014) and Kaldi speech recognition toolkit. It consists of a web frontend, a single 

master server, and multiple workers, which can be used independently. For example, workers and 

master servers can be hosted on different machines. This makes it possible to easily scale up the 

system just by adding more servers and hardware. It is also possible to use the transcription service 

without the web frontend, i.e., create a desktop or mobile application that communicates directly with 

the master server. An overview of the service is presented in Figure 11. 

The web frontend consists of two HTML\JS web pages. The first page enables the user to select 

a file, enter an email address, and submit this data to the transcription service. The other page is used 



83 

for viewing and downloading transcriptions. It also contains a feedback form for evaluation of user 

experience. 

The master server is responsible for receiving files from users, converting them to a uniform 

format, and maintaining a job queue (one job represents one file). The master server is also 

responsible for sending notification e-mails about the transcription process, e.g., to notify the user 

that his file is successfully processed, and the transcription is ready. 

Master server

Worker 1 Worker N

Job 1

Job 2

Job ...

Transcription

Audio

Web 
Frontend

User

Audio

Transcriptions

E-mails

 

Figure 11. Transcription service overview. 

Workers connect to the master server, receive jobs, and perform the actual transcription. Each 

worker processes only 1 job at a time. Each job consists of several stages:  

• Segmentation and speaker diarisation; 

• PLP feature and i-vector extraction; 

• Decoding with 2-gram model; 

• Lattice rescoring with 3-gram model; 

• Converting end result to SRT and CTM files, which enhance the transcript with information 

on sentence and word level.  

The transcriptions are then sent back to the master server where they can be accessed by users 

through the special URL that is sent in a notification e-mail.  
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LIUM SpkDiarization tool (Meignier & Merlin, 2010) is used for speaker diarisation, which is 

the process of partitioning an input audio stream into homogeneous segments according to the speaker 

identity, or in other words a combination of speaker segmentation and speaker clustering. The first 

aims at finding speaker change points in an audio stream. The second aims at grouping together 

speech segments on the basis of speaker characteristics. It can enhance the readability of an automatic 

speech transcription by structuring the audio stream into speaker turns. 

The multimedia format support is achieved by using GStreamer multimedia framework3, the 

developed web service is able to process all popular audio coding formats and also, in many cases, 

extract audio from popular video formats.  

Because acoustic models were trained using Kaldi framework, it was logical to customize 

existing Kaldi speech decoder instead of implementing new solutions.  

Not all recognition scenarios consist of processing long audio recordings, so the webservice 

also supports a “simple” job mode: 

• Speaker diarisation is not performed. 

• No email notifications are sent. 

• CTM and SRT files are not generated, but the recognition is sent as a JSON response to the 

original request. 

This mode is intended for short audio files and synchronous usage, e.g. for user interface 

purposes. For example, it used to recognize user answers in a mobile app “Reizrēķins”, which teaches 

kids multiplication. 

The first deployed ASR system consisted of LSRC-nnet2-smbr acoustic model and WebNews-

LM-3 language model. The system showed WER of 19.46% on EvalWebNews test set. Analysis of 

errors shows that only 47% of misrecognized words in these test sets make utterances difficult or 

impossible to understand. E.g., 42% of errors are errors in word endings, and in most cases, it is easy 

for a human reader to recover correct meaning from such errors. 

While these results were very far from perfect, that allowed any Latvian language speaker to 

try the speech recognition technology for their language for the first time and enabled the 

development of real-word practical applications. This led to the development of several domain 

adapted systems and mobile applications like (Balss4 and Reizrēķins5).  

  
3 GStreamer. Open source multimedia framework https://gstreamer.freedesktop.org/ 
4 Mobile app Tildes Balss. https://play.google.com/store/apps/details?id=com.tilde.tildesbalss&hl=en 
5 Mobile app Reizrēķins. https://play.google.com/store/apps/details?id=com.tilde.male.model.one&hl=en 
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Following the development of better acoustic models like AUG2-TDNN the Latvian Speech-

to-Text transcription service was updated and WER on EvalWebNews was reduced to 10.3% 

5.2. Dictation Task 

Results described in Section 5.1 allowed to create first publicly available large vocabulary 

speech recognition service for Latvian, which can be used in some practical applications like speech 

recording indexing, preparing draft versions of speech transcripts and mobile applications with 

natural language interface. However, the technology had yet to reach a level where it is applicable in 

dictation scenarios in text editors.  

For the development of dictation systems, it was necessary to: 1) create a specific corpus that 

would allow to evaluate and improve acoustic models of such systems, 2) train acoustic models for 

online speech recognition, 3) adapt the language model, and 4) develop a dictation software that can 

be used on typical consumer hardware. 

The first problem was solved by creating Latvian Dictated Speech Corpus (LDSC) in a joint 

effort of Tilde and Institute of Mathematics and Computer Science of University of Latvia (Pinnis et 

al., 2016).  The goal of this work was to create a specific corpus that would: 1) better capture the 

speaker characteristics when dictating text to a computer and 2) contain spoken commands common 

to dictation scenarios (e.g., punctuation, formatting, special symbol, and action commands). The more 

details on this corpus are given in Section 0, which is based on publication by Salimbajevs (2016b). 

The creation of the dictation corpus opened the possibility for tackling remaining tasks, which 

will be the main focus of next subsections. 

5.2.1. Acoustic Model Adaptation 

HMM-DNN acoustic models LSRC-nnet2 and LSRC-nnet2-smbr were used as a baseline in 

adaptation for dictation task. 

In the dictation task, the ASR is expected to perform in real-time, generating a hypothesis as 

the audio is streaming. This means that the acoustic model should not be too complex and should be 

adapted for streaming data. 

Fortunately, both LSRC-nnet2 and LSRC-nnet2-smbr were already reasonably small and 

trained with sliding window cepstral normalization and i-vector adaptation. If this would not be the 

case, the model should have been simplified (for example, by reducing number of hidden layers or 

neurons in them) and re-trained using sliding normalization. 

5.2.2. Language Model Adaptation 

For language model training, a 46 million sentence text corpus WebNews (version 2016) is used. 
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The corpus contains about 905M million tokens, both of words and punctuation symbols. In order to 

filter the corpus from noise/garbage and adapt the corpus for the dictation task, the following 

processing procedure was used: 

• The raw text is processed with natural language processing tools that perform tokenizing, 

garbage filtering (for example, mixed case tokens, non-alphanumeric tokens), number 

conversion from digits to words with correct inflection. 

• Next, punctuation and special symbols are replaced with their respective pronunciations. 

• Then formatting and action commands were artificially added as separate sentences. 

• Finally, “New line” commands were appended after every second sentence in the text corpus. 

• Each sentence is then verified by a spellchecker, and sentences that contain 2 or more errors 

are filtered out. 

• Spell-checker is also used for true-casing. 

As the result, the processed corpus contains 35M sentences, 674M tokens. On this text corpus, 

two n-gram language models are trained in the same way as described in 0, vocabulary is limited to 

872K words (extracted from sentences containing no spelling errors):  

• A heavily pruned 2-gram model for first-pass decoding. 

• A big 3-gram unpruned model for lattice rescoring. 

This set of dictation language models is called “WebNews-Dict-LM” in the other parts of this 

work. 

5.2.3. Dictation Software 

Latvian Speech-To-Text Transcription Service (see section 5.1) was upgraded in order to 

integrate the dictation service. For this, new type of workers and new API were implemented. 

Dictation service API is based on WebSocket protocol and is more similar to Full-duplex Speech-to-

text System for Estonian (Alumae, 2014). 

This setup, however, consumes a lot of random access memory (RAM), as each worker stores 

its own copy of LM in the memory. A 3-gram LM with an 800K word vocabulary can take 3-3.5 GB 

of RAM. In order to optimize memory usage, we use “shared rescoring”: only a 2-gram pruned model 

is left inside the worker, but the big 3-gram LM for rescoring is moved to a separate process called 

“rescorer”, which is shared among multiple workers. Rescorer is a separate multithreaded program 

that receives lattices from workers, performs rescoring, and sends rescored lattices back to workers. 

That way, only one copy of the big LM is stored in the memory. Rescorer can be run on a separate 
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machine; however, in order to keep latency small, it's better to run rescorer on the same machine as 

workers. 

The client is a desktop application implemented in HTML\JS and uses the Chromium web-

browser. It streams audio recorded from a user’s microphone to a web-service and receives recognized 

text. The communication is full-duplex; audio and text transmission are performed simultaneously. 

Audio streaming is performed by sending separate frames with a duration of about 250ms each; 

however, a much smaller frame size is used internally (for recording and speech analysis). This size 

is selected automatically by Chromium and can be as small as 10ms.  

A regular expression based parser is used to find and execute dictation commands in a received 

text. In order to improve recognition quality and to minimize the server load, the client implements 

simple voice activity detection (VAD), which is based on the method described by Moattar & 

Homayounpour (2009).  

This VAD classifies audio signal in frames by using 3 features: 

• Signal energy in a frame. 

• Spectral flatness measure in a frame. 

• Dominant frequency in a frame. 

Each feature has a threshold that is adjusted automatically in real-time to adapt the speech 

detector to the specific microphone and environment. When at least 2 features have values beyond 

the respective threshold, the frame is marked as speech, and the client begins to send data to the web-

service. For robustness, the client also sends the preceding 0.6 seconds (typically about 60 frames), 

which were not marked as speech. If no speech is found in the interval of 0.3 seconds (typically about 

30 frames), data sending is paused until a speech frame is detected again. 

The features and their thresholds are calculated as in the original paper; however, one simple 

modification is made by using information from ASR. Each time that a client sends audio to the server 

but no speech is found by ASR, a special message is sent to the client, which instructs VAD to adjust 

thresholds using the same procedure as described in the original paper by Moattar & Homayounpour 

(2009).   

5.2.4. Performance and Memory Usage 

The effect of the rescoring optimizations is evaluated on a server machine with 6 physical cores 

(12 virtual cores) and 128 GB of RAM. We run 1 to 16 workers. The shared rescoring program is 

configured to use 16 threads. 
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Figure 12. Idle memory usage. 

Figure 12 shows the idle memory usage, i.e., how much memory is consumed by decoding the 

graph and language models alone. The advantage of “shared rescoring” is clearly seen. About 70 GB 

of memory is needed for storing models for 16 independent workers, while only about 24 GB are 

needed when using shared rescoring method. Thus, a much simpler hardware can be used. 

Memory usage during decoding was also evaluated. Figure 13 shows peak memory usage when 

simultaneously performing 1-16 decoding jobs of the same speech recording. The numbers reported 

represent the amount of memory used for decoding only, excluding memory used for storing models. 

Results show that the memory usage for shared rescoring method is similar to independent rescoring. 

 

Figure 13. Peak memory usage during decoding. 
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Finally, the effect on real-time performance is evaluated (see Figure 14). The real-time factor 

(RT) is calculated by streaming 1-minute long speech recordings and measuring the time when last 

rescored hypothesis was received. For example, if we stream a 60 second speech recording and the 

last rescored part of transcription is received 1 second after the end of streaming, then we calculate 

RT as 61/60 ≈ 1.02.  

 

Figure 14. Real-time performance evaluation. 

Figure 14 shows that the difference between independent workers and workers with shared 

rescoring is very small and only starts to appear when 12 or more simultaneous decoding jobs are 

performed. This is most likely caused by the fact that the shared rescoring scheme uses a lot of multi-

threading (for 12 decoding jobs it is: 12 worker threads + 1 master thread + 12 rescoring threads), 

and we have only 12 virtual cores. 

Also, it must be noted that the same file is streamed for all workers. That means all lattice 

rescoring requests happen at the same time, which can be interpreted as worst-case scenario for shared 

rescoring scheme.  

5.2.5. Evaluation 

This last subsection is devoted to evaluation of influence acoustic and language model 

adaptation on speech recognition accuracy.  

First, the adapted HMM-GMM models were trained and evaluated on LDSC-test. The models 

were adapted by augmenting training data with 8 hours of dictated speech from LDSC. The same 

training procedure as for LSRC-tri3b was used. The results in Table 29 show that augmenting training 

data with 8 hours of dictated speech allows to reduce the WER by relative 17% (or 7.36% absolute) 
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comparing to non-adapted LSRC-tri3b based system.  

The effect of the special text corpus processing was also evaluated. Without this adaptation, it 

is difficult for both systems to recognise correctly commands and the resulting WER is very high. 

Even in the case when the adapted acoustic model is used, the WER still is 35.71%. By using the 

special text corpus processing alone, the WER can be improved by relative 30.69% (or 13.22% in 

absolute numbers). However, in this case, the improvement from using DSC in acoustic training is 

much smaller; the WER is reduced only by 6.53% (or 1.95% absolute).  

Table 29. Evaluation using HMM-GMM models 

Training set Language model WER 

Baseline (100hr) 
Adapted 29.85% 

Not adapted 43.07% 

Augmented (108hr) 
Adapted 27.90% 

Not adapted 35.71% 

As next, the existing general transcription system (based on LSRC-nnet2-smbr, without LM 

adaptation and trained only on the 100 hour long LSRC data set) was evaluated on the one hour 

LDSC-test. The resulting high word error rate (WER) of 40.7% indicates that there is a significant 

difference between dictation and transcription tasks.  

Next, HMM-DNN models were trained using maximum likelihood criteria and a comparison 

with LSRC-nnet2-smbr based ASR was performed (see Table 30). As in previous case, special text 

corpus processing for LM training gives significant improvement – 32.93% relative (or absolute 

13.4%). By augmenting training data with dictated speech, the WER is further improved by 12.57% 

(or 3.43% absolute). 

Table 30. Evaluation using HMM-DNN models 

ASR system WER, % 

Baseline with non-adapted LM (100 hours) 40.7 

Baseline with adapted LM (100 hours) 27.3 

Augmented (108 hours) with adapted LM 23.9 

If this result is compared to a non-adapted LSRC-nnet2-smbr based system, then the overall 

improvement from both language model adaptation and acoustic data augmentation is at relative 

41.36% (or 16.8% in absolute numbers). It is noticeable that there is a relatively small difference 

between baseline HMM-DNN and baseline HMM-GMM systems without LM adaptation. This is the 

result of a mismatch between training and testing conditions. However, when both LM adaptation 

and additional training data is used, the difference between HMM-DNN and HMM-GMM becomes 

large – 14.48% relative improvement (or 4.04% absolute).  

Experiments with discriminative training were also performed, but no improvement were observed. 

On the contrary, the WER degraded by approximately 10% when compared to a non-discriminatively 
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trained system. For general domain transcription system WER difference on LDSC-test between 

LSRC-nnet2 and LSRC-nnet2-smbr was minimal, less than 0.1%. This is probably caused by the fact 

that the size of LDSC is relatively small in comparison with the remaining training data (the LDSC 

contribution is approximately 7.5%). Therefore, the acoustic models get more adapted to the 100 

hours of non-dictation speech data.  

Overall, the both LM and AM adaptation allowed to significantly improve recognition quality 

in the dictation scenario. The achieved WER of 23.9% shows that the adapted ASR is applicable for 

usage in the real-world applications, so the developed dictation ASR system was deployed on Latvian 

Text-to-Speech server.  

Later, an improved dictation system was deployed, this system uses AUG2-TDNN acoustic 

model (Section 3.7) and achieves WER of 12.6% on LDSC-test. 

5.3. Saeima Session Transcription 

One of the domains in which Latvian speech recognition might be particularly useful, is 

transcription of debates, meetings and sessions. For instance, every session of Latvian Parliament, 

Saeima, must be transcribed and transcription should be made available for public as soon as possible. 

There are also many closed sessions, for which transcripts must be also manually prepared. This is a 

time consuming and tedious process that requires manual work of many people – transcription 

specialists and editors. Automatic speech recognition (ASR) can be very useful in this case because 

it can reduce the work of a human to only correcting recognition mistakes, adding punctuation and 

formatting. The ASR function can be complemented with automatic speaker diarization and 

punctuation restoration to further reduce the work. 

This subsection presents a case study of domain adaptation of general domain Latvian speech 

recognition system (LSRC-nnet2-smbr with WebNews-LM-3) for transcription of Saeima sessions. 

However, the methods described here can be also applied to other domains. 

5.3.1. Language Model Adaptation 

In domain adaptation task, the first step is to get the evaluation set for that particular domain. 

Without such data set, it is impossible to prove that performed adaptations are actually helpful and 

give any improvements.  

For this a 1-hour corpus from Saeima session recordings from 2014 to 2016 was collected and 

manually annotated. This corpus is called “Saeima-test” and described in Section 4.1. 

General domain ASR achieved WER of 13.9% on this new test set. Such good result can be 

explained, by the fact that Saeima session recordings are usually high quality, speakers usually speak 
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in turns, microphone is directed and close to the speaker. It can be concluded, that general acoustic 

model is already suitable for transcription of Saeima session.  

However, there should be still much room for adaptation of language model, as Saeima speakers 

use many specific language constructions, words and phrases that are not common in general speech, 

but are very frequent in the domain of Saeima speeches. 

For this about 1M sentences from Saeima session transcripts were crawled from Saeima website 

(see Section 4.1). Collected corpus was processed in the same way as WebNews, except no filtering 

with spell-checker was performed, as Saeima transcripts are thoroughly checked before publishing 

and can be trusted. Two held-out sets (dev and test) were created from collected Saeima transcripts, 

each containing 10000 sentences, the rest were used to train 3-gram language model. 

Table 31 shows the results of perplexity evaluation of 3 different language models on “test” 

held-out set. It can be seen that the best result is achieved by the interpolated model, which was 

created from 3-gram WebNews-LM-3 and 3-gram Saeima transcript LM by using second held-out 

set “dev” for finding the best interpolation weights. 

Table 31. Perplexity evaluation on held-out set of Saeima transcripts 

Language model (training corpus) Perplexity 

WebNews 3-gram 236.94 

Saeima 3-gram 156.34 

Interpolated 3-gram 126.56 

After perplexity evaluation, the best model (interpolated) was split into two parts for integration 

into ASR: 

• 2-gram pruned (to the size of about 120MB) LM for decoding; 

• 3-gram unmodified LM for rescoring. 

The set of this models is called “Saeima-LM” in other parts of this work. 

The result of WER evaluation on 1hr Saeima evaluation set can be seen in Table 32. The 

adaptation was successful and WER was significantly reduced from 13.9% to 8.6%, which is 38% 

relative improvement.  

Table 32. Word error rate comparison between baseline and adapted systems 

ASR system WER, % 

Baseline 13.9 

With adapted language model 8.6 

This positive result allows to conclude that general domain speech recognition system was 

successfully adapted for the particular domain, transcription of Saeima sessions. The achieved 

recognition accuracy should be sufficient to make the work of Saeima session transcription specialists 
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much easier. When using AUG2-TDNN acoustic models instead of LSRC-nnet2-smbr the WER can 

be further improved from 8.6 to 5.9%. 

5.3.2. Post-editing  

Although there exist many specific audio transcription editors, Microsoft Word is a de-facto 

standard tool for preparing many types of documents. It is a familiar tool for millions of people. 

Moreover, in many scenarios, the final transcription document will be a Microsoft Word document. 

In case of Latvian language, many transcription specialists will not be familiar with transcription tools 

that include ASR functionality, because ASR for Latvian language is not available. However, they are 

familiar with Microsoft Word, so it is natural if the whole transcription process can be done in one 

tool.  

As a part of domain adaptation for Saeima session transcription, some special modifications 

were implemented in the Speech-To-Text web service. These new features allow to produce ASR 

transcript as a special macro-enabled Word document with embedded audio that provides a 

convenient and familiar editing environment (Salimbajevs & Ikauniece, 2017). 

The document is created from raw ASR transcript by an upgraded master server component of 

the Speech-To-Text web service.  Also, a special version of web-service client web-page was 

implemented, it does not allow to view the transcript in browser, but it displays a link to the Word 

document that contains the transcription. The same link is also sent by e-mail. 

Word document with transcript allows to play the embedded audio from any place in the 

document and highlights the words as they are being played (see Figure 15).  
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Figure 15. Editing transcriptions in Microsoft Word. 

The document’s text is divided into speakers (with speaker titles in bold) and speech transcripts 

(in formatted paragraphs with punctuation and formatting). Numbers are written in digit form, they 

are converted from words (as they appear in raw ASR transcript) using a finite state grammar. 

Splitting into utterances and grouping by speakers is achieved by speaker diarization 

(performed by the LIUM SpkDiarization tool). Punctuation restoration is performed by the 

bidirectional LSTM neural network, which will be described in section 5.4. While both diarisation 

and punctuation restoration are not perfect and can produce a lot of errors, the readability of the 

document is greatly improved, allowing users to edit transcript more efficiently. 

There are two custom buttons on the Word ribbon: the "play/pause" button plays and pauses the 

embedded audio, and the "export" button saves the document as a regular Word document without 

audio and macros. It is also possible to start playing the audio from any word by double clicking on 

it. There are also keyboard shortcuts for pausing and resuming the playback. 

While the audio is being played, each current word is highlighted. If the user sees or hears a 

mistake, he can pause the playback by using the "pause" button or by clicking on the first incorrect 

word. He can then edit the erroneous segment as he would do in a regular Word document, and it will 

not break the audio and word alignment. The playback then can be resumed.  

5.4. Punctuation Restoration 

In some specific use cases, not only acoustic and language models should be adapted to the 

domain, but also the specific automatic post-processing of the transcripts should be implemented. For 

example, numbers and dates should rewritten with digits, URL and e-mail addresses should be 
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formatted. Also, some text level formatting might be necessary.  

Some of these post-processing procedures can be fairly general and useful in many domains, 

but some can be very specific for a domain. They can be implemented in many different ways: most 

of the number conversion can be implemented as regular expressions, while others may require 

writing specific parsers.  

This subsection will focus on punctuation restoration problem that is common for many 

domains and requires much more complex implementation than writing few regular expressions.  

Since people usually do not pronounce punctuation when speaking, the output of generic 

automatic speech recognition system is a raw word sequence without any punctuation. This is 

sufficient in many cases, such as search queries, voice commands, or simple short informal messages, 

where word sequences are typically short. However, when audio recordings are longer, the transcript 

is difficult for humans to read and understand. Also, many of the natural language processing and 

understanding (NLU) tools are typically incompatible or perform badly with such raw input.  

One or both of these issues might be important in some specific application scenarios, in which 

the adapted system should not only recognize spoken text, but also automatically recover punctuation 

(at least partially). One example of such domain is Latvian Saeima session transcripts. Adaptation of 

the language model significantly improved speech recognition quality, however even if session audio 

recordings are cut into 5 minute fragments, the raw ASR transcript is still hard to read and edit for 

humans. 

There have been many previous studies on automatic punctuation restoration in speech 

transcripts. One of the most frequently proposed approaches for punctuation restoration is based on 

the so-called hidden event language model (LM), which uses a traditional N-gram statistical model 

trained on texts that include punctuation tokens (Stolcke et al., 1998). During decoding, the hidden 

event LM is used to predict where punctuation symbols should be inserted, based on n-gram 

probability of such sequences of words and punctuation. 

Punctuation restoration can also be solved using conditional random fields (CRFs) (Lu & Ng, 

2010; Lafferty et al., 2001) and recurrent neural networks (Tilk & Alumae, 2015).  

Many approaches combine textual information with acoustic/prosodic features (Tilk & Alumae, 

2015; Kolar et al., 2004; Huang & Zweig, 2002). However, this requires a corpus that simultaneously 

contains both acoustic/prosodic and punctuation annotations, which are rare. 

This subsection will describe a punctuation restoration model for a Latvian dictation system. 

This subsection is based on publication by Salimbajevs (2016a). The focus will be on restoration of 

two of the most frequent and probably most important punctuation types – commas and periods. Other 
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punctuation marks will be mapped to these two and won’t be recovered directly. Exclamation and 

question mark will be treated as period. Colon and semicolon will be treated as commas. All other 

punctuation will be filtered out and ignored. 

The model used is a bidirectional long short-term memory model (BLSTM). BLSTM is a 

bidirectional recurrent neural network (BRNN) (Schuster & Paliwal, 1997) that contains long short-

term memory cells (LSTM) (Hochreiter & Schmidhuber, 1997) in its hidden layers. Recurrent 

networks and LSTM recurrent networks have been used in many sequence labeling tasks in speech 

recognition and spoken language understanding (Yao et al., 2013; Yao et al., 2014). For example, 

forward LSTM and bidirectional LSTM can be used in acoustic modeling for phoneme classification 

(Sak, 2014; Senior et al., 2015) or in language modeling (Mikolov et al., 2010). 

 LSTM networks have already been used for punctuation recovery in punctuation-free tasks 

(Tilk & Alumae, 2015). However, there is a very little work on using bidirectional LSTM, and, there 

are no research on punctuation restoration in ASR transcripts for Latvian. 

5.4.1. Data 

Unfortunately, there is no Latvian corpus that contains both - punctuation and acoustic (e.g., 

pauses) annotations. Therefore, no acoustic features were used in this work, and the model is trained 

on purely textual information. 

For this a 46 million sentence text corpus is used, which was collected by crawling Latvian web 

news portals (the same WebNews version 2016). The corpus contains about 905 million tokens, i.e., 

words and punctuation symbols. Because text was automatically collected, it may contain a noise, 

garbage, and spelling errors. Also, we need to replace punctuation and other special symbols with 

their respective full words (i.e., “comma”, “period”, “at sign”, etc.), convert numbers from digits into 

written form, expand abbreviations (e.g., “km”), etc. To deal with these issues, the corpus is pre-

processed as follows: 

• The raw text is processed with natural language processing tools, which perform tokenization, 

garbage filtering (for example, mixed case tokens, non-alphanumeric tokens), number 

conversion (from digits to words and tries to find correct inflection), some abbreviation 

expansion, and true-casing. 

• Optionally, the corpus can be stemmed to minimize vocabulary and model size. 

• If the corpus is stemmed, a vocabulary is created from 100,000 of the most frequent stems. 

Otherwise, the vocabulary is created from 800,000 of the most frequent words, which are 

checked by a spell checker. Out-of-vocabulary (OOV) tokens are replaced with the “<UNK>” 

token. 
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• Next, punctuation symbols are replaced by the respective word forms and some more garbage 

processing is performed (incorrect punctuation sequences are filtered).  

• Also, because the web news corpus is already segmented into sentences (this segmentation is 

not perfect, of course) during text collection, we randomly glue some sentences together to 

obtain utterances that contain 2 or more sentences. This is done in order to have training 

samples for cases where the model is expected to split an utterance into several sentences. 

After processing, the text corpus contains 21 million utterances, 589 million words, 41 million 

punctuation commands, and 40 million punctuation symbols. From this processed corpus, two held-

out sets are selected: 2000 utterances for validation during training and 3000 utterances for evaluation.  

All other data is used for model training. 

During the development of the punctuation model, a small 1-hour long speech corpus of the 

debates in the Parliament of Latvia was collected (called Saeima-test, see Section 3.2). The corpus 

contains 439 segments, which were recorded by about 300 different speakers (estimated). It was 

collected for evaluation of ASR adaptation to Saeima domain(see previous section), but the 

interesting feature of this corpus is that its annotation contains punctuation. This makes it possible to 

perform punctuation restoration on the ASR output and to compare it with the reference annotation.  

5.4.2. Hidden-event Language Model 

The given task can be solved using the hidden-event LM approach (Stolcke et al., 1998), which 

uses a traditional N-gram language model trained on a corpus that contains regular text and so-called 

hidden-events. Applying this model to a raw sequence of words produces a sequence of the most 

likely words and hidden-events between them. In punctuation restoration case, hidden-events are 

punctuation marks. 

The model is trained as follows:  

• Punctuation marks in 21M utterance training corpus are annotated as hidden-events. 

• A traditional 4-gram language model is trained on annotated corpus. 

During decoding, the trained “hidden-event” LM will be used to produce a sequence of words 

and “punctuation-events” that can be unambiguously converted into a text with punctuation. 

5.4.3. Bidirectional LSTM 

The proposed solution is to use a bidirectional recurrent neural network with long short-term 

memory (BLSTM). The model that is needed for given task can be described as a classifier that will 

predict whether the current word in a word sequence corresponds to one of these 3 classes: 
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• A period must be inserted after this word. 

• A comma must be inserted after this word. 

• This word is a regular word and should be left as is. 

Classes for other punctuation types can be added in a similar way if needed. 

The BLSTM approach has several advantages over the classic hidden event N-gram LM, the 

LSTM recurrent model, and traditional feed-forward neural networks. 

Probably, the most important problem of the N-gram model is weak generalization ability due 

to the data sparsity. For example, for a vocabulary of size 100,000 words, the number of all possible 

3-grams is 1015
, but our training corpus has only about 50 million 3-grams. Many different smoothing 

methods were developed to deal with this issue. However, as it is known from language modelling, 

recurrent neural networks are much better at generalizing to unseen sequences (Mikolov et al., 2011a; 

Mikolov et al., 2011b). 

The generalization problem can also be solved by using simple feed-forward neural networks. 

However, they share a common weakness with the N-gram models, as their context size is limited to 

a fixed number of tokens. 

On the other hand, RNNs can theoretically use an unlimited previous context for their decisions. 

In practice, however, the ability of pure RNNs to remember long-term dependencies is limited, so 

RNNs are combined with LSTM units to make remembering long contexts possible. 

Bidirectional LSTM RNN further extends RNN LSTM models by allowing to use not only the 

previous context of the word but also the next context, which can be important for the correct 

punctuation. 

5.4.4. Model Architecture 

The BLSTM neural network for punctuation restoration consists of two LSTM layers, an input 

layer, and an output layer. The architecture of described BLSTM model is shown in Figure 16. 
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Figure 16. BLSTM network for punctuation restoration 

Since the input consists of words, a special embedding matrix is used to translate each word to 

a 128-dimensional vector. This matrix consists of 100,000 (in case of stems) or 800,000 (when using 

full word forms) rows and 128 columns; each row vector represents a word from the vocabulary. The 

matrix is initialized with random values from uniform distribution in the range of (-1, 1) and then is 

trained together with the whole network. 

Word vectors are then fed into the input layer of BLSTM that is common for both forward and 

backward 128-dimensional hidden LSTM layers. The backward LSTM layer  ℎ⃖ 𝑡   has a recurrent 

connection with the hidden layer  ℎ⃖ 𝑡−1  from the previous word, and the forward LSTM layer ℎ  𝑡  is 

connected accordingly to the hidden layer activations ℎ  𝑡+1 from the next word. Baseline LSTM units 

with forget gates and without peephole connections are used in this work. Hidden layer activations 

ℎ  𝑡 and  ℎ⃖ 𝑡 are then passed to the softmax output layer, which calculates the probabilities of each class. 

To sum up, the forward pass of punctuation BLSTM can be described with the following equations 

(1-6): 

𝑥𝑡 = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑤𝑜𝑟𝑑) (1) 

𝑖𝑛𝑝𝑡 = (𝑊𝐼𝑥𝑡 + 𝑏𝐼) (2) 

ℎ𝑡
    = 𝐿𝑆𝑇𝑀(𝑖𝑛𝑝𝑡, ℎ𝑡+1

         ) (3) 

ℎ𝑡
 ⃖  = 𝐿𝑆𝑇𝑀(𝑖𝑛𝑝𝑡, ℎ𝑡−1

 ⃖       ) (4) 

ℎ𝑡
 ⃖  = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑡

    , ℎ𝑡
 ⃖  ) (5) 

𝑝𝑟𝑒𝑑(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜ℎ𝑡
 ⃖  + 𝑏𝑂) (6) 

where WO and WI are weight matrices, bO and bI are bias vectors for output and input layers 

respectively, inpt is input layer activations, embedding is a lookup function in an embedding matrix, 
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xt  is a word embedding vector, and word is the word we are trying to classify. 

The model is implemented using TensorFlow (Abadi et al., 2015) framework and trained by 

optimizing cross-entropy using the Adam method (Kingma & Ba, 2015). All weights are initialized 

with random values from normal distribution with mean 0 and standard deviation 1. During training, 

weights are updated in “mini-batches” of 128 sequences. The learning rate at the start of the training 

is 0.0005 and is halved each time when there is no improvement on the validation set (adopted from 

(Tilk & Alumae, 2015) and Mikolov et al., 2011c). Training is stopped when the learning rate has 

been decreased 3 consecutive times and no improvement has been observed, or it is stopped when the 

maximum number of 20 epochs has been reached. 

5.4.5. Evaluation 

Both hidden-event and BLSTM models were evaluated by three different metrics: 

• Precision for each class and overall precision. 

• Recall for each class and overall recall. 

• F1 for each class and overall F1. 

First, the evaluation is performed on a held-out dataset of 3000 utterances; the results are 

presented in Table 33. The baseline hidden-event LM is outperformed by the proposed BLSTM 

model in all metrics by a large margin. 

Table 33. Results of the evaluation on a held-out test data. 

Metric Hidden-event BLSTM 

Precision   

comma 0.726 0.826 

period 0.600 0.798 

Recall   

comma 0.444 0.655 

period 0.155 0.713 

F1   

comma 0.551 0.731 

period 0.246 0.753 

The biggest improvement is gained in recall; the difference is especially large (0.713 compared 

to 0.155) for periods. Noticeable improvement is also seen in precision, from 0.726 to 0.826 (14% 

relative) for commas and from 0.600 to 0.798 (33% relative) for periods. 

Next evaluation was performed on a Saeima-test speech corpus. This time, raw ASR transcripts 

were used as input for both models. The acoustic model used was LSRC-nnet2-smbr and language 

model was WebNews-LM-3. 

First, word error rate (WER) is measured, and commas and periods are calculated as word 
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tokens. Then, the alignment from the WER calculation is used to evaluate precision, recall, and F1 

(results in Table 34). 

Table 34. Results of the evaluation on an ASR output. 

Metric Hidden-event BLSTM 

Precision   

comma 0.709 0.845 

Period 0.732 0.789 

Recall   

comma 0.497 0.646 

period 0.149 0.642 

F1   

comma 0.585 0.732 

period 0.247 0.708 

WER 28.25% 15.68% 

Again, when compared with the hidden-event model, improvement is gained in all metrics, and 

the biggest difference is seen in recall for periods (0.642 compared to 0.149). Overall, the proposed 

model achieved F1-scores of 0.732 for commas and 0.708 for periods, which is very close to the 

numbers obtained on a held-out set. 

To conclude the model evaluation showed promising results. BLSTM outperformed the hidden-

event LM and achieved F1-scores of 0.732 for commas and 0.708 for periods on raw ASR transcripts. 

Subjectively evaluation of processed transcripts also shows that although there are still many 

punctuation marks missing, the readability of the transcript is greatly improved, making working with 

it much easier.  

At the time this was the state-of-the-art punctuation restoration model for Latvian. Recently, it 

was outperformed by using a self-attention neural network instead of BLSTM (Varavs & Salimbajevs; 

2018). 

5.5. Street Address Recognition 

The aim of this domain adaptation experiment is to create ASR for recognition of Latvian street 

addresses and to assess the effect of adaptation. Since Latvian addresses have a specific format, a 

customized ASR is needed to recognize and process this format. Also, the vocabulary of general 

domain ASR system is not likely to contain all street names and addresses, so it is necessary to create 

new customized vocabulary that complements it with streets and addresses of Latvia. 

Such ASR system would be useful for many specific cases, such as voice control in the different 

navigation applications for smartphones or submitting meter reading to an IVR system, where the 

address of client and meter reading should be named. 
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5.5.1. Data 

For language model training a corpus of the Latvian addresses was collected. For this, a web-

crawler was developed, which processed the Latvian address list on the website VisaLatvija.lv6. The 

corpus contains 873363 addresses. Each address is normalized, so that all addresses are in the same 

format: 

<street name> <house number> <building>, [city|pagasts|district]. 

The street name must include the word “iela”, “gatve” etc. But the number must be written in 

words and not in digits, and could include the words “A”, “B” or “korpuss” (housing or bulding), 

when necessary. 

A test set (“Address-test”) of 136 audio recordings (16 MB, 8 minutes 44 seconds, 506 words) 

was collected to evaluate the quality of address recognition. The audio data were recorded by 35 

different speakers (12 women and 23 men). 81 recordings were done in office rooms, and 55 entries 

in cars (with and without background music).  

Recording was performed using different smartphones and have different original formats. 

Subsequently, all test set entries were converted to WAV format with 16 kHz sampling rate. An 8 kHz 

version was also prepared.  

5.5.2. Adaptation Method and Post-processing 

Speech recognition was adapted in two ways: 

• LSRC-nnet2-smbr model was trained on artificial narrowband data by downsampling the 

original LSRC. 

• 4-gram language model was built from address corpus. 

This experiment uses a narrowband acoustic model because: 

• The intended usage domain of this ASR is IVR and mobile phones. 

• Telephone networks typically use 8 kHz sampling rate when transmitting audio. 

• 8 kHz is the default sampling rate on many mobile phones and supported by even very old 

models. 

Once the ASR has the recognized the address, it must be converted to the normalized output 

form. This is necessary, because the output of the speech recognizer is a raw word sequence (e.g. 

“Vienības gatve seventy-five A” instead of “Vienības gatve 75A”). 

  
6 Travel portal VisaPasaule.lv. http://visapasaule.lv/adreses/riga 

http://visapasaule.lv/adreses/riga
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Therefore, prior to displaying or passing the output to the other programs (e.g. Waze), it is 

necessary to perform post-processing of the ASR output - translate the number words into digits and 

normalize address components (for example, convert “korpuss” to “k-”, “75 A” to “75A” etc). 

For post-processing, a formal grammar was developed which describes how to convert ASR 

output to address (fragment of this grammar is shown in Figure 17). From this grammar, a finite state 

transducer was built and incorporated into the ASR as post-processing step. 

<address> = <street> ":<space>" <number> (<mod>) (":<space>" <area>) | 
":<space>" <city> | ... ; 
<street> = <word> ":space" ("iela" | "gatve" | ...); 
<number> = <number1> | <number2> | <number3> ; 
<mod> = <letter> | "korpuss:k-" <number> ; 
... 
// divciparu vesels skaitlis 
<number2> = :1 <teens> | <tens> (:0 | <digit>); 
// vārdu saraksts 
<digit> = viens:1 | divi:2 | trīs:3 | četri:4 | pieci:5 | seši:6 | 
septiņi:7 | astoņi:8 | deviņi:9 ; 
<teens> = desmit:0 | vienpadsmit:1 | divpadsmit:2 | trīspadsmit:3 | 
četrpadsmit:4 | piecpadsmit:5 | sešpadsmit:6 | septiņpadsmit:7 | 
astoņpadsmit:8 | deviņpadsmit:9 ; 
<word> = "Abavas:Abavas" | "Brīvības:Brīvības" | ... 

Figure 17. Fragment of address post-processing grammar. 

5.5.3. Evaluation 

The results of the evaluation are summarised in Table 35. As a baseline, general domain ASR 

is used with narrowband LSRC-nnet2-smbr acoustic and WebNews-LM-3 language models. First, 

the test set downsampled to 8 kHz and evaluation of non-adapted narrowband ASR was performed. 

The obtained WER is 25.95%. 

Next, the test set was decoded with the customized ASR that used a 4-gram language model 

built from addresses. The table shows that the WER of the adapted 8kHz ASR (12.38%) is a little 

better than WER of 16 kHz ASR (13.37%). Both are significantly better than non-adapted ASR. 

Table 35. Results of WER evaluation for address recognition task. 

ASR Test set WER, % 

General, 8 kHz Office rooms and cars 25.95 

Adapted, 8 kHz Office rooms only 8.65 

Cars only 17.02 

Office rooms and cars 12.38 

Adapted, 16 kHz Office rooms only 8.65 

Cars only 19.15 

Office rooms and cars 13.37 

The table also shows that the subset from entries made in the office rooms is recognized more 
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precisely than the subset from the recordings in the car. 

When using ASR with the adapted language model, a significant improvement in WER is 

obtained. There are no significant differences between 8 kHz or 16 kHz acoustic models on the test 

set used in the experiment, but results are slightly better for 8 kHz acoustic model. It can be seen that 

for audio recordings in the car, the 8 kHz model provide a lower WER, which might be explained that 

the narrowband acoustic model is more robust, as it’s trained on lower quality data. 

The achieved results allow to conclude, that after some small improvements, the address 

recognition system developed during this research can be used in real-life applications. After 

switching to AUG2-TDNN acoustic models WER was reduced from 12.38% to 7.94% and the system 

was deployed to Latvian Speech-To-Text webservice, where it can be accessed from mobile 

application Tildes Balss. 
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6. RESULTS 

This section summarizes final evaluation results of models and systems that were developed 

during author’s research and described in detail in previous sections. 

6.1. Speech Recognition Evaluation 

The speech recognition systems are evaluated by decoding some evaluation recordings and then 

comparing the recognized text with reference transcription and calculating WER. Evaluation data 

should be accurately annotated and represent the intended usage scenario (e.g., for evaluation of 

telephone speech recognition the evaluation should be performed on real telephone speech data).  

The results of the evaluation of the general domain ASR system for Latvian can be found in 

Table 36. 

Table 36. Evaluation of general domain ASR 

Evaluation data WER, % 

EvalWebNews 10.3 

EvalGeneral 10.4 

Saeima-test 8.3 

In the scope of the thesis a number of domain adapted systems were developed and evaluated 

on corresponding domain test sets. The results of such evaluations are presented in Table 37. 

Table 37. Evaluation of domain adapted ASR systems 

Domain Evaluation data WER, % 

Dictation LDSC-test 12.6 

Saeima  Saeima-test 5.9 

Street addresses Address-test 7.9 

To deal with infective and morphologically rich nature of Latvian language, experiments with 

sub-word recognition were performed.  

The results in Table 38 show that sub-word ASR performs better than baseline full word ASR. 

The evaluation was performed for non-adapted general domain ASR systems. Also, it can be seen 

that BPE sub-word approach outperforms the Morfessor based approach.  

A small OOV analysis was performed on EvalWebNews. This test set contains 36 words that 

are not in the WebNews (version 2014) corpus, so they can not be recognized by baseline ASR. Sub-

word ASR correctly recognizes 14 of 36 (38.9%), therefore it can be concluded that sub-word 

approach is able to partially overcome sparsity created by inflected forms and improve the recognition 

quality. 

Table 38. Evaluation of sub-word ASR 

Evaluation data 
WER, % 

Baseline Morfessor sub-words BPE sub-words 

EvalWebNews 10.3 10.2 10.1 

EvalGeneral 10.4 9.8 9.6 

Saeima 8.3 7.9 7.8 
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In August 2017 speech recognition for Latvian passed an important milestone, as Google added 

Latvian speech recognition to their services. In September 2017 and again in May 2018, author 

performed an evaluation of this system on the EvalWebNews corpus and got a word error rate of 

50.6%. Quick analysis showed that much of the errors are deletions, which happen because Google 

ASR skips words if its confidence is too low. If we ignore the deletions the WER can be calculated 

as 36.2%.  

Around that time UK company Speechmatics also started to provide ASR service for Latvian. 

The evaluation of this system on EvalWebNews resulted in WER of 25.2%. Word deletion problem 

was not found in this case. 

The best ASR system developed in this work significantly outperforms Google and 

Speechmatics ASR and achieves WER of 10.1% on the same dataset. 

6.2. Punctuation Restoration Evaluation 

First, the evaluation of BLSTM punctuation restoration model was performed on a held-out 

dataset of 3000 utterances from WebNews; the results are presented in Table 39Table 33.  

Table 39. Results of the evaluation on a held-out test data. 

Metric Comma Period 

Precision 0.826 0.798 

Recall 0.655 0.713 

F1 0.731 0.753 

Next evaluation was performed on a Saeima-test speech corpus using raw ASR transcripts 

(results in Table 40). The acoustic model used was LSRC-nnet2-smbr (section 3.4 in full thesis) and 

language model was WebNews-LM-3 (section 4.4 in full thesis).  

Table 40. Results of the evaluation on an ASR output. 

Metric Comma Period 

Precision 0.845 0.789 

Recall 0.646 0.642 

F1 0.732 0.708 

To conclude the model evaluation showed promising results. BLSTM model achieved F1-

scores of 0.732 for commas and 0.708 for periods on raw ASR transcripts. Subjectively evaluation of 

processed transcripts also shows that although there are still many punctuation marks missing, the 

readability of the transcript is greatly improved, making working with it much easier.  

At the time this was the state-of-the-art punctuation restoration model for Latvian. Recently, it 

was outperformed by using a self-attention neural network instead of BLSTM (Varavs & Salimbajevs; 

2018). 
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CONCLUSIONS  

This research is the first large-scale work dedicated to the modelling of Latvian language for 

automatic speech recognition. It covers both theoretical and practical aspects of building speech 

recognition system for a small, morphologically rich and under-researched language, such as Latvian. 

Although the research in this work is focused on issues related to speech recognition for Latvian, the 

same methods and guidelines can be applied to other languages. For example, following the same 

guidelines author successfully developed large vocabulary automatic speech recognition system for 

Lithuanian (Salimbajevs & Kapočiūtė-Dzikienė, 2018). 

The principal difference between the work in this dissertation and other work on speech 

recognition has been the investigation of almost all aspects of ASR for Latvian language, including 

research on acoustic and language models, pronunciation modelling, sub-word speech recognition, 

data collection and augmentation, inverse text normalization (punctuation restoration) and practical 

system development. 

The work began with an initial HMM-GMM acoustic models (which are now considered almost 

outdated), stub language model and examination of different grapheme-to-phoneme models. The 

phoneme set and grapheme-to-phoneme model were selected based on speech recognition experiment 

results. The best result was achieved using graphemes as phonemes, 4 diphthongs and simple 

mapping algorithm.  

Then, models, training and evaluation data were gradually refined. State-of-the-art HMM-DNN 

acoustic models for Latvian were trained using 100h Latvian Speech Recognition Corpus and allowed 

to greatly improve the recognition quality over initial HMM-GMM models. 

Several evaluation sets were created: 0.38 hr and 2.5 hr general domain evaluation sets 

(EvalWebNews and EvalGeneral), 1 hr dictated evaluation set (LDSC-test) and 1 hr evaluation set 

from Saeima session recordings (Saeima-test). 

Introduction of 2-pass decoding allowed to use unpruned language models with reasonable 

RAM usage. A very large vocabulary (900K units) language model was trained using text corpus 

collected on the Web. 

A special text corpus processing and filtering method together with special treatment of 

acronyms allowed to greatly improve the quality of language model. Combining trained HMM-DNN 

acoustic and improved language models allowed to create a baseline general domain large vocabulary 

speech recognition for Latvian, which achieved WER of 19.4%. 

Several domain adaptation experiments were performed in order to understand how to design 

speech recognition systems and adapt them to specific applications like dictation, Saeima session 
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transcription and street address. 

A practical application of the research resulted in the public online Speech-To-Text service for 

Latvian and integration of audio transcription and dictation functionality into a Tildes Birojs software 

package. The ASR web-service also provides a speech recognition for a mobile app Reizrēķins 

(available in Google Play store), which teaches kids multiplication. In 2015 these were the first 

services of this kind for Latvian language. The successful practical implementation proves the 

research hypothesis 3. 

In the scope of development of practical application experiments were performed on processing 

the raw output of speech recognition systems. A bidirectional LSTM neural network was trained for 

punctuation restoration in ASR transcripts. At the time this was the state-of-the-art punctuation 

restoration model for Latvian. This model served as a baseline in (Varavs & Salimbajevs; 2018), in 

which a self-attention neural network (also known as Transformer model) was applied to punctuation 

task and achieved new state-of-the-art accuracy. Therefore, the research hypothesis 4 has been proven. 

In parallel with practical ASR development, a research on improving general recognition 

quality continued. The proposed automatic data collection method allowed to obtain additional 186 

hours of speech using partially correctly annotated data found on the Web. Using this data in training 

allowed to achieve significant improvements in WER, from 19.4% on EvalWebNews to 16.9% and 

from 8.6% to 7.2% on Saeima session transcription task (using Saeima-LM). 

New data allowed to train more advanced neural network models, which can model long range 

temporal context. Time-delay neural networks (TDNN) are used in this thesis. These models achieve 

almost state-of-the-art recognition accuracy (in experiments for other languages) but require less data 

and are much faster to train and tune, which make them very practical in cases with limited data and 

hardware resources like this work. 

As initial decisions on grapheme-to-phoneme modelling were made using stub LM and most 

simple HMM-GMM acoustic models, it was decided to repeat some of the G2P experiments on 

LSRC-tri3b model and check if previous decisions are still the most optimal. It was found out that 

pure grapheme-based method, that maps letters and phonemes one-to-one, works the best.  

This data acquisition method can be combined with data augmentation, which increases size of 

training data multiple times by adding distorted copies of original utterances. In this work the total 

size of training data is increased 6 times (from 294 hours to 1764 hours) by performing speed 

perturbation, lowpass filtering and reverberation. Data augmentation helped to improve overall 

robustness of the Latvian ASR and also reduce WER on EvalGeneral from 10.5% to 10.1%. 

To conclude, both data augmentation and automatic data collection from the Web turned out to 



109 

be very useful methods for improving the acoustic models for Latvian speech recognition models. 

Both methods allowed to significantly improve the word error rate on different testing corpora. And 

finally, there is still a room for future improvement as there exist many other sources of inaccurately 

annotated data on the Web and other databases of noises and room impulse responses. Adopting those 

may reduce WER even further. 

Improved acoustic model was integrated into general domain and domain adapted ASR systems, 

that were deployed on a Latvian Speech-To-Text webservice. The new acoustic model allowed to 

improve word error rate of all systems: (1) from 16.9% to 10.3% on EvalWebNews, (2) from 7.2% 

to 5.9% on Saeima session transcription task Saeima-test (using Saeima-LM), 3) from 23.9% to 12.6% 

on dictated speech from LDSC-test (using WebNewsDict-LM) and 4) from 12.4 to 7.9% on street 

address recognition set Address-test (using special street address LM). 

General domain, dictation and street address recognition systems can be accessed by using 

mobile app Tildes Balss, which is first mobile app that enable Latvian language speakers to speak to 

their phone in their language, dictate text message and voice-enter street addresses. 

To deal with infective and morphologically rich nature of Latvian language, experiments with 

sub-word recognition were performed. The idea is to divide word surface forms into shorter units and 

perform recognition on sub-word level. The number of such units is much smaller, and they are much 

more frequent. The best results were achieved using byte-pair encoding (BPE) inspired segmentation 

method. A small but consistent improvement over baseline word-level ASR was observed: from 10.3% 

to 10.1% on general domain EvalWebNews corpus, from 10.4% to 9.8% on EvalGeneral and from 

8.3% to 7.8% on debates domain Saeima-test corpus (results for general non-adapted LM). 

In August 2017 speech recognition for Latvian passed an important milestone, as Google added 

Latvian speech recognition to their services. In September 2017 and then again May 2018 author 

performed an evaluation on the EvalWebNews corpus and got a word error rate of 50.6%. Quick 

analysis showed that much of the errors are deletions, which happen because Google ASR skips words 

if its confidence is too low. If we ignore the deletions the WER can be calculated as 36.2%. Author 

also performed evaluation of Speechmatics ASR for Latvian, which also appeared around 2017. 

Evaluation was performed in September 2018 and resulted in WER of 25.2% on EvalWebNews. Word 

deletion problem was not found for Speechmatics system. For comparison, the best ASR system 

developed in this work significantly outperforms both Google and Speechmatics ASR and achieves 

WER of 10.1% on the same dataset.  

The positive evaluation results on different test corpora and comparison with Google’s and 

Speechmatics systems allow to conclude that the research hypotheses 1 and 2 has been successfully 

proven. 
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We can conclude that results of the thesis work prove that effective models for Latvian language 

have been developed, so the aim of the research is achieved. The thesis also provides guidelines and 

answers for many research questions that can arise when developing speech recognition for 

previously unresearched languages. The experimental evaluation results and research approbation 

shows that all research hypotheses have been successfully proven. The goal of the thesis has been 

reached and all objectives have been completed. 

However, in answering many of the questions that were posed, this thesis has itself prompted 

many more. These will hopefully provide the stimulus for further research in this area.  

For example, neural network language models recently have been constantly showing 

improvements for many languages. Therefore, there is a strong motivation in adopting this 

methodology for Latvian ASR. However, a large vocabulary of infected words is a difficult challenge, 

as it results in huge word embedding and soft-max layers, that makes convergence of the models 

difficult and also requires computational resources for training and inference.  

This problem can be possibly solved by using sub-word units, which is another perspective 

direction for future work. However, sub-word decomposition makes text sequences many times 

longer and requires an advanced model that can handle such long-distance contexts. Experiments 

performed in this work showed that sub-word ASR can outperform word-level ASR if n-gram models 

are used. While there is a performance penalty, the recognition speed is adequate and practical on 

modern hardware. 

Another hot-topic is end-to-end speech recognition and character-based models. Considering 

that Latvian has highly phonemic orthography and rich morphology, these methods can be potentially 

a very effective and elegant solution. The analysis of recent research suggests that end-to-end 

approach greatly simplifies the training of speech recognition models and have a great potential for 

infective languages as it allows for lexicon-free systems (solves large vocabulary problem). However, 

such methods require much larger amount of training data (the method proposed in this work can help 

to acquire more data) and currently are unable to achieve state-of-the-art results of classic systems if 

used without classic language model (which neutralizes the lexicon-free advantage). 
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APPENDICES 

1. appendix. Papers Selected for Review and Analysis 
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language 

 G Raškinis, D 

Raškinienė 
Building medium‐vocabulary 

isolated‐word lithuanian hmm 

speech recognition system 

Informatica, 2003 Lithuanian 

P Kasparaitis Lithuanian speech recognition 

using the English recognizer 

Informatica, 2008 Lithuanian 

 T Alumäe  Large vocabulary continuous 

speech recognition for 

Estonian using morphemes and 

classes 

Text, Speech and 

Dialogue, 2004 

Estonian 

I Oparin, L 

Lamel, JL 

Gauvain 

Rapid development of a 

Latvian speech-to-text system 

IEEE Internataional 

Conference on Acoustics, 

Speech and Signal 

processing, 2013 

Latvian 

M Filipovič, A 

Lipeika 

Development of HMM/Neural 

Network‐Based Medium‐
Vocabulary Isolated‐Word 

Lithuanian Speech 

Recognition System 

Informatica, 2004 Lithuanian 

 A Lipeika, J 

Lipeikienė, L 

Telksnys  

Development of isolated word 

speech recognition system 

 Informatica, 2002 Lithuanian 

 T Alumäe, E 

Meister 

Estonian Large Vocabulary 

Speech Recognition System 

for Radiology. 

 Baltic HLT, 2010 Estonian 

 T Alumäe, L 

Võhandu 
Limited‐Vocabulary Estonian 

Continuous Speech 

Recognition System using 

Hidden Markov Models 

Informatica, 2004 Estonian 

 A Ragni Initial Experiments with 

Estonian Speech Recognition 

16th Nordic Conference 

of Computational 

Linguistics NODALIDA-

2007 

Estonian 

 G Bartisiute, K 

Ratkevicius 

Speech server based 

Lithuanian voice commands 

recognition 

 Elektronika ir 

Elektrotechnika, 2012 

Lithuanian 


