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Ābeltin, š and board member Stas Bervyachonok for giving me many oppor-
tunities to combine my work in industry with my studies at the university
and my research during PhD studies.

I would like to express my gratitude to the anonymous reviewers of the
conferences and journals, to which I have submitted my works, for their very
helpful comments and suggested improvements. I would like to also thank
to the program committees of the conferences where I have participated for
nice experience.

I would like to thank Alexander Rivosh for his active help dealing with
many bureaucratic issues and printing the copies of thesis and summaries
while I was abroad.



I also would like to thank the secretaries Ruta Ikauniece, Anita Ermuša,
and Ella Arša for their help regarding the organizational matters of my de-
fense. I appreciate the patience of Promotion Council and thank to the
members for agreeing for the date of the defense.
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Abstract

Turing machines can recognize countably many languages. On
the other hand, probabilistic and quantum machines can recog-
nize uncountably many languages with bounded error when using
real number transitions. Our motivation is to investigate proba-
bilistic models with limited computational resources that define
all languages or uncountably many languages.

We aim to investigate different bounded-error probabilistic
models that can define uncountably many languages. We be-
gin with stronger condition — we first consider minimal models
that can recognize all languages. We consider probabilistic Tur-
ing machines, probabilistic counter automata, and probabilistic
finite state automata with various restrictions on the input head.
We also consider constant-space verifiers that interact with one
and two provers and verify all languages. After that, we consider
the recognition and verification of uncountably many languages
with bounded error for these models. We also present new re-
sults for quantum automata models and ultrametric finite au-
tomata (which use p-adic numbers as amplitudes) that recognize
uncountably many languages.
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Introduction

Relevance of the Thesis
The class of languages recognized by deterministic Turing machines (DTMs)
is called recursive enumerable languages, and it forms a countable set. How-
ever, all languages form an uncountable set, and hence there exist many
languages that DTMs cannot recognize.

On contrary to a DTM, a probabilistic (or quantum) model can be defined
with real transition values, and hence there are uncountably many of them.
Therefore, it is natural to ask whether they define uncountable classes or not,
or even further to ask whether they define all languages or not.

There are two basic language recognition modes: bounded-error recogni-
tion and recognition with cutpoint (also called unbounded error). In the case
of the recognition with cutpoint, any member of the language recognized by
a machine is accepted with probability greater than the cutpoint, and any
non-member is accepted with probability at most cutpoint. Therefore, even
though the accepting probability of a member is greater than the accepting
probability of a non-member, the difference can be arbitrarily small. In the
case of recognition with bounded error, the minimal difference between the
accepting probability of any member and that of any non-member is bounded
by a fixed gap value.

With unbounded error (recognition with cutpoint), it is already known
that even unary 2-state quantum finite automata (QFAs) or unary 3-state
probabilistic finite automata (PFAs) recognize uncountably many languages
[39, 40].1 Therefore, probabilistic and quantum models with very small
amount of resources can recognize uncountably many languages with cut-
point, even in unary case, and the existing known bounds on the required
resources are tight.

On the other hand, answering the same question for bounded-error prob-
abilistic models is not trivial. The best known upper bound was known as

1Remark that unary 2-state PFAs define only regular languages (see [31, 40]).
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logarithmic space, and any better bound was open [36]. Regarding quantum
models, the better bound (i.e., constant-space) was known, but the complete
characterization was still missing [36].

Probabilistic computation with bounded error can be almost as reliable
as deterministic computation. If the computation is performed with bounded
error, it is possible to repeat the process of computation multiple times to
lower the resulting error (see [25] for more details). In fact, it is possible to
obtain arbitrarily small error bound with such approach, and resulting error
probability may be even lower than the probability of hardware failure.

The verification power of the models is a fundamental concept in com-
putational complexity theory. Therefore, besides the recognition power of
computational models, their verification powers have also been widely con-
sidered. An interactive proof system (IPS) is composed by a prover and a
verifier, who can communicate with each other. The aim of the verifier is to
verify the correctness of the input by the help of a proof, provided by the
prover. The verification power of models is usually more than their stan-
dalone computational power. As an example, we can consider a book with
mathematical theorems. It would take a lot of time for someone to obtain
all theorems in the book. But if the book provides proofs for the theorems,
then it takes much less time to verify the correctness of the theorems.

We can consider the recognition/verification of all languages or uncount-
ably many languages with bounded-error probabilistic models to investigate
their capabilities.

Subject and Goals of the Research
The goal of this thesis is to investigate the restricted cases of different proba-
bilistic models that can define all languages or uncountably many languages.
The models have restrictions on space complexity, time complexity, memory
types, or input head movements. The main task is to investigate different
bounded-error probabilistic models that recognize/verify all languages or un-
countably many languages, and to present better upper bounds.

Our first task is to develop a method to encode the members of a given
language as a single probability, and then to describe certain experiments in
order to guess the digits of this probability correctly with high probability.
Our second task is to investigate bounded-error probabilistic models that
can recognize/verify all languages with as few computational resources as
possible. Our third task is the same but for uncountably many languages.
Our last task is to investigate quantum and ultrametric automata that can
recognize uncountably many languages.
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Space-bounded probabilistic Turing machines (PTMs) and probabilistic
counter automata are the main models that we investigate. We also consider
their sweeping, postselecting, one-way, and realtime versions.

The languages recognized by PFAs with cutpoint are called stochastic
languages. The set of stochastic languages is uncountable. There also exist
languages that are not stochastic. Therefore, constant-space is not enough
to define all languages with cutpoint, and we need additional memory to
recognize all languages.

It is know that logarithmic-space PTMs can recognize uncountably many
languages with bounded error [36]. Therefore, we naturally investigate
whether PTMs can recognize uncountably many languages with smaller
space bounds. In parallel, we also investigate the more restricted memory
type — counters.

Time restrictions may reduce the computational powers of space-bounded
PTMs. For example, constant-space PTMs (two-way PFAs (2PFAs)) can rec-
ognize certain nonregular languages in exponential expected time [18], but in
polynomial expected time PTMs can recognize only regular languages when
using o(log log n) space, even with unrestricted transition probabilities [14].
Thus, we also consider polynomial and super-polynomial time complexities
separately.

PTMs can read the given input by using their head that can move both
directions (two-way). Certain restrictions can be defined on the input head
(e.g., [41]). We consider sweeping head (the direction of the head can be
changed only on the end-markers), one-way head (the input head cannot
move to the left), realtime head (the input head must move to the right after
each step). Additionally, we consider a very special case of a sweeping head
(restarting): if the computation is not terminated on the right end-marker, it
is restarted from the initial configuration. We remark that this special case
is equivalent to having the ability of postselection [1, 49].

Furthermore, we investigate private-coin IPSs with probabilistic verifiers
interacting with single or two provers [17, 15, 10]. We focus on three differ-
ent types of protocols: two-way communication (the verifier can send differ-
ent symbols to the verifier(s)), one-way communication (the verifier always
sends the same symbol when communicating), and weak-soundness (the non-
members may not be rejected with high probability). Similarly to recognizers,
we examine the verifiers under different restrictions.

The behavior of bounded-error recognizers and verifiers can be different
on unary and binary inputs. For example, bounded-error 2PFAs cannot
recognize any unary nonregular language [22], however, they can recognize
nonregular binary languages [18]. Therefore, we focus on unary and binary
languages separately.
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The Structure of the Thesis and Research Ques-
tions
The thesis contains six chapters. In the first chapter, we provide the nec-
essary background to follow the rest of the thesis. This chapter contains
notations and the definitions of all bounded-error probabilistic models that
are considered in the thesis.

In the second chapter, we present how to encode the members of a given
language as a single probability, and then describe certain experiments in
order to guess the digits of this probability correctly with high probability.
We also discuss alternative encoding here. The encoding schema and exper-
iments given in this chapter form a technical lemma, which we call as the
main lemma (Lemma 1) since it is used in the rest of the thesis.

In the third chapter, we focus on the recognition and verification of all
languages. We begin the chapter with a straightforward application of our
main lemma to the sets of all languages, and obtain linear and exponential
space complexity for unary and binary languages, respectively. Then, we
focus on lowering the amount of used resources by interacting with prover(s).
We show that constant-space probabilistic machines can verify any language
by interacting with two provers. We obtain the same result also for the
case of interacting with one prover but this time the non-members may not
be rejected with high probability. On the other hand, for the case that
the non-members are rejected with high probability, we show that every
unary (resp., binary) language is verifiable by a logarithmic-space (resp.,
linear-space) PTM by interacting with a prover. Additionally, we show that
every language is recognized by a one-way probabilistic automaton with two
counters with any error bound.

In the fourth chapter, we investigate the uncountable sets of languages.
The chapter is divided into three sections, each is devoted to different
bounded-error probabilistic models.

In the first section, we consider different two-way PTMs, including re-
stricted ones. We first lower the space complexity bounds and obtain arbi-
trarily small non-constant space complexity for two-way PTMs to recognize
uncountably many languages. After that, we improve this result by obtaining
the same space complexity for PTMs with very restricted input head, and
prove this result for probabilistic one-counter automata. We also prove that
O(log log n)-space sweeping PTMs can recognize uncountably many unary
languages. After that, we consider the verification of uncountably many bi-
nary and unary languages with constant space complexity, and we obtain
the linear and quadratic expected time complexities, respectively. We also
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show how to verify uncountably many unary languages in constant space in
restarting realtime reading mode.

In the second section, we examine realtime PTMs. We obtain a logarith-
mic space bound for recognition of uncountably many unary languages, and
then we obtain O(log log n) space complexity for uncountably many binary
languages. Here the double logarithmic bound is tight.

In the third section, we continue with probabilistic counter automata. We
obtain certain tight bounds on space complexity and the number of counters
when recognizing uncountably many languages. For example, in realtime
reading mode, one counter is required for binary languages, and two counters
are required for unary languages, and we present witnesses for both cases.

In the fifth chapter, we present our results on different computational
models: quantum and ultrametric automata. In the first part, we give the
definitions of these models, and in the second part, we present the results. We
present two improvements on existing results for the recognition of uncount-
ably many languages with bounded-error quantum automata. After that,
we show that quantum automata with two states can recognize uncount-
ably many unary languages with fixed cutpoint. Then, we show ultrametric
automaton with two states for uncountably many languages.

In the last chapter, we summarize our results, list open problems, and
mention about the possible directions for future research.

Description of the Methodology
The used methods are common with ones used in theoretical computer sci-
ence and mathematical papers — proofs of mathematical statements such as
theorems, corollaries and lemmas. We use different proof methods. Most of
the proofs contain combinations of techniques and refer to some previously
obtained results, either our results or results of other researchers. All the
proofs provided in the thesis are constructive. We also present new tech-
niques and new constructions.

Approbation of the Results
The results of this thesis are published in 8 publications of which 3 are
indexed in Elsevier Scopus and 2 in Web of Science. One paper is accepted
for publication and is indexed in Elsevier Scopus and Web of Science.

1. Maksims Dimitrijevs and Abuzer Yakaryılmaz
Uncountable Classical and Quantum Complexity Classes.
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Chapter 1

Background

In the thesis we denote the left and the right end-markers by ¢ and $, and
the blank symbol by #. The input alphabet not containing symbols ¢ and
$ is denoted by Σ, Σ̃ denotes the set Σ ∪ {¢, $}, the work tape alphabet not
containing symbols ¢ and # is denoted by Γ, Γ̃ denotes the set Γ ∪ {¢,#}.
Σ∗ denotes the set of all strings (including the empty string ε) defined over
Σ. We order the elements of Σ∗ lexicographically and then represent the
i-th element by Σ∗(i), where Σ∗(1) = ε. For any natural number i, bin(i)
denotes the unique binary representation and (bin(i))r denotes the reverse
binary representation. We denote the input string by w. For any given string
w ∈ Σ∗, |w| is its length, w[i] is its i-th symbol (1 ≤ i ≤ |w|), w̃ = ¢w$, and
lex(w) denotes the lexicographical number of w, such that lex(Σ∗(i)) = i for
any i > 0.

Turing machine is a well-known mathematical model of computation ac-
cepted as the fundamental model in theoretical computer science. In general,
a deterministic Turing machine (DTM) represents a basic model of computer
with infinite memory that processes input string by performing some algo-
rithms.

In this thesis we investigate the computational power of probabilistic
machines with limited memory, therefore, we begin with the formal definition
of space-bounded probabilistic Turing machine (PTM).

A space-bounded PTM has two tapes — the input tape and the work
tape. Each tape has a single head that operates on it, called the input head
and the work head, respectively. The input tape is read-only tape and stores
the input string, while the work tape is a read/write tape. Both tapes are
infinite to the right. Each tape is divided into cells, and each cell contains
a symbol. The left-most cell of both tapes contains the left end-marker (¢)
to ensure that the head of the tape never leaves the tape, i.e., the head is
not allowed to move to the left from ¢. The work tape is also not allowed to
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overwrite the symbol ¢, as well as is not allowed to write ¢ on other cells of
the tape. The cells on the tape can be numbered with nonnegative integers,
with the zero index being assigned to the left-most cell, which contains ¢.
The head of the tape is placed on one of the cells, and hence it sees exactly
one of the symbols of the tape.

Formally, a space-bounded PTM M is a 7-tuple

M = (S,Σ,Γ, δ, sinit, sacc, srej),

where

• S is the finite set of states composed by two disjoint sets of states — the
set of reading states Sr and the set of halting states Sh = {sacc, srej},

• Σ is the input alphabet,

• Γ is the alphabet of work tape,

• δ is the transition function,

• sinit is the initial state,

• sacc is the accepting state, and,

• srej is the rejecting state.

The transition function

δ : Sr × Σ̃× Γ̃× S × Γ̃× {←, ↓,→}× {←, ↓,→} → [0, 1]

governs the behavior of M as follows: When M is in state s ∈ Sr, reads
symbol σ ∈ Σ̃ on the input tape, and reads symbol γ ∈ Γ̃ on the work tape,
it enters state s′ ∈ S, writes γ′ ∈ Γ̃ on the cell under the work tape head, and
then the input tape head is updated with respect to d1 ∈ {←, ↓,→} and the
work tape head is updated with respect to d2 ∈ {←, ↓,→} with probability

δ(s, σ, γ, s′, γ′, d1, d2),

where “←” (“↓” and “→”) means the head is moved one cell to the left (the
head does not move and the head is moved one cell to the right). To be a
well-formed PTM, the following condition must be satisfied: For each triple
(s, σ, γ) ∈ Sr × Σ̃× Γ̃, ∑

s′∈S,γ′∈Γ̃,d1∈{←,↓,→},d2∈{←,↓,→}

δ(s, σ, γ, s′, γ′, d1, d2) = 1.
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The input is placed on the input tape as w̃, and, in the beginning of the
computation, the work tape contains # on each cell except the left-most cell.
The computation starts in state sinit with the input head placed on ¢ and
the work tape head placed on the cell that contains the first #. In each step
of the computation M makes a transition according to δ. The computation
is terminated and the given input is accepted (rejected) if M enters sacc
(srej). It must be guaranteed that the input head never leaves w̃ during the
computation.

The space used byM on a given input is the number of all cells visited on
the work tape during the computation with some non-zero probability. The
machine M is called to be O(s(n)) space-bounded machine if it always uses
O(s(n)) space on any input with length n ≥ 0.

A counter is a limited type of memory. It stores some nonnegative integer
value and, at each step of the computation, the value can be checked whether
it is equal to zero, and the value can be updated with one of the values from
the set {−1, 0, 1}, that is, the value can be increased or decreased by one or
the value remains unchanged.

If we replace the work tape of a Turing machine with k counters, the
model is called counter automaton with k counters. Notice that a work tape
can store any number of counters.

Formally, a probabilistic counter automaton with k counters (PkCA, if
k = 1 we denote it by PCA) M is a 6-tuple

M = (S,Σ, δ, sinit, sacc, srej),

where

• S is the finite set of states composed by two disjoint sets of states — the
set of reading states Sr and the set of halting states Sh = {sacc, srej},

• Σ is the input alphabet,

• δ is the transition function,

• sinit is the initial state,

• sacc is the accepting state, and,

• srej is the rejecting state.

The transition function

δ : Sr × Σ̃× {0, 1}k × S × {←, ↓,→}× {−1, 0, 1}k → [0, 1]
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governs the behavior of M as follows: When M is in state s ∈ Sr, reads
symbol σ ∈ Σ̃ on the input tape, and checks the status of each of k counters
ck = {0, 1}k, whether the value of the counter is zero (c = 0) or not (c = 1), it
enters state s′ ∈ S, updates the input tape head with respect to d ∈ {←, ↓,→
} and updates the value of each counter with the value from ek = {−1, 0, 1}k
with probability

δ(s, σ, ck, s′, d, ek),

where “←” (“↓” and “→”) means the head is moved one cell to the left (the
head does not move and the head is moved one cell to the right) and e = −1
(e = 0 and e = 1) means the value of the counter is decreased by one
(the value of the counter remains unchanged and the value of the counter is
increased by one). To be a well-formed PkCA, the following condition must
be satisfied: For each triple (s, σ, ck) ∈ Sr × Σ̃× {0, 1}k,∑

s′∈S,d∈{←,↓,→},ek∈{−1,0,1}k
δ(s, σ, ck, s′, d, ek) = 1.

The input is placed on the input tape as w̃, and, in the beginning of the
computation, the value of each counter is equal to zero. At the beginning
of the computation, the machine starts in state sinit and the input head is
placed on the left end-marker (¢). In each step of the computation,M makes
its transition with respect to δ. The computation is terminated and the given
input is accepted (rejected) whenM enters sacc (srej). It must be guaranteed
that the input head never leaves w̃ during the computation.

The space used by M on a given input is the maximum absolute value
of any of k counters during the computation with some non-zero probability.
The machine M is called to be O(s(n)) space bounded machine if it always
uses O(s(n)) space on any input with length n ≥ 0.

A stack is another type of memory, which works according to the last-in
first-out (LIFO) principle. The stack allows to check whether it is empty,
as well as to push a new symbol into the memory and to pop out of the
memory the last pushed symbol. A counter can be considered as a stack
with unary alphabet, i.e., it only remembers the number of symbols stored
in memory and also allows to check whether the number of symbols equals
zero. Therefore, a counter is weaker type of memory than a stack.

A PTM without work tape is a probabilistic finite automaton (PFA). It
is also called constant-space PTM since a PFA can use internal states as a
memory.

We also consider different restrictions on the movement of input head.
The models described until now can move the input head in both directions,
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and so they are also called “two-way”. The model is called sweeping if the
direction of the input head is changed only on the end-markers, i.e., the
input is read from left to right, and then right to left, and so on. The model
is called “one-way” if the input head can only perform moves from {↓,→},
hence, in this case the input head cannot move to the left and the model
reads the input string only once. The model is called (strict) realtime if it
reads any given input as w̃ = ¢w$ from the left to the right and symbol
by symbol without any pause on any symbol. Therefore, in case of realtime
models the input head can only perform “→” moves.

If M is our considered model, we denote its two-way version by 2M and
one-way version by 1M . For example, we denote one-way PTM by 1PTM.

Postselection is the ability to give a decision by assuming that the compu-
tation is terminated with pre-determined outcome(s) and discarding the rest
of the outcomes. In [1], Aaronson introduced bounded-error postselecting
quantum polynomial time and proved that it is identical to the unbounded-
error probabilistic polynomial time. Later, postselecting quantum and prob-
abilistic finite automata models have been investigated in [37, 38, 47, 49].
We denote postselecting PFA, PCA, and PTM by PostPFA, PostPCA, and
PostPTM, respectively.

Restarting realtime automaton is a restricted variant of two-way finite
automata. The input head of restarting realtime automaton reads the input
symbol by symbol without pauses, and, when the input finishes, accepts the
input, rejects it, or restarts the computation from the initial configuration.
It was proved that postselecting realtime finite automata are equivalent to
restarting realtime automata [47, 49]. Therefore, postselecting realtime ma-
chines can be considered as very restricted variation of two-way machines.
Later, it was also shown that these two automata models are also equivalent
to the realtime automata that have the ability to send a classical bit through
closed timelike curves (CTCs) [33, 34]. In the thesis we do consider only
postselecting realtime and restarting realtime models.

In this thesis we consider the computational power of constant-space post-
selecting realtime machines. Formally, a realtime PostPFA M is a 6-tuple

M = (S,Σ, δ, sinit, sacc, srej),

where

• S is the finite set of states composed by two disjoint sets of states — the
set of reading states Sr and the set of halting states Sh = {sacc, srej},

• Σ is the input alphabet,
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• δ is the transition function,

• sinit is the initial state,

• sacc is the accepting state, and,

• srej is the rejecting state.

The states from Sh are called postselecting, while the other states are called
non-postselecting. The transition function

δ : Sr × Σ̃× S → [0, 1]

governs the behavior of M as follows: When M is in state s ∈ Sr and reads
symbol σ ∈ Σ̃, then it switches to state s′ ∈ S with probability

δ(s, σ, s′)

and places the input head on the next symbol to the right. To be a well-
formed machine, the transition function must satisfy that for any (s, σ) ∈
Sr × Σ̃, ∑

s′∈S

δ(s, σ, s′) = 1.

The input is placed on the input tape as w̃, and the computation starts
in state sinit with input head placed on ¢. Then, the machine reads the
input and behaves with respect to δ. After reading the whole input, M is in
a probability distribution, which can be represented as a stochastic vector,
where each entry represents the probability of being in the corresponding
state.

Due to postselection, we assume that the computation ends either in sacc
or srej. We denote the probabilities of being in sacc and srej by a(w) and
r(w), respectively. It must be guaranteed that a(w) + r(w) > 0. (Otherwise,
postselection cannot be done.) Then, the decision is given by normalizing
these two values: w is accepted and rejected with probabilities

a(w)

a(w) + r(w)
and

r(w)

a(w) + r(w)
,

respectively. We also note that the automaton M ends its computation in
non-postselecting state(s) (if there is any) with probability 1− a(w)− a(r),
but the ability of making postselection discards this probability (if it is non-
zero).
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By making a simple modification on a realtime PostPFA, we can obtain
a restarting realtime PFA [47, 49]:

• each non-postselecting state is changed to restarting state,

• postselecting accepting and rejecting states are changed to accepting
and rejecting states, and then,

• if the automaton ends in a restarting state, the whole computation is
started again from the initial configuration (state).

The analysis of accepting and rejecting probabilities for the input remains
the same, and hence both models have the same accepting (and rejecting)
probabilities on every input.

Moreover, if we have a(w) + r(w) = 1 for any input w ∈ Σ∗, then the au-
tomaton is simply a PFA since making postselection or restarting mechanism
does not have any effect on the computation or decision.

Language L ⊆ Σ∗ is said to be recognized by a probabilistic machine M
with error bound ε if

• any member is accepted by M with probability at least 1− ε, and,

• any non-member is rejected by M with probability at least 1− ε.

We can also say that L is recognized by M with bounded error or recognized
by bounded-error machine M .

In this thesis we also consider verification power of probabilistic models.
To investigate the verification power of a machine it is common to consider
the interactive proof systems.

An interactive proof system (IPS) [21, 6] is composed by a prover (P ) and
a (probabilistic) verifier (V ), denoted by pair (P, V ), who can communicate
with each other. The aim of the verifier is to make a decision on a given
input and the aim of the prover (assumed to have unlimited computational
power) is to convince the verifier to make positive decision. Therefore, the
verifier should be able to verify the correctness of the information (proof)
provided by the prover since the prover may be cheating when the decision
should be negative.

In this thesis, we focus on memory-bounded verifiers [15] and our verifiers
are space-bounded PTMs. The PTM verifier has two tapes (the read-only
input tape and the read/write work tape) and a communication channel.
The communication between the prover and verifier is done via a communi-
cation cell holding a single symbol. The prover can see only the given input
and the symbols written on the communication cell by the verifier. The
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prover may know the program of the verifier but may not know which prob-
abilistic choices are done by the verifier. Since the outcomes of probabilistic
choices are not visible to the prover, such IPS is called private-coin. If the
probabilistic outcomes are not hidden (sent via the communication channel),
then it is called public-coin, i.e., the prover can have complete information
about the verifier during the computation. Public-coin IPS is also known as
Arthur-Merlin games [6]. In the thesis we do consider only private-coin IPSs.

Formally, a space-bounded PTM verifier V is a 8-tuple

V = (S,Σ,Γ,Υ, δ, sinit, sacc, srej),

where

• S is the finite set of states composed by three disjoint sets of states —
the set of reading states Sr, the set of communicating states Sc, and
the set of halting states Sh = {sacc, srej},

• Σ is the input alphabet,

• Γ is the alphabet of work tape,

• Υ is the communication alphabet,

• δ is the transition function composed by transition function from the
reading states δr and transition function from the communicating states
δc,

• sinit is the initial state,

• sacc is the accepting state, and,

• srej is the rejecting state.

When in a communicating state, say s ∈ Sc, V writes symbol τs ∈ Υ
on the communication cell (τs depends only on the current internal state)
and the prover writes back a symbol, say τ ∈ Υ. Then, V switches to state
s′ = δc(s, τ) ∈ S.

When in a reading state, V behaves as an ordinary PTM:

δr : Sr × Σ̃× Γ̃× S × Γ̃× {←, ↓,→}× {←, ↓,→} → [0, 1].

That is, when V is in a reading state s ∈ Sr, reads symbol σ ∈ Σ̃ on the
input tape, and reads symbol γ ∈ Γ̃ on the work tape, it enters state s′ ∈ S,
writes γ′ ∈ Γ̃ on the cell under the work tape head, and then the input tape
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head is updated with respect to d1 ∈ {←, ↓,→} and the work tape head is
updated with respect to d2 ∈ {←, ↓,→} with probability

δr(s, σ, γ, s
′, γ′, d1, d2),

where “←” (“↓” and “→”) means that the head is moved one cell to the left
(the head does not move and the head is moved one cell to the right). To
be a well-formed PTM, the following condition must be satisfied: For each
triple (s, σ, γ) ∈ Sr × Σ̃× Γ̃,∑

s′∈S,γ′∈Γ̃,d1∈{←,↓,→},d2∈{←,↓,→}

δ(s, σ, γ, s′, γ′, d1, d2) = 1.

Like a regular PTM, V accepts (rejects) the input when it enters the state
sacc (srej).

The language L ⊆ Σ∗ is verifiable by V with error bound ε < 1
2
if

1. there exists an honest prover (a prover, that provides reliable informa-
tion, expected by the verifier) P such that any x ∈ L is accepted by V
with probability at least 1− ε by communicating with P , and,

2. any x /∈ L is always rejected by V with probability at least 1− ε when
communicating with any possible prover (P*).

It is also said that there is an IPS (P , V ) with error bound ε for language
L. The first property is known as completeness and the second one is known
as soundness. Generally speaking, completeness means there is a proof for
a true statement and soundness means none of the proofs works for a false
statement. The case when every member is accepted with probability 1 is
also called as perfect completeness.

We remark that all the time and memory bounds are defined for the
verifier since we are interested in the verification power of the machines with
limited resources.

We also consider so-called weak IPS, which is obtained by replacing the
condition 2 above by the following condition.

2′. Any x /∈ L is accepted by V with probability at most ε when commu-
nicating with any possible prover (P*).

Therefore, in weak IPSs, the computation may not halt with high prob-
ability on non-members, or, in other words, each non-member may not be
rejected with high probability.
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Due to communications with the prover, the program of the verifier with
the possible communications is called protocol. A private-coin protocol is
called one-way if the verifier always sends the same symbol to the prover. In
this case, we can assume that the prover provides a single string (possible
infinite) and this string is consumed in every probabilistic branch. It is also
possible that this string (certificate) is placed on a separate one-way read-
only tape (certificate tape) at the beginning of the computation and the
verifier can read the certificate from this tape.

We also consider interactive proof systems with two provers [8, 17]. IPS
with two provers is composed by two provers (P1, P2) and a probabilistic ver-
ifier (V ), denoted by (P1, P2, V ). The verifier has a different communication
channel with each prover and one prover does not see the communication
with the other prover. In such IPSs, the verifier V has different transition
function from communicating states (δc): When in a communicating state,
say s ∈ Sc, V writes symbol τs1 ∈ Υ on the communication cell of the first
prover (P1) and τs2 ∈ Υ on the communication cell of the second prover
(P2), and the provers P1 and P2 write back symbols, say τ1 ∈ Υ and τ2 ∈ Υ,
respectively. Then, V switches to the state s′ = δc(s, τ1, τ2) ∈ S. Note that
both τs1 and τs2 depend only on current internal state.

There are different models of IPS with two provers. In Multi-Prover
model by [8] both provers collaborate such that both of them are honest,
or both of them are cheating. In Noisy-Oracle model by [17] both provers
oppose each other such that at least one of them is honest, and other may
be cheating. The latter model can also be formalized as a debate system
(e.g., see [13]) where the second prover is called as refuter. In this thesis we
consider the IPSs with two provers working for both models equally well.

Constant-space verifiers are defined similarly to PTM verifiers. They
do not have the work tape. Restrictions on the moves of the input head
(sweeping, one-way, realtime, restarting realtime) apply for the verifiers in
the same way as described for the recognizers

We also provide the definition of realtime PostPFA verifiers in one-way
private-coin IPSs. While the input is read in realtime mode, the automaton
reads the provided certificate in one-way mode, and hence it can make pauses
on some symbols of the certificate.

Formally, a realtime PostPFA verifier V as a part of a one-way IPS is a
7-tuple

V = (S,Σ,Υ, δ, sinit, sacc, srej),

where

• S is the finite set of states composed by two disjoint sets of states — the
set of reading states Sr and the set of halting states Sh = {sacc, srej},
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• Σ is the input alphabet,

• Υ is the alphabet of certificate,

• δ is the transition function,

• sinit is the initial state,

• sacc is the accepting state, and,

• srej is the rejecting state.

The transition function

δ : Sr × Σ̃×Υ× S × {0, 1} → [0, 1]

governs the behavior of V as follows: When V is in state s ∈ Sr, reads input
symbol σ ∈ Σ̃, and reads certificate symbol υ ∈ Υ, it switches to state s′ ∈ S,
places the input head on the next symbol to the right and makes the action
d ∈ {0, 1} on the certificate with probability

δ(s, σ, υ, s′, d),

where the next (resp., the same) symbol of the certificate is selected for the
next step if d = 1 (resp., d = 0).

To be a well-formed machine, the transition function must satisfy that
for any (s, σ, υ) ∈ Sr × Σ̃×Υ,∑

s′∈S, d∈{0,1}

δ(s, σ, υ, s′, d) = 1.

Let w ∈ Σ∗ be the given input. For a given certificate, say cw ∈ Υ∗, V
starts in state sinit, reads the input as w̃ and the certificate in realtime and
one-way modes, respectively, and behaves with respect to δ. After reading
the whole input, V is in a probability distribution, which can be represented
as a stochastic vector, where each entry represents the probability of being
in the corresponding state.

Due to postselection, we assume that the computation ends either in sacc
or srej. We denote the probabilities of being in sacc and srej by a(w) and
r(w), respectively. It must be guaranteed that a(w) + r(w) > 0. (Otherwise,
postselection cannot be done.) Then, the decision is given by normalizing
these two values: w is accepted and rejected with probabilities

a(w)

a(w) + r(w)
and

r(w)

a(w) + r(w)
,
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respectively.
We denote the set of integers by Z and the set of positive integers by Z+.

The set I = {I | I ⊆ Z+} is the set of all subsets of positive integers.
The membership of each positive integer for any I ∈ I can be represented

as a binary probability value:

pI = 0.x101x201x301 · · ·xi01 · · · , xi = 1↔ i ∈ I.

Similarly, the membership of each string for language L ⊆ Σ∗ is represented
as a binary probability value:

pL = 0.x101x201x301 · · ·xi01 · · · , xi = 1↔ Σ∗(i) ∈ L.

The coin landing on head with probability pI (resp., pL) is named as coinI
(resp., coinL).



Chapter 2

Main lemma

There are different techniques in the literature to encode a language as a
single real number, which can be used as a transition value by a probabilistic
or quantum machine such that, for a given input, the machine can determine
its membership based on this transition value.

In [2], it was shown that polynomial-time real-valued quantum Turing
machines can recognize uncountably many languages with bounded error by
using the following encoding. The membership of each positive integer in any
I ∈ I can be represented as a single rotation on R2 with the angle, originally
given in [2]:

θI = 2π
∞∑
i=1

( xi
8i+1

)
,

xi = 1, if i ∈ I
xi = −1, if i /∈ I .

To recognize uncountably many languages with bounded error probabilisti-
cally, Say and Yakaryılmaz [36] mentioned a coin which lands heads with
probability 0.x, where x is an infinite sequence of digits whose k-th member
encodes whether the k-th unary string is in some given language L.

In this chapter, we propose a modified probabilistic encoding to guarantee
bounded error for recognition of any language, which is also easily applicable
to any error bound.

We begin with considering two tasks, and then we introduce a lemma,
which helps to solve these tasks.

Suppose that we have coinI that lands on head with probability pI , where
I ⊆ Z+ is some set. The probability pI encodes the set I. Given k ∈ Z, the
task is to check whether k ∈ I.

The next task is a bit more complicated. Suppose that we have coinL
that lands on head with probability pL. The probability pL encodes some
language L ⊆ Σ∗. Given w ∈ Σ∗, the task is to check whether w ∈ L.

31
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In the case of the first task it is enough to guess the value of the bit xk
from pI . To solve the second task, we first find l = lex(w), and after that
we guess the value of the bit xl in pL. The following lemma shows how to
correctly guess the bit xk (resp., xl) from the coinI (resp., coinL) with high
probability.

Lemma 1. Let x = x1x2x3 · · · be an infinite binary sequence. If a biased coin
lands on head with binary probability value p = 0.x101x201x301 · · · , then the
value xk can be determined with probability at least 3

4
after 64k coin tosses.

Proof. Let X be the random variable denoting the number of heads after 64k

coin flips. The expected value of X is E[X] = p ·64k. The value of xk is equal
to (3·k+3)-th bit from the left of the binary point in E[X]. If |X−E[X]| ≤ 8k,
we still have the correct xk since in E[X] (= x101x201x301 · · ·xk01 · · · ) xk01
is followed by 3k bits, and, if we add a number in the interval [−8k, 8k] to
E[X], we can get a number between

x101x201x301 · · ·xk00 · · · and x101x201x301 · · ·xk10 · · · .

By using this fact with Chebyshev’s inequality, we can conclude that

Pr[|X − E[X]| ≥ 8k] ≤ p · (1− p) · 64k

(8k)2
=
p · (1− p) · 64k

64k
= p · (1− p),

where the function p · (1− p) is parabolic and its global maximum is 1
4
, i.e.,

p · (1− p) ≤ 1
4
for any chosen probability p.

Therefore, by returning the (3k + 3)-th digit of the counter value that
keeps the number of heads after 64k coin tosses, we can correctly guess xk
with the probability at least 3

4
.

As a straightforward method (Method 1) of application of this lemma,
we can determine the value xk correctly with probability at least 3

4
after 64k

coin tosses, where we guess the value xk as the (3k+3)-th digit of the binary
number representing the total number of heads after the whole coin tosses.
This lemma will be used in the following chapters many times.

For counter models we need some tricks, and so we use a modified method
(Method 2) of application of Lemma 1. After 64k coin tosses the number of
heads is written as a binary counter and then the (3 · k + 3)-th bit from the
right is equal to xk with probability at least 3

4
. Such counter has a length

6k + 1. On the other hand, we can use a binary counter of length 3k + 3 for
the same task. Starting from 0, if t = 23k+2 is added to the counter, then the
(3 ·k+ 3)-th bit becomes 1. If another t is added, then the same bit becomes
0. Therefore, we can simply use a counter of length 3k + 3 that implements
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a counter modulo 23k+3 and its leftmost digit is the same as the (3 · k+ 3)-th
bit of the longer counter. Due to its simplicity, we use this shorter counter
in some of our proofs.

Now we continue with analysis of some other possible encodings that
contain the information about the members of a set.

Let our biased coin land on head with binary probability value

p = 0.x1a1a2x2a3a4x3a5a6 · · ·xka2k−1a2k · · · ,

where for each k > 0: a2k−1 6= a2k. Like in the proof of Lemma 1, we can
show that the value xk can be determined with probability at least 3

4
after

64k coin tosses. Now we have to consider two cases:

• If a2k−1 = 1 and a2k = 0, then the expected number of heads after 64k

coin tosses with probability 3
4
is between

x1a1a2x2a3a4x3a5a6 · · ·xk01 · · · and x1a1a2x2a3a4x3a5a6 · · ·xk11 · · · .

• If a2k−1 = 0 and a2k = 1, then the expected number of heads after 64k

coin tosses with probability 3
4
is between

x1a1a2x2a3a4x3a5a6 · · ·xk00 · · · and x1a1a2x2a3a4x3a5a6 · · ·xk10 · · · .

Now we consider encoding that does not have any padding bits. Note that
this case does not cover any infinite binary sequence. Let our biased coin
land on head with binary probability value p = 0.x1x2x3 · · · , and for some
k > 0: xk+1 6= xk+2. Then the value xk can be determined with probability
at least 3

4
after 4k · 16 coin tosses. We can follow the previous analysis and

can show that

Pr[|X−E[X]| ≥ 2k ·4] ≤ p · (1− p) · 4k · 16

(2k · 4)2
=
p · (1− p) · 4k · 16

4k · 16
= p·(1−p),

which is sufficient to prove the statement. Now we have shown the encoding
that decreases the sufficient number of coin tosses. It is also possible to
compute the value xk with bounded error if for some l ≥ k, xl+1 6= xl+2. In
this case it is enough to perform 4l · 16 coin tosses.

If we remove the last considered constraint, we can have arbitrary bi-
nary sequence, but the approach to have arbitrary binary probability value
p and guessing any bit of p with bounded error seems to fail with mentioned
approach. The reason lies in the nature of real numbers. For any k > 0,
if p1 = 0.x1x2x3 · · ·xk100 · · · 0 · · · and p2 = 0.x1x2x3 · · · xk011 · · · 1 · · · , then
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p1 = p2, therefore, for any l > k, the value xl is guessed as 1 with equal prob-
abilities for p1 and p2 because p1 and p2 give equal probabilities of the event.
On the other hand, if for some binary probability value p = 0.x1x2x3 · · ·
for some k for any l ≥ k xl+1 = xl+2, then the encoded language is regular
(because the language has finite number of members or finite number of non-
members) and can be recognized by a deterministic finite state automaton.
Binary probability value representing any nonregular language has the last
considered constraint, i.e., for any k > 0 exists l ≥ k such that xl+1 6= xl+2.
In any case, the encoding presented in the Lemma 1 is sufficient to show
the power of probabilistic machines. All mentioned approaches still assume
exponential number of coin tosses.

We continue with the improvement of the error bound when computing
the bit xk.

Lemma 2. Let x = x1x2x3 · · · be an infinite binary sequence. If a biased
coin lands on head with binary probability value p = 0.x101x201x301 · · · , then
the value xk can be determined with probability at least 1− 1

4·2m after 64k · 2m
coin tosses.

Proof. The analysis is similar to the one in the proof of Lemma 1, therefore,
we can show that

Pr[|X − E[X]| ≥ 8k · 2m] ≤ p · (1− p) · 64k · 2m

(8k · 2m)2
=
p · (1− p) · 64k · 2m

64k · 22m

=
p · (1− p)

2m
,

therefore, the probability to incorrectly compute the value xk does not exceed
1

4·2m .

We conclude that by increasing the number of coin tosses by a constant
factor, we can obtain arbitrary small error bound.



Chapter 3

The class of all languages

In this chapter, we investigate the recognition and verification of any language
with bounded error. Condon and Lipton [11] proved that for any recursively
enumerable language L, there is an IPS with a bounded-error 2PFA verifier,
in which each non-member may not be rejected with high probability. Feige
and Shamir have shown that a 1PFA verifier can simulate the work tape of a
Turing machine reliably with high probability by interacting with two provers
[16]. Therefore, in such IPS with a 1PFA verifier any recursive language can
be verified with bounded error. Up to our knowledge the recognition of any
language with bounded-error space-bounded PTMs has not been examined.
We show how much space is enough for a PTM to recognize any unary and
binary language with bounded error, and we also present results for one-
way counter automata. We also present results about the verification of any
language with bounded error.

We start with straightforward application of Lemma 1. We first consider
the recognition of unary languages.

Theorem 1. Any unary language is recognizable by a linear-space PTMs
with any error bound.

Proof. Let Σ = {a} be our alphabet. For any unary language L ⊆ Σ∗, we
design a PTM for L, say ML, that uses coinL.

Let w = an be the given input for n ≥ 0. PTM ML implements Method
1 of application of Lemma 1 in a straightforward way and gives its decision
accordingly, which will be correct with probability not less than 3

4
. The

machine only uses linear-size binary counters to implement 64k coin tosses
and to count the number of heads (for unary L and coinL, k = n + 1). By
repeating the same procedure, the success probability is increased arbitrarily
close to 1.

Now, we continue with the languages with arbitrary alphabet.

35
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Remark 1. Let L ⊆ Σ∗ be a k-ary language for k > 1, where
Σ = {a1, . . . , ak}. For any given k-ary string w ∈ Σ∗, let xl represent
its membership bit in pL. Then, by using the exactly the same algorithm
given in the above proof, we can determine xl correctly with high probability.
However, l is exponential in |w|, and hence the PTM uses exponential space.

Corollary 1. Any k-ary (k > 1) language is recognizable by a exponential-
space PTMs with any error bound.

We can conclude that when we use a straightforward application of
Lemma 1, we can show how many computational resources is enough for a
PTM to recognize any language with bounded error:

• Any unary language can be recognized by O(n)-space bounded-error
PTM in exponential time.

• Any k-ary language (for any k > 1) can be recognized by O(kn)-space
bounded-error PTM in double exponential time.

Now we reduce the space bounds by allowing the PTM to interact with a
single prover. For this purpose, we use the probabilistic fingerprint method:
For comparing two l-bit numbers, say m1 and m2, we can randomly pick a
(c log l)-bit prime number p for some positive integer c and comparem′1 = m1

mod p withm′2 = m2 mod p. Being verifiable from the fact given below, this
reduction works with high probability.

Fact 1 (cf. [19]). Let R1(m) be the number of primes not exceeding 2dlog2me,
R2(l, t′, t′′) be the number of primes not exceeding 2dlog2le and dividing |t′−t′′|,
and R3(l,m) be the maximum of R2(l, t′, t′′) over all t′ < 2m, t′′ ≤ 2m, t′ 6= t′′.
Then, for any ε > 0, there is a natural number c such that limm→∞

R3(cm,m)
R1(cm)

<
ε.

Theorem 2. Any unary language L ⊆ {a}∗ is verifiable by a logarithmic-
space PTM with any error bound.

Proof. There is two-way communication between the prover and the verifier.
Let w = an be the given input for n > 0. (The decision on the empty string
is given deterministically.) Remember that the membership bit of an is xn+1

in pL. Let k = n+1 ≥ 2. We pick a value of c (see Fact 1) satisfying the error
bound ε1, a value of l (see Lemma 2) satisfying the error bound ε2 = 1

4·2l ,
and a value of d > 6, which also determines the error bound.

The protocol has three phases. In the first phase, there is no commu-
nication. The verifier picks two random (c · (4 · log(k + l + dlog de)))-bit
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prime numbers, say p1 and p2, and then, it calculates and stores r1 = 64k · 2l
mod p1 in binary on the work tape. The verifier also prepares two binary
counters c1 and c2 for storing the total number of coin tosses modulo p1 and
the total number of heads modulo p2, respectively, and one “halting” counter
ch = 0.

In the second phase, the verifier asks from the prover to send a64k·2lb.
Once the verifier receives symbol b, the communication is ended in this phase.
Therefore, we assume that the prover sends either the finite string y = amb
for some m ≥ 0 or an infinite sequence of a’s.

For each a received from the prover, the verifier reads the whole input
and adds one to ch with probability

(
1
64

)k · (1
2

)l. We call it a halting walk.
If ch = d, the verifier terminates the computation and rejects the input. If
the computation is not terminated, the verifier tosses coinL, sends the result
to the prover, and increases c1 by 1. If the result is heads, the verifier also
increases c2 by 1. When the second part is ended, the verifier checks whether
previously calculated r1 is equal to r′1 = m mod p1, stored on c1. If they are
not equal, then the input is rejected. In other words, if the prover does not
send 64k · 2l a’s, then the verifier detects this with probability at least 1− ε1.

Let r2 be the binary value stored on c2 and t be the total number of heads
obtained in the second phase. In the third phase, the verifier asks from the
prover to send (bin(t))r (the least significant bits are first). By using the
input head, the verifier easily reads the (3k + 3 + l)-th bit of bin(t), say x′k,
and also checks whether the length of bin(t) does not exceed (6k + 1 + l).
Meanwhile, the verifier also calculates r′2 = t mod p2. If the length of bin(t)
is greater than 6k + 1 + l or r2 6= r′2, then the input is rejected. In other
words, if the prover does not send bin(t), then the verifier can catch it with
probability at least 1− ε1. At the end of third phase, the verifier accepts the
input if x′k is 1, and rejects it if x′k is 0.

According to Chebyshev’s inequality, the value of ch reaches d after more
than 2 · d · 64k · 2l a’s with probability

Pr[|X − E[X]| ≥ d+ 1] ≤
( 1

64k·2l ) · (1−
1

64k·2l ) · 2 · d · 64k · 2l

(d+ 1)2
<

2

d
,

where E[X] is expected value of ch. This bound is important, since, for
m > 2 · d · 64k · 2l, Fact 1 cannot guarantee the error bound ε1. (Remember
that prime numbers p1 and p2 do not exceed

2c·(4·log(k+l+dlog de)) ≥ 2c·(log(6·k+l+1+dlog de))

for k ≥ 2, l ≥ 0, and d > 6.)
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If w is not a member, then the accepting probability can be at most
max(ε1 + 2

d
, ε2).

• If m 6= 64k · 2l, then the input is rejected with probability at least
1− ε1− 2

d
, and hence the accepting probability cannot be greater than

ε1 + 2
d
.

• Assume that m = 64k · 2l. If the prover does not send (bin(t))r, then
the input is rejected with probability at least 1 − ε1, and hence the
accepting probability cannot be greater than ε1.

• Assume that m = 64k ·2l and the verifier sends (bin(t))r, then the input
is accepted with probability at most ε2.

The expected running time for the non-members is exponential in n due to
the halting walks.

If w is a member, then the honest prover sends all information correctly,
and the verifier guesses xn+1 correctly with probability at least 1− ε2 if the
computation is not terminated by halting walks. The probability of halting
the computation (and rejecting the input) in the second phase is

Pr[|X − E[X]| ≥ d− 1] ≤
( 1

64k·2l ) · (1−
1

64k·2l ) · 64k · 2l

(d− 1)2
<

1

(d− 1)2
<

1

d
.

Therefore, the verifier accepts w with probability at least 1 − ε2 − 1
d
. The

expected running time for members is also exponential in n.
The verifier uses O(log n) space and the success probability can be arbi-

trarily close to 1 by picking suitable c, l and d.

Due to Remark 1, we can obtain the same result also for k-ary languages
with exponential increase in time and space.

Corollary 2. Any k-ary (k > 1) language L ⊆ {a1, . . . , ak}∗ is verifiable by
a linear-space PTM with any error bound.

Now we consider multi-counter models and we start with four counters.

Theorem 3. Any k-ary (k ≥ 1) language L is recognizable by a 1P4CA ML

with any error bound.

Proof. Let Σ = {a1, . . . , ak} be the input alphabet with k symbols, and for
each 1 ≤ i ≤ k, lex(ai) = i + 1. Let w = w[1]w[2] · · ·w[n− 1]w[n] (|w| = n)
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be the given input string. If n = 0, then lex(w) = 1. If n > 0, then lex(w)
is calculated as follows:

lex(w) = 1 +
n∑
i=1

ki−1 +
n∑
i=1

(lex(w[i])− 2) · kn−i

since there are total
∑n

i=1 k
i−1 strings with length less than n, and there are

total
∑n

i=1(lex(w[i])− 2) · kn−i strings with length n that are coming before
w in the lexicographic order.

If w is the empty string, then the decision is given deterministically. In
the following part, we assume that n > 0. Let cj (1 ≤ j ≤ 4) represent the
value of j-th counter. At the beginning of computation c1 = c2 = c3 = c4 = 0.
Firstly, ML reads w and sets c1 = lex(w) as follows. ML reads w[1] and sets
c1 = lex(w[1]). After that, for each m ∈ {2, . . . , n}, ML reads w[m] and
multiplies the value c1 by k and increases it by (2−k)+(lex(w[m])−2) with
the help of other counters.

We claim that after reading w, c1 = lex(w). We prove this claim by
induction on m. The basis, when m = 1, is trivial, since c1 = lex(w[m]).

Suppose that for some m > 0:

c1 = lex(w[1]w[2] · · ·w[m]) = 1 +
m∑
i=1

ki−1 +
m∑
i=1

(lex(w[i])− 2) · km−i.

Then ML reads w[m+ 1], and c1 is updated to

c1 = (1 +

m∑
i=1

ki−1 +

m∑
i=1

(lex(w[i])− 2) · km−i) · k + (2− k) + (lex(w[m+ 1])− 2)

= k +

m∑
i=1

ki +

m∑
i=1

(lex(w[i])− 2) · km+1−i + (2− k) + (lex(w[m+ 1])− 2)

= 2 +

m+1∑
i=2

ki−1 +

m∑
i=1

(lex(w[i])− 2) · km+1−i + (lex(w[m+ 1])− 2)

= 1 +

m+1∑
i=1

ki−1 +

m+1∑
i=1

(lex(w[i])− 2) · km+1−i.

Thus, c1 = lex(w[1] · · ·w[m]w[m+ 1]), and hence the claim is proven.
After reading w, ML stays on the right end-marker and does the rest of

the computation without moving the input head. Let l = c1 = lex(w). ML

decreases c1 by 1, and sets c2 = 64 and c3 = 4 · 8. Then, until c1 hits zero,
ML decreases c1 by 1, and then multiplies c2 by 64 and c3 by 8 with the help
of 4th counter. When c1 = 0, we have c2 = 64l, c3 = 4 · 8l, and c4 = 0.
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After that, ML tosses coinL 64l times and guesses the value of xl in pL
by using the number of total heads. Remember that xl = 1 if and only if
w ∈ L. Let h be the total number of heads in binary. Due to Lemma 1,
the (3l + 3)-th bit of h is xl with probability at least 3

4
. Notice that when

counting the total number of heads, the (3l + 3)-th bit of h is flipped after
each

t = 23l+2 = 4 · 8l

number of heads. Thus, by switching the values of the 3rd and the 4th
counters, ML determines each block of t heads. By using its internal states,
ML keeps the candidate value for xl, say x′l. ML sets x′l = 0 before the coin
tosses and updates it to 1− x′l after each t number of heads.

At the end of the coin tosses, if x′l = 0 (resp., x′l = 1), the input is rejected
(resp., accepted). The decision will be correct with probability at least 3

4
.

During coin tosses, ML can set c1 = 64l while setting c2 = 0. After coin
tosses, c3 + c4 = 4 · 8l. Therefore, after coin tosses, ML can set c1 = 0,
c2 = 64l, c3 = 4 · 8l, and c4 = 0, and repeat the procedure of coin tosses. By
repeating the procedure, ML can increase the success probability arbitrarily
close to 1 by picking the most frequently calculated value x′l.

It is a well-known fact that two counters can simulate any number of coun-
ters with a huge slowdown [28]. The values of k counters, say c1, c2, . . . , ck,
can be stored on a single counter as

pc11 · pc22 · · · · p
ck
k ,

where p1, . . . , pk are distinct prime numbers. Then, by the help of the second
counter and the internal states, the status of each simulated counter can be
easily detected and stored, and then all updates on the simulated counters
are applied one by one.

We can apply this simulation technique to the algorithm given in the
proof of Theorem 3, and then, we obtain a 1P2CA for any given language.

Corollary 3. Any k-ary (k ≥ 1) language L is recognizable by a 1P2CA
with any error bound.

It is known that bounded-error unary 1PFAs with a single stack cannot
recognize any nonregular language [24]. Therefore, at least two counters are
needed.

Now we consider protocol for IPS with a single prover and constant-space
verifier. Condon and Lipton [11] proved that for any recursively enumerable
language L, there is an IPS with a bounded-error 2PFA verifier, in which each
non-member may not be rejected with high probability. It is a well-known
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fact that two-way deterministic finite automaton with 2 counters (2D2CA)
can recognize any recursively enumerable language, and in [11] it was shown
how 2PFA verifier can verify with bounded error the computation of 2D2CA
provided by the prover for the input string.

We extend the results of Condon and Lipton by considering the verifica-
tion of all languages in such IPSs.

Theorem 4. There is a weak-IPS (P, V ) for any language L where V is a
sweeping PFA with any error bound.

Proof. For any language L, V simulates the algorithm of 1P4CA ML (which
recognizes L with probability at least 1 − ε for any ε > 0) described in the
proof of Theorem 3 on the given input w and asks the prover to store the
contents of four counters.

For each step of ML, V interacts with the prover. First, V asks from the
prover the values of four counters as

at1bt2ct3dt4z,

where tj is the value of j-th counter (1 ≤ j ≤ 4). Second, V implements
the transition of ML based on the current state, the symbol under the input
head, the probabilistic outcome, and the status of the counters. Then, V
updates the state and head position by itself and sends the updates on the
values of the counters to the prover as

f1f2f3f4.

Here fj ∈ {−1, 0, 1} and it means that the verifier asks from the prover to
add fj to the value of the j-th counter, where 1 ≤ j ≤ 4.

Without loss of generality, we pick an arbitrary computation path of ML.
For this path, let

cV = f1,1f1,2f1,3f1,4 f2,1f2,2f2,3f2,4 · · · fi,1fi,2fi,3fi,4 · · ·

be the string representing the messages sent by the verifier and let

cP = at1,1bt1,2ct1,3dt1,4 z at2,1bt2,2ct2,3dt2,4 z · · · z ati,1bti,2cti,3dti,4 z · · ·

be the string representing the messages sent by the prover. The verifier V
can check the validity of cP as described below. For each i, V can compare
ti,1, ti,2, ti,3, and ti,4 with ti+1,1, ti+1,2, ti+1,3, and ti+1,4, respectively, by using
the values fi,1fi,2fi,3fi,4.
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Let y < 1
2
be the parameter to determine the error bound in the following

checks. For the validity check of cP , V makes four comparisons in parallel
such that one comparison is responsible for one counter. During the j-th
comparison (1 ≤ j ≤ 4), V creates two paths with equal probabilities. In the
first path, V says “A” with probability, denoted by Pr[Aj],

Pr[Aj] =

g−1∏
i=1

y2ti,j+2(ti+1,j−fi,j),

in the second path, it says “R” with probability, denoted by Pr[Rj],

Pr[Rj] =

g−1∏
i=1

y4ti,j + y4(ti+1,j−fi,j)

2
,

where g is the total number of computational steps ofML. Here each compar-
ison executes two parallel procedures such that the first procedure produces
the probabilities for odd i’s and the second procedure produces the proba-
bilities for even i’s.

Once the simulation ofML is finished, V says only “A”s in all comparisons
with probability

Pr[A] = Pr[A1] · Pr[A2] · Pr[A3] · Pr[A4]

and V says only “R”s in all comparisons with probability

Pr[R] = Pr[R1] · Pr[R2] · Pr[R3] · Pr[R4].

It is easy to see that if ti,j = (ti+1,j − fi,j) for each i and j, then

Pr[A] = Pr[R] =

g−1∏
i=1

y4(ti,1+ti,2+ti,3+ti,4).

On the other hand, if ti,j 6= (ti+1,j − fi,j) for some i and j, then

Pr[R]

Pr[A]
≥ y2ti,j−2(ti+1,j−fi,j)

2
+
y2(ti+1,j−fi,j)−2ti,j

2
>

1

2y2

since either (2ti,j−2(ti+1,j−fi,j)) or (2(ti+1,j−fi,j)−2ti,j) is a negative even
integer.

If cP is finite (a cheating prover may provide an infinite cP ), then V gives
a positive decision for cP with probability Pr[A] and negative decision for cP
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with probability (y ·Pr[R]). Therefore, if cP is valid, then the probability of
positive decision is 1

y
times of the probability of negative decision. If cP is

not valid, then the probability of negative decision is at least 1
2y

times of the
probability of positive decision.

When the computation is finished, if V does not give a decision on cP ,
V moves the input head on the left end-marker and restarts the process of
computation and interaction. If V gives a negative decision on cP , the input
is rejected. If V gives a positive decision on cP , the input is accepted if xl is
computed as 1, and the input is rejected if xl is computed as 0.

If the prover is honest, then Pr[A] = Pr[R]. If w ∈ L, the probability
to accept the input is at least Pr[A] · (1 − ε) and the probability to reject
the input is at most Pr[A] · ε+ y · Pr[R]. Therefore, the total probability to
accept the input is at least

Pr[A] · (1− ε)
Pr[A] · (1− ε) + Pr[A] · ε+ y · Pr[A]

=
1− ε
1 + y

,

which can be arbitrarily close to 1 − ε by picking sufficiently small value of
y. If w /∈ L and the prover is honest, then the probability to accept the
input is at most Pr[A] · ε and the probability to reject the input is at least
Pr[A] · (1− ε) + y ·Pr[R]. Therefore, the total probability to reject the input
is at least

Pr[R] · (1− ε) + y · Pr[R]

Pr[R] · (1− ε) + y · Pr[R] + Pr[R] · ε
=

1− ε+ y

1 + y
> 1− ε.

If the prover is cheating and provides a finite cP , the probability to reject
the input is at least 1

2y
times of the probability to accept the input. Therefore,

the total probability to reject the input is at least

1
2y

1 + 1
2y

=
1

2y + 1
,

which can be arbitrarily close to 1 by picking sufficiently small value of y.
By picking sufficient small values of ε > 0 and y < 1

2
the probability of

correct decision can be arbitrarily close to 1. A cheating prover may provide
an infinite cP , in which case V does not give any decision.

When constant-space verifier interacts with two provers, it can verify any
language while also rejecting the non-members with high probability. It is
known that a 1PFA verifier can simulate the work tape of a Turing machine
reliably with high probability by interacting with two provers [16]. Since we
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use this fact, we present its explicit proof here.

Fact 2 (cf. [16]). A 1PFA verifier V can simulate the work tape of a Turing
machine reliably with high probability by interacting with two provers P1 and
P2.

Proof. Let m denote the contents of the infinite to the right work tape in-
cluding the position of the head, where for each i > 0, mi denotes i-th
symbol from the left on the work tape. To store the position of head one of
mi’s is marked. We accomplish this by doubling the alphabet of the work
tape, hence one symbol can simultaneously store the value and the marker
of presence of the head.

At the beginning of the computation, V secretly picks random values a,
b, and r0, where each of them is between 0 and q−1 and q is a predetermined
prime number greater than the alphabet of the work tape. The verifier V
interacts with provers P1 and P2 and asks them to store m in the following
way: For each odd (resp., even) i, V asks P1 (resp., P2) to store mi, ri, sigi,
where 0 ≤ ri ≤ q − 1 is picked by V randomly, and

sigi = (mi · a+ ri · b+ ri−1) mod q

is a signature. Therefore, each prover stores a sequence of triples (mi, ri,
sigi) for i in ascending order.

To read the contents from the work tape, V scans m from the left to the
right, i.e., for each i, V requests from the provers to send the triples (mi, ri,
sigi). While V scans the input, it checks the correctness of signatures. If V
finds a defect, it rejects the input and also identifies the prover giving the
incorrect signature as a cheater.

In order to update the content of the work tape, V picks new random r0,
scans the input, for each triple (mi, ri, sigi) generates new ri, recalculates
sigi, and asks the provers to replace the values. If mi is changed for some i,
then the values of triple are changed accordingly. Note that one update may
include the change of one mi and the change of the position of work head by
one cell, in which case at most 2 sequential mi’s are updated. In this case,
V asks the provers to update the contents of the corresponding triples.

The provers cannot learn the values of a and b from the information
provided by V , since, for each i > 0, V sends mi that is derived from the
computation, random value ri, and value sigi, which has one-to-one corre-
spondence with ri−1, which was also chosen randomly. Note that r0 is also
randomly chosen and kept in secret.

Let (mi, ri, sigi) be the triple provided by V to one of the provers, say P ,
for some i, and (m′i, r

′
i, sig

′
i) be the values provided by P , where at least one of
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the values is different from the one sent by V . Assume that sig′i corresponds
to m′i and r′i correctly. Therefore,

sig′i = (m′i · a+ r′i · b+ ri−1) mod q.

Then, we have the following relation between a and b:

(sig′i − sigi) = ((m′i −mi) · a+ (r′i − ri) · b+ ri−1) mod q.

Since q is a prime number, exactly q pairs of (a, b)’s satisfy this equation,
and there are total q2 different pairs of (a, b)’s. Thus, since P does not know
the values of a and b, the probability that P can provide valid values is 1

q
.

If both provers are honest, then they send the correct stored values to
V . This implies that all signature checks will be passed successfully and
V accepts the interactions. If a prover changes at least one symbol of the
contents that V entrusted to store, the signature check will fail for the triple
of changed symbol with probability at least q−1

q
, in which case V rejects

the interaction and identifies the cheating prover. Note that the described
protocol works equally well in both IPS models with two provers because any
case of cheating is recognized individually.

Now we can present our result about the verification of every language.
We close the chapter with constant-space verification of all languages.

Theorem 5. There is an IPS with two provers (P1, P2, V ) for any language
where V is a 1PFA with any error bound.

Proof. A 2PFA verifier, say V ′, can execute the algorithm given for the Corol-
lary 1 by interacting with two provers as described in the proof of Fact 2 such
that the provers reliably store the contents of the counters for coin tosses and
processing the number of heads. If the content of the work tape is changed
by a prover, V ′ can catch this with probability at least q−1

q
, and hence rejects

the input with the same probability.
Let w ∈ Σ∗ be the given input and let xl represent its membership bit in

pL. If both provers are honest, then V ′ correctly performs 64l tosses of coinL
and then processes the number of heads. If the bit xl ((3l + 3)-th bit in the
number of heads) is guessed as 1, the input is accepted, and, if xl is guessed
as 0, then the input is rejected. Therefore, the input is verified correctly with
probability at least 3

4
. If at least one of the provers is not honest, then any

change of the contents stored by the prover is detected with probability at
least q−1

q
, and the input is rejected. This is true if either one or both provers

are cheating.
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We can modify V ′ and obtain a 1PFA verifier V . At the beginning of
the computation, V reads the input from left to right and writes it on the
work tape (asks the provers to store it). Then, V implements the rest of the
protocol by staying on the right end-marker.

After writing the input on work tape, V can execute the algorithm of
calculation of value xl multiple times and choose the most frequent outcome
of the algorithm as the decision for recognition, thus, increase the probability
of correct decision arbitrarily close to 1.



Chapter 4

Uncountable classes of languages

In this chapter, we consider different bounded-error probabilistic models that
can define uncountably many languages. The sets of languages in this chapter
are proper subsets of the class of all languages.

In [36], Say and Yakaryılmaz showed that bounded-error logarithmic-
space unary PTMs can recognize uncountably many languages. In [3], Alt
and Mehlhorn showed that DTMs can recognize nonregular unary languages
in O(log log n) space. In [18], Freivalds has showed that nonregular language
LOG can be recognized by 2PFA with bounded error, and then concluded
that, if a binary language L is recognized by a bounded-error PTM in s(n)
space, then the binary language LOG(L) is recognized by a bounded-error
PTM in log(s(n)) space. In [46], it was shown how to recognize the nonreg-
ular language EQUAL with bounded-error PostPFA. We modify the proofs to
recognize the language LOG with bounded-error PostPFA and prove the result
of Freivalds for PostPTMs. As a consequence, we show that PostPTMs and
PostPCAs with arbitrarily small non-constant space complexity can recog-
nize uncountably many languages with bounded error. We also present that
bounded-error unary PostPFAs can verify uncountably many languages.

In [50], it was shown that realtime DTMs can recognize unary nonregular
languages in O(log n) space. In [19], Freivalds proved that 1PTMs can rec-
ognize nonregular languages in O(log log n) space. We extend these results
and show that bounded-error realtime PTMs can recognize uncontably many
unary and binary languages in O(log n) and O(log log n) space, respectively.
We also extend our results to counter automata. We use the well-known sim-
ulation technique of any number of counters by 2 counters (see [28]), and also
implement some techniques to lower the amount of space used on counters
by using additional counters or internal states.

47
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4.1 Two-way probabilistic Turing machines

4.1.1 Recognizers

We begin this section with a basic example. The set I = {I | I ⊆ Z+} is
the set of all subsets of positive integers, and hence it is an uncountable set
like the set of real numbers (R). The cardinality of Z or Z+ is ℵ0 (countably
many). It is easy to see that there exist uncountably many unary languages.
As we have shown in the previous chapter, bounded-error O(n)-space PTM
can recognize any unary language.

For each I ⊆ Z+, we can define the following language: LI = {a64k | k ∈
I}. There are uncountably many different languages LI since there is a bijec-
tion (one-to-one and onto) between I ∈ I and LI , and, I is an uncountable
set. A PTM, sayM , can recognize the language LI in a straightforward way.
First, the machine deterministically checks whether the input w has length
64k for some k > 0. For this purpose, it reads w once, counts the number of
a’s, and stores the result on the work tape in binary. The machine expects
the result on the work tape to be written as

1(000000)k

for some k > 0. If not, then the input is rejected. If it is, then we know
that w = a64k for some k > 0. After that, M performs 64k coin tosses and
implements the algorithm explained in Method 1 of application of Lemma 1
in a straightforward way. If xk is guessed as 1, the input is accepted, and
the input is rejected otherwise. Note that M uses O(log n) space and reads
the input once. Therefore, bounded-error one-way O(log n)-space PTMs can
recognize uncountably many languages.

We have shown that bounded-error logarithmic-space PTMs can recognize
uncountably many languages in a straightforward way. We can ask whether
the same result can be obtained for smaller space bounds. We continue this
section with the models that have smaller amount of computational resources.
Note that we consider uncountably many unary and binary languages sepa-
rately since the behavior of machines on unary and binary languages can be
different.

Now, we show that O(log log n) space is enough to recognize uncountably
many unary languages in O(n log n) time.

Theorem 6. Unary sweeping PTMs can recognize uncountably many lan-
guages in O(log log n) space and O(n log n) time steps with any error bound.

Proof. For our purpose, we define languages based on the following unary
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language given by Alt and Mehlhorn in 1975 [3]:

AM75 = {an | n > 0 and F (n) is a power of 2},

where F (n) = min{i | i does not divide n} ∈ {2, 3, 4, . . .}. It is known that
O(log log n)-space DTMs can recognize AM75. It is clear that the following
language

AM75′ = {an | n > 0 and F (n) is a power of 64}

can also be recognized by O(log log n)-space DTMs. For the sake of com-
pleteness, we provide the details of the algorithm (see also [41]).

Assume that the input is w = an for some n > 0. In order to check
if a number k written in binary on the work tape divides n, we can use
O(log k) space for binary values of k that form a counter, and then we can
check whether n mod k is equal to zero or not. In order to compute F (n),
we can check each k = 2, 3, 4, . . . by reading w in sweeping mode in order
to determine the first k such that n mod k 6= 0. It is known that F (n) <
c · log n for some constant c (see Lemma 4.1.2(d) in [41]). Therefore, we use
O(log log n) space to find F (n). We remark that when the number F (n) is
found, it is written on the work tape, and it is easy to check whether this
number is a power of 64, i.e., it must start with 1 and should be followed by
only zeros and the number of zeros must be a multiple of 6 (64 = 26).

For any I ∈ I, we can define a corresponding language:

AM75′(I) = {an | an ∈ AM75′ and Σ∗(log64 F (n)) ∈ I}.

For any input an, we can deterministically check whether an ∈ AM75′

by using the above algorithm. If not, the input is rejected. Otherwise, we
continue with a probabilistic procedure. Notice that the work tape can still
contain the binary value of F (n) that is 64k for some positive integer k in
the beginning of the probabilistic procedure.

We use a biased coin landing on head with probability pI (coinI) encoding
the memberships of positive integers in I as described before.

By definition we know that an ∈ AM75′(I) if and only if k ∈ I. There-
fore, if we compute the value of xk correctly, we are done. Since the work
tape contains the value of 64k, we can toss coinI 64k times and count the
number of heads. Due to Lemma 1, we know that we can correctly com-
pute xk with probability at least 3

4
. Here the number of heads is kept in

binary and we check the (3k + 3)-th bit of the result after finishing the all
coin tosses. By executing the probabilistic procedure a few more times, the
success probability can be increased. Notice that the space used on the work
tape does not exceed O(log log n). The machine computes the value F (n)
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in O(n log n) time steps since it makes O(log n) iterations and each iteration
takes O(n) time steps. During the probabilistic procedure the machine tosses
coinI O(log n) times, and hence the procedure uses sublinear number of com-
putational steps. Therefore, the total time complexity of the algorithm is
O(n log n).

The cardinality of the set of all subsets of positive integers is uncountably
many, and hence the cardinality of the following set{

AM75′(I) | I ⊆ Z+
}

is also uncountably many, each element of which is recognized by a bounded-
error unary sweeping PTM using O(log log n) space in O(n log n) time steps.

With polynomial expected time, we cannot do better since it was proven
that bounded-error polynomial-time PTMs using o(log log n) space can rec-
ognize only regular languages even with unrestricted transition probabilities
[14].

On the other hand, with super-polynomial expected time, PTMs can
recognize nonregular binary languages even with constant-space [18]. Here
we show that PTMs can recognize uncountably many binary languages in
arbitrarily small non-constant space and we leave open the case of constant-
space. Regarding unary languages we know that constant-space PTMs and
o(log log n)-space one-way PTMs can recognize only regular languages [23,
22], and, up to our knowledge, it is still open whether PTMs can recognize
a unary nonregular language in o(log log n) space.

For our purpose, we use a fact given by Freivalds in [18] after a slight
modification in order to keep the input alphabet binary: For any binary
language L ⊆ {0, 1}∗, we define another language LOG(L) as follows:

LOG(L) = {0(1w1)021(1w2)022 · · · 02m−1

(1wm)02m | w = w1 · · ·wm ∈ L}.

Fact 3 (cf. [18]). If a binary language L is recognized by a bounded-error PTM
in s(n) space, then the binary language LOG(L) is recognized by a bounded-
error PTM in log(s(n)) space.

Theorem 7. For any I ∈ I, the language LOG(AM75′(I)) can be recognized
by a bounded-error PTM in O(log log log n) space.

Proof. It follows from Theorem 6 and Fact 3.

Similarly, we can conclude that the language LOGk(AM75′(I)) for k > 1
can be recognized by a bounded-error PTM in O(logk+2 n) space.
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Corollary 4. The cardinality of languages recognized by bounded-error PTMs
with arbitrary small non-constant space bound is uncountably many.

Obtained results are valid for any error bound ε > 0 because Fact 3
follows from the result that the language

LOG = {0102110221023 · · · 02m−1

102m | m > 0}

can be recognized by 2PFAs with any error bound [18]. We can also conclude
that the statement about space bounds for the language LOG(L) is also valid
for 2PCAs.

Corollary 5. If a binary language L is recognized by a bounded-error 2PCA
in s(n) space, then the binary language LOG(L) is recognized by a bounded-
error 2PCA in log(s(n)) space.

We continue with the models that have the most restricted versions of
two-way input head. Since restarting realtime automata are equivalent to
postselecting realtime automata, we consider postselecting realtime machines
as very restricted variation of two-way machines.

First, we adopt and also simplify the techniques presented in [18, 11, 46].
We start with a simple language:

EQUAL = {0m10m | m > 0}.

It is known that EQUAL is recognized by realtime PostPFAs with bounded
error [46, 49], but we still present an explicit proof that will be used in the
other proofs.

Fact 4. For any x < 1
2
, EQUAL is recognized by a realtime PostPFA Mx with

error bound 2x
2x+1

.

Proof. Let w = 0m10m
′ be the given input for some m,m′ > 0. Any other

input is rejected deterministically.
At the beginning of the computation, Mx splits the computation into

two paths with equal probabilities. In the first path, Mx says “A” with
probability Pr[A] = x2m+2m′ , and, in the second path, it says “R” with

probability Pr[R] =

(
x4m + x4m′

2

)
.

In the first path, Mx starts in a state, say sA. Then, for each symbol 0, it
stays in sA with probability x2 and quits sA with the remaining probability.
Thus, when started in sA, the probability of being in sA upon reaching on
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the right end-marker is

x2 · x2 · · · · · x2︸ ︷︷ ︸
m times

·x2 · x2 · · · · · x2︸ ︷︷ ︸
m′ times

= x2m · x2m′ = x2m+2m′ .

In the second path, we assume thatMx starts in a state, say sR, and then
immediately switches to two different states, say sR1 and sR2, with equal
probabilities. For each 0 until the symbol 1, Mx stays in sR1 with probability
x4 and quits sR1 with the remaining probability. After reading symbol 1, it
switches from sR1 to s′R1 and stays there until the right end-marker. Thus,
when started in sR1, the probability of being in s′R1 upon reaching on the
right end-marker is x4m.

When in sR2, Mx stays in sR2 on the first block of 0’s. After reading
symbol 1, it switches from sR2 to s′R2, and then, for each 0, it stays in s′R2

with probability x4 and quits s′R2 with the remaining probability. Thus, when
started in sR2, the probability of being in s′R2 upon reaching on the right end-
marker is x4m′ . Therefore, when started in state sR, the probability of being
in s′R1 or s′R2 upon reaching on the right end-marker is

x4m + x4m′

2
.

It is easy to see that if m = m′, then Pr[A] = Pr[R] = x4m. On the other
hand, if m 6= m′, then

Pr[R]

Pr[A]
=

x4m+x4m
′

2

x2m+2m′
=
x2m−2m′

2
+
x2m′−2m

2
>

1

2x2

since either (2m− 2m′) or (2m′ − 2m) is a negative even integer.
On the right end-marker, Mx enters sacc and srej with probabilities Pr[A]

and (x · Pr[R]), respectively. Therefore, if w is a member, then a(w) is x−1

times of r(w), and hence, w is accepted with probability

x−1

1 + x−1
=

1

x+ 1
.

If w is not a member, then r(w) is at least 1
2x

times of a(w), and hence, w is
rejected with probability at least

(2x)−1

1 + (2x)−1
=

1

2x+ 1
.
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Thus, the error bound ε is 2x
2x+1

, i.e.,

ε = max

(
1− 1

x+ 1
, 1− 1

2x+ 1

)
= 1− 1

2x+ 1
=

2x

2x+ 1
,

which is less than 1
2
when x < 1

2
. (Notice that ε→ 0 when x→ 0.)

We continue with language

EQUAL-BLOCKS = {0m110m110m210m21 · · · 10mt10mt | t > 0}.

Theorem 8. For any x < 1
2
, EQUAL-BLOCKS is recognized by a realtime

PostPFA Mx with error bound 2x
2x+1

.

Proof. Let w = 0m110m
′
110m210m

′
21 · · · 10mt10m

′
t be the given input for some

t > 0, where for each i ∈ {1, . . . , t} both mi and m′i are positive integers.
Any other input is rejected deterministically.

Similarly to previous proof, after reading whole input, Mx says “A” with
probability

Pr[A] =
(
x2m1+2m′1

)
︸ ︷︷ ︸

a1

(
x2m2+2m′2

)
︸ ︷︷ ︸

a2

· · ·
(
x2mt+2m′t

)
︸ ︷︷ ︸

at

and says “R” with probability

Pr[R] =

(
x4m1 + x4m′1

2

)
︸ ︷︷ ︸

r1

(
x4m2 + x4m′2

2

)
︸ ︷︷ ︸

r2

· · ·
(
x4mt + x4m′t

2

)
︸ ︷︷ ︸

rt

.

Here Mx can easily implement both probabilistic events by help of internal
states. As analyzed in the previous proof, for each i ∈ {1, . . . , t}, either
ai = ri or ri is at least 1

2x2
times greater than ai. Thus, if w is a member,

then Pr[A] = Pr[R], and, if w is not a member, then

Pr[R]

Pr[A]
>

1

2x2
.

On the right end-marker, Mx enters sacc and srej with probabilities Pr[A]
and (x · Pr[R]), respectively. Therefore, we obtain the same error bound as
given in the previous proof.

Let f be the linear mapping f(m) = am+b for some nonnegative integers
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a and b, and, let

EQUAL-BLOCKS(f) = {0m110f(m1)10m210f(m2)1 · · · 10mt10f(mt) | t > 0}

be a new language.

Theorem 9. For any x < 1
2
, EQUAL-BLOCKS(f) is recognized by a realtime

PostPFA Mx with error bound 2x
2x+1

.

Proof. Let w = 0m110m
′
110m210m

′
21 · · · 10mt10m

′
t be the given input for some

t > 0, where for each i ∈ {1, . . . , t} both mi and m′i are positive integers.
Any other input is rejected deterministically.

In the above proofs, the described automata make transitions with prob-
abilities x2 or x4 when reading a symbol 0. Here Mx makes some additional
transitions:

• Before starting to read a block of 0’s, Mx makes a transition with
probability x2b or x4b.

• After reading a symbol 0, Mx makes a transition with probability x2a

or x4a.

Thus, after reading a block of m 0’s, Mx can be designed to be in a specific
event with probability x2am+2b = x2f(m) or x4am+4b = x4f(m), where m > 0.

Therefore, Mx is constructed in a way that, after reading whole input, it
says “A” with probability

Pr[A] =
(
x2f(m1)+2m′1

)
︸ ︷︷ ︸

a1

(
x2f(m2)+2m′2

)
︸ ︷︷ ︸

a2

· · ·
(
x2f(mt)+2m′t

)
︸ ︷︷ ︸

at

and says “R” with probability

Pr[R] =

(
x4f(m1) + x4m′1

2

)
︸ ︷︷ ︸

r1

(
x4f(m2) + x4m′2

2

)
︸ ︷︷ ︸

r2

· · ·
(
x4f(mt) + x4m′t

2

)
︸ ︷︷ ︸

rt

.

Then, for each i ∈ {1, . . . , t}, if m′i = f(mi), ai = ri = x4f(mi), and, if
m′i 6= f(mi),

ri
ai

=
x4f(mi)+x4m

′
i

2

x2f(mi)+2m′i
=
x2f(mi)−2m′i

2
+
x2m′i−2f(mi)

2
>

1

2x2
.
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As in the above algorithms, on the right end-marker, Mx enters sacc and srej
with probabilities Pr[A] and (x · Pr[R]), respectively. Therefore, we obtain
the same error bound as given in the previous two proofs.

As an application of the last result, we present a realtime PostPFA algo-
rithm for language

LOG = {0102110221023 · · · 02m−1

102m | m > 0},

which was also shown to be recognized by 2PFAs [18].

Theorem 10. For any x < 1
2
, LOG is recognized by a realtime PostPFA Mx

with error bound 2x
2x+1

.

Proof. Let 02010m110m21 . . . 10mt be the given input for t > 1, wherem1 = 21.
The decision on any other input is given deterministically.

After reading the whole input, Mx says “A” with probability

Pr[A] =
(
x4m1+2m2

)︸ ︷︷ ︸
a1

(
x4m2+2m3

)︸ ︷︷ ︸
a2

· · ·
(
x4mt−1+2mt

)︸ ︷︷ ︸
at−1

and says “R” with probability

Pr[R] =

(
x8m1 + x4m2

2

)
︸ ︷︷ ︸

r1

(
x8m2 + x4m3

2

)
︸ ︷︷ ︸

r2

· · ·
(
x8mt−1 + x4mt

2

)
︸ ︷︷ ︸

rt−1

.

In the previous languages, the blocks are nicely separated, but the blocks
are overlapping for language LOG. Therefore, we modify the previous meth-
ods. As described in the first algorithm, Mx splits the computation into
two paths with equal probabilities at the beginning of the computation. In
the first path, the event happening with probability Pr[A] is implemented by
executing two parallel procedures: The first procedure produces the probabil-
ities ai’s where i is odd and the second procedure produces the probabilities
ai’s where i is even. Similarly, in the second path, the event happening with
probability Pr[R] is implemented by also executing two parallel procedures.
Thus, the previous algorithm is also used for LOG by using the solution for
overlapping blocks.

Similarly to the padding argument presented in Fact 3, we can easily
obtain the following two corollaries for a realtime PostPTM and a realtime
PostPCA.
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Corollary 6. If a binary language L is recognized by a bounded-error realtime
PostPTM in s(n) space, then the binary language LOG(L) is recognized by a
bounded-error realtime PostPTM in log(s(n)) space.

Corollary 7. If a binary language L is recognized by a bounded-error realtime
PostPCA in s(n) space, then the binary language LOG(L) is recognized by a
bounded-error realtime PostPCA in log(s(n)) space.

Now, we show how to obtain results for arbitrarily small space bounds
by restricting two-way reading mode to realtime reading mode with posts-
election. We start with the recognition of the following nonregular binary
language, a modified version of DIMA1:

DIMA3 = {020102110221 · · · 1026k−2

11026k−1

1126k(023k−11)23k | k > 0}.

Theorem 11. For any x < 1
3
, DIMA3 is recognized by linear-space realtime

PostPCA Mx with error bound x
1+x

.

Proof. Let w be the given input of the form

w = 0t110t21 · · · 10tm−1110tm11t
′
00t
′
110t

′
21 · · · 10t

′
m′1,

where t1 = 1, m andm′ are positive integers, m is divisible by 6, and ti, t′j > 0
for 1 ≤ i ≤ m and 0 ≤ j ≤ m′. (Otherwise, the input is rejected determinis-
tically.)

Mx splits computation into four paths with equal probabilities. In the
first path, with the help of the counter,Mx makes the following comparisons:

• for each i ∈ {1, . . . , m
2
}, whether 2t2i−1 = t2i,

• for each j ∈ {1, . . . , m′
2
}, whether t′2j−1 = t′2j.

In the second path, with the help of the counter, Mx makes the following
comparisons:

• for each i ∈ {1, . . . , m
2
− 1}, whether 2t2i = t2i+1,

• whether 2tm = t′0 (this also helps to set the counter to 0 for the up-
coming comparisons),

• for each j ∈ {1, . . . , m′
2
− 1}, whether t′2j = t′2j+1.

1Historiacally, we defined first DIMA, and then DIMA2, and lastly DIMA3. But due
to the structure of thesis, we mention DIMA3 before DIMA.
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In the third path, Mx checks whether 1 +
∑m

i=1 ti = m′ +
∑m′

j=1 t
′
j. In the

fourth path, Mx checks whether t′1 + 1 = m′.
It is easy to see that all comparisons are successful if and only if w ∈

DIMA3.
If every comparison in a path is successful, then Mx enters sacc with

probability x
3
in the path. If it is not, then Mx enters srej with probability

1 in the path. Therefore, if w ∈ DIMA3, then w is accepted with probability
1 since r(w) = 0. If w /∈ DIMA3, then the maximum accepting probability is
obtained when Mx enters srej only in one of the paths. That is,

r(w)

a(w)
=

1
4

3 · 1
4
· x

3

=
1

x
.

Thus, w is rejected with probability at least 1
1+x

. The error bound is x
1+x

.

Theorem 12. Linear-space realtime PostPCAs can recognize uncountably
many languages with error bound 2

5
.

Proof. Let wk be the k-th shortest member of DIMA3 for k > 0. For any
I ∈ I, we define the following language:

DIMA3(I) = {wk | k > 0 and k ∈ I}.

We obtain our result by presenting a realtime PostPCA, say MI,y, to
recognize DIMA3(I), where y < 1

19
. Let w be the given input of the form

w = 0t110t21 · · · 10tm−1110tm11t
′
00t
′
110t

′
21 · · · 10t

′
m′1,

where t1 = 1, m andm′ are positive integers, m is divisible by 6, and ti, t′j > 0
for 1 ≤ i ≤ m and 0 ≤ j ≤ m′. (Otherwise, the input is rejected determinis-
tically.)

At the beginning of the computation, MI,y splits into two paths with
equal probabilities. In the first path, MI,y executes the realtime PostPCA
My for DIMA3 described in the proof above with the following modification:
In each path of My, if every comparison is successful, then My enters state
sacc with probability y

16
(My enters the path with probability 1

4
, and then

enters state sacc with probability y
4
), and, if it is not, then My enters state

srej with probability 1.
In the second path, MI,y sets the value of counter to c = 1 +

∑m
j=1 ti

by reading the part of the input 0t110t21 · · · 10tm−1110tm1. We remark that
if w ∈ DIMA3, c is 64k for some k > 0. Then, MI,y attempts to toss coinI
c times. After each coin toss, if the result is heads (resp., tails), then MI,y
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moves on the input two symbols (resp., one symbol). If h is the number of
total heads, then MI,y reads (c− h) + 2h = c + h symbols. During attempt
to read c+ h symbols, if the input is finished, then the computation ends in
state srej with probability 1 in this path. Otherwise, MI,y guesses the value
xk with probability at least 3

4
(described in details at the end of the proof)

and gives a parallel decision with probability y, i.e., if the guess is 1 (resp.,
0), then it enters state sacc (resp., srej) with probability y.

If w ∈ DIMA3(I), then the probability of entering state sacc is
(
4 · y

16

)
in

the first path and at least 3y
4
in the second path. The probability of entering

srej in the second path is at most y
4
. Thus, w is accepted with probability at

least 4
5
.

If w /∈ DIMA3(I), then we have two cases. Case 1: w ∈ DIMA3. In this
case, the probability of entering state sacc is

(
4 · y

16

)
in the first path and at

most y
4
in the second path. The probability of entering srej in the second

path is at least 3y
4
. Thus, w is rejected with probability at least 3

5
.

Case 2: w /∈ DIMA3. In this case, the probability of entering state srej is
at least 1

8
in the first path and this is at least 4 times of the total probability

of entering state sacc, which can be at most

1

2
· 3 · y

16
+

1

2
y =

19y

32
<

1

32

for y < 1
19
. Then, the input is rejected with probability greater than 4

5
.

As can be seen from the above analysis, when w /∈ DIMA3, guessing the
correct value of xk is insignificant. Therefore, in the following part, we assume
that w ∈ DIMA3 when explaining how to guess xk correctly. Thus, we assume
that w = wk:

wk = 020102110221 · · · 1026k−2

11026k−1

1126k(023k−11)23k

for k > 0. In the second path,MI,y tosses coinI c = 64k times and it can read
64k +h symbols from the input. In other words, it reads h symbols from the
part w′k = (023k−11)23k . We can write h as

h = i · 8k+1 + j · 8k + q = (8i+ j)8k + q,

where i ≥ 0, j ∈ {0, . . . , 7}, and q < 8k.
Due to Lemma 1, xk is the (3k+ 3)-th digit of bin(h) with probability 3

4
.

In other words, xk is guessed as 1 if j ∈ {4, . . . , 7}, and as 0, otherwise. MI,y

sets j = 0 at the beginning. We can say that for each heads, it consumes a
symbol from w′k. After reading 8k symbols, it updates j as (j + 1) mod 8.
When the value of counter reaches zero, MI,y guesses xk by checking the
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value of j.

Now we can combine Corollary 7 and Theorem 12 to obtain new results
for uncountable probabilistic classes.

Corollary 8. The cardinality of languages recognized by bounded-error real-
time PostPCAs with arbitrary small non-constant space bound is uncountably
many.

Note that if we replace realtime PostPCA with sweeping PCA in Theorem
12, then all checks can be repeated multiple times, and therefore, the error
bound can be decreased arbitrarily close to zero. By combining this result
with Corollary 7, we can obtain arbitrarily small error bound for sweeping
PCAs with arbitrary small non-constant space bound that recognize uncount-
ably many languages.

We have obtained arbitrarily small space bounds for very restricted ver-
sion of two-way machines that recognize uncountably many languages with
bounded error. Currently, it is an open problem whether two-way machines
with constant space (2PFAs) are capable of recognition of uncountably many
binary languages with bounded error. On the other hand, verification of un-
countably many languages is possible in constant space, and we continue
with these results.

4.1.2 Verifiers

We present two nonregular unary languages and one nonregular binary lan-
guage that can be verified by 2PFAs in quadratic and linear time, respec-
tively. The protocols presented here will be also used for our results about
uncountably many languages.

Theorem 13. USQUARE = {am2 | m > 0} is verifiable by a 2PFA in quadratic
expected time with any error bound.

Proof. The protocol is one-way and the verifier expects from the prover a
string of the form

(amb)mb

for the members of the language, where m > 0.
Let w = an be the given input for n > 3 (the decisions on the shorter

strings are given deterministically) and let y be the string provided by the
prover. The verifier deterministically checks whether y is of the form

y = am1bam2b · · · bamib · · · or y = am1bam2b · · · bamtbb
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for some t > 0. If the verifier sees a defect on y, then the input is rejected.
In the remaining part, we assume that y is in one of these forms. At the

beginning of the computation, the verifier places the input head on the left
end-marker and splits the computation in four paths with equal probabilities.

In the first path, the verifier reads w and y in parallel and checks whether
y is finite, i.e.,

y = am1bam2b · · · bamtbb,

and whether it satisfies the equality n =
∑t

j=1 mj, where t > 1. If one of the
checks fails, the input is rejected. Otherwise, it is accepted.

The second path is very similar to the first path and the following equality
is checked:

n =
t∑

j=2

mj +
t∑

j=1

1,

i.e., the verifier skips am1 from y and counts b’s instead. If the equality is
satisfied, the input is accepted. Otherwise, it is rejected.

The computation in the first and second paths is deterministic (a single
decision is given in each) and both paths terminate in linear time.

In the third path, the verifier tries to make the following consecutive
comparisons:

m1 = m2,m3 = m4, . . . ,m2j−1 = m2j, . . . .

For each j, the verifier can easily determine whether m2j−1 = m2j < n by
attempting to move the input head to the right by m2j−1 squares and then
to the left by m2j squares. If the right end-marker is visited (m2j−1 ≥ n),
or the left end-marker is visited earlier than expected (m2j > m2j−1) or is
not visited (m2j < m2j−1), then the comparison is not successful, and hence
the input is rejected. Otherwise, the comparison is successful and the verifier
continues with a random walk (described below) before the next comparison,
except that if the last comparison is successful, then the input is accepted
without making the random walk.

The aim of the random walk is to determine whether the prover sends a
finite string or not, i.e., the prover may cheat by sending the infinite string
(amb)∗ for some m < n, which passes successfully all comparison tests de-
scribed above.

The random walk starts by placing the input head on the first symbol of
the input and terminates after hitting one of the end-markers. During the
random walk, the verifier pauses the reading of the string y. It is a well-
known fact that this walk terminates in O(n) expected number of steps and
the probability of ending on the right (resp., the left) end-marker is 1

n
(resp.,
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1− 1
n
).

If the walk ends on the left end-marker, then the verifier continues with
the next comparison. If the walk ends on the right end-marker, the verifier
checks whether the number of a’s in the remaining part of y is less than n
or not by reading whole input from right to left. If it is less than n, then
the input is accepted. Otherwise (y contains more than n a’s), the input is
rejected. In any case, the computation is terminated with probability 1

n
after

the walk.
The fourth path is identical to the third path by shifting the comparing

pairs: The verifier tries to make the following consecutive comparisons:

m2 = m3,m4 = m5, . . . ,m2j = m2j+1, . . . .

Now, we can analyze the overall protocol. If n = m2 for some m > 1,
then the prover provides y = (amb)mb and the input is accepted in every
path, and hence the overall accepting probability is 1. Thus, every member
is accepted with probability 1. Moreover there will be at most m random
walks, and hence the overall running time is O(n

√
n).

If the input is not a member, then the input is rejected in at least one of
the paths. If it is rejected in the first or second path, then the overall rejecting
probability is at least 1

4
. If it is rejected in the third or fourth paths, then

the overall rejecting probability cannot be less than 3
16

as explained below.
We assume that the input is not rejected in the first and second paths.

Then, we know that y is finite, the number of a’s in y is n, and y is composed
by m1 blocks. Since n is not a perfect square, there is at least one pair of
consecutive blocks that have different number of a’s. Therefore, at least one
of the comparisons will not be successful, and, the input will be rejected in
one of these paths. Let l be the minimum index such that the comparison
of the l-th pair is not successful (in the third or fourth path). Then, l <

√
n

2
.

(If not, y contains at least 2
⌈√

n
2

⌉
blocks and each of these blocks contains

m1 = d
√
n e a’s, and, this implies that y contains more than n a’s.) Then,

the maximum accepting probability in the corresponding path is bounded
from above by

l∑
i=1

1

n

(
1− 1

n

)i−1

= 1−
(

1− 1

n

)l
< 1−

(
1− 1

n

)√n
2

≤ 1

4
.

(Remember that n > 3.) Therefore, the rejecting probability in the third or
fourth path is at least 3

4
, and hence, the overall rejecting probability cannot

be less than 1
4
· 3

4
= 3

16
.
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The maximum (expected) running time occurs when the prover sends the
infinite y = (amb)∗ for some m > 0. In this case, the protocol is terminated
in the third and fourth paths with probability 1 after O(n) random walks,
and hence, the expected running time is quadratic in n, O(n2).

By repeating the protocol above many times, say r > 1, we obtain a new
protocol such that any non-member is rejected with probability arbitrarily
close to 1, i.e., 1−

(
1− 3

16

)r.
Theorem 14. UPOWER64 = {a64m | m > 0} is verifiable by a 2PFA in
quadratic expected time with any error bound.

Proof. The proof is very similar to the proof given for USQUARE. The protocol
is one-way and the verifier expects to receive the string

yn = aba64b · · · ba64k−2

ba64k−1

bb

from the prover for some k > 0.
Let w = an be the given input for n > 64. (The decisions on the shorter

strings are given deterministically.) Let y be the string sent by the prover.
The verifier deterministically checks whether y is of the form

y = am1bam2b · · · bamib · · · or y = am1bam2b · · · bamtbb

for some t > 0, where m1 = 1. If the verifier sees a defect on y, the input
is rejected. Therefore, we assume that y is in one of these forms in the
remaining part.

The verifier splits into three paths with equal probabilities at the begin-
ning of the computation. The first path checks whether y is finite and

n = 1 + 63 ·
t∑

j=1

mj.

If not, the input is rejected (because
∑k−1

j=0 64j = 64k−1
63

). Otherwise, the
input is accepted.

The second and third paths are very similar to the third and fourth paths
in the proof for USQUARE. In the second path, the verifier checks

64 ·m2j−1 = m2j

for each j > 0. The random walk part is implemented in the same way. The
third path is the same except the comparing pairs: The verifier checks

64 ·m2j = m2j+1
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for each j > 0.
If w = a64k , then the honest prover sends

ym = aba64b · · · ba64k−1

bb

and the input is accepted in all paths.
If w is not a member, then the input is rejected in at least one of the

paths. If it is rejected in the first path, then the overall rejecting probability
is at least 1

3
. If the input is accepted in the first path, then the rejecting

probability in the second or third path is at least 99
100

, and hence the overall
rejecting probability is greater than 33

100
.

We can use the analysis given in the previous proof. Let l be the minimum
index such that the comparison of l-th pair is not successful (in the second
or third path). Then, l < log64 n

2
= logn

12
. (If not, y starts with

aba64b · · · ba642l−3

ba642l−2

ba642l−1

where l > log64 n
2

, and hence, y contains 642l−1
63

a’s, which is greater than
n−1
63

.) The maximum accepting probability in the corresponding path can be
bounded from above by

l∑
i=1

1

n

(
1− 1

n

)i−1

= 1−
(

1− 1

n

)l
< 1−

(
1− 1

n

) logn
12

<
1

100
.

(Remember that n > 64.) Therefore, the rejecting probability in the second
or third path is greater than 99

100
.

The maximum expected running time is quadratic in n, when the prover
sends the infinite y = aba64b · · · ba64iba64i+1

b · · · . By repeating the protocol
many times, we obtain a protocol with better success probability.

We continue with the verification of a binary nonregular language, a mod-
ified version of DIMA2:

DIMA2 = {020102110221 · · · 1023k−1

11(023k1)23k | k > 0}.

Theorem 15. DIMA2 is verifiable by a sweeping PFA in linear time with any
error bound.

Proof. The protocol is one-way and the verifier expects to receive the same
input from the prover.

2Historically DIMA appeared earlier than DIMA2.
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Let w be the given input of the form

w = 0t110t21 · · · 10tm110t
′
110t

′
21 · · · 10t

′
m′1,

where t1 = 1, m andm′ are positive integers, m is divisible by 3, and ti, t′j > 0
for 1 ≤ i ≤ m and 1 ≤ j ≤ m′. (Otherwise, the input is rejected determinis-
tically.)

Let y be the string provided by the prover. When on the left end-marker,
the verifier splits into three paths with equal probabilities. In the first path,
it checks whether w = y. If not, the input is rejected. Otherwise, the input
is accepted.

In the following part, we assume that y = w. In the second path, the
verifier checks whether each 0-block has double length of the previous 0-block
before symbols “11” and each 0-block has the same length of the previous 0-
block after symbols “11”: When reading w and y in parallel, the verifier makes
the following comparisons:

• for each i ∈ {1, . . . ,m− 1}, whether 2ti = ti+1,

• whether 2tm = t′1, and,

• for each j ∈ {1, . . . ,m′ − 1}, whether t′j = t′j+1.

If one of the comparisons is not successful, then the input is rejected. If all
of them are successful, then we know that the input is of the form

w = 020102110221 · · · 1023k−1

11(023k1)m
′
.

In the third path, the verifier simply checks whether m′ = 23k or not, i.e.,
the verifier compares t′1 from y with the number of 1’s appearing after “11”
in w. If not, the input is rejected. Otherwise, it is accepted.

If w is a member, then the honest prover sends y = w, and the verifier
accepts the input in all paths with probability 1.

If w is not a member, then the verifier rejects the input in one of the
paths. If the prover sends y 6= w, then the input is rejected in the first path.
If y = w and then one of the comparisons in the second path may not be
successful, and then the input is rejected in this path. If all of them are
successful, then the comparison in the third path cannot be successful and
the input is rejected in this path.

The overall protocol terminates in linear time. By repeating the protocol
many times, we obtain a protocol with better success probability.

Now we are ready to present two constant-space protocols for verifying
uncountably many unary and binary languages.
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Theorem 16. Sweeping PFAs can verify uncountably many languages in
linear time with any error bound.

Proof. Let wk be the k-th shortest member of DIMA2 for k > 0. For any
I ∈ I, we define the following language:

DIMA2(I) = {wk | k > 0 and k ∈ I}.

We describe a one-way protocol for DIMA2(I). Let w be the given input. The
verifier determines whether w = wk for some k > 0 by using the protocol
for DIMA2 with high probability. If not, then the input is rejected. In the
remaining part, we continue with

w = wk = 020102110221 · · · 1023k−1

11(023k1)23k .

The verifier attempts to toss coinI 64k times and in parallel processes the
total number of heads for determining xk in pI . The verifier asks from the
prover to send 064k1 and the prover sends y = 0m1 (the input is determinis-
tically rejected if y is not in this form).

The verifier splits into two paths with equal probabilities. In the first
path, it easily determines whether m = 64k by passing over the input once
(the number of 0’s after symbols “11” is 64k). If m 6= 64k, then the input is
rejected. Otherwise, the input is accepted.

The second path is responsible for coin-tosses and processing the total
number of heads. The verifier performs m coin-tosses. For counting the
heads, the verifier uses the part of wk after symbols “11” as a read-only
counter, which is composed of 8k blocks of 0’s and length of each block is 8k.
Let h be the total number of heads:

h = i · 8k+1 + j · 8k + q = (8i+ j)8k + q,

where i ≥ 0, j ∈ {0, . . . , 7}, and q < 8k. Due to Lemma 1, xk is the (3k+3)-th
digit of bin(h) with probability at least 3

4
. In other words, xk is guessed as 1 if

j ∈ {4, . . . , 7}, and as 0, otherwise. The verifier sets j = 0 at the beginning.
Then, for each heads, it reads a symbol 0 from the input and after 8k heads
it updates j as (j + 1) mod 8. If the number of heads exceeds 64k, then the
input is rejected. If not, the decision given is parallel to the value of j: The
input is accepted if j ∈ {4, . . . , 7} and rejected if j ∈ {0, . . . , 3}.

The verifier operates in sweeping mode and each path terminates in linear
time. If w is a member, then the input is accepted with probability at least
3
4
. If w /∈ DIMA2, then it is rejected with high probability. If w ∈ DIMA2 and
w /∈ DIMA2(I), then the input is rejected with probability at least 1

2
· 3

4
= 3

8
.
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By repeating the protocol, the probability to correctly compute the value xk
and catch the prover in case of cheating can get arbitrarily close to 1.

Since the cardinality of set {I | I ∈ I} is uncountable, there are uncount-
ably many languages in {DIMA2(I) | I ∈ I}, each of which is verified by a
bounded-error linear-time sweeping PFA.

Theorem 17. 2PFAs can verify uncountably many unary languages in
quadratic expected time with any error bound.

Proof. Here we use all protocols given in the proofs of Theorems 13, 14, and
16.

Let wk be the k-th shortest member of UPOWER64 for k > 0. For any
I ∈ I, we define language:

UPOWER64(I) = {wk | k > 0 and k ∈ I}.

We construct a verifier for this language.
Let w be the given input. By using the protocol given for UPOWER64, the

verifier can determine whether w ∈ UPOWER64 or not. If w /∈ UPOWER64, then
the input is rejected with high probability.

In the following part, we assume that w = wk for some k > 0. The
verifier asks from the prover the following string: yk = (a8kb)8kb. Let y be
the string provided by the prover. The verifier splits into two paths with
equal probabilities. In the first path, it checks whether y = yk by using the
protocol for USQUARE. In the second path, the verifier assumes that y = yk
and implements the part of the protocol for DIMA2(I), which is responsible
for the coin tosses and for determining whether k ∈ I or not by checking
the total number of heads. The verifier reads w for 64k coin tosses and y for
determining the value xk.

If the prover sends yk, then the verifier correctly determines whether k ∈ I
or not with probability at least 3

4
in the second path. If w ∈ UPOWER64(I),

the honest prover sends yk, and hence the input is accepted with probability
1 in the first path and accepted with probability at least 3

4
in the second

path.
If w /∈ UPOWER64(I), then the input is rejected with probability at least 3

16

if the prover does not send yk in the first path, and rejected with probability
at least 3

4
in the second path if the prover does send yk. Therefore, the overall

rejecting probability is at least 3
32
.

Since each called protocol runs no more than quadratic expected time in
|w|, the running time is quadratic. By repeating the protocol many times,
we obtain a protocol with better success probability.
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We continue with realtime PostPFA protocols for nonregular unary lan-
guages

UPOWER = {a2m | m > 0}

and USQUARE. We have shown how to verify USQUARE by a 2PFA verifier,
and the verification of UPOWER64 is similar to the verification of UPOWER. It is
also known that these languages are verifiable by private alternating realtime
automata [12]. Here we use similar protocols but with certain modifications
for realtime PostPFAs.

Theorem 18. UPOWER is verified by a realtime PostPFA Vx with perfect com-
pleteness and error bound x

2+x
, where x < 1.

Proof. Let wm be the m-th shortest member of UPOWER (m > 0) and let
w = 0n be the given input string for n > 1. (If the input is empty string or
0, then it is rejected deterministically.)

The verifier expects the certificate to be composed by t > 0 block(s)
followed by symbol $, and each block has form of 0+1 except the last one
which is 1. The verifier also never checks a new symbol on the certificate
after reading a $ symbol. Let cw be the given certificate in this format:

cw = u1 · · ·ut−1ut$$∗,

where for each j ∈ {1, . . . , t − 1}, uj ∈ {0+1}, and ut = 1. Any other
certificate is detected deterministically, and then, the input is rejected. Let
uw = u1 · · ·ut−1ut$ and lj = |uj|.

The verifier checks that (1) lj is twice of lj+1 for each j ∈ {1, . . . , t− 2},
(2) each block except the last one contains at least one 0 symbol, (3) the last
block is 1, and (4) |w| = |uw|. Notice that these conditions are satisfied only
for members: The expected certificate for wm is

cwm = 02m−1−11︸ ︷︷ ︸
1st block

02m−2−11︸ ︷︷ ︸
2nd block

· · · 1 0001︸︷︷︸
···

01︸︷︷︸
···

1︸︷︷︸
m-th block

$$∗

and the length of all blocks and a single $ symbol is

2m−1 + 2m−2 + · · ·+ 21 + 20 + 1 = 2m.

In other words, l1 = |w|
2
, l2 = |w|

4
, . . . , lm = |w|

2m
.

At the beginning of the computation, Vx splits the computation into two
paths with equal probabilities, called the accepting path and the main path.
In the accepting path, the computation ends in sacc with probability x

2t
and

in some non-postselecting state with the remaining probability. Since there
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are t blocks, it is easy to obtain this probability. This is the path in which
Vx enters sacc. Therefore, a(w) = x

2t+1 (the accepting path is selected with
probability 1

2
).

During reading the input and the certificate, the main path checks (1)
whether |w| = |uw|, (2) each block of the certificate except the last one
contains at least one 0 symbol, and (3) the last block is 1. If one of checks
fails, the computation ends in state srej. The main path also creates subpaths
for checking whether

l1 =
|w|
2
, l2 =

l1
2
, . . . , lm−1 =

lm−2

2
.

After the main path starts to read a block starting with 0 symbol, it creates
a subpath with half probability and stays in the main path with remaining
probability. Thus, the main path reaches the right end-marker with proba-
bility 1

2t
. On the other hand, the j-th subpath is created with probability

1
2j+1 , where 1 ≤ j ≤ t− 1.

The first subpath tries to read 2l1 symbols from the input. If there are
exactly 2l1 symbols, i.e., 2l1 = |w|, then the test is successful and the com-
putation is terminated in a non-postselecting state. Otherwise, the test is
failed and the computation is terminated in state srej.

The second path is created after reading l1 symbols from the input. Then,
the second subpath also tries to read 2l2 symbols from the input. If there
are exactly 2l2 symbols, i.e., l1 + 2l2 = |w|, then the test is successful and
the computation is terminated in an non-postselecting state. Otherwise, the
test is failed and the computation is terminated in state srej.

The other subpaths behave exactly in the same way. The last ((t−1)-th)
subpath checks whether l1 + l2 + · · ·+ lt−2 + 2lt−1 = |w|. If all previous tests
are successful, then lt−1 = lt−2

2
= |w|

2t−1 .
It is clear that if w is a member, say wm, and Vx reads wm and cwm , then

a(w) = x
2m+1 . On the other hand, neither the main path nor any subpath

enters state srej with some non-zero probability. Therefore, any member is
accepted with probability 1.

If w is not a member, then one of the checks done by the main path and
the subpaths is failed, and hence Vx enters srej with non-zero probability.
The probability of being in srej at the end, i.e., r(w), is at least 1

2t
. Thus,

r(w)

a(w)
≥

1
2t

x
2t+1

=
2

x
.

Therefore, any non-member is rejected with probability at least 2
2+x

.
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In the above proof, the verifier can also check deterministically whether
the number of blocks is a multiple of k or not for some k > 1. Thus, we can
easily conclude the following result.

Corollary 9. UPOWERk = {02km | m > 0} is verified by a realtime PostPFA
with perfect completeness and any error bound.

Theorem 19. USQUARE is verified by a realtime PostPFA Vx with perfect
completeness and error bound x

x+1
, where x < 1.

Proof. The proof is very similar to the above proof. Let wm be the m-th
shortest member of USQUARE (m > 1). Let w = 0n be the given input for
n > 3. (The decisions on the shorter strings are given deterministically.) The
verifier expects to obtain a certificate composed by t blocks:

cw = am1bm2am3 · · · dmt$$∗,

where d is a (b) if t is odd (even). Let uw = am1bm2am3 · · · dmt$. The verifier
never reads a new symbol after reading uw on the certificate.

The verifier checks the following equalities:

m1 = m2 = · · · = mt = t+ 1

and
|w| = m1 +m2 + · · ·+mt + (t+ 1).

If we substitute m1 with m in the above equalities, then we obtain that
|w| = (m− 1)m+m = m2, and hence w = wm.

At the beginning of the computation, Vx splits into the accepting path
and the main path with equal probabilities, and, as a result of the accepting
path, it always enters sacc with probability a(w) = x

2t+1 .
In the following paths, if the comparison is successful, then the compu-

tation is terminated in a non-postselecting state, and, if it is not successful,
then the computation is terminated in state srej. The main path checks the
equality |w| = m1 +m2 + · · ·+mt + (t+ 1).

For each j ∈ {1, . . . , t}, the main path also creates a subpath with prob-
ability 1

2
and remains in the main path with the remaining probability. The

j-th subpath checks the equality

|w| = mj +m1 + · · ·+mt,

where mj is added twice.
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If all comparisons in the subpaths are successful, then we have

m1 = m2 = · · · = mt = m

for some m > 0. Additionally, if the comparison in the main path is success-
ful, then we obtain that t = m−1. Thus, w = wm. Therefore, any member is
accepted with probability 1 by help of the proof composed by (m− 1) blocks
and the length of each block is m.

If w is not a member, then one of the comparisons will not be successful.
(If all are successful, then, as described above, the certificate should have
(m − 1) blocks of length m and the input has length m2.) The minimum
value of r(w) is at least 1

2t+1 , and hence

r(w)

a(w)
≥ 1

x
.

Therefore, any non-member is rejected with probability at least 1
x+1

.

Now we can proceed with the verification of uncountably many unary
languages for realtime PostPFAs.

Theorem 20. Realtime PostPFAs can verify uncountably many unary lan-
guages with error bound 2

5
.

Proof. We obtain the result by designing a realtime PostPFA, say VI , for the
language

UPOWER6(I) = UPOWER64(I) = {0n | n = 26k, k > 0 and k ∈ I}

for I ∈ I. Let w = 0n be the given input for n > 64. (The decisions on the
shorter strings are given deterministically.)

The verifier VI expects a certificate, say cw, having two tracks containing
the certificates c′w and c′′w as

cw =
c′w[1] c′w[2] c′w[3] · · · c′w[j] · · ·
c′′w[1] c′′w[2] c′′w[3] · · · c′′w[j] · · · .

The certificate c′w is to verify that n = 64k for some k > 0 and c′′w is to verify
that n = m2 for some m > 0. Here we use the certificates given for UPOWER6
and USQUARE. Notice that if n = 64k, then m = 8k.

At the beginning of the computation, VI splits into three paths with equal
probabilities. In the first path, VI executes the realtime PostPFA, say M1,
designed for language UPOWER6 with a single modification. Let t1 be the
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number of blocks in c′w. Remember that 2t1 ≤ |w|. Then, the minimum
probability of entering srej in this path is 2−t1 if w /∈ UPOWER6. On the other
hand, we modify the probability of entering sacc in this path to a1(w) =
2−|w|−5 (originally it depends on the parameter x and the number of blocks:
(x · 2−t1−1)).

In the second path, VI executes the realtime PostPFA, say M2, designed
for language USQUARE with a single modification. Let t2 be the number of
blocks in c′′w. Then, the minimum probability of entering srej in this path
is 2−t2−1 if w /∈ USQUARE. On the other hand, we modify the probability of
entering sacc in this path to a2(w) = 2−|w|−5 (originally it depends on the
parameter x and the number of blocks: (x · 2−t2−1)).

In the third path, VI assumes that c′′w has t2 blocks and each block has
length t2 + 1. Then, VI tosses coinI for each input symbol, and then it moves
on the certificate c′′w by one symbol for each outcome “heads”. If w ∈ UPOWER6
and c′w and c′′w are as expected, then VI tosses coinI 64k times and meanwhile
uses c′′w to calculate the bit xk correctly: xk is set to 0 at the beginning, and
then, after each 4 · 8k heads, the value of xk is set to 1− xk. As described in
the proof of Theorem 12, if c′′w is a valid certificate, xk is calculated correctly
in this way with probability 3

4
. In this path, if xk is guessed as 1 (resp., 0),

then VI enters state sacc (resp., srej) with probability 2−|w|−2.
If w ∈ UPOWER6(I), then both certificates are as expected and xk is cal-

culated correctly in the third path. Since M1 and M2 do not enter state srej
and VI enters state sacc with probability three times of the probability of
entering srej in the third path, w is accepted with probability greater than
3
4
.
If w /∈ UPOWER6(I), then we have two cases. Case 1: Both certificates are

as expected (w ∈ UPOWER6), and hence M1 and M2 enter state sacc with the
probability 2−|w|−5. Then, xk = 0 is calculated correctly in the third path
and the probabilities of entering states sacc and srej can be

2−|w|−2 · 1

4
and 2−|w|−2 · 3

4
,

respectively, in the worst case. Thus, the overall probability of being in state
sacc is

a(w) =
1

3
· 2−|w|−5 +

1

3
· 2−|w|−5 +

1

3
· 2−|w|−4 =

1

3
· 2−|w|−3.

On the other hand, the probability of being in state srej is 2−|w|−4 (1
3
·2−|w|−2 ·

3
4
) and it is 3

2
times of a(w). Therefore, w is rejected by VI with probability

3
5
.
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Case 2: In this case, w /∈ UPOWER6. Then, M1 enters state srej with
probability 2−t1 , which is definitely much bigger than the probability of being
in state sacc at the end of the computation. Therefore, w is rejected by VI
with high probability.

The realtime PostPFA given above can be converted into a restarting
realtime PFA as described in the Chapter 1, but the expected running time
will be exponential.

Corollary 10. Restarting realtime PFAs can verify uncountably many unary
languages with bounded error in exponential expected time.

On the other hand, on binary languages, we obtain the same result in
linear expected time. For this purpose we use a modification of DIMA2:

DIMA2l = {020102110221 · · · 1023k+l−1

11(023k+l

1)23k | k > 0}.

Theorem 21. Restarting realtime PFAs can verify uncountably many lan-
guages in linear expected time with any error bound.

Proof. Let wk be the k-th shortest member of DIMA2l for k > 0 and for some
even integer l > 0. For any I ∈ I, we define the following language:

DIMA2l(I) = {wk | k > 0 and k ∈ I}.

Let w be the given input of the form

w = 0t110t21 · · · 10tm110t
′
110t

′
21 · · · 10t

′
m′1,

where t1 = 1, m and m′ are positive integers, m − l is divisible by 3, and
ti, t

′
j > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ m′. (Otherwise, the input is rejected

deterministically.)
The verifier splits the computation into four paths with equal probabili-

ties. The protocol is one-way, and the verifier asks the prover to send y = w
in each path. Let r > 8 be the integer determining the error bound.

In the first path, the verifier checks whether w = y. If not, the input
is rejected. Otherwise, the input is accepted with probability 1

r
and the

computation is restarted with probability r−1
r
.

In the following part, we assume that y = w. In the second path, the
verifier reads w and y in parallel and makes the following comparisons:

• for each i ∈ {1, . . . ,m− 1}, whether 2ti = ti+1,

• whether 2tm = t′1, and,
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• for each j ∈ {1, . . . ,m′ − 1}, whether t′j = t′j+1.

If one of the comparisons is not successful, then the input is rejected. If all
of them are successful, then we know that the input is of the form

w = 020102110221 · · · 1023k+l−1

11(023k+l

1)m
′
,

and the input is accepted with probability 1
r
and the computation is restarted

with probability r−1
r
.

In the third path, the verifier checks whether m′ = 23k or not, i.e., the
verifier compares t′1

2l
from y with the number of 1’s appearing after “11” in w.

If not, the input is rejected. Otherwise, it is accepted with probability 1
r
and

the computation is restarted with probability r−1
r
.

In the fourth path the verifier assumes that

w = wk = y = 020102110221 · · · 1023k+l−1

11(023k+l

1)23k .

The verifier reads w and y in parallel and places both reading heads on “11”.
Then, the verifier reads w to toss coinI 64k ·2l times. For counting the heads,
the verifier uses the part of y after symbols “11” as a read-only counter, which
is composed of 8k blocks of 0’s and length of each block is 8k · 2l. Let h be
the total number of heads:

h = i · 8k+1 · 2l + j · 8k · 2l + q = (8i+ j)8k · 2l + q,

where i ≥ 0, j ∈ {0, . . . , 7}, and q < 8k · 2l. Due to Lemma 2, xk is the
(3k+ l+ 3)-th digit of bin(h) with probability at least 1− 1

4·2l . The analysis
of the value j is similar to one presented in the proof of Theorem 16. If xk is
guessed as 0, the input is rejected. If xk is guessed as 1, the input is accepted
with probability 1

r
and the computation is restarted with probability r−1

r
.

Let a(w) and r(w) be the probabilities to accept and reject the input in
a single run, respectively.

If w ∈ DIMA2l(I), the input can only be rejected in the fourth path with
probability not exceeding 1

4·2l . Therefore, r(w) ≤ 1
16·2l , while a(w) ≥ 3

4·r , and
hence

a(w)

r(w)
≥ 3 · 16 · 2l

4 · r
=

12 · 2l

r
.

This means that if w ∈ DIMA2l(I), then the total probability to accept the
input is at least

12·2l
r

1 + 12·2l
r

=
1

r
12·2l + 1

=
1

r+12·2l
12·2l

=
12 · 2l

r + 12 · 2l
.
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If w /∈ DIMA2l, the input is rejected in at least one of four paths with
probability 1 in a single run. Therefore, r(w) ≥ 1

4
and a(w) ≤ 3

4·r , and hence

r(w)

a(w)
≥ 4 · r

3 · 4
=
r

3
.

This means that if w /∈ DIMA2l, then the total probability to reject the input
is at least

r
3

1 + r
3

=
1

3
r

+ 1
=

1
3+r
r

=
r

3 + r
.

If w ∈ DIMA2l and w /∈ DIMA2l(I), the input is rejected with probability
at least 1 − 1

4·2l in the fourth path in a single run. Therefore, r(w) ≥ 4·2l−1
4·4·2l

and a(w) ≤ 1
r
, and hence

r(w)

a(w)
≥ (4 · 2l − 1) · r

16 · 2l
≥ 2 · 2l · r

16 · 2l
=
r

8
.

This means that if w ∈ DIMA2l and w /∈ DIMA2l(I), then the total probability
to reject the input is at least

r
8

1 + r
8

=
1

8
r

+ 1
=

1
8+r
r

=
r

8 + r
.

Thus, the error bound ε depends on r and l,

ε = max

(
1− r

8 + r
, 1− 12 · 2l

12 · 2l + r

)
=

(
8

8 + r
,

r

12 · 2l + r

)
.

We remark that if 8
8+r

> r
12·2l+r , then ε = 8

8+r
. Therefore, if 96 · 2l > r2, then

ε → 0 when r → ∞. Therefore, for any ε0 > 0 there exist large enough r
and l such that ε ≤ ε0 and for any I ∈ I the machine can verify DIMA2l(I)
with error bound ε.

Each run of the computation finishes with probability at least 1
r
, therefore,

the expected running time is linear.

4.2 Realtime probabilistic Turing machines
In this section, we focus on PTMs that operate in realtime reading mode and
we present our space-bound results for unary and binary languages.

In [50], it was shown that realtime DTMs can recognize unary nonregular
languages in O(log n) space. By adopting the technique given there, we can
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show that bounded-error realtime PTMs can recognize uncountably many
unary languages.

Theorem 22. Realtime unary PTMs can recognize uncountably many lan-
guages in O(log n) space with any error bound.

Proof. We start with defining a sequence (ki)i∈N such that k1 = 64 · 28 and
ki = ki−1 + 64i · (18i+ 10) for i > 1. Let ULOG = {aki} be an unary language
corresponding to the sequence (ki)i∈N. Since it is not a periodic language,
ULOG is nonregular. Then, for any I ∈ I, we define the following language:

ULOG(I) = {aki | aki ∈ ULOG for i ≥ 1 and i ∈ I}.

We describe a bounded-error logarithmic-space PTM for ULOG(I), sayMI .
Then, we can obtain the proof since there is a bijection between I ∈ I and
ULOG(I), and, I is an uncountable set.

The PTM MI uses coinI . The aim of MI is iteratively finding the values
of x1, x2, . . . of pI with high probability. If all input is read before reaching a
decision on one of these values, then the input is always rejected.

During the computation, MI uses two binary counters on the work tape
and it uses an iterative algorithm.

At the beginning, the iteration number is one, say i = 1. The machine
initializes the work tape as

#000000#000000#

by reading 9i+ 3 + 2 (=14) symbols from the input (after 14-th symbol the
work tape head is placed on the 15-th tape square from the left). We name
the separator symbols #’s for the counters as the first, second, and third
ones from left to right. Moreover, the first (second) counter is kept between
the last (first) two #’s as shown below:

#︸︷︷︸
1st

separator

000000︸ ︷︷ ︸
2nd counter

of length 3i+3

#︸︷︷︸
2nd

separator

000000︸ ︷︷ ︸
1st counter

of length 6i

#︸︷︷︸
3rd

separator

.

By using the first counter, the machine counts up to 64i and meanwhile
also tosses coinI 64i times. By using the second counter, it counts the number
of heads (modulo 23i+3(= 8i+1)). The value of each counter can be easily
increased by 1 when the work tape head passes on the counters from right
to left once. Thus, when the work tape head is on the third #, it goes
to the first #, and meanwhile increases the value of the first counter by
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1, then tosses coinI , and, if it is heads, it also increases the value of the
second counter. After tossing coinI 64i times, the machine uses the leftmost
value of the second counter as its answer for xi. (Remember the Method
2 of application of Lemma 1.) Once this decision is read from the work
tape and immediately after the work tape head is placed on the first #, the
current iteration is finished. If (1) an iteration is finished, (2) there are no
more symbols remaining to be read from the input, and (3) the decision is
positive, then the input is accepted, which is the single condition to accept
the input. After an iteration is finished, the next one starts and each counter
is initialized appropriately, and then the same procedure is repeated unless
the input is finished.

Since the input is read in realtime mode, the number of steps is equal
to the length of the input plus two (the end-markers). Now, we provide
the details of each iteration step so that we can identify which strings are
accepted by MI .

At the beginning of the i-th iteration, the work tape head is placed on
the first # and the contents of the counters are as follows:

# 0 · · · 0︸ ︷︷ ︸
3(i−1)+3

# 0 · · · 0︸ ︷︷ ︸
6(i−1)

#.

By reading 9i+ 5 symbols from the input, the counters are initialized for the
current iteration as

# 0 · · · 0︸ ︷︷ ︸
3i+3

# 0 · · · 0︸ ︷︷ ︸
6i

#

by shifting the second and third #’s to 3 and 9 amounts of cells to the right
(after initialization the work head is placed on the third #).

After the initialization of the counters, the work head goes to the first #,
and then comes back on the third # 64i − 1 times. In each pass from right
to left, the first counter is increased by 1, the coinI is flipped, and then the
second counter is increased by 1 if the result is heads. When all digits of the
first counter are 1, which means the number of passes reaches 64i − 1, the
work tape head makes its last pass from the third # to the first #. During
the last pass, MI flips the coinI once more, and then determines the leftmost
digit of the second counter. Meanwhile, it also sets both counters to zeros.

By also considering the initialization, MI makes 64i passes starting from
the first #. Therefore, the total number of steps is 64i · 2 · (9i + 5) during
the i-th iteration. One can easily verify that this is valid also for the case of
i = 1.

Therefore, MI can deterministically detect the i-th shortest member of
ULOG after reading ki symbols, where k1 = 64 ·(28) and ki = ki−1 +64i ·(18i+
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10) for i > 1. Then, due to Lemma 1, we can conclude that MI recognizes
language ULOG(I) with error bound 1

4
.

We can change the algorithm of MI to perform the computation of the
values of x1, x2, . . . of pI multiple times. For this purpose, we define a new
sequence (k′i)i∈N such that k′i = m · ki for i ≥ 1, and a new corresponding
unary language ULOGm = {ak′i}, where m > 1. For any I ∈ I and m > 1, we
can define the following language:

ULOGm(I) = {ak′i | aki ∈ ULOGm for i ≥ 1 and i ∈ I}.

To recognize ULOGm(I), we make the following modification in the algo-
rithm of MI : For each i > 0, MI repeats i-th iteration m times, and, at the
end of each iteration, it remembers the calculated value xi. If the input fin-
ishes before the end of m repetitions of i-th iteration, the input is rejected. If
the input is finished after m-th repetition, MI picks the most frequent value
of xi to decide whether the input should be accepted. If the input is not
finished after the m-th repetition of the i-th iteration, MI continues with
(i + 1)-th iteration. The machine can recognize ULOGm(I) with arbitrarily
small error bound for sufficiently large m.

Now, we focus on non-unary alphabets and establish our result for double
logarithmic space. For this purpose, we use the Fact 1 given by Freivalds in
[19]. This fact was derived from the Prime Number Theorem, which also
takes place in our result.

Fact 5 (cf. [9]). Denote by π(x) the number of primes not exceeding x. The
Prime Number Theorem states that limx→∞

π(x)
x/ lnx

= 1.

The language LOGLOG is composed by the strings

bin(1)2bin(2)2bin(3)2...2bin(t)4,

where |bin(t)| = 64k for some positive integer k. For any I ∈ I, we define
language LOGLOG(I) = {w | w ∈ LOGLOG and k ∈ I}.

Let L ⊆ Σ∗ be a language recognized by a one-way DTM, say D, and σ
be a symbol not in Σ. We can execute D in realtime reading mode on the
inputs defined on Σ∪ {σ} as follows [50]: For each original “wait” move on a
symbol from Σ, the machine expects to read symbol σ. If it reads something
else or there are no more input symbols, then the input is rejected. If there
is more than expected σ symbol, then again the input is rejected. Thus, we
can say that this modified machine recognizes a language L′ and there is a
bijection between L and L′. Moreover, the space and time bounds for the
realtime machine are no more than these of the one-way machine.



CHAPTER 4. UNCOUNTABLE CLASSES OF LANGUAGES 78

A DTM follows a single path during its computation, and hence the
aforementioned bijection can be created in a straightforward way. On the
other hand, PTMs can follow different paths with different lengths in each
run. If PTM guarantees that each computation path uses the same amount
of time steps on the same input, we can apply a similar idea for one-way
PTM. We use this idea in the last part of the following proof.

Theorem 23. Realtime PTMs can recognize uncountably many languages in
O(log log n) space with any error bound.

Proof. By modifying the one-way algorithm given in [19], we present a PTM,
say Mc,I , shortly M , for language LOGLOG(I) for I ∈ I and for a specific c
that determines the error bound.

Each member of LOGLOG(I) has parts bin(i) at least up to bin(263). The
PTM M deterministically checks the input up to bin(263) and prepares the
work tape. After reading bin(263), M begins to process bin(i)’s as described
below.

PTMM keeps valuesm = |bin(i)| andm0 = |bin(i−1)| on work tape. For
each i, after reading bin(i) M checks deterministically: If m = m0 or (m =
m0 + 1 and bin(i − 1) contained only ones), then M continues. Otherwise,
M rejects the input.

Before reading each bin(i), M generates a prime number. First, M gen-
erates number r by using |m| · c random bits (bit by bit). After this, the
primality check is performed. For this purpose, the machine checks whether
r is divided by any natural number between 2 and 2|m|·c − 1, except r. Each
candidate natural number is denoted by d below. If r is not divisible by
any of these d’s, then M concludes that r is a prime number. Notice that
the number of d’s does not depend on r, and hence for any candidate prime
number, the primality test procedure takes the same number of steps.

To store and work with prime number, M uses a register on the work
tape that has |m| · c · 2 bits. M stores r = r1r2r3 · · · and additional auxiliary
number q = q1q2q3 · · · as r1q1r2q2r3q3 · · · . M uses in total four different such
registers, further in text denoted by p1, p2, p3 and p4. For bin(i), M uses
register p(3−2·(i mod 2)). To check the divisibility of a number by d, M uses
a register on the work tape that has |m| · c · 2 bits to keep number d and
additional auxiliary number h. If d = d1d2d3 · · · and h = h1h2h3 · · · , then
the register keeps them as d1h1d2h2d3h3 · · · . M uses one more register on the
work tape (further in text u) to keep track of total number of subtractions
performed while checking the divisibility of r by d. It has |m| · c bits.

To begin the check of divisibility of r by d, (1) the value of r is copied on
q, (2) the value of d is copied on h, and (3) the counter u is initialized with
zeros. Then, 2|m|·c iterations are performed. In each iteration, the values
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of q and h are decreased by 1, the value of u is increased by 1. If only h
reaches zero, d is again copied on h and the machine continues to perform
iterations. When q reaches zero, if h reaches zero at the same time, the
machine concludes that r is not a prime number (except the case when h
reaches zero for the first time — in this case d = r), otherwise, r is not
divisible by d. After that, M continues to perform the iterations but without
changing q and checks of value of q until the value of u reaches 2|m|·c. Then,
M repeats the procedure for the next d.

PTMM uses additional register on the work tape (further in text v) that
counts the number of attempts to generate a prime number. It is initialized
with zeros and is increased by one after each try. If M finds a prime number
before v reaches 2|m|·c, M continues performing the algorithm until v reaches
2|m|·c by fixing the candidate with the already found prime number. If the
register reaches value 2|m|·c (all bits become zeros) and M fails to generate
a prime number, M continues with the last generated r. Thus, M performs
the same number of steps for trying to generate a prime number. For any
bin(i), M performs exactly 2|m|·c such operations.

Next, the machine copies r into p(4−2·(i mod 2)) bit by bit. To perform this
operation, the machine sets q to zeros in both registers, copies the bits of r
one by one, and marks the copied bit by setting the next bit in q to one.

After that, M reads bin(i) and calculates the value bin(i) mod r. At
the beginning, the register keeps r and zeros for q. Assume that bin(i) =
i1i2 · · · im. When the machine reads ij, the value of q is multiplied by 2 and
increased by ij. Therefore, all bits of q are shifted to the left by one position,
and the machine puts value ij in rightmost bit. After this operation, M
performs one pass through registers, and if q ≥ r, then r is subtracted from
q during this one pass, therefore, each iteration for ij is performed in equal
number of steps. The machine performs the calculation while reading bin(i)
for the registers p(2−i mod 2) and p(3+i mod 2).

After these, the machine compares the values of the modules from the
registers p(1+2·(i mod 2)) and p(2+2·(i mod 2)). This time machine sets r in both
registers to zeros and marks compared bits of q’s by setting bits in r to one.
If (bin(i− 1) mod r) + 1 6= bin(i) mod r, M rejects the input. Otherwise,
the computation continues.

After reading “4”, M checks whether m = 64k for some integer k > 0. If
m 6= 64k, then the input is rejected, otherwise, m is written on the tape as

1(000000)k.

Then, M tosses coinI 64k times and meanwhile calculates the number of
heads mod (8 · 8k), say t. If after all coin tosses, the leftmost bit of t is 1,
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then the input is accepted, otherwise it is rejected.
Due to Fact 5, we can conclude that the probability of picking a prime

number of |m| · c bits in one attempt is θ( 1
|m|·c). Therefore, the probability

not to generate a prime number of |m| · c random bits in 2|m|·c attempts does
not exceed (1− 1

|m|·c)
2|m|·c . Note that limm→∞ (1− 1

m
)
m

= 1
e
, therefore,

lim
m→∞

(1− 1

|m| · c
)
2|m|·c

= lim
m→∞

1

e

2|m|·c
|m|·c

= 0.

The smallest |m| for which a prime number is generated is 7. By picking a
suitable c, the value (1− 1

7·c)
27·c

= ε0 can be arbitrarily close to zero. For each
i > 0, checking the consistency of bin(i) and bin(i+1) by using the generated
prime number is performed independently. Therefore, any incorrect pair is
accepted with probability at most ε due to Fact 1. Since M can fail to
generate a prime number, this probability is increased to at most

ε+ ε0 − ε · ε0 = ε1.

If the input belongs to LOGLOG(I), M is guaranteed not to reject the input
before reaching “4” on the input tape. If at least one pair bin(i) and bin(i+1)
is inconsistent, then M rejects the input right after checking this pair with
probability at least 1 − ε1. Due to Lemma 1 the membership of k ∈ I for
LOGLOG(I) is computed correctly with probability at least 3

4
. By repeating the

procedure of coin tosses l times, this probability can be increased to 1 − εl,
which can be arbitrarily close to 1. Therefore, the language LOGLOG(I) is
recognized with probability at least (1− ε1) · (1− εl), which can be arbitrarily
close to 1 by picking suitable c and l.

We can execute M in realtime by using aforementioned technique bor-
rowed from [50]. Let LOGLOG(I)′ be the language recognized byM in realtime.
Then, the language LOGLOG(I)′ differs from the language LOGLOG(I) with the
presence of symbols “3”: Instead of “wait” move on “0”, “1”, “2” or “4”, M
expects to read one symbol of “3”. If M fails to read a symbol “3” when it
is expected, the input is rejected. It is easy to see that there is a bijection
between LOGLOG(I) and LOGLOG(I)′.

The space used on the work tape is linear in the length of the counter
for |bin(i)|. The length of bin(i) is logarithmic to the length of the input
string, and hence the length of the counter is double logarithmic to the
input length. Therefore, the machine uses O(log log n) space throughout the
computation.

In [19] Freivalds has proven that only regular languages can be recog-
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nized with one-way PTM in o(log log n) space and with probability p > 1
2
.

Therefore, the presented space bound is tight.

4.3 Probabilistic counter automata
We begin this section with the recognition of uncountably many unary lan-
guages with two counters in polynomial time.

Theorem 24. Unary 2P2CAs can recognize uncountably many languages in
O(log n)-space and O(n log n)-time with any error bound.

Proof. We remind the definition of the language AM75′(I), which is considered
in the proof of Theorem 6:

AM75′(I) = {an | an ∈ AM75′ and Σ∗(log64 F (n)) ∈ I}, where

AM75′ = {an | n > 0 and F (n) is a power of 64} and I ∈ I.

Let M be the 2P2CA that recognizes AM75′(I) for some I ∈ I. We
represent the values of the first and second counters as c1 and c2, respectively,
and the position of the head on the input tape as b, and b = 0 when the input
head is on the left end-marker.

Let w = an be the input for some n > 0. M first checks whether w ∈ AM75′

like in the proof of Theorem 6. M uses both counters to compute the value
F (n). In order to compute F (n), M checks each l = 2, 3, . . . by reading w in
sweeping mode to determine the lowest value l such that n mod l 6= 0.

In order to check whether n mod l 6= 0, M moves the input head on
the left end-marker and sets c1 = l, c2 = 0. After that, M reads the input
from the left to the right and for each a one of the counters is increased by
1 and the other one is decreased by 1. When one of them hits zero, update
strategy is changed. Since c2 is zero at the beginning, the first strategy is
decreasing the value of c1 and increasing the value of c2. When M reads the
right end-marker, if c1 = 0 or c2 = 0, then n mod l = 0, and if the values of
both counters are not equal to zero, then n mod l 6= 0.

If n mod l = 0, M sets c1 = l+ 1 and c2 = 0 and proceeds with the next
check, i.e., to determine whether n mod (l + 1) 6= 0. If n mod l 6= 0, then
F (n) = l.

After computing F (n), M sets c1 = l and c2 = 0, and then places the
input head on the left end-marker. Then,M checks whether l = 64k for some
k > 0. To make this check, M performs the following steps:

• with the help of 2nd counter M divides the value c1 by 64,
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• M moves the input head to the next symbol on the right.

The steps are repeated until c1 = 1. IfM cannot divide c1 by 64, then l 6= 64k

and M rejects the input. If M successfully performs the steps and c1 = 1,
then w ∈ AM75′, l = 64k for some k > 0, and M continues with the following
configuration: c1 = 1, c2 = 0, b = k.

After that, M performs the following steps in a loop:

• in a loop until c1 reaches zero M decreases c1 by 1 and increases c2 by
64,

• then M swaps the values of c2 and c1,

• M moves the input head on the next symbol to the left.

The loop finishes when the input head reads the left end-marker. In this case
b = 0, c1 = 64k, c2 = 0.

After that, by using the value of the first counter, M sets b = 64k, c2 =
64k, and c1 = 0. Then, M performs the following loop: M decreases b by
one, tosses the coinI , and if the result is heads, the machine increases c1 by
one. Let h be the number of heads after 64k tosses of coinI . At the end of
the loop, we have c1 = h, c2 = 64k, and b = 0.

Then, M performs the following operations in a loop:

• M divides c2 by 64 with the help of the position of input head (by using
b as a counter),

• M divides c1 by 8 with the help of b as a counter (the division is
performed with rounding down).

The loop finishes when c2 = 1. At this step c1 = b h
8k
c. After that, M divides

c1 by 4 with the help of the second counter, and hence c1 = b h
4·8k c. Let

t = c1 = b h
4·8k c. Then the following relation is true:

t · 4 · 8k ≤ h < (t+ 1) · 4 · 8k.

To guess the value xk, M checks whether t is odd or even by decreasing the
value c1 until zero. If t is odd, then xk is guessed as 1 and M accepts the
input, otherwise, xk is guessed as 0 and M rejects the input.

Due to Lemma 1, M computes xk with error bound 1
4
. Therefore, M

recognizes AM75′(I) with bounded error for any I ∈ I. There are uncountably
many different I, therefore, unary 2P2CAs can recognize uncountably many
languages. It is known that F (n) < c · log n for some constant c. The values
of the counters do not exceed F (n) during the computation, therefore, the
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space complexity is O(log n). M performs each computational loop at most
in F (n) iterations, and each iteration takes at most n steps. Therefore, the
total computational time does not exceed O(n log n).

M can repeat the whole algorithm multiple times and choose the most
frequent value of xk for decision to reduce the error bound arbitrarily close
to zero.

It is still open question whether 2PCAs can recognize uncountably many
unary languages with bounded error. Therefore, we continue with a two-way
PCAs on binary languages. We remark that any s(n)-space counter can be
simulated by log(s(n))-space work tape.

It is easy for a two-way PCA to check whether any specific part of the
input has length of 64k for some k > 0, and hence, they can easily toss
a biased coin for 64k times and then count the number of heads on the
counter. However, it is not trivial to read some certain digits of the result
on the counter, and so we use a clever trick here.

Theorem 25. Linear-time (linear-space) 2PCAs can recognize uncountably
many languages with any error bound.

Proof. We start with the definition of the following language:

DIMA = {020102110221 · · · 1023k+1

11023k+2

11023k+3

1 · · · 1026k | k > 0}.

We remark that each member is composed by (6k+ 1) zero-blocks separated
by single 1’s except two special separators “11” that are used as the markers
to indicate the (3k + 3)-th block, the length of which is 23k+2.

The language DIMA can be recognized by a two-way deterministic counter
automaton, say D. First, it checks that the input starts with a single 0 and
ends with some 0’s, all separators are 1’s except two of them, which are “11”
and consecutive, and the number of zero-blocks is 6k+ 1 for some k > 0. For
all these checks, D can use only its internal states. And then, by using its
counter, it can check whether the length of each zero-block (except the first
one) is double of the length of previous block. Similarly, it can check the
equality of the number of zero-blocks before the first “11” and the number of
zero-blocks after the first “11” plus 3, i.e., 3k + 2 versus (3k − 1) + 3. If one
of these checks fails, then the input is rejected immediately. Otherwise, it is
accepted. Notice that D can finish its computation in linear time and the
counter value never exceeds the input length.

For any I ∈ I, we define a new corresponding language:

DIMA(I) = {w ∈ {0, 1}∗10m | m > 0, w ∈ DIMA, and Σ∗(log64m) ∈ I}.



CHAPTER 4. UNCOUNTABLE CLASSES OF LANGUAGES 84

For any such I, we can construct a two-way PCA recognizing DIMA(I), say
MI , as desired. The machine MI checks whether any given input, say w, is
in DIMA deterministically by using D. If the input is not rejected by D, we
continue with a probabilistic procedure. Since the last zero-block has the
length of m = 64k, by reading this block MI can toss 64k biased coins that
land on head with probability pI (coinI). The number of heads are counted
on the counter. Similarly to the proof of Theorem 6, the only remaining task
is to determine the (3k + 3)-th bit of the binary value of the counter, which
is xk. The bit xk in E[X] = pI · 64k is followed by 3k + 2 bits.

The number of heads on the counter, say h, can be written as a binary
number as follows:

h =
6k∑
i=0

ai2
i = a6k2

6k + · · ·+ a3k+223k+2 + a3k+123k+1 + · · ·+ a12 + a0,

where each ai ∈ {0, 1}. We remark that xk is corresponding to a3k+2, i.e.,
3k + 2 = 6k − (3k − 1) + 1. We can rewrite h as

h = b123k+3 + a3k+223k+2 + b0 = b123k+3 + h′,

where b0 and b1 are integers, b0 < 23k+2, and h′ = a3k+223k+2 + b0.
After tossing-coin part, MI moves its head to the second symbol of the

first “11”, and then the automaton enters a loop. In each iteration, the head
moves to the next separator on the right by reading 23k+2 0’s, and then
comes back by reading the same amount of 0’s. In each iteration, MI tries
to subtract 23k+2 twice (i.e., 23k+3, the approach is similar to the Method 2
of application of Lemma 1).

If h′ = 0, then MI hits to the zero value on the counter when the head is
at the starting position of the loop. This means a3k+2 = xk = 0, and hence
the input is rejected by the automaton MI . If h′ 6= 0, then MI hits to the
zero value on the counter, say in the j-th iteration j = 0, 1, . . ., when the
head is not at the starting position of the loop. The value of the counter is h′
before starting the j-th iteration and there are two cases, xk = 1 or xk = 0.
If xk = 1, MI hits to the zero value on the counter only after reading the
first 23k+2 0’s. In this case, the input is accepted. Otherwise, MI hits to the
zero value on the counter before finishing to read the first 23k+2 0’s. Then,
the input is rejected.

It is clear that the value of the counter never exceeds the length of the
input. Moreover, both deterministic and probabilistic parts finish in linear
time. By repeating the procedure of coin tosses and calculation of the value
of xk, the success probability is increased arbitrarily close to 1.
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We can also obtain polynomial-time result for sweeping PCAs.

Theorem 26. Linear-space sweeping PCAs can recognize uncountably many
languages in subquadratic time with any error bound.

Proof. We modify the algorithms given in the proof of Theorem 25. Notice
that the algorithms given there run in linear time. Here the algorithms run
in super-linear time but still subquadratic. First, we show how to determin-
istically recognize the language DIMA in sweeping reading mode, i.e.,

DIMA = {020102110221 · · · 1023k+1

11023k+2

11023k+3

1 · · · 1026k | k > 0}.

With one pass (reading the input from the left end-marker to the right
end-marker), the input is checked without using counter whether having the
following form

01(0+1)+110+11(0+1)+0+

and the number of 0-blocks are 6k + 1 for some k > 0. Moreover, for a
member, the number of 0-blocks before the first “11” is 3k+2 and the number
of 0-blocks after the second “11” is 3k − 2. Therefore, by using the counter,
we can check that the number of 0-blocks before the first “11” is 4 more than
the number of 0-blocks after the second “11”. If any of these checks fails,
then the input is immediately rejected.

In the second pass (reading input from the right end-marker to the left
end-marker), it is checked that, for each 0 < i ≤ 3k, (2i + 1)-th 0-block has
twice more zeros than (2i)-th 0-block.

In the third pass (reading input from the left end-marker to the right
end-marker), it is checked that, for each 0 < i ≤ 3k, (2i− 1)-th 0-block has
twice less zeros than (2i)-th 0-block.

Thus, in three passes, DIMA can be recognized by a sweeping PCA.
Then, as in the proof of Theorem 25, for any I ∈ I, we consider the

language:

DIMA(I) = {w ∈ {0, 1}∗10m | m > 0, w ∈ DIMA, and Σ∗(log64m) ∈ I}.

If the given input is in DIMA, then we continue with the probabilistic pro-
cedure. (Otherwise, the input is rejected.) We perform the same walk as
in the proof of Theorem 25, but due to sweeping reading mode, each walk
can be done from one end-marker to the other end-marker. But the presence
of symbols “11” allows us to follow the same procedure only with slowdown.
The running time is

O(23k)O(26k) = O(29k)
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and it is super-linear and subquadratic in the length of input. To be more
precise, the running time is O(n

√
n) (where n is the length of the input). By

repeating the procedure of coin tosses and calculation of the value of xk, the
success probability is increased arbitrarily close to 1.

Now we restrict the input head even more and continue with realtime
counter automata and begin with one counter.

We use the following nonregular binary language, a modified version of
DIMA:

DIMA3l = {020102110221 · · · 1026k+l−2

11026k+l−1

1126k+l

(023k+l−11)23k | k > 0},

where l ≥ 0 is an even constant that influences the error bound.

Theorem 27. Realtime probabilistic automata with one counter can recog-
nize uncountably many languages with error bound 4

9
+ 1

20·2l for any even
integer l ≥ 0.

Proof. Let wk be the k-th shortest member of DIMA3l for k > 0. For any
I ∈ I, we define the following language:

DIMA3l(I) = {wk | k > 0 and k ∈ I}.

Now we proceed with the recognition of DIMA3l(I) for any I ∈ I. Let M
be the PCA and w be the given input of the form

w = 0t110t21 · · · 10tm−1110tm11t
′
00t
′
110t

′
21 · · · 10t

′
m′1,

where t1 = 1, m and m′ are positive integers, m − l is divisible by 6, and
ti, t

′
j > 0 for 1 ≤ i ≤ m and 0 ≤ j ≤ m′. (Otherwise, the input is rejected

deterministically.)
M splits the computation into five paths with equal probabilities. In the

first path, with the help of the counter, M makes the following comparisons:

• for each i ∈ {1, . . . , m
2
}, whether 2t2i−1 = t2i,

• for each j ∈ {1, . . . , m′
2
}, whether t′2j−1 = t′2j.

In the second path, with the help of the counter, M makes the following
comparisons:

• for each i ∈ {1, . . . , m
2
− 1}, whether 2t2i = t2i+1,

• whether 2tm = t′0 (this also helps to set the counter to 0 for the up-
coming comparisons),
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• for each j ∈ {1, . . . , m′
2
− 1}, whether t′2j = t′2j+1.

In the third path, M checks whether 1 +
∑m

i=1 ti = m′ +
∑m′

j=1 t
′
j. In the

fourth path M checks, whether t′1+1

2l
= m′.

It is easy to see that all comparisons are successful if and only if w ∈
DIMA3l. If check in the path is not successful, the input is rejected. Otherwise,
M finishes to read the input and accepts it with probability 5

9
, and rejects it

with the remaining probability 4
9
.

In the fifth path, M tosses coinI c = 1 +
∑m

i=1 ti times by reading the
part of the input

0t110t21 · · · 10tm−1110tm1.

We remark that if w ∈ DIMA3l, c is 64k · 2l for some k > 0. After each coin
toss, if the result is heads,M increases the value of the counter by one. Let h
be the total number of heads, therefore, the value of the counter is h. Then,
M reads h symbols from the part

w′k = (023k+l−11)23k

with the help of the counter. During attempt to read h symbols, if the input
is finished, then M rejects the input in this path. Otherwise, M guesses the
value xk with probability at least 1 − 1

4·2l . If the guess is 1, M accepts the
input with probability 5

9
, and rejects the input with probability 4

9
. If the

guess is 0, M rejects the input.
When M reads h symbols from the part w′k = (023k+l−11)23k , it guesses

the value xk. Here we use the analysis similar to one presented in the proof
of Theorem 16. We can write h as

h = i · 8k+1 · 2l + j · 8k · 2l + q = (8i+ j)8k · 2l + q,

where i ≥ 0, j ∈ {0, . . . , 7}, and q < 8k · 2l.
Due to Lemma 2, xk is the (3k+ l+ 3)-th digit of bin(h) with probability

at least 1− 1
4·2l . In other words, xk is guessed as 1 if j ∈ {4, . . . , 7}, and as 0,

otherwise. M sets j = 0 at the beginning. We can say that for each heads,
it consumes a symbol from w′k. After reading 8k · 2l symbols, it updates j as
(j + 1) mod 8. When the value of the counter reaches zero, M guesses xk
by checking the value of j.

If w ∈ DIMA3l(I), then the input is accepted with probability at least

4 · 1

5
· 5

9
+

1

5
· 5

9
· (1− 1

4 · 2l
) =

5

9
− 1

36 · 2l
.
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If w /∈ DIMA3l, the input is rejected with probability at least

1

5
+ 4 · 1

5
· 4

9
=

5

9
.

If w ∈ DIMA3l and w /∈ DIMA3l(I), the input is rejected with probability
at least

4 · 1

5
· 4

9
+

1

5
· (1− 1

4 · 2l
) =

5

9
− 1

20 · 2l
.

Therefore, the input is recognized with error bound ε = 4
9
+ 1

20·2l , where ε <
1
2
for any even l ≥ 0, and ε can be arbitrarily close to 4

9
for sufficiently large l.

Since the cardinality of set {I | I ∈ I} is uncountable, there are uncountably
many languages in {DIMA3l(I) | I ∈ I}, each of which is recognized by a
bounded-error realtime PCA.

It is a known fact that bounded-error probabilistic automata can recog-
nize only regular languages in polynomial time [14]. Therefore, realtime PFAs
without additional memory cannot recognize uncountably many languages,
and hence one is the minimal number of counters required to recognize un-
countably many languages in realtime.

We continue with the recognition of unary languages. We start with four
counters.

Theorem 28. Realtime unary P4CAs can recognize uncountably many lan-
guages with any error bound.

Proof. We describe a realtime P4CA, say MI , that can use a coinI landing
on head with probability pI for an I ∈ I. Let cj (1 ≤ j ≤ 4) represent the
value of j-th counter.

Let l > 0 be an integer that determines the error bound ε, such that
ε ≥ 1

4·2l . The automaton MI executes an iterative algorithm. We use i to
denote the iteration steps. At the beginning, i = 1. In each iteration, 64i · 2l
tosses of coinI are performed. The details are as follows:

• Set c1 = 64i · 2l and c2 = 4 · 8i · 2l. (The details are given later.)

• Perform c1 flips of coinI and meanwhile increase/decrease the values
of c2 and c3 by 1. If the coin flip result is heads, one of the counters
is increased by 1 and the other one is decreased by 1. When one of
them hits zero, the update strategy is changed. Since c3 is zero at the
beginning, the first strategy is decreasing the value of c2 and increasing
the value of c3. Thus, after each 4 · 8i · 2l heads, the update strategy
on the counters is changed.
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• When c1 hits zero, c2 and c3 are equal to t and 4 · 8i · 2l − t, and, the
automaton makes its decision on xi. If the latest strategy is decreasing
the value of c3 or c2 = 0, then xi is determined as 1. Otherwise, it is
determined as 0.

The described algorithm is similar to the one that is used in the proof
of Theorem 22. Here changing the update strategy between c2 and c3 refers
to the change of bit xi, which is changed after each 4 · 8i · 2l heads: It is 0
initially, and then alternates between 1 and 0 (1, 0, 1, 0, . . .).

At the end of the i-th iteration, we have c1 = 0, c2 = t, and c3 = 4·8i·2l−t.
We initialize (i+ 1)-th iteration as follows:

• By using c2 and c3, we can set c1 = 2t+ 2(4 · 8i · 2l− t) = 8i+1 · 2l. Now
c2 = c3 = c4 = 0.

• Set c2 = c3 = 8i+1 · 2l by setting c1 = 0. Then, in a loop, until c2 hits
zero: Decrease value of c2 by 2l, then transfer c3 to c4 (or c4 to c3 if at
the beginning of loop’s iteration c3 = 0) and meanwhile add 8i+1 · 2l to
c1.

• c1 = 8i+1(8i+1 · 2l) = 64i+1 · 2l, c2 = 0, c3 = 8i+1 · 2l, c4 = 0. Then, set
c2 = 4 · 8i+1 · 2l by setting c3 = 0.

After initializing, we execute the coin-flip procedure. Each iteration finalizes
after coin-flip procedure.

The input is accepted if there are no more input symbols to be read
exactly at the end of an iteration, say i-th, and xi is guessed as 1. Otherwise,
the input is always rejected.

The coin tosses part is performed in 64i · 2l steps. The initialization part
for i-th iteration is performed in

8i · 2l + 8i · 2l + 64i · 2l + 4 · 8i · 2l = 64i · 2l + 6 · 8i · 2l

steps, where i > 1. The initialization part for i = 1 is performed in 64 · 2l
steps.

Based on this analysis, we can easily define the language recognized by
MI . Let (ki)i∈N be the sequence such that k1 = 128 · 2l and ki = ki−1 +
(6 · 8i + 2 · 64i) · 2l for i > 1; and, let UP4CAl = {aki} be an unary language
corresponding to the sequence (ki)i∈N. Then, for any I ∈ I, the realtime
P4CA MI can recognize the language

UP4CAl(I) = {aki | aki ∈ U4PCAl for i ≥ 1 and i ∈ I}
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with bounded error. The automaton MI iteratively determines the values of
x1, x2, . . . with probability at least 1− 1

4·2l due to Lemma 2 and the number
of steps for each iteration corresponds with the members of U4PCAl.

Since I is an uncountable set and there is a bijection between I ∈ I and
UP4CAl(I), realtime P4CAs can recognize uncountably many unary languages
with bounded error.

We can establish a similar result also for realtime P2CAs. For this pur-
pose, we use the well-known simulation technique of k counters by 2 counters.

Theorem 29. Unary realtime P2CAs can recognize uncountably many lan-
guages with any error bound.

Proof. Let MI be the realtime P4CA described above and UP4CAl(I) be the
language recognized byMI for some l > 0. Due to the realtime reading mode,
the unary inputs to MI can also be seen as the time steps. For example, MI

can be seen as a machine without any input but still making its transition
after each time step. Thus, after each step it can be either in an accepting
case or a rejecting case.

It is a well-known fact that two counters can simulate any number of coun-
ters with a huge slowdown [28]. The values of k counters, say c1, c2, . . . , ck,
can be stored on a counter as

pc11 · pc22 · · · · p
ck
k ,

where p1, . . . , pk are some prime numbers. Then, by the help of the second
counter and the internal states, the status of each simulated counter can be
easily detected and stored, and then all updates on the simulated counters
are applied one by one.

Thus, by fixing the above simulation, we can easily simulate MI by a
P2CA, say M ′

I . Then, M ′
I recognizes a language with bounded error, say

UP2CAl(I).
It is easy to see that there is a bijection between

{UP4CAl(I) | I ∈ I} and {UP2CAl(I) | I ∈ I},

and hence realtime P2CAs also recognize uncountably many languages with
bounded error. We remark that for each member of UP4CAl(I), the corre-
sponding member of UP2CAl(I) is much longer.

Unary realtime probabilistic automata with one counter can recognize
only regular languages with bounded error [24]. Therefore, with less than two
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counters it is not possible to recognize uncountably many unary languages
with bounded error in realtime.

At this point, we can ask whether we can obtain the same results by using
sublinear counter values. For this purpose, we modify the algorithms given
above.

Theorem 30. Realtime unary P4CAs can recognize uncountably many lan-
guages in O(

√
n) space on the counters with any error bound.

Proof. We modify the algorithm given in the proof of Theorem 28 by putting
certain amount of delays between two coin tosses. Remember that before
starting coin tosses c1 = 64i · 2l and c4 = 0. In the new algorithm, before
each coin toss, (1) the automaton decreases the value of c1 and increases the
value of c4 by one until c1 reaches zero, and then (2) it decreases the value
of c4 and increases the value of c1 by one until c4 reaches zero. After such
operation automaton performs the coin toss and decreases the value of c1 by
one. Thus each coin toss can be done in 2 · c1 + 1 steps instead of a single
step. Therefore, 64i · 2l coin tosses can be done in

64i · 2l + 2 ·
64i·2l∑
j=1

j = 64i · 2l + 2 · (64i · 2l) · (64i · 2l + 1)

2
= 642i · 4l + 2 · 64i · 2l

steps.
The rest of the algorithm is the same. Then, the modified algorithm

recognizes the following languages:

UP4CA′l(I) = {ak′i | ak′i ∈ UP4CA′l for i ≥ 1 and i ∈ I},

where UP4CA′l = {ak′i}, (k′i)i∈N is the sequence such that k′1 = 642 ·4l + 192 ·2l
and k′i = k′i−1 + 6 · 8i · 2l + 3 · 64i · 2l + 642i · 4l for i > 1. During testing of
each potential member ak′i , the input has more than 642i · 4l symbols, while
the space used on counters does not exceed 64i · 2l. Therefore, the modified
automaton has O(

√
n) space complexity if the input length is n.

By using a similar trick and three counters, we can also modify the algo-
rithm given in the proof of Theorem 29 and use O(

√
n) space on the counters.

Theorem 31. Realtime unary P3CAs can recognize uncountably many lan-
guages with any error bound in O(

√
n) space on the counters.

Proof. In the proof of Theorem 29, two counters simulate four counters.
During the simulation, the values of c1, c2, c3 and c4 are represented with
the number

∏4
j=1 pj

cj , which is stored in one counter. We can pick p1 = 7,
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p2 = 5, p3 = 3, and p4 = 2. Then, at the i-th iteration,
∏4

j=1 pj
cj takes the

maximum value just before the coin-flip procedure, which is ti = 764i54·8i .
By using an extra counter, the algorithm can easily spend t2i dummy steps

before starting coin-flip procedure. That is, the value of the third counter is
set to ti, and then the values of the first and second counters are transferred
to each other ti times. Thus, the original algorithm is paused for t2i steps,
and after this pause, the algorithm continues with coin-flip procedure.

Therefore, when the space used on the counters does not exceed ti, the
algorithm reads a string longer than t2i . Therefore, this new realtime unary
P3CA uses O(

√
n) space on its counters when reading a string with length

n.

In the above algorithm, by using an extra counter, the algorithm is paused
for t2i steps at the i-th iteration. If we use (k− 2) extra counters (for k > 3),
then the algorithm can be paused for tk−1

i steps at the i-th iteration, and
hence the space usage on the counters can be reduced to O( k−1

√
n).

Corollary 11. Realtime unary PkCAs can recognize uncountably many lan-
guages with any error bound in O( k−1

√
n) space on the counters for any k > 2.

We continue to investigate sublinear space complexity with languages
defined over non-unary alphabets. Because only regular languages can be
recognized with one-way PTM in o(log log n) space with bounded error [19],
we can apply the space bound also for counter automata.

Corollary 12. Bounded-error one-way PCAs cannot recognize uncountably
many languages in o( k

√
log n) space for any k ≥ 1.

Proof. Suppose that bounded-error one-way PCA can recognize uncountably
many languages in o( k

√
log n) space. Then the counters of PCA can be stored

on a work tape using o(log log n) space, therefore, a o(log log n)-space PTM
can recognize uncountably many languages with bounded error. This makes
contradiction with the results from [19], since bounded-error one-way PTMs
in o(log log n) space can recognize only regular languages.

Since realtime automata are more restricted version of one-way automata,
bounded-error realtime PCAs cannot recognize uncountably many languages
in o( k

√
log n) space for some k ≥ 1. We show that this space bound can be

obtained. We first provide P18CA with polylogarithmic space bound.

Corollary 13. Realtime P18CAs can recognize uncountably many languages
with any error bound in polylogarithmic space, i.e., O(logc n) for some posi-
tive integers c.
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Proof. We can replace the registers of Mc,I given in the proof of Theorem 23
with counters, most of which will perform similar functions as registers:

• 2 counters store the values of m and m0.

• 2 counters store the value of |m| and perform operations with this value.

• 1 counter keeps the number of attempts for generating a prime number.

• 2 counters store two different prime numbers.

• 4 counters store the modules of prime numbers like in p1, p2, p3 and p4

of M .

• 1 counter keeps track of total number of subtractions.

• 2 counters perform the subtractions.

• 2 counters perform the operations with the values. We will refer them
as operational counters.

• 2 counters are used to bound the number of steps for operations. We
will refer them as step counters.

The algorithm for P18CA, say M ′
c,I , shortly M ′, is almost the same as

the algorithm of Mc,I . In order to compare the values of two counters, we
can decrease their values. In this way, the number of steps for checking and
initializing the values of the counters can be different. On the other hand,
our algorithm is designed to spend the same number of steps for many tasks.
For this purpose, we use step counters. More precisely, after reading each
bin(i), one of the step counters is initialized with the value 2c·|m| since this is
the maximum value for this part of the algorithm. Thus, whenever is needed,
we can easily count (up) to 2c·|m| by exchanging the values of step counters.

To generate, initialize, or check the value of c · |m| bits, the counters
holding the value |m| are used, i.e., by help of internal states, c · |m| bits can
be easily processed.

Two counters (operational) are enough to perform any single operation
(generating and initializing certain values and storing temporary values) of
M ′. We remark that the other counters are used to store the values to be
used later.

In order to check the specific bit of a number stored in a counter, we
use the technique given in the proof of Theorem 28: One of the counters is
initialized with the value m, which should be equal to 64k for some k, i.e.,
M ′ can copy m to a different counter and by help of another counter the
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stored value is iteratively divided by 64. Another counter is initialized with
the value 2

|m|−1
2

+2, which should be equal to 4 · 8k. (Remember algorithm
from the proof of Theorem 28, where value of c2 is initialized with 4 · 8i · 2l.)
To initialize this counter, its value is set to 1, and then with the help of
additional counter and counters that store and work with value |m|, the
value is iteratively multiplied by 2 for |m|−1

2
+ 2 times. Then, we can perform

64k coin-flips and easily determine whether the result (integer part) of the
division of the number of heads by 4 · 8k is odd or even.

At any step of M ′, the value of any counter does not exceed 2c·|m|. Since
m = |bin(i)| and the length of bin(i) is logarithmic to the length of the input
string, space complexity for any counter does not exceed O(logc n).

Corollary 14. For any k ≥ 1 there exists a natural number l, such that re-
altime PlCAs can recognize uncountably many languages in O( k

√
log n) space

with any error bound.

Proof. The values of the counters of P18CA M ′
c,I (shortly M ′) given in the

proof of Corollary 13 do not exceed 2c·|m|. We modify M ′ with additional
counters as follows: Each of the counters of M ′ (except two counters that
store and work with value |m|) is replaced with c · k counters in a way that
their values do not exceed 2

|m|
k . Therefore, for each of the mentioned 16

counters 1 ≤ i ≤ 16, the value ci is distributed among c ·k counters to satisfy
the following condition:

ci =
c·k∑
j=1

cij · 2
|m|·(j−1)

k ,

i.e., the value of each counter never exceeds 2
|m|
k . Here we also use two

additional counters to help counting up to 2
|m|
k when necessary.

Thus, we obtain a realtime algorithm similar toM ′ with l = 2+16·c·k+2
counters. For t ≥ 263:

∑t
i=1 |bin(i)| > 2|bin(t)|, therefore,m = |bin(t)| < log n.

Since the value of each counter never exceeds 2
|m|
k and 2|m| ≤ 2 ·m ≤ 2 · log n,

the total space complexity is O( k
√

log n).

We finish this section by providing a sublinear space for realtime PCAs
having only two counters.

Theorem 32. Realtime P2CAs can recognize uncountably many languages
in O( k

√
n) space for any integer k > 1 with any error bound.
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Proof. Here we use the PlCA (shortly M ′
l ) for space complexity O(log n)

given in the proof of Corollary 14, therefore,

l = 2 + 16 · c+ 2.

We also use the idea of simulating any number of counters by two counters.
Let k be any integer greater than 1 and j = l · k.

As described in the proof of Theorem 29, a P2CA, say M ′
2, can simulate

M ′
l and the maximum value of each counter is pc11 · pc22 · · · · p

cl
l , where pi are

distinct prime numbers and ci is the maximum value of the i-th counter of
M ′

l (1 ≤ i ≤ l). By using additional internal states, we can easily modifyM ′
l ,

say M ′′, such that the i-th counter of M ′′ stores t
2·log2 pi·j

when its original
value is t.

Remember that in any step of computation the value of each counter of
M ′

l does not exceed 2|m| ≤ 2 · m ≤ 2 · log n. Thus, the value of the i-th
counter of M ′′ does not exceed

2 · log n

2 · log2 pi · j
=

logpi n

j
.

Let M ′′
2 be the P2CA simulating M ′′. Then, the maximum value of each

counter of M ′′
2 is calculated as

l∏
i=1

p
logpi

n

j

i =
l∏

i=1

n
1
j = n

l
j = n

l
l·k = k

√
n.



Chapter 5

Related results on quantum and
ultrametric automata

In this chapter, we present our results on quantum and ultrametric automata
that recognize uncountably many languages. We first give the definitions and
then present our results.

Say and Yakaryılmaz [36] proved that bounded-error polynomial-time
two-way finite automata with quantum and classical states (2QCFAs) can
recognize uncountably many languages. We prove the same result for restart-
ing realtime QCFAs. In [7], it was shown that 2QCFAs with a counter (2QC-
CAs) can recognize nonregular unary language with bounded error in middle
logarithmic space. We show that bounded-error unary 2QCCAs can recog-
nize uncountably many languages in middle logarithmic space. Shur and
Yakaryılmaz [40] proved that 2-state unary quantum finite automata (QFAs)
can recognize uncountably many languages with cutpoints. We present the
same result by fixing a single cutpoint. In [20], Freivalds proved that ultra-
metric automata with 3 states can recognize uncountably many languages,
and we improve this result by proving the same statement for 2-state ultra-
metric automata.

5.1 Definitions
We refer the reader to [30] for a complete reference on quantum computation,
to [35] for a pedagogical introduction to quantum finite automata (QFAs),
and to [5] for a comprehensive chapter on QFAs.

An m-state (Q = {q1, . . . , qm}) quantum system forms an m-dimensional
Hilbert space (Hm), complex vector space with inner product, spanned by
{|q1〉, . . . , |qm〉}, where |qj〉 is a column vector with zero entries except the

96
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j-th entry that is 1. A quantum state of the system is a norm-1 vector in
Hm:

|v〉 = α1|q1〉+ · · ·+ αm|qm〉,
m∑
j=1

|αj|2 = 1,

where αj is a complex number and represents the amplitude of the system
being in |qj〉, and the probability of system being in |qj〉 is given by |αj|2.

The quantum system evolves by unitary operators, also known as norm
preserving operators, represented by unitary matrices. Let U be a unitary
operator (matrix). Then its (i, j)-th entry represents the transition amplitude
from |qj〉 to |qi〉, where 1 ≤ j, i ≤ n. After applying U , the new state is

|v′〉 = U |v〉 = α′1|q1〉+ · · ·+ α′m|qm〉,
m∑
j=1

|α′j|2 = 1.

In order to retrieve information from the system, measurement operators
are applied. We use a simple one called projective measurement, say P .
Formally P is composed by k ≥ 1 elements {P1, . . . , Pk}. Each Pi is a zero-
one diagonal (nonzero) matrix and P1+· · ·+Pk = I. Therefore, P is designed
to decompose Hm into k orthogonal subspaces and Pj projects any vector to
its subspace, where 1 ≤ j ≤ k. After applying P to the system when in |v〉,
the system collapses to one of the subspaces, and hence the new quantum
state lies only in this subspace. The vector

|ṽj〉 = Pj|v〉

is the projection of the quantum state to the j-th space, and hence the
probability of observing the system in this subspace is given by pj = |||ṽj〉||2.
If this happens (pj > 0), the new quantum state is

|vj〉 =
|ṽj〉√
pj
.

The vector |ṽj〉 is called unnormalized state vector and tracing quantum
systems by such vectors can make the calculations simpler.

Now we give the definition of two-way quantum finite automaton with
classical head, known as two-way finite automaton with quantum and clas-
sical states (2QCFA) [4], which can use unitary operators and projective
measurements on the quantum part. Formally, a 2QCFA M is a 8-tuple

M = (S,Q,Σ, δ, sinit, qinit, sacc, srej),
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where

• S is the finite set of classical states,

• Q is the finite set of quantum states,

• Σ is the input alphabet,

• δ is the transition function and is composed by δq governing the quan-
tum part and δr governing the classical part,

• sinit ∈ S is the initial classical state,

• qinit ∈ Q is the initial quantum state,

• sacc ∈ S is the accepting classical state, and,

• srej ∈ S is the rejecting classical state.

The computational process of 2QCFA M is governed classically. At the
beginning of the computation, the classical part is initialized and the state
of quantum part is set to |qinit〉. In each step, the current classical state and
scanned symbol determines a quantum operator, either a unitary operator or
a projective measurement, which is applied to the quantum register. After
getting the new quantum state, the classical part is updated. If the quantum
operator is unitary, then the classical part is updated like a two-way deter-
ministic finite automaton. If the quantum operator is a measurement, then
the outcome is processed classically, that is, the next state and head move-
ment is determined by the current classical state, the measurement outcome,
and the scanned symbol. When entering sacc (srej), the computation halts
and the input is accepted (rejected).

Restarting realtime QCFA is defined similarly to restarting realtime PFA
(see Chapter 1 for the definition of restarting realtime PFA) — the automa-
ton reads the input in realtime mode, after reading the right end-marker
it accepts or rejects the input or restarts the computation from the initial
configuration.

A 2QCFA with a counter (2QCCA) is a 2QCFA augmented with a clas-
sical counter, where the classical part can access the counter.

We also consider realtime QFAs without classical states. Formally, a
realtime QFA M is a 5-tuple

M = (Q,Σ, δ, qinit, Qacc),

where
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• Q is the finite set of quantum states,

• Σ is the input alphabet,

• δ is transition function,

• qinit is the initial quantum state, and,

• Qacc ⊆ Q is the set of accepting states.

The transition function δ is governing transition of M in the following
way: When the automaton reads σ ∈ Σ̃ it applies unitary transformation
Uσ (which depends on σ) to the current quantum state |v〉 and changes the
quantum state to |v′〉 = Uσ|v〉.

The input w is placed on the input tape as w̃, and the input head of QFA
M is placed on the left end-marker in the beginning of the computation. M
reads the input symbol by symbol without pauses. After reading the right
end-marker and applying the last unitary transformation, M performs the
measurement on the resulting quantum state, and accepts (resp., rejects) the
input if the outcome of measurement is q ∈ Qacc (resp., q /∈ Qacc).

Language L ⊆ Σ∗ is said to be recognized by a machine M with cutpoint
λ if

• any member is accepted by M with probability greater than λ, and,

• any non-member is accepted by M with probability at most λ.

In this chapter we also consider ultrametric automata that use p-adic
numbers in their definition. Therefore, we continue with the definition of
p-adic numbers.

Different sciences use p-adic numbers, including chemistry and physics
[26, 43], and p-adic numbers are also used in the definitions of ultrametric
automata and ultrametric Turing machines [20]. A p-adic digit is a natural
number between 0 and p− 1 where p is an arbitrary prime number. A p-adic
integer (ai)i∈N is an infinite sequence of p-adic digits written from right to
left. A p-adic integer can be written like a decimal number ...ai...a3a2a1.

For each natural number, there exists its p-adic representation and only a
finite number of p-adic digits are not zeros. Negative integers have a different
representation in p-adic numbers, namely, they have an infinite sequence of
digits p− 1 to the left. If all digits of a p-adic integer are p− 1, then we have
the p-adic number -1. We can add, subtract and multiply p-adic integers
in the same way as natural numbers in base p. The only division that is
not possible in p-adic integers is division by p. For example, if we want
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to have a p-adic integer 1
p
, equation p · x = 1 should have a solution for

x, but multiplication by p-adic integer p gives zero in the right-most p-adic
digit. Nonetheless, p-adic integers can represent any integer and most of the
rational numbers, except for those having a positive integral power of p in
the divisor.

There also exist p-adic float numbers, which can have a decimal point and
are infinite to the left side but finite to the right side. For example, p-adic
number 1

p
can be written as

...0000.1.

The field of p-adic numbers is denoted by Qp. For the curious reader, David
A. Madore has written extensively about p-adic numbers and further infor-
mation on the subject can be found in [27].

To measure a p-adic number, we require the absolute value of a p-adic
number. If p is a prime number, then the p-adic ordinal of the rational
number a, denoted by ordpa, is the largest m such that pm divides a.

For any rational number x its p-norm (p-adic absolute value) is

‖x‖p =

{
1

pordpx
, if x 6= 0

0, if x = 0.

For example, if p = 5, ‖50‖5 = ‖2 · 52‖5 = ‖52‖5 = 1
52

= 1
25
, if p = 2,

‖50‖2 = ‖2‖2 = 1
2
, but for any other prime number p, ‖50‖p = 1.

Ultrametric automata are defined similarly to probabilistic automata. A
realtime p-ultrametric finite automaton is a 6-tuple

(S,Σ, δ, q0, F,Λ),

where

• S is the finite set of states,

• Σ is the input alphabet,

• δ : S × Σ× S → Qp is the transition function,

• q0 : S → Qp is the initial amplitude distribution,

• F ⊆ S is the set of accepting states, and,

• Λ = (λ,♦) is the acceptance condition where λ ∈ R is the acceptance
threshold and ♦ ∈ {≥,≤}.
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A probabilistic automaton has transition probabilities that are real num-
bers. In the case of p-ultrametric automaton the transitions have amplitudes,
which are p-adic numbers. Therefore, we can assume that, for a p-ultrametric
automaton, prime number p is also a parameter. Probabilistic automata have
their beginning distribution of probabilities among the states and transitions
are performed with probabilities. In ultrametric automata every state has a
beginning amplitude, and, by reading the input string, transitions are done
with amplitudes. This means that final amplitudes of the states are calcu-
lated in the same way as probabilities in probabilistic automata. Realtime
p-ultrametric automaton reads the input symbol by symbol without pauses
and after reading the symbol changes the amplitudes of the states accord-
ing to δ. To get the result after reading the input string, after reading the
right end-marker the amplitude of every accepting state is transformed into
p-norm and the string is accepted if and only if p-norm sum of accepting
states satisfies the acceptance condition.

All possible p-adic numbers are allowed to be used in p-ultrametric au-
tomata. This was allowed in the first definition of ultrametric automata
because Paavo Turakainen defined generalized finite automata where the
“probabilities” can be arbitrary real numbers and he has proven that lan-
guages recognizable by these generalized finite automata are the same as for
ordinary probabilistic finite automata [42]. Ultrametric automata defined
in this way have great capabilities, for example, they are able to recognize
nonrecursive languages [20].

5.2 Results
Quantumly, the membership of each positive integer in any I ∈ I can be
represented as a single rotation on R2 with the angle, originally given in [2]:

θI = 2π
∞∑
i=1

( xi
8i+1

)
,

xi = 1, if i ∈ I
xi = −1, if i /∈ I .

For any I ∈ I, we can compute the membership of the positive integer j
in I by using the technique described in [2, 36]. We call it Procedure ADH.

The qubit spanned by {|q1〉, |q2〉} is set to |q1〉. Then, it is rotated with
angle θI 8j times, which leaves the quantum state having angle

8j · 2π
∞∑
i=1

( xi
8i+1

)
= π

(xj
4

)
+ 2π

∞∑
i=j+1

( xi
8i−j+1

)
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from the initial position. After an additional rotation by π
4
counter clockwise,

the final angle from |q1〉 is π
2

+d if xj = 1 (j ∈ I) and it is d if xj = −1 (j /∈ I),
where d is sufficiently small such that the probability of the qubit being in
|q2〉 (|q1〉) is bigger than 0.98 if j ∈ I (j /∈ I). The success probability can be
increased arbitrarily close to 1 by tensoring multiple qubits with implemented
Procedure ADH and choosing the most frequent value of the measurement
as the decision.

Say and Yakaryılmaz [36] presented a bounded-error polynomial-time
2QCFA algorithm, say M , for

POWER-EQ = {aba7ba7·8ba7·82ba7·83b . . . ba7·8m | m ≥ 0}.

We remark that every member has 8m+1 a’s for some m ≥ 0. It is clear
that for any member of POWER-EQ having 8m+1 a’s and for any I ∈ I, M
can be modified, say MI , in order to determine whether m is in I or not by
using Procedure ADH with high probability. Therefore, MI can recognize
the following language with bounded error [36]:

POWER-EQ(I) = {w ∈ {a, b}∗ | w ∈ POWER-EQ and log8(|w|a) ∈ I}.

Then, we can conclude that 2QCFAs can recognize uncountably many lan-
guages with bounded error.

Procedure ADH can be trivially implemented by a restarting realtime
QCFA having a single qubit (multiple qubits for better success probability),
say MI for I ∈ I. Therefore, if we show that POWER-EQ is recognized by
a restarting realtime QCFA, say M , then, we can conclude that restarting
realtime QCFAs can recognize uncountably many languages. Since M can
execute MI in parallel to its original algorithm, i.e., M and MI are tensored
such that if M is in the restarting state, then all computation is restarted;
otherwise, the input is accepted if and only if both M and MI give the
decision of “accepting”. The obtained restarting realtime QCFA gives its
decisions with bounded error. We refer the reader to [47] for the technical
details how to obtain a bounded-error restarting realtime QCFA by tensoring
two bounded-error restarting realtime QCFAs, where the results are given for
general realtime QFA models, but it can be obtained for realtime QCFAs in
the same way since general realtime QFA models and realtime QCFAs can
simulate each other exactly.

Theorem 33. The language POWER-EQ can be recognized by a restarting re-
altime QCFA M with any error bound.

Proof. The quantum part of M has 9 states ({q1, . . . , q9}), but only the first
three of them are used to process useful information. Before each unitary
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operation, the quantum state has always zeros after these significant first
three entries

(α1 α2 α3 0 · · · 0)T .

After we apply a unitary operator U , we obtain a new quantum state. Then,
we make some measurements such that if the system is in span{|q4〉, . . . , |q9〉},
then the computation is always restarted. Therefore, if the computation is
not restarted, the new quantum state has always zeros for the last six entries.

(α′1 α′2 α′3 0 · · · 0)
T
.

Sometimes the measurement operator can also affect the first three states
that will be specified later.

Each unitary operator is a (9× 9)-dimensional unitary matrix. However,
the significant parts are the top-left (3× 3)-dimensional matrices due to the
measurement operators. Therefore, we can trace the computation only by a
3-dimensional vector and (3× 3)-dimensional matrices.

We describe our algorithm with integer matrices with a real coefficient
0 < l < 1:

lB = l

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

We remark that lB is the top-left corner of a unitary matrix and all the
other entries can be filled arbitrarily providing that the matrix is unitary.
For our purpose, first, we define our (3× 3)-dimensional matrices B’s, which
do the main tasks, and then complete the missing parts of unitary matrices
by picking a fixed l for all B’s. We refer the reader to [45, 48] for the details
of how to pick nonnegative real l < 1 and fill the missing parts of unitary
matrices.

After a measurement operator, we can obtain more than one unnormal-
ized state vector having norm less than 1. Depending on the measurement
outcome, the system collapses into one of them, and then the correspond-
ing unnormalized state vector is normalized (norm-1 vector). On the other
hand, since the probabilities can be calculated directly from the entries of un-
normalized state vectors, we trace the computation with unnormalized state
vectors.

After all these technical descriptions, we can give the details of our quan-
tum algorithm. (QFA algorithms based on such assumptions have been pre-
sented before (e.g., see [44]).)

The quantum part is in state |v0〉 = (1 0 0)T at the beginning. If the in-
put does not start with aba7b, then it is rejected deterministically. Otherwise,
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by reading 7 a’s, the quantum part is set to

|ṽ7〉 = l7

 1
7 · 56

0

 =

l
 1 0 0

56 1 0
0 0 0

7 1
0
0

 .

If the input is aba7b, then it is accepted deterministically.
In the remaining part, we assume that the input is of the form

aba7b(a+b)+.

Otherwise, the input is rejected deterministically. We remark that, after each
quantum step, the computation is restarted with some probability, and hence
the computation in a single round can reach to the end-marker only with a
very small (exponentially small in the input length) probability.

At the beginning of each block of a’s, say the i-th block, the quantum
state is

|ṽti−1
〉 = lti−1

 1
8ki−1

0

 ,

where

• |ṽti−1
〉 is the non-halting unnormalized quantum state vector,

• the first block (i = 1) refers the first a’s after aba7b,

• ki−1 is the number of a’s in the previous block with k0 = 7, and

• ti−1 = k0 + k1 + · · · + ki−1 + i − 1 is the number of unitary operators
applied until that step, i.e., 7 unitary operators are applied on the input
aba7b (the other quantum operators on aba7 can be assumed as identity
operator), and then for each symbol after aba7b, a unitary operator is
applied (i− 1 refers the number of b’s).

Notice that the expected number of a’s in the i-th block is already written
as the amplitude of the |q2〉, i.e., for any member, the number of a’s in the
i-th block is 8 times of the number of a’s in the previous block.

During reading the i-th block, the number of a’s is counted and kept as
the amplitude of |q3〉:

lti−1+j

 1
8ki−1

j

 = l

 1 0 0
0 1 0
1 0 1

 lti−1+j−1

 1
8ki−1

j − 1

 .
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After reading all a’s in the block and just before reading b, the quantum state
is

lti−1

 1
8ki−1

ki

 .

Then, we obtain the following vector after reading b and just before the
measurement:

lti

 1
8 · ki

ki − 8ki−1

 = l

 1 0 0
0 0 8
0 −1 1

 lti−1

 1
8ki−1

ki

 .

After this, the measurement operator, in addition to the previously described
standard behavior, also checks whether the system is in span{|q1〉, |q2〉} or
span{|q3〉}. In the latter case, the input is rejected, and the computation
continues, otherwise. Here we have two cases:

• If ki 6= 8ki−1, then ki− 8ki−1 is a nonzero integer, and hence, the input
is rejected with probability at least l2ti .

• If ki = 8ki−1, then the input is rejected with zero probability.

That is, for any non-member, the input is rejected after a block with some
nonzero probability. For each member, on the other hand, the input is never
rejected until the end of the computation.

At the end of the computation, the state before reading the right end-
marker is

ltm

 1
8 · km

0


if there are m blocks of a’s. Then, we obtain the following quantum state
after reading the right end-marker

ltm+1

 1
0
0

 = l

 1 0 0
0 0 0
0 0 0

 ltm

 1
8 · km

0


and the input is accepted if |q1〉 is observed. Then, the input is accepted with
probability l2tm+2, which is clearly at least l2 times of any possible rejecting
probability before.

Now, we can analyze a single round of M , the period from the initial
configuration to giving a decision or to restarting the computation, and then
calculate the overall probabilities on the given input.
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Any member is accepted with an exponentially small but non-zero prob-
ability (l2tk+2) and it is rejected with zero probability. Therefore, in expo-
nential expected time, the input is accepted with probability 1.

Any non-member, on the other hand, is again accepted with a very small
non-zero probability, but it is also rejected with a probability sufficiently
bigger than the accepting probability. Therefore, in exponential expected
time, the input is rejected with probability R

A+R
that is at least

R

l2R +R
=

1

1 + l2
>

1

2
,

where A and R are the accepting and rejecting probabilities, respectively, in a
single round (see [46] for the details of calculating the overall rejecting prob-
ability). We can pick l arbitrarily small, and hence the rejecting probability
can be arbitrarily close to 1.

Corollary 15. Exponential expected time restarting realtime QCFAs can rec-
ognize uncountably many languages with any error bound.

It is still open whether restarting realtime QCFAs can recognize a non-
regular language with bounded error in polynomial time.

Some algorithms can be space sufficient only for the members. That is
known as recognition with middle space [41]. The standard space usage is
then called as recognition with strong space.

Now we will consider middle space complexity results. We know that
2QCCAs can recognize the following nonregular unary language with any
error bound ε > 0 in middle logarithmic space [7]:

UPOWER = {a2m | m ≥ 0}.

Here the base-2 is not essential and it can be replaced with any integer bigger
than 2. Therefore, 2QCCAs can also recognize

UPOWER3 = {a8m | m ≥ 0}

with bounded error in middle logarithmic space (by slightly modifying the
algorithm for UPOWER). Moreover, for any I ∈ I, 2QCCAs recognize the
following language

UPOWER3(I) = {a8m | m− 1 ∈ I}

with bounded error in middle logarithmic space, i.e., we first determine
whether the input is of the form a8m with high probability. If so, we call Pro-
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cedure ADH, which does not use the counter, to determine whether (m− 1)
is in I or not with high probability.

Theorem 34. Unary middle logarithmic-space 2QCCAs can recognize un-
countably many languages with any error bound.

Now we switch our attention to finite automata that recognize languages
with cutpoint. Rabin has proven that 2-state PFAs can recognize uncount-
ably many languages [32]. The proof is based on a single PFA and the fact
that there are uncountably many cutpoints. But the question whether 2-
state PFAs can recognize uncountably many languages with fixed cutpoint
has not been considered for long time up to our knowledge. Very recently,
the following result was shown [29].

Fact 6. Realtime 2-state PFAs can recognize uncountably many languages
with cutpoint 1

2
.

Shur and Yakaryılmaz have obtained similar result for 2-state unary
QFAs, and the proof is based on a single QFA and the fact that there are
uncountably many cutpoints, where each cutpoint defines different language
for constructed QFA [39, 40]. Here we show how to recognize uncountably
many unary languages with 2-state QFAs with fixed cutpoint.

We denote a rotation operator on a single qubit by Uθ, where θ is an angle
of rotation on R2 counterclockwise. We define a unary 2-state rotation QFA:
Mθ = ({qinit, q2}, {a}, Uθ, qinit, {qinit}). Let θ1 = 2π · α1 and θ2 = 2π · α2,
where α1 = 0.a1a2a3 · · · and α2 = 0.b1b2b3 · · · are binary representations of
two irrational numbers in interval [0, 1).

Theorem 35. If ai = bi for all i > 1 and a1 6= b1, then Mθ1 and Mθ2

recognize the same language with cutpoint 1
2
.

Proof. Without loss of generality, let α1 = 0.0a2a3 · · · and α2 = 0.1b2b3 · · · .
Then, for any k > 0, kθ2 = kπ + kθ1. Therefore, after reading k ≥ 0 input
symbols both Mθ1 and Mθ2 have equal accepting probabilities, and hence
both automata accept the same inputs.

Theorem 36. If a2 6= b2, then there are cases in which Mθ1 and Mθ2 can
recognize the same language with cutpoint 1

2
.

Proof. If a1 = b1 = 0 and α2 = 0.5 − α1, then kθ2 = kπ − kθ1 and so the
string ak (k ≥ 0) is accepted with equal probabilities by Mθ1 and Mθ2 .

If a1 = b1 = 1 and α2 = 1.5− α1, then kθ2 = 3kπ − kθ1 and so similarly
the string ak (k ≥ 0) is accepted with equal probabilities by Mθ1 and Mθ2 .

Remark that in both cases a2 6= b2 because α1 and α2 are irrational
numbers:
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• It is given that α1 + α2 = 0.5. Then, α1 6= 0.25 and α2 6= 0.25 because
they are not rational. Thus, either α1 > 0.25 and α2 < 0.25 or α1 <
0.25 and α2 > 0.25; or equivalently, either a2 is 1 and b2 is 0 or a2 is 0
and b2 is 1.

• It is given that α1 + α2 = 1.5. Then, α1 6= 0.75 and α2 6= 0.75 because
they are not rational. Thus, either α1 > 0.75 and 0.5 < α2 < 0.75 or
0.5 < α1 < 0.75 and α2 > 0.75; or equivalently, either a2 is 1 and b2 is
0 or a2 is 0 and b2 is 1.

In the above cases, both Mθ1 and Mθ2 recognize the same language with any
given cutpoint including 1

2
.

Theorem 37. If a2 = b2 and ai 6= bi for some i > 2, then Mθ1 and Mθ2

recognize different languages with cutpoint 1
2
.

Proof. Let i > 2 be the smallest i for which ai 6= bi. Without loss of general-
ity, we assume that ai = 0 and bi = 1 (the analysis for case when ai = 1 and
bi = 0 is similar). Then, we have

2i−3θ1 = 2l1π + (0.ai−2ai−10) · 2π + θ′1

and
2i−3θ2 = 2l2π + (0.ai−2ai−11) · 2π + θ′2,

where θ′1, θ′2 <
π
4
and l1, l2 ≥ 0. Thus, if both Mθ1 and Mθ2 read 2i−3 input

symbols, then:

• if ai−1 = 0, then Mθ1 accepts the input with probability greater than
1
2
, and Mθ2 accepts the input with probability less than 1

2
;

• if ai−1 = 1, then Mθ1 accepts the input with probability less than 1
2
,

and Mθ2 accepts the input with probability greater than 1
2
.

Therefore, the languages recognized by Mθ1 and Mθ2 with cutpoint 1
2
are

different.

From Theorem 37 we can conclude that unary 2-state realtime QFAs can
recognize uncountably many languages with cutpoint 1

2
.

We close this chapter with our results on ultrametric finite automaton.

Theorem 38. For every prime number p a realtime p-ultrametric automaton
with two states can recognize uncountably many languages.
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Proof. Let p be an arbitrary prime number, α = · · · a3a2a1 be an arbitrary
p-adic integer where all ai ∈ {0, 1}. We define a language Lα in the following
way: A binary sequence belongs to Lα if and only if it is equal to the last
digits of α, namely, a1a2a3 · · · . Now we construct an ultrametric automaton
to recognize Lα.

The automaton has two states, s1 and s2, and F = {s1}. The accepting
state s1 has a beginning amplitude α. Because α is a p-adic integer, the p-adic
digits after the decimal point are zeros. State s2 has a beginning amplitude
1
p
. We define the transition amplitudes with the following transition matrix

for symbol “1” (
1
p
−1

0 1

)
,

and the following transition matrix for symbol “0”(
1
p

0

0 1

)
,

where (i, j)-th entry represents the transition amplitude from sj to si.
Assume that the input string is w = w[1]w[2] · · ·w[n] and in step i au-

tomaton reads w[i]. If w[i] = 1, 1
p
is subtracted from the amplitude of state

s1, otherwise nothing is subtracted (0 · 1
p
). If w[i] = ai, the remaining ampli-

tude of s1 has i-th p-adic digit equal to zero, and it will remain zero for all
the time of the work of the automaton. If w[i] 6= ai, s1 has i-th p-adic digit
different from zero (it is 1 if ai = 1 and w[i] = 0, and it is p− 1 if ai = 0 and
w[i] = 1).

When the whole input string w is read, the accepting state s1 has an
amplitude followed by bnbn−1...b1 after the decimal point, where all the digits
in bnbn−1...b1 are zeros if and only if the input string belongs to Lα. If the
input string does not belong to Lα, the amplitude of the state s1 will have
at least one digit after the decimal point that is not zero. The p-norm of
such number is at least p. If the p-adic number does not have nonzero digits
after the decimal point, its p-norm is not greater than 1. An ultrametric
automaton will accept the input string if the p-norm is less than or equal to
1. Otherwise, the input string is rejected.

If α1 6= α2, then Lα1 6= Lα2 . There are total uncountably many such num-
bers α, therefore, uncountably many different languages Lα. The constructed
ultrametric automaton recognizes Lα for any prime number p and any p-adic
integer α. Therefore, for any prime number p, two-state p-ultrametric au-
tomaton can recognize uncountably many languages.
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Conclusion

The results presented in this thesis are original, and they are new contribu-
tions to the fields of computational complexity, probabilistic and quantum
computation, and automata theory.

In this thesis, we consider different probabilistic computational models
that recognize or verify uncountably many languages. We examine the mod-
els on different uncountable sets of unary and binary languages, as well as
on the sets of all languages. We obtain many new results, and we also leave
certain open problems for future work.

We show how to encode the membership information for uncountably
many languages in the probabilistic binary value, and how to guess the mem-
bership information with probabilistic experiments correctly with bounded
error. After that, we show how to extend the experiment for obtaining ar-
bitrarily small error bound. We also investigate different encodings, and
provide some evidence that our special encoding works fine and why trivial
encoding does not work.

We obtain different upper bounds on space complexity for PTMs and
probabilistic counter automata with different number of counters that recog-
nize any language with bounded error. We summarize our results in Table
6.1. Note that in unary case each considered model uses exponentially less
resources than in binary case because of smaller number of coin tosses. We
also remark that for one-way probabilistic counter automata it is not enough
to have one counter to recognize all languages with bounded error.

110
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alphabet machine space time
unary PTM O(n) O(2n)
binary PTM O(2n) O(22n)
unary 1P4CA O(2n) O(2n)
binary 1P4CA O(22n) O(22n)
unary 1P2CA O(22n) O(22n)

binary 1P2CA O(222
n

) O(222
n

)
All results are proven for any error bound ε > 0.

Table 6.1: Recognition of any language.

After that, we consider the verification power of probabilistic machines
that can verify any language. We obtain different results for two-way private-
coin IPSs. We summarize our results in Table 6.2. We remark that in case
of weak IPSs non-members may not be rejected with high probability, or, in
other words, the computation may not halt with high probability on non-
members.

alphabet type of IPS verifier space time
unary one prover PTM O(log n) O(2n)
binary one prover PTM O(n) O(22n)

binary weak and one prover sweeping PFA O(1) O(222
n

)
binary two provers 1PFA O(1) O(22n)

All results are proven for any error bound ε > 0.

Table 6.2: Verification of any language.

Then, we consider different probabilistic models that can recognize un-
countably many languages with bounded error. We summarize our results in
Table 6.3. Some bounds presented in the table are tight. Realtime counter
automata require at least one counter in binary case and two counters in
unary case. Realtime PTMs cannot have o(log log n) space complexity. For
any k > 0:

• Realtime multi-counter automata cannot have o( k
√

log n) space com-
plexity.

• There exists m, such that realtime PmCAs can have O( k
√

log n) space
complexity.

• Realtime P2CAs can have O( k
√
n) space complexity.
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Bounded-error polynomial-time PTMs using o(log log n) space can recog-
nize only regular languages, and we show polynomial-time O(log log n)-space
unary sweeping PTM for uncountably many languages for any error bound.
Note that results obtained for restarting realtime models are also valid for
postselecting realtime models.

In our proofs, we use unary languages AM75, ULOG, UP2CA, binary lan-
guages LOG, LOGLOG, DIMA, DIMA3, and their certain modifications.

alphabet machine space time
unary sweeping PTM O(log log n) O(n log n)
unary 2P2CA O(log n) O(n log n)
binary sweeping PCA ω(1) O(2n)
binary restarting realtime PCA1 ω(1) O(2n)
binary 2PCA O(n) O(n)
binary sweeping PCA O(n) O(n

√
n)

unary PTM O(log n) realtime
unary (k > 2) PkCA O( k−1

√
n) realtime

unary P2CA O(n) realtime
binary PTM O(log log n) realtime
binary (for k ≥ 1 exists m) PmCA O( k

√
log n) realtime

binary P2CA O( k
√
n) realtime

binary PCA2 O(n) realtime
1 This result is proven for any error bound ε > 2

5
.

2 This result is proven for any error bound ε > 4
9
.

All other results are proven for any error bound ε > 0.

Table 6.3: Recognition of uncountably many languages.

After that, we consider different probabilistic models that can verify un-
countably many languages with bounded error. We consider one-way private-
coin IPSs with one prover and summarize our results in Table 6.4. Sweeping
PFA verifier mentioned in the table is guaranteed to stop the computation
in linear time, and the other results have expected time complexity. In our
proofs, we use the languages USQAURE, UPOWER64, DIMA2, and DIMA2l.
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alphabet verifier space time
unary 2PFA O(1) O(n2), expected
binary sweeping PFA O(1) O(n)
unary restarting realtime PFA1 O(1) O(2n), expected
binary restarting realtime PFA O(1) O(n), expected

1 This result is proven for error bound 2
5
, all other results are proven for any error

bound ε > 0.

Table 6.4: Verification of uncountably many languages.

We also present related results on quantum and ultrametric automata.
We show that exponential expected time restarting realtime QCFAs can rec-
ognize uncountably many languages with any error bound. For the same
task, we also present unary middle logarithmic–space 2QCCAs. Then, we
switch our focus to the recognition with cutpoint. We show that unary
2-state realtime QFAs can recognize uncountably many languages with cut-
point 1

2
. Similarly, we also show that, for any prime number p, a realtime

p-ultrametric automaton with two states can recognize uncountably many
languages.

We specify certain open problems. Very restricted bounded-error non-
constant-space models can recognize uncountably many languages. Even
though constant-space PTMs can verify uncountably many languages, it is
open whether they can recognize uncountably many languages with bounded
error.

The next interesting open question is about the verification of all lan-
guages in constant space. In our results in IPS with one prover non-members
may not be rejected with high probability, while in IPS with two provers
non-members are always rejected with high probability. Therefore, the ques-
tion is, whether constant-space verifier can reject non-members with high
probability in IPS with one prover.

There are open problems regarding unary languages. We still do not
know, whether unary two-way o(log log n)-space PTMs or one-way o(log n)-
space PTMs can recognize nonregular languages. If one of the mentioned
models turns out to recognize nonregular languages, then most probably it
can recognize uncountably many languages.
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