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ABSTRACT

Microbiome is a significant contributor to the homeostasis of the human organism and
it is responsible for the biosynthesis of several compounds that the human organism cannot
by itself. The impact of such metabolites is various — there are beneficial, neutral and harmful
examples. Trimethylamine (TMA) has been identified as one such bacterial metabolite with
a potential negative impact on health. High levels of trimethylamine-N-oxide (TMAOQ), an
oxidized form of TMA, have been associated with cardiovascular and other pathological
conditions. Modifying the activity of bacterial TMA producing enzymes could have value in
medicine. Therefore more detailed functional and structural characterization of such TMA
producing enzymes is necessary.

Several bacterial TMA producing enzymes has been identified so far — CutC choline
lyase and CntA carnitine oxygenase being among ones known best. The aim of this study was
to characterize these enzymes by solving 3D structure, determining specific activities and
studying the properties of associated supra-molecular structures. In this study we solved the
3D crystal structure of CutC choline lyase from Klebsiella pneumoniae and discovered that it
exists in two different conformations dependent on the presence or absence of substrate, a
feature not described for other closely related enzymes. Klebsiella pneumoniae CutC is a part
of a GRM2 type bacterial microcompartment (BMC) system polyhedral or quasi-icosahedral
bacterial organelles consisting of a protein shell and encapsulated enzymatic core. We
therefore continued with a closer investigation of the assembly and encapsulation
mechanisms of this BMC. We discovered that the core enzymes are encapsulated in a
hierachial manner, with the CutC choline lyase playing a central adaptor role in this process.
We present a cryo-EM structure of a pT=4 quasi symmetric shell particle at 3.3 A resolution
and study the requirements for recombinant shell formation. We also analyze the substrate
panels of CntA oxygenase from four different hosts and confirm that in general the CntA
enzymatic activity is high for carnitine and gamma-butyrobetaine, medium for betaine and
very low for choline, thus clearing some previous controversies. We also demonstrated that
the TMA could be produced from carnitine by Providencia rettgeri bacteria and by purified
CntA enzyme at very low oxygen concentrations, thus suggesting that CntA, despite being an
aerobic enzyme, could still give a contribution in the total pool of TMA production in

anaerobic gastrointestinal system.



ABSTRAKTS

Mikrobioms ir svarigs cilvéka homeostazes uzturéSanai un tas ir spgjigs producéet
vairakus savienojumus, kurus cilvéka organisms pats par sevi nespgj. Sadu metabolitu
ietekme ir daudzveidiga — tie var biit labveligi, neitrali un kaitigi. Trimetilamins (TMA) ir
ticis identificéts ka viens no bakteriju metabolitiem ar potenciali negativu ietekmi uz cilveka
veselibu. Augsts trimetilamina oksida (TMAO) Iimenis organisma ir ticis saistits ar augstaku
risku saslimt ar sirds-asinsvadu un citam saslim$anam. Bakterialo trimetilaminu producg&jos$o
enzimu aktivitates izmainiSanai varétu biit nozimigs pielietojums medicina. Tadgjadi ir
nepiecieSams detalizétaks funkcionals un strukturals §adu enzimu raksturojums.

Vairaki bakteriali TMA producgjosi enzimi ir tikusi identificéti — CutC holina liaze un
CntA karnitina oksigenaze ir vislabak pazistamas. ST darba mérkis bija raksturot $os enzimus,
noteikt to trisdimensionalas struktiiras, detektet specifisko aktivitati un pétit asociétu
lielmolekularu kompleksu ipasibas. Saja darba tika noteikta Klebsiella pneumoniae CutC
holina liazes trisdimensionala kristalstruktira un tika atklats, ka, atkariba no substrata
klatbiitnes, Sis enzims eksist€ divas dazadas konformacijas — unikala ipasiba starp
radniecigiem enzimiem. Klebsiella pneumoniae CutC ir dala no GRM2 tipa bakteriala
mikrokompartmenta (BMC) sisteémas, kvazi-ikosahedralas vai ikosahedralas baktériju
organellas, kura sastav no proteinu caulas un enzimatiskas serdes. P&tjjums atklaja, ka
enzimatiska serde tiek iepakota hierarhiala veida, kura CutC holina liaze funkcioné ka
centralais adaptorproteins. Mes prezent€jam ar krio-elektronmikroskopiju iegitu pT=4
kvazisimetrisku bakteriala mikrokompartmenta ¢aulas dalinas struktiiru 3.3 A iz&kirtsp&ja un
pétijam rekombinantu Caulu izveidoSanai nepiecieSamos prieksnosacijumus. M@s ar1 testgjam
substratu profilu CntA oksigenaz€ém no cetriem dazadiem saimniekorganismiem un
secinagjam, ka CntA oksigenaze ir visaktivaka ar karnittha un gamma-butirobetaina
substratiem, vidgji aktiva ar betaina substratu un mazaktiva ar holina substratu. Mes ar1
demonstréjam, ka Providencia rettgeri baktériju kultiira un attirits CntA enzims sp&j producét
TMA zemas skabekla koncentracijas, kas norada, ka CntA enzims, par spiti tam, ka tas ir

aerobs, neliela mera varetu piedalities TMA producéSana anaerobiska vide zarnu trakta.
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ABBREVIATIONS

ATP — adenosine triphosphate

BDP — bacterial microcompartment shell
derived particle

BMC — bacterial microcompartments
cryo-EM — cryogenic electron microscopy
COA —coenzyme A

DNA — deoxyribonucleic acid

DTT - dithiothreitol

EDTA — ethylenediaminetetraacetic acid
FMO3 - flavin containing monooxygenase
3

GCPR — G protein-coupled receptor

CTF — contrast transfer function

GBB — gamma butyrobetaine

GRE — glycyl radical enzyme

GRE-AE — glycyl radical enzyme
activating enzyme

GRM - glycyl-radical enzyme associated
bacterial microcompartment

IPTG — isopropyl f-D-1-
thiogalactopyranoside

MALDI-TOF-MS — matrix-assisted laser
desorption/ionization time-of-flight mass

spectrometry

MOPS — 3-(N-morpholino)
propanesulfonic acid

NADH — nicotinamide adenine
dinucleotide, reduced

NAD" — nicotinamide adenine
dinucleotide, oxidized

PCR — polymerase chain reaction

PEG — polyethylenglycol

PTAC — phosphotransacetylase
SDS-PAGE - sodium dodecyl sulfate
polyacrylamide gel electrophoresis

SPA —single particle analysis

TAARS — trace amine-associated receptor
5

TEM — transmission electron microscopy
TFA — trifluoroacetic acid

TMA — trimethylamine

TMAO - trimethylamine-N-oxide
UPLC-MS/MS — ultra performance liquid
chromatography - tandem mass

spectrometry



INTRODUCTION

Microbes play significant roles in the life of all higher organisms, including humans.
They are everywhere in biosphere, and we are in a constant and uninterrupted contact with
them every day. Human organism is a host for a wide spectrum of bacteria, archaea, fungi
and viruses, generally designated microbiota. The microbiota has various impacts on human
organism. There are mutualistic examples, such as microbiota synthesizing important
nutrients or vitamins in exchange for living environment. Many species of microbiota can
also be commensals without any direct positive or negative influence on its host. A certain
fraction of microbiota can also be pathogens in certain situations. All roles of microbiome are
not fully understood yet and its influence may have far reaching consequences in
immunological processes, brain development, pathogenesis of diseases and other areas.

One way how the microbiota can exercise its influence is by secreting unique
metabolites fulfilling particular functions in human organism. Such bacterial metabolites as
short chain fatty acids, secondary bile acids and trimethylamine (TMA) has been identified as
potential causes of pathological conditions. TMA is a simple organic compound produced by
bacterial degradation of organic compounds, and this is done by both free environmental
bacteria and microbiota bacteria in digestive systems. TMA and its metabolite
trimethylamine-N-oxide (TMAOQ) has been an object of a notable interest in recent years,
because the later has been positively associated with the development of cardiovascular
diseases. Therefore development of methods for TMA/TMAQO reduction or elimination could
have value in therapy and prevention. If the aim would be reducing the bacterial production
of TMA/TMAO, more information about bacterial TMA producing pathways would be
valuable.

At the time of the start of this study several bacterial enzymes capable of producing
trimethylamine from nutrients such as carnitine, gamma-butyrobetaine (GBB) and choline
were already identified. Two most relevant of these are CutC choline lyase producing TMA
from choline and CntA carnitine oxygenase producing TMA from carnitine and GBB.
Characterization of CutC and CntA enzymes may give new fundamental insights into
functioning of glycyl radical enzymes (GRE) and Rieske type oxygenases and also could be
valuable for design of specific targeted inhibitors and evaluation of the contribution that these
enzymes give to the total pool of TMA/TMAO in organism. Since CutC is a bacterial

microcompartment (BMC) associated enzyme, a characterization of this supra-molecular



system would give new fundamental insights in the functioning of bacterial organelles that
could be useful for synthetic biology and biotechnological applications.

The aim of this study was to investigate two most relevant and well-known TMA
producing enzymes, CutC and CntA, and to give deeper fundamental insight into their
properties, functioning and structure. The specific tasks for achieving this were:

1) Perform functional and structural characterization of CutC choline lyase from
Klebsiella pneumoniae;

2) Examine the properties, assembly and structure of GRM2 type CutC
associated bacterial microcompartments;

3) Examine the substrate specificity and oxygen dependency of CntA oxygenase.



1. LITERATURE OVERVIEW

1.1 TMA and TMAO in Animalia organisms

Trimethylamine (TMA) is a simple organic compound, a tri-methylated derivative of
ammonia. It was predicted and chemically synthesized in 1851 (Hofmann, 1851). A gas in
room temperature, it is volatile and therefore has to be stored under pressure as liquid or as a
40% solution in water. The most notable property of TMA is its intensive, strong odor,
similar to one created by fish and decomposing biomass. Indeed, TMA has one of the lowest
human odor detection thresholds found in nature, with studies reporting thresholds as low as
0.21 ppb (Leonardos et al., 1969, Amoore & Hautala et al., 1983, Stephens, 1971). These
thresholds for related chemicals such as methylamine (32000 ppb), dimethylamine (340 ppb)
or triethylamine (480 ppb) are several orders of magnitude higher (Amoore & Hautala, 1983).
This high detection sensitivity is ensured by trace amine-associated receptor 5 (TAARD), a
GCPR receptor functioning as a vertebrate olfactory receptor with a high specific affinity for
TMA and N-methylpiperidine (Liberles et al., 2006). TMA can induce different responses
among diferent species: while for humans and rats TMA is repellent at any concentrations,
for mouse it is an attractive pheromone at low and repellant at large concentrations (Liberles
et al., 2006; Li et al., 2013).

Not surprisingly, after TMA chemical synthesis and characterization, it was soon
discovered in herring-brine (Hofmann, 1853). It was later identified in other biological fluids
such as urine (Dessaignes, 1856), blood and cerebrospinal fluid (Dorée and Golla 1911) and
bile (von Zeynek 1899). TMA presence has also been detected in fungi (Hanna et al., 1932)
and plants (Cromwell et al., 1966). Despite TMA presence in such diverse group of living
organisms, all TMA producing enzymatic pathways discovered so far are bacterial, although
for marine animals there are some evidence about endogenous production of TMA (Goldstein
& Funkhouser, 1972; Seibel & Walsh, 2002).

Since TMA is a small molecule, soluble both in water and fat, it can easily cross
biological membranes and spread into organism. So far there is no evidence about
mammalian enzymes being capable of producing TMA, so it is assumed that in mammals it
comes either directly from food or it is synthesized by microbiota bacteria from precursors in
gastrointestinal system. Choline, L-carnitine and y-butyrobetaine have been demonstrated as
such precursors in humans (Koeth et al., 2013, Tang et al., 2013, Koeth et al., 2014). Products
rich in choline such as eggs have been showed to increase TMAO amounts in human
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organism (Miller et al., 2014) and the presence of TMA-producing microbiota species
correlate with higher TMAQO amounts in mice (Romano et al., 2015).

In mammals, TMA is further metabolized by hepatic flavin containing
monooxygenase 3 (FMO3) into trimethylamine oxide (TMAOQO), an odorless compound (Lang
et al., 1998). On average in Western diet about 50 mg of TMA is generated in human
organism daily and almost all is eventually excreted with urine. More than 90% of this
excreted TMA is usually in its metabolized TMAO form (Al-Waiz et al., 1987a, Zhang et al.,
1996). Not every mammalian species oxidize TMA into TMAO with equal efficiency. For
example, mice have significant FMO3 expression differences between male and female livers
— while in females FMO3 expression is high, and most of the TMA is converted into TMAO
(like in humans), in males FMO3 expression is repressed by testosterone (Falls et al., 1997)
and is 1000-fold lower if compared to females (Li et al., 2013). As a result, most of the TMA
in male mice remains unconverted and in urine reach milimolar concentrations. It has been
recently demonstrated that a human molybdenum-containing mitochondrial reductase can
reduce TMAO into TMA (Schneider et al., 2018). This suggests that a counter reduction of
TMAO could also contribute to the overall TMA/TMAOQO balance in human organism.

For marine fish and cephalopods accumulation of TMAQO in the tissue is thought to be
a vital adaptation for protein stabilization against denaturation from hydrostatic pressure and
osmolytes (Yancey et al., 1982; Yancey et al., 2001; Treberg et al., 2002). There is a positive
correlation of the depth of the fish habitation with the amount of TMAO in tissue — in the
shallow-living marine species the content of TMAO is as low as 40 mM/kg, while in deep-
living fish species it can increase almost tenfold up to 386 mM/kg (Yancey et al., 2014). This
is also supported by in vitro studies, demonstrating protein-stabilizing capabilities of TMAO
(Yancey et al., 1982; Yancey et al., 1999; Zou et al., 2002; Sarma et al., 2013). The source of
TMAO in marine animals is unknown. While capability to oxidize TMA to TMAO has been
showed in various animals, this still gives no answer about the source of the precursory
TMA. A food chain accumulation of TMA/TMAO from plankton to higher organisms could
be an explanation, but there are some evidences that fish can keep homeostasis of TMAO in
check even without nutritional supplementation of TMA or TMAO (Cohen et al., 1958;
Goldstein & Palatt, 1974). Considering TMAO importance, relying only on external
TMA/TMAO sources would be a risky strategy for keeping homeostasis. This points to a
possibility of endogenous TMA production in fish, although direct evidences to support this
are few (Goldstein & Funkhouser, 1972; Seibel & Walsh, 2002).
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1.2 TMA and TMAO role in pathological processes
1.2.1 TMA and trimethylaminouria

The majority of TMA in human organism is usually oxidized into TMAO by hepatic
FMO3 (Fig 1). However, insufficient activity of FMO3, caused by genetic mutations in
FMO3 gene, can upset this balance (Dolphin et al., 1997; Treacy et al., 1998). Impaired
oxidation of TMA results in its accumulation in the organism, and, since TMA can cross skin
easily (Kenyon et al., 2004), the excess is excreted through skin. This is the cause of a genetic
condition known as trimethylaminouria or fish odor syndrome, manifesting itself as a very
unpleasant, fishy aroma of the body. Although this condition is not life-threatening and seems
to have no direct negative impact on health, the psychological and social impacts can be
major — those affected are often depressed, socially isolated and even suicidal (Christodoulou,
2012). True prevalence of trimethylaminouria is largely unknown, since the symptoms may
vary among individuals and many, perhaps, even most cases are not reported; one estimate of
the amount of heterozygous carriers in white British population is 0.5-1%, resulting in a
frequency of 1 per 40000 births (Al-Waiz et al., 1987b). Trimethylaminouria is a
polymorphic trait — more than 30 different missense and nonsense variations in FMO3 gene
responsible for this condition have been described (Shephard et al., 2015). This accounts for
the large difference of severity of symptoms among individual cases.

Dietary  |ntestinal microbiota CH Oxidation by o}
Choline enzymes | 3 hepatic EMO3 I|\J+
Carnitine ’ N » H,c7 ) CHs
H3C CH3 CHS
GBB . . . i .
Betaine Trimethylamine Trimethylamine-N oxide
,’ l'rSca\.renger receptor upregulation
7 'nsufficient FMO3 J FMO3 activity modification
4 activity J Platelet hyperactivation
f Unknown mechanisms?
Trimethylaminouria Cardiovascular diseases
Diabetes?

Kidney failure?
Colorectal cancer?

Fig 1. TMA and TMAO production and impact in animal and human organisms.

1.2.2 TMAO and associated conditions
TMA and especially its metabolite TMAO has been in intense spotlight during the last
few years since a metabolomics study of clinical data revealed an association of elevated
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TMAO with cardiovascular diseases (Wang et. al., 2011). Since then, numerous studies of
clinical data have associated TMAO with several conditions (Fig 1) such as pathogenesis of
cardiovascular diseases (Tang et. al., 2013; Treseid et. al., 2015; Organ et. al., 2016;
Randrianarisoa et. al., 2016), kidney failure (Tang et. al., 2015; Kim et. al., 2016; Missailidis,
2016), insulin resistance (Dambrova et. al., 2016; Tang et. al., 2017) and colorectal cancer
(Bae et. al., 2014). Meta-studies have confirmed consistent correlation between TMAO and
cardiovascular diseases, demonstrating its usefulness as a biomarker (Heianza et. al., 2017;
Schiattarella et. al., 2017). Animal studies in mice (Wang et. al., 2011; Koeth et. al., 2013;
Chen et. al., 2017; Geng et. al., 2018) and rat (Li et. al.,, 2017) have demonstrated
development of atherosclerosis, endothelial damage and cholesterol accumulation in
endothelium caused by TMAO. There are also data from mice studies suggesting TMAO
involvement in development of diabetes (Gao et. al., 2014; Dambrova et. al., 2016). pyruvate
and fatty acid oxidation impaired by TMAO has also been reported in mice cardiac
mitochondria (Makrecka-Kuka M. et. al., 2017).

There are several suggested mechanisms for how TMAO could exercise its influence
on mammalian organism. A direct upregulation of atherogenic macrophage scavenger
receptors and stimulation of foam cell formation by TMAQO was historically first reported
pathway (Wang et. al., 2011). In this study an association between dietary choline
degradation by microbiota to TMA, subsequent TMA conversion into TMAO by FMO3 in
liver and atherosclerotic lesion development in mice was demonstrated. Analogous results
were observed in another study with another TMA precursor — L-carnitine, where TMAO
produced from L-carnitine in mice also promoted atherosclerosis and inhibited the reverse
cholesterol transport from foam cells (Koeth et. al., 2013). Since then, other studies have also
showed TMAO as being capable of inducing scavenger receptors (Geng et. al., 2018;
Mohammadi et. al., 2016) and supporting the dysfunction of endothelium (Li et. al., 2017;
Ma et. al, 2017).

Another suggested mechanism would be TMA/TMAO influence on the activity of
FMO3, the TMA metabolizing enzyme and a key regulator of cholesterol metabolism.
Upregulation of FMOS3 cause increased reabsorption of cholesterol in intestines (Warrier et.
al., 2015). Furthermore, FMO3 knockdown impairs glucose tolerance and prevents
hypercholesterolemia and atherosclerosis in mice model (Miao et. al., 2015). Since TMA is a
substrate of FMO3, it could be possible that TMA/TMAO increase the expression or activity
of FMO3 and therefore could be both pro-atherogenetic and pro-diabetic agent.
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TMAO has been also observed as capable of causing calcium release in platelets,
creating hyperreactivity and increasing the risk of thrombosis (Zhu et. al., 2016). This
mechanism has been showed to be dependable on the composition of microbiota species in
mice — transplantation of species capable of choline degradation into TMA had the
observable effect of transferring the increased platelet reactivity as well (Skye et. al., 2018). It
is possible that FMO3 can also influence the platelet reactivity (Zhu et. al., 2018), suggesting
the possibility of two different TMA/TMAO effects exercised through FMO3.

1.2.3 Managing the amounts of TMA and TMAO in organism

Since high amounts TMA/TMAO has been involved in development of
trimethylaminouria and possibly other medical conditions as well, creating strategies for
lowering the amount of TMA/TMAO have medical significance. There are several potential
strategies. Dietary management (Busby et. al., 2004) and low dosage wide-spectrum
antibiotic treatment (Treacy et. al., 1995; Chalmers et. al., 2006) has been used in
management of the symptoms of trimethylaminouria. They both have their drawbacks —
limiting dietary choline and carnitine can have repercussions, since they are important
nutrients, and antibiotics can be used only in short term in order to avoid dysbiosis. Another
proposed strategy is targeting microbiota in a non-lethal way — either by remodeling the
composition of gastrointestinal microbiota species or targeting particular bacterial enzymes
with specific inhibitors. Resveratrol has been showed to modify the composition of gut
microbiota and lowering the produced TMA amounts (Chen et. al., 2016). Specific inhibitors
targeting choline degrading enzyme CutC have been showed as capable of preventing TMA
production in bacterial cultures and mouse models (Wang et. al., 2015; Roberts et. al., 2018).
In these studies this inhibitory effect was also protective against development of
atherosclerotic lesions in mice. Meldonium, a chemical analogue of carnitine and GBB, has
also been showed as capable of influencing production of TMA/TMAO in humans and rats
(Dambrova et. al., 2013; Kuka et. al., 2014).

1.2.4 Criticism of TMA and TMAO as pathological agents

A certain amount of criticism has also been directed towards hypothesis of TMAOQO as
a pathogenic agent (Fennema et. al., 2016, Cho & Caudill, 2016). A major missing part in this
hypothesis is the fact that the exact effector receptor for TMA/TMAO has not been properly
identified and confirmed, so it is unknown what pathways are underneath the observed
TMAO effects. Meta-analysis of clinical data does not confirm direct causation between
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TMAO and cardiovascular diseases, since higher TMAO levels in these studies were
associated with generally increased mortality independently of the cause (Heianza et. al.,
2017; Schiattarella et. al., 2017). Therefore, higher TMAOQO levels could be merely a
consequence and just a marker of general health complications. Also, if TMA/TMAO is
regarded as a cause of cardiovascular diseases, then there is a paradox of the generally
accepted beneficiary effect of marine fish on human health and the high levels of TMAO in
such foods. There is also a study showing TMAO having a beneficial effect against
atherosclerosis (Collins et. al., 2016) and other studies showing that higher consumption of
such TMA precursors as choline and betaine are not associated with elevated risks of
cardiovascular diseases (Nagata et. al., 2015, Bidulescu et. al., 2007; Dalmeijer et. al, 2008).
So whether TMA/TMAO in real-world, low dosage, long exposure conditions can
substantially affect the development of any pathological condition in humans is still not

proven or disproven convincingly.

1.3 Bacterial TMA producing enzymes
1.3.1 CutC choline lyase

CutC choline lyase is a typical member of glycyl radical enzyme (GRE) class, with a
common trait of having a glycyl radical in the active site. GRE are metabolically diverse.
Most are catabolic — pyruvate formate-lyase (Knappe & Wagner, 1995; Becker et. al., 1999),
glycerol dehydratase (O'Brien et. al., 2004), choline lyase (Craciun & Balskus, 2012),
propane-1,2-diol dehydratase (LaMattina et. al., 2016), trans-4-hydroxy-I-proline dehydratase
(Levin et. al., 2017), anaerobic ribonucleotide reductase (Sun et. al, 1996, Logan et. al., 1999)
and isethionate sulfite lyase (Peck et. al., 2019). There is also an example of an anabolic GRE
— benzylsuccinate synthase (Leuthner et. al., 1998; Funk et. al., 2014). Glycyl radical
enzymes are dimeric proteins (Fig 2A), having a 10-f/a barrel fold — the monomer core is
made of a B barrel consisting of 10 strands and it is surrounded by outside a helices.

Anaerobic bacterial choline degradation into TMA and acetaldehyde has been
demonstrated already in the 1960s (Hayward & Stadtman, 1960), but the exact enzyme behind
this process was identified only in 2012, when Craciun and Balskus (2012) demonstrated that
this reaction in Desulfovibrio desulfuricans is performed by a GRE, designated as CutC (EC
4.3.99.4). This discovery was later confirmed with in vitro studies of purified CutC enzyme
and mutagenic active site-mapping (Craciun & Balskus, 2012; Craciun et. al., 2014). CutC is
a relatively widespread bacterial enzyme, with representatives of Proteobacteria, Firmicutes
and Actinobacteria having the corresponding gene (Rath et. al., 2017).
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Fig 2. A: Crystal structure of glycerol dehydratase dimer (PDB 1R9D), a closely related
enzyme of CutC. B: Proposed catalytic mechanism of CutC (according to Thibodeaux & van
der Donk, 2012).

Like all GRE, CutC requires an activating enzyme for the initial generation of the
radical in the active site. This reaction is performed by a special class of enzymes — glycyl
radical enzyme activating enzymes (GRE-AE), containing a 4Fe-4S cluster, coordinated via
three cysteines (Shisler & Boderick, 2014). The [4Fe—4S]?* cluster can be reduced by NADH
and the fourth uncoordinated iron atom in the cluster then becomes capable of coordinating
the S-adenosylmethionine molecule and cleaving it into methionine and the highly reactive
5’-deoxyadenosyl radical. This radical then further abstracts hydrogen atom from glycyl
radical enzyme glycine C2 atom, generating the glycyl radical (Fig 2B). The glycyl radical
itself then further abstracts hydrogen atom from active site cysteine sulfur atom, creating a
thyil radical. The thyil radical then abstracts the hydrogen atom from the substrate molecule,
causing a molecular rearrangement of the substrate molecule. The nature of this
rearrangement is not exactly clear, but there are evidence indicating that the TMA in CutC is
eliminated directly, since there are several amino acids serving as proton donors and
acceptors in the active site and TMA elimination pathway requires proton transport
(Thibodeaux & van der Donk, 2012; Bodea et. al., 2016). After this step the glycyl radical is
then regenerated and the reaction cycle can start again without any additional steps. It has to
be noted that the catalysis is strictly anaerobic — both GREs and GRE-AE are inactivated by
the presence of oxygen, because oxygen degrades the partially coordinated GRE-AE 4Fe-4S
cluster and by interacting with GRE glycyl-radical it cuts the main protein chain in GRE
(Wagner et. al., 1992; Yang et. al., 2009).
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1.3.2 CutC associated bacterial microcompartments

CutC enzyme is not a free cytoplasmic enzyme, but rather a bacterial
microcompartment (BMC) associated enzyme. Bacterial microcompartments are prokaryotic
organelles consisting of a protein shell and enzymatic core performing concerted metabolic
functions (Cheng et. al., 2008; Jorda et. al., 2013; Kerfeld et. al., 2018). According to their
functions BMC can be divided in two large groups: metabolosomes and carboxysomes. The
carboxysomes contain carbonic anhydrase and RuBisCo and their function is to perform
carbon fixation. Metabolosomes are more diverse and are involved in breakdown of such
compounds as choline, glycerine, 1,2-propanediol and ethanolamine. The metabolosomes
typically contain signature enzyme performing the breakdown of the initial substrate and
producing an aldehyde intermediate. This aldehyde intermediate is then further processed by
an aldehyde dehydrogenase and alcohol dehydrogenase pair, producing alcohol and R-CoA
products. The R-CoA is then finally processed by phosphotransacetylase (PTAC), producing
free CoA and phosphorylated compound (acyl-P or propionyl-P). The latter is then
transported to cytosol and converted by acyl kinase (AcK) into one carboxylic acid and one
ATP molecule (Fig 3A; Zarzycki et. al., 2015).

The BMC is formed of three types of BMC proteins (Fig 3B): hexameric BMC-H
(Kerfeld et. al., 2005; Sutter et. al., 2016), trimeric BMC-T (Heldt et. al., 2009; Klein et. al.,
2009) and pentameric BMC-P (or BMV; Tanaka et. al., 2009; Wheatley et. al., 2013). The
BMC shells are quasi icosahedral or icosahedral, with the BMC-H and BMC-T proteins
forming the surfaces of BMC shells (Sinha et. al., 2014; Sutter et. al., 2016; Sutter et. al.,
2017) and penatameric BMC-P capping the 5-fold icosahedron vertices (Wheatley et. al.,
2013). The transport of metabolites and cofactors across the shell are thought to be ensured
by pores formed inside the centers of BMC-H hexamers and BMC-T trimers (Klein et. al.,
2009; Chowdhury et. al., 2015). The pore sizes vary — the BMC-H hexamers have smaller
and consistently open 4-7 A large pores, while for BMC-T trimers up to 14 A larger pores
both in open and closed states have been observed (Takenoya et. al., 2010; Thompson et. al.,
2015).

The enzymatic core is encapsulated by encapsulations peptides (EP) — short, N or C-terminal
amphiphilic helices ensuring both shell-core interaction and also crosslinking and stabilizing
the core itself (Fan et. al., 2010; Fan et. al., 2012; Lawrence et. al., 2014; Jakobson et. al.,
2017). The encapsulation of enzymatic pathyways inside the BMC shell has several benefits.
First, the intermediate substrate local concentrations are higher inside the BMC and this
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speeds up the whole enzymatic pathway as a result. The enzyme encapsulation inside shell
also has the benefit of helping to contain volatile or toxic metabolites, such as CO2 and
aldehydes, respectively. It is also possible that the shell gives additional protection against the
oxygen damage in some anaerobic BMCs.

A

choline

trimethylamine

CutO

acetaldehyde ethanol

CutF NADH NAD*

P Acyl-CoA
CutH

CoA-SH

Acyl-P.

acetic acid
Fig 3. Structure and functioning of bacterial microcompartment. A: Scheme of general
mechanism of a choline-metabolizing metabolosome. Blue — shell components, green — core
enzymes. Image adapted from Zarzycki (2015). B: A generalized model of BMC. In dark
blue — trimeric BMC-T proteins, in blue and light blue — hexameric BMC-H proteins, in
purple — pentameric BMC-P proteins, in green — encapsulated enzymatic core proteins. Image
adapted from Yeates (2013).

Several glycyl-radical enzymes, including CutC, are signature enzymes of BMC.
Such BMC are designated glycyl-radical enzyme associated bacterial microcompartments
(GRM) (Axen et. al., 2014; Zarzycki et. al., 2015). The GRM loci can be divided into
subgroups based on the structure of the BMC loci and the identity of the signature enzyme.
CutC choline lyase is a signature enzyme of two different GRM subgroups — GRM1 and
GRM2. The GRM1 type BMC loci are contained by Actinobacteria, Firmicutes and
Deltaproteobacteria while GRM2 type can be found almost exclusively in
Gammaproteobacteria (Fig 4, Axen et. al., 2014).
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Fig 4. Klebsiella pneumoniae GRM2 locus. Structural shell BMC-H proteins cmcA, cmcB,
cmcC and cmcE are colored in green, BMC-P protein cmcD is colored in yellow. Core
enzymes CutF (aldehyde dehydrogenase), CutO (alcohol dehydrogenase), CutC (choline
lyase), CutD (glycyl-radical activating enzyme) and CutH (phosphotransacylase) are colored

in blue. Regulatory and transporter genes are colored in gray.

There are some notable differences between these two BMC loci types, with the
GRM2 type having only five shell proteins versus eight for GRM1, GRM2 type CutC having
an unusual, around 340 amino acids long N-terminal extension of unknown function and
GRML1 locus having a BMC-T while GRM2 lacking it. The CutC N-terminal extension is
unique among BMC signature enzymes and it has been proposed that its function is
associated with either ensuring the encapsulation of enzymatic core or playing a role in core
multimerization (Zarzycki et. al., 2015). The formation of GRM2 type BMC has been
demonstrated with TEM analysis of cross-sections of Escherichia coli and Proteus mirabilis
cells (Jameson et. al., 2016, Herring et. al., 2018).

1.3.3 CntA Rieske non-heme oxygenase

Rieske non-heme oxygenases are iron containing metalloenzymes with a coordinated
iron atom in the active site and an additional 2Fe-2S cluster. Rieske oxygenases are mostly
known for the capability of breaking aromatic rings (Barry & Challis, 2013), but there is also
a variety of other substrates such as cholesterol (Van der Geize, 2007), stacchydrine
(Daughtry et. al., 2012) and caffeine (Summers et. al., 2011). Not all Rieske oxygenases are
prokaryotic — the choline monooxygenase can be found in plants (Rathinasabapathi et. al.,
1997) and DAF-36/Nvd cholesterol oxygenase can be found in nematodes and insects
(Yoshiyama-Yanagawa et. al., 2011). Rieske non-heme oxygenases form trimeric assemblies
(Fig 5A). The 2Fe-2S clusters and mononuclear iron coordination sites are at the opposite
ends of the monomers, and the catalytic site is formed between two adjacent monomers.

A particular two component Rieske oxygenase/reductase system, designated CntA
(EC 1.14.13.239) and CntB was identified in Acinetobacter baumannii and demonstrated as

capable of cleaving L-carnitine and GBB into trimethylamine and semialdehyde products
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(Zhu et. al, 2014). In this study a lower TMA-producing CntA activity was also detected for

glycine betaine and none was detected for choline.
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Fig 5. A: Crystal structure of Stc2 stacchydrine demethylase trimer (PDB 3VCA), a closely
related enzyme of CntA. B: catalytic mechanism of Stc2 stacchydrine demethylase proposed
by Daughtry (2012). Figure adapted from Daughtry (2012).

In contrast to CutC, the CntA/CntB genes are not widespread among different taxons
of bacteria, and are mostly limited to Gammaproteobacteria, especially Escherichia coli
strains (Rath et. al., 2017). Interestingly, this CntA/CntB oxygenase-reductase pair was
already discovered earlier and designated as YeaX/YeaW, but without identifying the
substrates (Boxhammer et. al., 2008). Another study analyzed CntA activity from
Escherichia coli and discovered that the substrate panel was different, with a high activity for
choline being the main contrast if compared with studies of Acinetobacter baumannii CntA
(Koeth et. al., 2014). So the information about the exact substrate panel of CntA is somewhat
controversial, and it could be also possible that it varies among different hosts. Since choline
is an important contributor to the pool of TMA precursors, it is important to know how much
CntA can contribute to its production from choline.

The exact catalytic mechanism of CntA is not known, but it is probably similar to
other Rieske oxygenases. Stc2 stacchydrine demethylase can be mentioned as an example
(Daughtry et. al., 2012). Stc2 is a Rieske oxygenase that is capable of performing a breaking
of C-N bond by oxidative demethylation of stacchydrine (Figure 5B). For the catalytic cycle
to start, the Rieske 2Fe-2S cluster of oxygenase has to be reduced by the reductase
component that uses NADH as an electron donor. The reaction cycle is started when the
substrate bounds to the Fe?" active site. In the next step oxygen is bound to the active site iron
atom, forming a high-valent iron-oxo species. Then the substrate carbon atom in the
cleavable C-N atom pair undergoes oxidative hydroxylation and the resulting product

spontaneously decomposes, producing tertiary amine and aldehyde products.
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1.3.4 Other TMA producing bacterial enzymes

In the literature there are two other TMA producing bacterial enzymes described:
TMAO reductase and ergothionase. TMAO reductase (EC 1.7.2.3) or TorA is a molybdenium
containing metalloenzyme that is a part of bacterial TMAO respiratory (Tor) system (M¢jean
et. al., 1994; Dos Santos et. al., 1998). TorA uses TMAO as a terminal acceptor of electron
transport chain and reduces it to TMA in anaerobic conditions when oxygen is not available.
Another TMA producing enzyme is ergothionase which has been isolated from Burkholderi
sp. HME13. This enzyme cleaves ergothioneine, a thiourea derivative of histidine, into TMA
and thiolurocanic acid (Muramatsu et. al., 2013). Ergothioneine has antioxidant properties,
and this is thought to be its main function in living organisms.

The contributions of these two enzymes to the total pool of TMA/TMAQO are probably
not major, because the TorA affects only the proportion of TMA and TMAO in the
gastrointestinal system, but not the combined amount of these two compounds; and the
ergothioneine is a relatively uncommon metabolite produced by only few bacterial and fungal
species. There are also suggestions that there could be other bacterial enzymes responsible for
TMA production not discovered yet, so the range of TMA-producing enzymes may be
extended in the future (Rath et. al., 2017).
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2. MATERIALS AND METHODS

2.1 Plasmid construction and protein expression

The DNA coding sequences for recombinant proteins used in this study were initially
amplified with PCR from genomic DNA extracted from bacterial cultures. The CutC, CutD,
CutF, CutO, cmcA-E and CntA genes were amplified with Phusion high-fidelity DNA
polymerase and Pfu DNA polymerase (Thermo Fisher Scientific) according to manufacturer
protocols. Escherichia coli BL21-DE3 were purchased from Sigma. Klebsiella pneumoniae
MSCL535, Serratia marcescens MSCL1476 and Providencia rettgeri MSCL730 cultures
were obtained from The Microbial Strain Collection of Latvia. GenBank entries
ARRZ01000032.1 and CP018676.1 (Klebsiella pneumoniae), CP017671.1 (Providencia
rettgeri), CP018930.1 (Serratia marcescens) and CP001509 (Escherichia coli BL21-DE3)
were used for primer design. The amplified genes were cloned in pET-Duet 1 and pRSF-Duet
1 vectors in Ncol/Hindlll and Ndel/Xhol restriction enzyme sites.

pET-Duet 1 and pRSF-Duet 1 vectors were chosen for our experiments because these
are high copy plasmids and have two T7, isopropyl B-D-1-thiogalactopyranoside (IPTG)-
inducible promoters with multiple cloning sites. Since these two vectors contain different
antibiotic resistance genes and origin regions, they can also be co-expressed, increasing the
amount of available promoters to four. If more promoters were necessary, it was possible to
amplify with PCR the whole Duet region with the particular proteins and clone it into the
desirable vector using Xhol site, therefore increasing the total amount of available promoters
from two to four in one plasmid.

The plasmids and amplified PCR fragments were digested with appropriate restriction
enzymes, and analyzed by agarose gel electrophoresis in 1% agarose gel in standard TAE
buffer. The obtained vector DNA was also additionally treated with FastAP thermosensitive
alkaline phosphatase (Thermo Fisher Scientific) according to manufacturer protocol. The
digested fragments were illuminated in agarose gel using ethidium bromide and ultraviolet
light, cut out from gel and eluted by using GeneJET Gel Extraction Kit (Thermo Fisher
Scientific) according to manufacturer protocol. The digested fragments were then ligated into
vectors by using T4 DNA Ligase (Thermo Fisher Scientific) according to manufacturer
protocol.

The ligated plasmids were then transformed in chemically competent Escherichia coli
XL-1 Blue cells and seeded on agarized plates containing antibiotics (50 pg/ml kanamycin or

100 pg/ml ampicillin). Individual colonies were seeded in 5 ml of LB medium with 25 pg/ml
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kanamycin for pRSF-Duet 1 and 50 pg/ml ampicillin for pET-Duet 1 vectors and grown
overnight with shaking at +37°C. The plasmid DNA was then extracted by using the
GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) according to manufacturer
protocol. The correct plasmids were selected by agarose gel electrophoresis after analytical
digestion and confirmed by Sanger sequencing using BigDye Terminator v3.1 Cycle
Sequencing Kit (Thermo Fisher Scientific) according to manufacturer protocol.

The proteins were typically expressed in Escherichia coli BL21-DE3 cells. The
seeding stock was made by seeding several colonies from agarized plates into LB medium
containing antibiotics and incubating it overnight at +37°C. The seeding stock was then
added to 2xTY medium in volume ratio of 1:20. The 2xTY medium was supplemented with
25 pg/ml kanamycin and/or 50 pg/ml ampicillin for corresponding plasmids. The expression
was induced with addition of 1 mM IPTG upon reaching mid-log phase (typically 0.6-0.7
ODs40). The temperature was lowered to 20°C and proteins were expressed for 16-18 hours
with shaking at 200 rpm.

2.2 Protein purification

For the purification of 6xHis tagged proteins (CutC, CutD, CntA, CntB, CutO, CutF
and CutH) a conventional Ni?* affinity chromatography was used. The cells were lysed with
ultrasound in lysis buffer typically containing 40-100 mM Tris-HCI (pH 8.0), 200 mM NacCl,
1% Triton X-100, 1 mM PMSF and 1 mM dithiothreitol (DTT). The lysate was cleared after
centrifugation at 12000-14000g and passed through 1 or 5 ml HisTrap columns (GE
Healthcare). The proteins were eluted with 300 mM imidazole. The purity of eluted proteins
was confirmed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
stained with Coomasie blue. For additional purification proteins were purified on Superdex
200 gel filtration columns. CutD was purified in denaturizing conditions in presence of 7 M
urea and refolded further.

For the purification of bacterial microcompartment derived shell particles (BDPs) a
sedimentation based method was developed according to other cases mentioned in literature
(Havemann & Bobik, 2003; Cai et. al., 2016). Cell lysis was performed enzymatically in a
lysis buffer containing 20-40 mM Tris-HCI (pH 8.0), 300 mM NacCl, 20 mM MgClz, 1 mM
PMSF, 1 mM DTT, 1 mg/ml lysozyme and 0.1 mg/ml deoxyribonuclease. The suspension
was incubated at +4-7 C° with shaking for 1 hour. The lysate was then purified from larger
debris by centrifugation at 10000g for 10 minutes. The supernatant was then collected and
centrifuged for 3 hours at 50000g. The glassy pellet containing BDPs were then suspended in
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a buffer containing 20 mM Tris-HCI (pH 8.0) and 300 mM NacCl, centrifuged at 10000g for
10 minutes and then loaded on 16/900 Superose 6 gel filtration column equilibrated in 20
mM Tris-HCI (pH 8.0) and 300 mM NaCl. 2 ml fractions were collected and analyzed with
SDS-PAGE and transmission electron microscopy (TEM). The BDPs were usually present in

fractions from 60 to 100 ml.

2.3 MALDI-TOF-MS analyses

For analysis of CutC degradation, confirmation of CutO and CutF identities and
identification of protein content in GRM2 BDPs matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) was used. This method enables to
determine exact molecular masses of proteins and positively identify unknown proteins by
peptide mass fingerprint.

For analysis of the suspected zones of CutO and CutF the corresponding protein band
was cut out of PAGE gel. The gel fragments were then washed twice for 1 hour with 500 pl
of 0.2 M ammonium bicarbonate and 50% acetonitrile to remove the Coomasie stain.
Afterwards the gel fragments were washed twice with 200 pl of 100% acetonitrile for 15
minutes and incubated with trypsine (Sigma-Aldrich, cat. No T6567) solution in 40 mM
ammonium bicarbonate and 10% acetonitrile for 3 hours at +37 °C.

The peptide or protein solution (1 pl) was then mixed with 1 pl of 0.1% TFA and 1 pl
of matrix solution containing 15 mg/ml 2,5-dihydroxyacetophenone in 20 mM diammonium
citrate and 75% ethanol. 1 pl of the obtained mixture was loaded on the target plate and dried.

Samples were analysed using a Bruker Daltonics Autoflex mass spectrometer.

2.4 X-ray crystallography analysis of CutC

X-ray crystallography is the most popular method for protein 3D structure
determination. Because in earlier studies several GRE has been successfully crystallized
(Becker et. al., 1999; O'Brien et. al.,, 2004; Funk et. al., 2014), it was reasonable to assume
that CutC could also be crystallized.

The initial screening of CutC crystallization conditions were performed with
commercial JCSG+, Structure screen 1&2 and Pact Premier screens (Molecular Dimensions).
We used standard MRC plates with sitting drop setup. The drops were made by mixing 0.4 ul
or 1 pul mother liquid and CutC solution drops. For crystallization trials CutC was
concentrated to 16 mg/ml in 20 mM Tris-HCI (pH 8.0). Small crystals grew within a week.
The best results for CutC were from PactPremier screen: H9 well for CutC with an addition
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of 5 mM choline and F9 well for CutC without choline. The crystallization conditions were
further optimized by adjusting the concentrations of PEG and salts, and the final
crystallization conditions for CutC in the presence of choline were 20% v/w PEG 3350, 20—
60 mM potassium/sodium tartrate, and 100 mM Bis-Tris (pH 8.5). Most optimal
crystallization conditions for choline-free CutC were 20% (v/w) PEG 3350, 100-160 mM
potassium/sodium tartrate and 100 mM Bis-Tris (pH 6.5).

For cryoprotection the crystals were soaked in 30% v/w glycerol in mother liquid and
frozen in cryoloops in liquid nitrogen. The diffraction data were collected on MAX-lab
MAXII synchrotron beamline 1911-3 in Lund, Sweden.

The diffraction data were indexed with MOSFLM (Leslie, 1992) and scaled with
SCALA (Evans, 1997) in CCP4 pipeline. The phases were determined with molecular
replacement in MOLREP (Vagin & Teplyakov, 1997) by using a CutC homology model built
from glycerol dehydratase (Protein Data Bank ID 1R9D, O'Brien et. al., 2004). The CutC
choline bound and choline free crystals formed different crystals — the former had an
orthorhombic lattice and space group P212121 with 8 molecules in the asymmetric unit and
the later had a monoclinic lattice and space group P21 with 4 molecules in the asymmetric
unit. Models were further built and refined with COOT (Emsley & Cowtan, 2004) and
REFMACS5 (Murshudov et. al., 1997).

2.5 Transmission electron microscopy analysis

A negative staining method with uranyl acetate was used for the visualization of
purified BDPs particles. Formvar coated Cu 200 grids were used. 5 ul of sample were put on
the grid and incubated for 3 minutes. The grids were dried, briefly washed with 1 mM EDTA
solution and stained with 1% uranyl acetate for 1 minute. Grids were dried and analysed by
using JEM-1230 TEM electron microscope at 100 kV.

2.4 Cryo-EM single particle analysis of BDPs

BDPs containing encapsulated CutCsss1128 C-terminal domain were analyzed by
cryogenic electron microscopy (cryo-EM) single particle analysis (SPA). In last few years a
significant improvement of cryo-EM resolution limits has been achieved by introduction of
direct electron detectors and phase plates, thus enabling to achieve 3D reconstructions in
near-atomic resolution range. In SPA analysis the sample is vitrified and the 3D
reconstruction is calculated from 2D projections of different particles in TEM images. The
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cryo-EM method can illuminate asymmetric features impossible to see in crystal structures.
An additional benefit of cryo-EM SPA is the possibility of sorting the particles in 3D or 2D
classes, thus enabling to illustrate different states or objects. BDPs are especially suitable for
cryo-EM analysis since these particles are large and easy to pick and they have icosahedral or
quasi-icosahedral symmetries, enabling to make 3D reconstructions in high symmetry point
groups.

The BDPs were concentrated with ultrafiltration to 1 mg/ml in a buffer solution
containing 100 mM NaCl and 20 mM Tris-HCI (pH 8.0). Vitrobot Mark 1V (Thermo Fisher
Scientific) was used for automated sample freezing. 4 ul of BMC sample were applied to a
Cu 200 R2/1 grid (Quantifoil), blotted for 4 seconds at 18°C temperature and plunge-frozen
in liquid ethane-propane. The samples were stored in liquid nitrogen until further use.

Cryo-EM data were collected with Talos Arctica microscope (Thermo Scientific)
equipped with Falcon 3EC direct electron detector (Thermo Scientific) operating at 200 kV.
A total amount of 1316 images were collected in automated manner using EPU software
(Thermo Scientific). The micrographs were recorded at 120000x magnification with defocus
range between -1.4 and -3.0 pm and the pixel size of 1.23 A/px. The images were stored as a
stack of 40 frames. The exposure of one frame stack was 60 e/A? and the exposure time was
1 second.

The motion-correction and dose-weighting of frames were done with MotionCor2
(Zheng et. al., 2017) and the contrast transfer function (CTF) were evaluated with Gctf
(Zhang, 2016). The whole single particle analysis process was performed in RELION 3.0
pipeline (Zivanov et. al., 2018). RELION 3.0 offers a single pipeline for all basic cryo-EM
applications and the most resource intensive tasks are optimized for GPU computing, thus
enabling to use for calculations a high end home computer instead of a server cluster. Log-
and reference based autopicking and manual inspection resulted in 62533 selected particles.
A subsequent 2D classification revealed significant heterogeneity among particles and,
accordingly, five different initial groups of 2D classes could be distinguished (Fig 6). Two
initial 3D models were made, one in | symmetry and second in D5 symmetry.

Using the initial 1 model two 3D classifications were performed — one in | symmetry and one
in C1 symmetry. The | symmetry classes were very similar and both were used for final high
resolution refinement with additional Bayesian polishing and CTF refinement steps, resulting
in a map with a resolution of 3.3 A. The C1 3D classification revealed a class with one
missing pentameric unit, for whom a high resolution map could be refined to 8.8 A

resolution. Second initial model in D5 symmetry was used for 3D classification and 3D
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refinement steps in D5 symmetry, resulting in a map with a resolution of 9.6 A (Fig 6).
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Fig 6. Scheme of cryo-EM analysis of BDPs.

Since high similarity X-ray crystallographic structures were available both for cmcD
(PDB ID 4N8X) and cmcC™ (PDB ID 4QIV), we used homology models as initial models.
Initial fitting of models into maps were done in UCSF-Chimera (Pettersen et. al., 2004). The
models were then built further using Coot (Emsley & Cowtan, 2004) and refined with
REFMACS in CCP-EM package (Burnley et. al., 2017) and PHENIX (Adams et. al., 2011).
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2.5 Enzymatic in vitro activity assays of CutC and CntA

In order to confirm the activity of the purified TMA producing enzymes, methods for
dertermination of CutC and CntA enzymatic activities were developed.

CutC activating enzyme CutD is necessary for the generation of a glycyl radical in the
active site of CutC; it is indispensable for CutC activity. The CutD, as often is the case for
GRE-AE, is insoluble when overexpressed and it is also oxygen sensitive, thus requiring a
reactivation procedure (O'Brien, 2004). We developed a method for reactivation of CutD
where it was solubilized in 7 M urea, purified in denaturated state by a Ni?* affinity
chromatography and refolded anaerobically by dialyzing it against a refolding buffer
containing 50 mM KCI, 25 mM MOPS/KOH (pH 7.5), 5 mM dithiothreitol, 0.2 mM NazS,
and 0.25 mM (NH4)2Fe(SOa)2. Then CutC and CutD activity assay was performed in an
argone atmosphere in a buffer containing 25 mM Tris-HCI (pH 8.0) and 50 mM NaCl. The
final concentration of proteins was 5 mg/ml for CutC and 4 mg/ml for CutD, and the reaction
mix was supplemented with 3 mM S-adenosyl methionine, 1 mM choline and 5 mM sodium
dithionite. The mixture was incubated for 15 hours at room temperature and the reaction was
stopped by addition of formic acid to 50% v/v concentration. The amount of the produced
TMA was measured by using UPLC-MS/MS.

CntA is a Rieske oxygenase and for its activation it requires for its 2Fe-2S cluster to
be in a reduced state. This can be achieved both by the reductase component that uses NADH
as an electron donor or by a direct reduction of CntA 2Fe-2S cluster by sodium dithionite
(Daughtry et. al., 2012). The activities of CntA were tested with both methods. CntA was
concentrated to a concentration of 0.1 mg/ml and transferred to a buffer containing 20 mM
Tris-HCI (pH 8.0) and 50 mM NaCl. Substrates were added to 2 mM concentrations. Sodium
dithionite was added to 0.5 mM concentration. Alternatively, instead of sodium dithionite,
CntB was added to a concentration of 0.1 mg/ml and NADH was added to a concentration of
0.5 mM. The reaction was stopped by addition of formic acid to 5% v/v concentration. The
amount of the produced TMA was measured by using using ultra performance liquid
chromatography - tandem mass spectrometer (UPLC-MS/MS).

The activities of CutC/CutD and CntA were tested also by expression of the particular
enzymes in Escherichia coli BL21-DE3 cells. Night cultures of transformed cells harboring
PRSF-CutC, pET-CutD and pRSF-CntA plasmids were seeded in small volumes (1-15 ml) of
LB or 2xTY medium, supplemented with 1 mM choline (for detection of CutC activity) or 5
mM carnitine (for detection of CntA activity). The cultures were induced with 0.5-1 mM
IPTG after reaching Ass> 0.3 overnight. The bacterial culture was centrifuged at 5000g for
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10 minutes and the supernatant was collected. Formic acid was added to the obtained solution
to 5% v/v concentration. The amount of the produced TMA was measured by using ultra

performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS).
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3. RESULTS

3.1 Structure and function of CutC choline lyase

e Isolation, recombinant expression and purification of CutC from Klebsiella
pneumoniae
e Invitro and in vivo tests of CutC activity

e Solving of CutC crystal structure
o Two conformations of CutC in choline free and choline bound states reveal

conformational changes triggered by binding of choline to its active site
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Background: The bacterial glycyl radical enzyme CutC converts choline to trimethylamine, a metabolite involved in

pathogenesis of several diseases.

Results: The structures of substrate-bound and substrate-free CutC revealed significant differences.
Conclusion: Choline binding to the active site triggers a conformational change from the open to closed form.
Significance: A novel substrate-driven conformational mechanism and a potential target for drug design have been identified.

CutC choline trimethylamine-lyase is an anaerobic bacterial
glycyl radical enzyme (GRE) that cleaves choline to produce
trimethylamine (TMA) and acetaldehyde. In humans, TMA is
produced exclusively by the intestinal microbiota, and its
metabolite, trimethylamine oxide, has been associated with a
higher risk of cardiovascular diseases. Therefore, information
about the three-dimensional structures of TMA-producing
enzymes is important for microbiota-targeted drug discovery.
We have cloned, expressed, and purified the CutC GRE and the
activating enzyme CutD from Klebsiella pneumoniae, a repre-
sentative of the human microbiota. We have determined the
first crystal structures of both the choline-bound and choline-
free forms of CutC and have discovered that binding of choline
atthe ligand-binding site triggers conformational changes in the
enzyme structure, a feature that has not been observed for any
other characterized GRE.

Trimethylamine (TMA)? is a tertiary amine that is produced
by bacteria from the quaternary amine compounds choline (1,
2) and carnitine (3), which are present in food. The human
organism is incapable of synthesizing TMA, and therefore, the
bacteria ofthe microbiota are the only source ofthis metabolite.
After absorption in the bloodstream, TMA is further metabo-
lized to trimethylamine oxide (TMAQO) by FMO3 (flavin-con-
taining monooxygenase 3) in the liver. Defective or insufficient
amounts of FMO3 cause TMA accumulation in the blood,
which manifests as trimethylaminuria, or fish odor syndrome
(4). Recent studies have linked the increased availability of ter-
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The atomic coordinates and structure factors (codes SA0U and 5A02) have been
deposited inthe Protein Data Bank (http//wwpdb.org/).

"To whom correspondence should be addressed: Latvian Biomedical
Research and Study Center, Ratsupites 1, LV-1067 Riga, Latvia. Tel: 371-
6780-8200; Fax: 371-6744-2407; E-mail: gints@biomed.lu.lv.

2 The abbreviations used are: TMA, trimethylamine; TMAO, trimethylamine
oxide; GRE, glycyl radical enzyme; SAM, S-adenosylmethionine; PFL, pyru-
vate formate-lyase; GD, glycerol dehydratase; BSS, benzylsuccinate syn-
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tiary amines with a higher risk of cardiovascular disease via an
intestinal microbiota-dependent pathway (5). High levels of
TMAO, which are produced from choline (6) and carnitine (3)
with the assistance of the intestinal microflora, have been
shown to be a cause of atherosclerosis in mice. Studies with
human volunteers (3, 7) have confirmed TMA production from
carnitine and choline by the intestinal microflora, and clinical
data cross-examinations have associated high levels of TMAO
with an elevated risk of atherosclerosis (7), severe heart failure
(8), and renal failure (9). Lowering TMA and TMAO levels in
humans could therefore have potentially preventive and thera-
peutic effects on trimethylaminuria and cardiovascular dis-
eases. TMAO also increased glucose tolerance and adipose tis-
sue inflammation in mice fed a high-fat diet (10), suggesting
involvement in the development of diabetes. Structural biology
studies of microbiota enzymes are important to guide the dis-
covery of novel inhibitor compounds.

CutC choline lyase, a TMA-producing glycyl radical enzyme
(GRE), has recently been identified and characterized (11, 12).
A common feature of all GREs is a glycyl radical in the active
site. The GRE-activating enzyme, a 4Fe-4S cluster protein,
cleaves S-adenosylmethionine (SAM) into a radical (13) that
further generates a glycyl radical on the active site glycine. The
structures of numerous GREs that catalyze different reactions,
such as pyruvate formate-lyase (PFL) (14), ribonucleotide
reductase (15), glycerol dehydratase (GD) (16), and benzylsuc-
cinate synthase (BSS) (17), have been determined. Along with
the activating enzyme CutD, CutC cleaves choline, forming
TMA and acetaldehyde under anaerobic conditions. Under
aerobic conditions, catalysis is impossible because the glycyl
radical readily reacts with oxygen, cleaves the main chain, and
irreversibly inactivates the enzyme (18).

The custC/eutD gene cluster is possessed by several represen-
tatives of the human intestinal microbiota, including bacteria in
the genera Klebsiella, Escherichia, Streptococcus, and Entero-
bacter (11). The mean abundance of representatives of these
genera in the stool microbiota is low, but in certain individuals,
it can rise to 0.56% for Klebsiella prneumoniae and to 96% for
Escherichia coli (19). Not all bacteria of the microbiota are capa-
ble of producing TMA, including Bacteroides, the most abun-
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dant genus in stool (19, 20). Therefore, even a small increase in
the amount of TMA-producing microorganisms could sub-
stantially affect the amounts of TMA and TMAO in an individ-
ual. These findings suggest that the CutC/CutD metabolic
pathway could be accountable for a significant portion of TMA
production in human intestines.

It has been shown that the production of TMAO can be
suppressed by shifting the microbial degradation pattern of
supplemental/dietary tertiary amines (21). In addition, the
cardioprotective drug meldonium, an inhibitor of L-carnitine
biosynthesis and transport (22), has been shown to lower
TMAO levels in both rats and humans (21, 23) through inhibi-
tion of TMA production by the intestinal microbiota.

CutC/CutD enzymatic activity in Desulfovibrio alaskensis
has previously been demonstrated both in vive and i vitro (11,
12). Our model organism, K. preumoniae, has previously been
shown to be capable of producing TMA from both choline and
carnitine (21), but the activity of the CutC/CutD enzymes in
this organism has not been demonstrated. To our knowledge,
no crystal structure of CutC has been determined until now.
Here, we report the crystal structure of the CutC enzyme from
K. pneymoniae in both its choline-free and choline-bound
forms.

Experimental Procedures

Plasmid Construction and Protein Expression—Genomic DNA
was extracted from K prneumoniae culture (The Microbial Strain
Collection of Latvia) by proteinase K treatment and precipitation
with ethanol. CutC (GenBank™ accession number EPO20241.1)
and CutD (accession number EPO20361.1) sequences from the
GenBank™ accession number ARRZ01000032.1 entry were used
for primer design (CutC, ATATTCATGACGGCACACTACAA-
CTTAACGCCGC (forward) and AATTAAGCTTTTAGAACT-
TCTCAATCACCGTACGGC (reverse); and CutD, TATAGGC-
CTCATCGCAAAACAAGAATTAACGGG (forward) and
AATTCCATGGTTAATGGCGGACTAAGCGAATATC (re-
verse)). The cutC and cutD genes were amplified by PCR and
cloned into pRSFDuet and pET1 vectors containing N-terminal
His, tags with tobacco etch virus protease cleavage sites. The
constructs were sequenced for confirmation. The proteinswere
expressed in E. coli BL21(DE3) cells. Upon reaching A.,, > 0.3,
induction was performed with 1 mm isopropyl 3-p-thiogalacto-
pyranoside in 2% Tryptone/yeast extract medium for 3 h at
BTG

CutC Purification—Frozen cell paste was suspended in lysis
buffer (100 mm Tris-HCI (pH 8.0), 200 mm NaCl, 1% Triton
X-100, 20 mm MgSO,, 0.1 mg/ml DNase, 1 mg/ml lysozyme, 1
mum PMSF, and 2 mm DTT). Cells were lysed by ultrasound, and
the lysate was centrifuged at 14,000 X g for 40 min. CutC pro-
tein was purified by nickel affinity chromatography usinga 1-ml
HisTrap column (GE Healthcare). For this step, 20 mm imidaz-
ole in 40 mm Tris-HCI (pH 8.0) and 300 mm NaCl wasused as a
washing buffer, and 300 mm imidazole in 40 mm Tris-HCI (pH
8.0) and 300 mm NaCl was used as an elution buffer.

Limited Proteolysis—For preparative purposes, the 124-kDa
CutC protein obtained in HisTrap elution buffer was immedi-
ately digested with chymotrypsin using 1 mg of chymotrypsin/
100 mg of CutC protein for 30 min at room temperature. The
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90-92-kDa CutC fragment was separated from the digestion
products and chymotrypsin by gel filtration on a Superdex 200
column in 20 mm Tris-HCI (pH 8.0). The protein was concen-
trated by ultrafiltration and stored in 50% glycerol at —20 °C.

For analytic purposes, after purification from the HisTrap
column, the 124-kDa CutC protein was transferred to 20 mm
Bistris propane buffer at pH 6.5 and 8.5 via ultrafiltration. Tryp-
sin was added at 1 mg of chymotrypsin/100 mg of CutC protein.
Digestion was performed for 6 h at room temperature. The
CutC molecular mass after cleavage was characterized by both
SDS-PAGE and MALDI-TOF-MS.

CutD Purification and Reconstitution—Cell lysis was per-
formed as described for CutC. After lysate centrifugation, the
pellet was resuspended in 7 M urea with 5 mm DTT. CutD was
purified by nickel affinity chromatography using a 1-ml His-
Trap column as described for CutC, except all of the buffers
were supplemented with 7 m urea. After purification, the CutD
solution was sparged with argon and dialyzed overnight in
anaerobic solution containing 150 mm KCl, 25 mm MOPS/
KOH (pH 7.5), 5 mm DTT, 20 mm Na,S, and 25 mm
(NH4),Fe(SO,),. After dialysis, the CutD solution was desalted
and purified from precipitates on a 1-ml Zeba desalting col-
umn, equilibrated with 25 mm Tris-HCI (pH 7.5) and 50 mm
NaCl . All steps after CutD purification with the HisTrap col-
umn were performed in an argon atmosphere in a disposable
glove bag (Sigma-Aldrich).

In Vitro Activity Assay—The activity assay was performed in
25 mum Tris-HCI (pH 8.0), 50 mm NaCl, 3 mm SAM, 1 mm cho-
line, 5 mm sodium dithionite, 5 mg/ml CutC (untreated or
treated with chymotrypsin), and 4 mg/ml CutD. All stock solu-
tions were sparged beforehand with argon for 10—15 min in a
disposable glove bag. Samples with all components except
SAM, CutC, or CutD were incubated as negative controls. Incu-
bation was performed in an argon atmosphere at room temper-
ature for 15 h. After incubation, the solution was mixed with
100% (50:50, v/v) formic acid and stored at —20 °C. The TMA
quantity was analyzed by ultra performance liquid chromatog-
raphy (UPLC)-MS/MS.

In Vivo Activity Assay—For the in vivo activity assay, 0.5 ml of
E. coli BL21(DE3) night cultures harboring pRSF-CutC, pET-
CutD, empty pET vector, and cotransfected pRSF-CutC and
pET-CutD were inoculated in 15 ml of LB medium in Hungate
tubes (Chemglass). The LB medium was sparged beforehand
with argon for 30 min and supplemented with 0.4 M NaCl, 1 mm
choline chloride, and 0.069 mg/ml ferric ammonium citrate as
described previously (11). The cultures were induced with 0.5
mM isopropyl B-p-thiogalactopyranoside after reaching A, >
0.3. Incubation was performed for an additional 18 h at 37 °C
with shaking. The cell culture was centrifuged, the supernatant
was mixed with 100% (50:50, v/v) formic acid, and the TMA
quantity was analyzed by UPLC-MS/MS.

CutC Crystallization and Data Collection—The protein was
concentrated by ultrafiltration to 16 mg/ml in 20 mm Tris-HCI
(pH 8.0). To obtain the substrate-bound form, choline chloride
was added to a final concentration of 5 mm. CutC was crystal-
lized using the sitting drop method, mixing 1 jl of protein solu-
tion with 1 pl of precipitant (20% (v/w) PEG 3350, 20— 60 mm
potassium/sodium tartrate, and 100 mm Bistris (pH 8.5)). CutC
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crystals without choline were obtained in slightly different con-
ditions (20% (v/w) PEG 3350, 100-160 mm potassium/sodium
tartrate, and 100 mu Bistris ((pH 6.5). Crystals appeared over-
night. Crystals were soaked in cryoprotectant (30% glycerol in
mother liquid) and frozen in liquid nitrogen. Data were col-
lected at MAX-lab Synchrotron beamline 1911-3 (Lund, Swe-
den). The best diffracting crystals were of the choline-bound
form and diffracted up to 2.4 A resolution. The best crystals
without choline diffracted to 3.0 A resolution.

MALDI-TOF-MS—Crystallization drop solution (1 jl) was
mixed with 1 ul of 0.1% TFA and 1 jl of matrix solution con-
taining 15 mg/ml2,5-dihydroxyacetophenone in 20 mm ammo-
nium citrate and 75% ethanol. Then, 1 pl of the obtained mix-
ture was loaded on the target plate, dried, and analyzed using a
Bruker Daltonics Autoflex mass spectrometer.

UPLC-MS/MS—Amount of TMA was measured by UPLC-
MS/MS. A Micromass Quattro Micro tandem mass spectrom-
eter in positive ionization electrospray mode with a Waters
Acquity UPLC system was used to perform the analysis. Chro-
matographic separation was achieved on an Acquity UPLC
BEH HILIC column (2.1 X 50 mm, 1.7 pm) in gradient mode
with 10 mm ammonium acetate buffer (pH 4.0) as mobile phase
A and acetonitrile as mobile phase B. The flow rate was 0.4
ml/min with a column temperature of 50 °C. The gradient pro-
gram was O min at 8% A, 3.5 min at 8% A, 4.5 min at 60% A, 10
min at 60% A, 10.2 min at 8% A, and 12 min at 8% A. The ion
source parameters were a capillary voltage of 2.8 kV, source
temperature of 120°C, and desolvation gas temperature of
350°C at a flow rate of 700 liter/h. The cone voltage was 30V,
and the collision energy was 15 eV. Quantification was per-
formed by integration of the multiple-reaction monitoring
trace of TMA (60.1 => 45.0 Da).

Structure Determination—Data were indexed with MOS-
FLM (24) and scaled with SCALA (25) from the CCP4 suite
(26). Choline-bound CutC crystals exhibited an orthorhombic
lattice and space group P2,2,2, with 8 molecules in the asym-
metric unit. CutC crystals without choline exhibited a mono-
clinic lattice and space group P2, with 4 molecules in the asym-
metric unit. The choline-bound structure was determined by
molecular replacement in MOLREP (27), using a CutC homo-
logy model built from GD (Protein Data Bank ID 1R9D) (16).
The choline-free structure was determined in MOLREP using
coordinates from the determined choline-bound structure.
Models were further built manually with Coot (28) and refined
with REFMACS (29). Data processing, refinement, and valida-
tion statistics are shown in Table 1.

Results

Spontaneous and Induced Cleavage of the N-terminal
Domain—During full-length CutC crystallization trials, protein
crystals appeared after what turned out to be a spontaneous
partial degradation. Mass spectrometry analysis of the crystal-
lization drops (Fig. 1A4) proved that the molecular mass of the
protein of interest was reduced from the expected 124 kDa to
90-92 kDa, corresponding to a loss of 305-325 N-terminal
amino acids. The 124-kDa full-length CutC protein proved to
be very unstable, with the N-terminal part starting to degrade
almost immediately after purification by nickel affinity chro-
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TABLE 1

Data processing and refinement statistics

Values in parentheses are for the highest resclution bin. PDB, Protein Data Bank;
r.m.s.d., root mean square deviation,

CutC
Choline-bound Choline-free
PDBID 5A0U 5A0Z
Space group P2,2,2, P2,
Wavelength (A) 1.000 0.984
Resolution (A) 24 3.0
Unit cell dimensions (A) a=2894,b=221.9 a=103.60b=1546,
¢c=4195 ¢ =120.8

Chains in asymmetric unit 8 4
Highest resolution bin (A) 240-2.46 3.00-3.08
Ripaes 0.173 (0.512) 0.108 (0.378)
Total No. of observations 923,068 117,615
Total No. unique 304,571 66,381
I 47 (1.8) 5.2(1.9)
Completeness (%) 93,57 (87.81) 8847 (74.82)
Multiplicity 3.0 (2.7) 1.8(1.8)
R-factor 0.19 (0.294) 0.23 (0.312)
Rics 025 (0.341) 0.28 (0.335)
Protein atoms 50,144 23,203
Ligand atoms 56
Solvent molecules 1976
Average Wilson B-factor 15.8 26.6
Atomic B-factor for protein 284 376
Atomic B-factor for ligand 27.0
Atomic B-factor for solvent ~ 22.4
r.m.s.d. from ideal

Bond lengths (A) 0.012 0.014

Bond angles 1565° 1.721°

Ramachandran outliers (%) 041 0.86

matography. To ensure the reproducibility and homogeneity of
the protein for obtaining better crystals, in further experiments,
full-length CutC was treated with chymotrypsin and purified by
gel filtration on a Superdex 200 column. Chymotrypsin treat-
ment resulted in a protein that had the same length as after
spontaneous degradation. The exact biological role of the
N-terminal domain, which contains ~305-325 residues,
remains unknown because the truncated protein contains the
active site, has the same oligomerization state, and exhibits
observable (although reduced) TMA-producing activity, as
demonstrated below. Analogously, N-terminal truncations of
up to 52 amino acids had no effect on the activity and oligomer-
ization state of D. alaskensis CutC (12). Thetruncated C-termi-
nal part of CutC also aligns well with other full-length GREs.
Residues 334—1128 in the BLASTP alignment (Fig. 1B) show
93% coverage with full-length CutC from D. alaskensis (11, 12),
98% coverage with full-length GD (16), and 96% coverage with
full-length BSS (17), which indicates that the N-terminal
domain is disposable for the catalytic function of the enzyme.
Enzymatic Activity—CutC/CutD from our study was tested
for activity both in vivo and in vitro. The in vivo experiments
consisted of anaerobic coexpression of CutC and CutD in E. coli
BL21(DE3) cells in the presence of choline (Fig. 24). The
amount of TMA was higher when the CutC and CutD enzymes
were expressed together rather than separately. Enzymatic
activity was also tested in vitro with purified CutC and CutD
proteins (Fig. 2B). Both untreated and chymotrypsin-treated
CutC enzymes showed higher TMA-producing activities in the
presence of SAM compared with the control without SAM,
although the activity for chymotrypsin-treated protein was
reduced. Dependence on SAM is a fundamental attribute of
GRE catalysis because it is crucial for the generation of glycyl
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FIGURE 1. A, MALDI-TOF-MS analysis of CutC from a crystallization drop. Approximately 45,000-47,000 and 90,000-92,000 m/z large peaks can be distin-
guished. These peaks correspond to the double- and single-protonated CutC states, respectively. B, BLASTP alignment of K. pneumoniae CutC with other
full-length GREs. The CutC N-terminal domain (residues 1-334), not visible in our crystal structures, is shown in light gray. Intens. (a.u.), intensity (absorbance

units).
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FIGURE 2. A, CutC enzymatic activity in vivo. Data are normalized to the empty vector and show elevated TMA production when cutC and cutD genes are
coexpressed compared with separate cutC and cutD expression. B, CutC enzymatic activity in vitro. Data show TMA production in the presence of SAM for both
full-length and chymotrypsin-treated (chymtr) CutC, but only when both SAM and CutD are present. Results are means = S.D. of two independent experiments.

radical. The data also showed that both CutC and CutD are
essential for catalysis, thus confirming that these two enzymes
perform catalysis together.

Quality of the Model, Overall Structure, and Oligomerization
State—Electron density for the protein chain is visible starting
fromresidue 334 in one of the eight monomers in the asymmet-
ric unit, whereas an additional 3—4 residues are invisible in
other molecules. As judged from mass spectrometry, for both
the choline-bound and choline-free forms, an additional 10-30
N-terminal amino acids are present in the crystal in a disor-
dered state and are not visible in the electron density map. For
the choline-free form, there are several additional disordered
regions that are clearly visible in the choline-bound form. These
flexible regions are somewhat different among different mole-
cules in the asymmetric unit, but there are several common
regions around residues 937-946, 980-984, 1006 -1017, and
1028 —1040, for which no interpretable electron density for any
chain could be observed.

The 10-p/a barrel structure, which is typical of other GREs,
is also characteristic of CutC (Fig. 3). The monomer can be
divided into three subdomains: N-terminal half-barrel (resi-
dues 334-771), C-terminal half-barrel (residues 771-1079),
and glycine loop domain (residues 1079-1128). Gel filtration
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analysis (Fig. 4) suggested that CutC in solution both before and
after treatment with chymotrypsin exists in oligomers. In the crys-
tal structures of both the choline-bound and choline-free forms, a
dimer with 2-fold symmetry can be distinguished (Fig. 3).
Dimerization would be expected because similar dimers with
2-fold symmetry have been characterized for the majority of GREs
(12,14-17). For this dimer, AREAIMOL calculated a total contact
surface of 14,525.5 A2 (for the choline-bound form), thus confirm-
ing that it is likely the biological CutC dimer.

Active Site—CutC Cys-771 and Gly-1103 align almost per-
fectly with the GD catalytic dyad Cys-433 and Gly-763, thus
strongly suggesting that these 2 residues form glycyl and thiyl
radicals that are essential for catalysis (Fig. 5). Theoretical and
practical studies have suggested previously that, in CutC, the
glycyl radical abstracts the hydrogen atom from cysteine to cre-
ate a thiyl radical. This thiyl radical then further abstracts the
hydrogen atom from the choline C1 atom, causing molecular
rearrangement and TMA elimination either directly or through
intermediate TMA migration to the generated radical site at C1
(Fig. 6) (12, 30). Cys-771 in the active site is positioned appro-
priately for thiyl radical hydrogen abstraction from the choline
C1 atom, thus confirming the previous studies. Additionally,
the choline C1 atom aligns with the glycerol carbon atom, from
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FIGURE 3. Structure of the CutC 2-fold dimer. Cyan, N-terminal half-barrel;
yellow, C-terminal half-barrel; gray, glycine loop domain. Choline is displayed
as a sphere model, with black carbon atoms and red oxygen atoms. This
image was created using PyMOL.
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FIGURE 4. Gel filtration of untreated and chymotrypsin-treated CutCon a
Superdex 200 column. Human monoclonal IgG antibody, larger than a CutC
monomer but smaller than a CutC dimer, was used as a marker.

which the hydrogen abstraction is shown to occur (16). The
choline OH group is located at the appropriate distance for
hydrogen bond formation with the acid group of Glu-773. The
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corresponding Glu-435 of GD aligns nearly identically with
Glu-773 of CutC, and the former analogously forms a hydrogen
bond with the hydroxyl group of glycerol. The positively
charged quaternary amine nitrogen of choline is located at the
appropriate distance to interact electrostatically with the side
chain of Asp-498 and to form a cation-r interaction with the
nearby Phe-677.

The active site pocket in the choline-bound form is com-
pletely closed and mostly fits the choline surface (Fig. 74).
Therefore, in this form, there is very little space left for design-
ing substrate-like inhibitors with additional chemical groups.
However, in the choline-free form, there is a possible tunnel to
the outside that is formed by the movement of flexible regions,
as discussed below (Fig. 7B). The C1 atom is the closest choline
carbon atom to this tunnel, and it is thus the potential site for
designing analog inhibitors. Such an inhibitor with additional
atoms at C1 could potentially bind to the active site and prevent
the CutC enzyme from transitioning to the active state.

Choline-bound and Choline-free Forms of CutC—The cho-
line-bound and choline-free CutC forms have noticeable con-
formational differences (Fig. 84). In the choline-free form, the
CutC conformational change caused the N-terminal half-barrel
and glycine loop domain to move away in opposite directions
froma gap in which flexible regions, fixed in the choline-bound
form, are located. In the choline-free form, the C-terminal half-
barrel and glycine loop domain (« helices 20, 21, 23-26, 28, and
30-32 and B strands 7 and 8) are shifted up to 4 A, but in the
N-terminal half-barrel, they are shifted only up to 1.5 A (Fig.
84). A very similar conformational change has been observed
for BSS, another GRE (17). Two forms of BSS, BSSaBy and
BSSary, have been crystallized, and they differ in a very similar
manner to the choline-bound and choline-free forms of CutC,
respectively (17). BSSaBy consists of the main « subunit and
two small B8 and vy subunits, whereas BSSay contains only the
main « subunit and a small y subunit. Similar to choline-free
CutC, BSSary has a more noticeable conformational shift in the
C-terminal half-barrel and glycine loop domain compared with
the N-terminal half-barrel (Fig. 8B).

In the choline-free form, the flexible regions expose the
active site, including Gly-1103 (Fig. 94). In the choline-bound
form, the active site is completely shielded from the outer envi-
ronment via ordering of flexible regions (Fig. 9B), which suggests
that conformational changes must be associated with increasing
availability of the active site. The glycine loop is shifted 2.4 A
toward to the top of the protein (Fig. 9C). Similar movement was
also observed for BSS and thought to be associated with making
glycine accessible to the activating enzyme (17).

Resistance to chymotrypsin treatment was observed for the
BSSaBy complex, but not for the BSSay complex. Analogously,
CutC resistance to 6 h of chymotrypsin treatment was notice-
able in the presence of choline, but in its absence (Fig. 10). The
chymotrypsin resistance that was observable at pH 6.5 and 8.5
also excluded the possible influence of pH under different crys-
tallization conditions. The CutC structure in the absence of
choline appears to be open in both solution and the crystal, and
the binding of choline to the active site appears to change the
conformation to a stable, closed, more structured, and chymo-
trypsin-resistant form.
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FIGURE 5. Stereoview alignment of CutC and GD (Protein Data Bank ID 1R9D) active sites. CutC and choline are shown as stick models, and GD (black) and
glycerol (red) are shown as line models. An F, — F_map for choline is displayed at the 3¢ level. Images were created with PyMOL.

oy Wi
HN -H HN__, + choline
—
O;\ Py SUOSAM = s
11036ly i
771 Cys

-TMA
-acetaldehyde
N

FIGURE 7. Surface models of active site pockets. A, choline-bound form.
The choline-bound CutC form is displayed in purple, and choline is displayed
in yellow (stick and surface models). B, choline-free form. The choline-free
CutC form is displayed in purple, and choline is displayed in yellow (stick and
surface models). Choline in the active site was modeled using data from the
choline-bound form. Images were created with PyMOL.

Discussion

Recent studies indicate that the influence of the microbiota
on human organism functions is very diverse. The association
of the microbiota with diseases such as cancer (31), diabetes
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(32), and cardiovascular diseases (33) has been demonstrated.
TMAQO is a metabolite created in the host liver from microbi-
ota-produced TMA, and it has been associated with several
diseases (3—10). TMA production in the intestine can be sup-
pressed by antibiotics (34, 35), but this effect is not complete,
and long-term antibiotic treatment may lead to an imbalance in
the microbiota (36). An alternative solution would be to
develop specific enzymatic inhibitors that block TMA produc-
tion but do not cause as much of an imbalance in the microbiota
as antibiotics do. More information about the structures of
TMA-producing enzymes from bacteria in the human micro-
biota therefore could be significant for finding ways to block
TMA/TMAO formation, thus providing new microbiota-
linked drug targets to treat cardiovascular diseases and trimeth-
ylaminuria. CutC choline lyase is very appropriate as a target of
such studies, as it produces TMA from a common nutrient,
choline, and can be found in the genomes of several microbiota
representatives (11, 12, 19). Although there is too little free
space in the choline-bound form of CutC to design substrate
analog inhibitors, the choline-free form may contain a possible
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A

FIGURE 8. A, choline-bound (yellow) and native (purple) CutC forms. Regions present in the choline-bound form but absent in the native form electron density
map are colored in blue. Choline is displayed as a sphere model, with green carbon atoms and red oxygen atoms. B, BSS a subunit, BSSaBy (yellow), and BSSay

(purple) (13). Images were created with PyMOL.

A

FIGURE 9. A, surface model of the choline-free CutC form (green). The catalytic dyad Gly-1103is shown as a red surface,and Cys-771 as an orange surface. Choline
in the active site (purple surface) and disordered regions (blue) were modeled using data from the choline-bound form. B, surface model of the choline-bound
CutC form (yellow). Regions disordered in the choline-free form are displayed in blue. C, stereoview alignment of glycine loops for the choline-bound (yellow)
and choline-free (green) CutC forms. Gly-1103 in both forms is displayed in red. Regions disordered in the choline-free form are displayed in biue. Images were
created with PyMOL.

tunnel made by movement of disordered regions that could be
used for this purpose.

The nature of the catalysis of CutC and other GREs is strictly
anaerobic because oxygen reacts with glycyl radicals, inactivat-
ing the enzymes. However, the glycyl radical in GREs has
proven to be very stable, lasting up to several days in vitro (37).
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Several protective strategies have been developed to prevent
oxidative enzyme inactivation. One such strategy is using
enzymes that act similarly to “spare parts”, reattaching the oxy-
gen-cleaved C-terminal domains (38). The determined struc-
tures of certain GREs indicate another protective mechanism:
shielding glycine from the outer environment by burying it in
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FIGURE 10. Chymotrypsin treatment of CutC for 6 h at room temperature
and SDS-PAGE analysis. Marker sizes are shown on the left in kilodaltons.
Partial degradation was noticeable for CutC even without the addition of
chymotrypsin (chymtr).

the protein core. However, it is unclear how the activating
enzyme generates the glycyl radical and how the ligand gains
access to the ligand-binding site. Co-crystallization studies with
the activating enzyme of PFL. and a PFL glycine loop-mimicking
peptide have suggested that the active site glycine interacts with
the activating enzyme directly (39). This means that a local
movement of the glycine loop out of the protein core, a global
structural change, or a combination of both must happen to
achieve radical formation. PFL has been shown to exist in solu-
tion in both open and closed forms, and the equilibrium
between these forms is thought to be modulated by the activat-
ing enzyme (40). Direct structural evidence for conformational
changes, similar to the changes observed for K. pneumoniae
CutC, has also been observed for BSS (17). For BSS, this con-
formational shift is regulated by an accessory 8 subunit. How-
ever, no accessory subunit or activating enzyme was present
during the crystallization and chymotrypsin treatment of
K. pneumoniae CutC, showing that, at least for CutC, no help
from other proteins is required for conformational changes to
occur. Chymotrypsin tolerance in the presence of choline also
demonstrated that conformational changes occur in solution as
well as in crystalline form. These results suggest that, in the
open form, the active site is freely accessible to choline and that
binding of choline is the only critical factor that transforms the
structure from the open to closed form.

Interestingly, CutC is the only GRE characterized so far for
which ligand binding to the ligand-binding site causes such an
effect on the conformation in the crystal structure. Two other
GRESs, PFL and GD, have been crystallized in both ligand-bound
and ligand-free states (14, 16), but no significant conforma-
tional changes in crystal structure between these two states
have ever been observed. Additionally, both the ligand-bound
and ligand-free GD states align better with the closed choline-
bound CutC state. This raises the question of whether there is a
correlation between the observed choline-induced CutC con-
formational changes and the accessibility of the active site gly-
cine to the activating enzyme. It would be an inefficient strategy
for a GRE to enter a stable and closed conformation indepen-
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dently of the presence or absence of a glycyl radical in the active
site. An alternative explanation would be that the activating
enzyme is able to induce CutC conformational changes par-
tially or completely independently of the presence or absence of
choline. Choline-driven conformational changes in this case
could serve only as an additional regulatory mechanism, per-
haps increasing affinity for the substrate.

Other results regarding the CutC active site, the mechanism
of catalysis, and the oligomerization state are consistent with
data from studies on other GREs. CutC has a typical 10-8/a
barrel fold, and dimerization is observed. A catalytic dyad is
formed by glycine and cysteine, which are located appropriately
for hydrogen abstraction from the choline C1 atom, and the
choline in the ligand-binding site is coordinated by glutamic
acid, aspartic acid, and phenylalanine residues that were previ-
ously mapped with site-directed mutagenesis in D. alaskensis
CutC and shown to be essential for catalysis (12, 30).
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3.2 Encapsulation mechanisms and structural studies of GRM2 BMC shell particles

e Isolation, recombinant expression and purification of GRM2 core enzymes and
shell proteins

e Testing the influence of particular shell gene sets on the formation of bacterial
microcompartment shell derived particles (BDPs) and their size distribution

e The encapsulation mechanisms of GRM2 core is hierarchical and CutC choline
lyase most likely plays a secondary role as an adaptor protein

e Calculated cryo-EM structure of smaller, pT=4 BDP particles at 3.3 A resolution

e Various minor BDP forms with additional hexameric rings, larger triangulation
numbers or fusion of smaller icosahedrons could be identified in the cryo-EM

analysis
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structures consisting of a large quasi-icosahedral or poly-

hedral protein shell up to 200-300nm in size and an
encapsulated enzymatic core!l 6, It is estimated that approxi-
mately 25% of bacterial taxa have genomes that contain a BMC
locus of some sort that performs various functions”=%. The most
well-studied and well-known types of BMCs are the carboxy-
somes because they are widespread among cyanobacteria and
play an important role in carbon fixation®1%11, Another, more
diverse group of BMCs are the metabolosomes. Metabolosomes
are specialized BMCs that breakdown various compounds, such
as propanedioll213, ethanolaminel4, choline!®, and rhamnose/
fucosel®17. In metabolosomes, the catabolic breakdown of the
substrate mostly involves an aldehyde intermediate, which may
be toxic to the cells and/or volatile and hence is sequestered
within the BMC protein shell!®1°, Encapsulation of the enzy-
matic pathway also has the benefit of increasing the local
substrate concentrations and increasing the overall efficiency of
the pathway. The metabolosomes generally contain at least four
or five different encapsulated core enzymes, including sig-
nature enzymes that perform the initial breakdown of the
substrate, alcohol dehydrogenase, aldehyde dehydrogenase, and
phosphotransacylase®20,

The BMC shell consists of three types of BMC shell proteins:
the BMC-H, BMC-T, and BMC-P proteins>®. BMC-H is a hex-
americ BMC protein consisting of one Pfam00936 domain, and it
is capable of forming uniform flat sheets®21-24, The Pfam00936
domain consists of an a-p double sandwich that contains a four-
stranded antiparallel beta sheet and is flanked by two «-helices on
one side. The BMC-T protein is somewhat similar to BMC-H
according to its sequence, but instead of one Pfam00936 domain,
as in BMC-H, it contains two fused domains and as a con-
sequence is trimeric instead of hexameric?*~28, BMC-H and
BMC-T hexamers and trimers have large pores that can be up to
14 A in size in their centers that are thought to ensure metabolite
flow across the BMC shell!929:30, The BMC-P (or BMV)831.32
monomer consists of a single Pfam03319 domain, which is
structurally unrelated to the Pfam00936 domain and contains a 5-
stranded B-barrel. BMC-P proteins are pentameric, and their
function is thought to be limited to capping the vertices of
icosahedrons?332, In the formation of BMCs, a key role is played
by encapsulation peptide (EP) sequences®3-36. EPs are small,
10-20 residue-long amphipathic a-helices that are attached to the
core enzymes N- or C-terminally or inside the flexible surface
loops. Genetic fusions of such sequences have been demonstrated
to be sufficient for the encapsulation of non-native proteins
in propanediol utilization (Pdu)3>37, ethanolamine utilization
(Eut)®®, and beta-carboxysome3® BMC shell particles. BMC-T
and BMC-H proteins, which are encoded in the Pdu locus#041,
and a BMC-H protein, which is encoded in the Eut locus?®, have
been demonstrated to serve as EP targets, so it seems that the
specific shell partner may vary among different types of BMCs. In
addition to binding the core to the shell, EPs are thought to have
a crosslinking influence in the enzymatic core as well>3342-44,

The glycyl-radical associated microcompartment group 2
(GRM2) type BMC locus encodes the glycyl-radical enzyme-
associated microcompartment (GRM) subgroup that includes the
choline utilizing locus C (CutC) choline lyase as its signature
enzyme®?20, CutC cleaves its initial substrate, choline, into tri-
methylamine (TMA) and acetaldehyde®46. TMA itself has been
under intense scrutiny as a bacterial metabolite with potential
therapeutic importance since its oxidized form, trimethylamine-
N-oxide (TMAO), has been identified as a likely contributor to
cardiovascular diseases?”>#8, Like most BMC loci, the GRM2 locus
contains regulatory, shell, core enzyme, and transporter genes.
There are two unusual traits of the GRM2 locus. First, there is a

Bacterial microcompartments (BMCs) are organelle-like
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unique, ~340 residue-long N-terminal extension of CutC, which
is somewhat homologous to the subsequent 340 residues of CutC
and probably originated as an N-terminal duplication?0:46, The
exact function of this extension is unknown, but its involvement
in core multimerization or encapsulation processes has been
proposed earlier?’. Another unusual trait of GRM2 is the lack of
BMC-T genes in the locus, which is a trait shared with only a few
other BMC loci®®. The GRM2 locus therefore contains five
structural shell genes encoding four BMC-H proteins and one
BMC-P protein.

The versatility of BMCs and their capacity to encapsulate large
cargos of various sizes have made them appealing targets for
synthetic biology applications. These organelles are generated
with the specific goal of packing entire enzymatic pathways
to increase their efficiency and lower the effects of
intermediate toxicity, making them attractive platforms for the
construction of recombinant metabolic pathways. There have
been some successful examples, including a two-component
ethanol-producing®*® BMC-based recombinant particle and a
polyphosphate-accumulating®® compartments. A major obstacle
for more extensive research in this area is the lack of a robust
encapsulation system. An ideal platform must be universal
enough to successfully encapsulate various enzymes of different
sizes, solubility, and oligomerization states. Native EPs have been
successfully used for this purpose343537-39.48-50; however, since
they are amphipathic, insolubility or excessive aggregation is a
potential outcome. These limits have been circumvented in some
recent cases by creating artificial encapsulation mechanisms,
either by introducing non-native binding partners in target and
shell proteins®">2 or postponing assembly®*>%, There are several
BMC types that have not yet been studied in detail, and those
could reveal themselves as universal and robust biotechnological
platforms.

In this study, we demonstrate a practical production system for
recombinant GRM2 shell particles from Klebsiella pneumoniae
and the requirements for recombinant shell formation. We pre-
sent a 3.3 A resolution cryo-EM structure of pT = 4 BMC parti-
cle, demonstrate the presence of variable minor shell types, and
identify the potential roles of the particular core enzymes in the
core encapsulation process.

Results

Formation of shell particles and effects of BMC-H variants. In
numerous reported cases, the recombinant expression of struc-
tural BMC shell genes has successfully yielded stable empty shell
particles without enzymatic cores?838.3953  We extensively
investigated what kind of minimal gene set is essential for Kleb-
siella pneumoniae GRM2 shell particle formation (Fig. 1, Table 1,
Supplementary Figs. 1-3). We were able to obtain particles which
we designated BMC shell-derived particles (BDPs) due to the fact
that these are only partially representative of native BMCs—they
lack full enzymatic core, are produced in a non-native expression
system, and are smaller and more regular than native BMCs. In
all cases we purposefully purified BDPs from equivalent amounts
of biomass for the results to be comparable. We observed that the
minimal requirement for BDP formation is the emcC + D protein
pair, which forms predominantly small type BDPs eluting
between 90 and 105 ml on Superose 6 column (Table 1, Supple-
mentary Fig. 3). Curiously, neither for cmcA + D nor cmeB + D
we were able to observe formation of BDPs, despite the high
similarity between cmcA, emeB, and emceC (Fig. 1a). We reasoned
that cmcABC should probably be co-expressed from one pro-
moter since these genes in the Klebsiella pneumoniae genome are
separated by only 8-10bp-long sequences. Such a construct
(cmcABC + D) also resulted predominantly in small type BDPs,
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although the yield was much lower than that of the cmeC+ D
variant. Remarkably, cmcAB + D construct was able to form low
amounts of small type particles despite cmcA + D and cmeB + D
unable to do so (Supplementary Fig. 3). It is possible that some
kind of a synergistic effect between cmcA and emcB is responsible
for this ability to form BDPs.

Due to a defective oligonucleotide used in the PCR, we
accidentally created a mutant cmcC variant, designated cmeC’,
containing a frameshift mutation that affected the last five cmeC
residues and created an additional elongation containing eight
residues (Fig. 1b). We observed that the yield of the cmcABC’ +
D BDPs was greatly increased when compared to that of
cmcABC+ D (Fig. 2a, Supplementary Fig. 1b). Based on the
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) analysis of gel filtration fractions (Fig. 2a), we also
concluded that cmcABC’ + D particles are not uniform in size, as
some eluted immediately after the void volume of 60ml
(designated large type particles), while some material formed a
discrete peak at 90-100 ml (designated small type particles), and
the rest were spread out in the intermediate zone between these
two peaks (designated intermediate particles). Negative staining
transmission electron microscopy (TEM) analysis of the particles

a CUtW GUEXCULY crIcABCG CutF cmeD GUto
[

Moleosarmass(kos) 9496 94 S6s 99 42 1255 ET)

cutc CutD  cmcE cutH cutT cutU cutv

157 222

TVIERRA

b oG +-ATC GCG CGG CAG CAC AAA GCATAA
CMEL " 861 g7a 88A 89Q 80H 91K 92A *

..ATC GCG GGC AGC ACAAAG CAT AAAAGC TTG CGG CCG CAT AAT GCT TAA
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Fig. 1 Kiebsiella pnewmoniae GRM2 locus and variants of emcC. a Klebsiella
pneumonia GRM2 locus. Structural shell BMC-H proteins ecmcA, cmceB,
emceC, and emcE are colored in green, and BMC-P protein ecmeD is colored
in yellow. Core enzymes CutF (aldehyde dehydrogenase), CutO (alcohol
dehydrogenase), CutC (choline lyase), CutD (glycyl-radical activating
enzyme), and CutH (phosphotransacylase) are colored in blue. Regulatory
and transporter genes are colored in gray. The genes have been named
according to previous research!®. b C-terminal amino acid sequences of
three cmeC variants—emceC (native), emeC’ (mutated), and ecmeCirunc
(truncated).

in these zones (Fig. 2b, Supplementary Figs. 4-7) confirmed that
purified cmcABC’ + D BDPs are indeed different in size and are
partially sorted during gel filtration according to their sizes; the
90-100ml peak contained predominantly 20-30nm particles,
and the BDP size increased in the direction of the large type
particle peak, which contained particles up to 200 nm in size. This
confirmed that the wide distribution of the shell proteins in the
gel filtration is a result of the presence of different sizes of
particles and not merely because of the aggregation of small
particles. Surprisingly, truncation of cmeC in ¢cmcABCiync+ D
also resulted in the formation of large type BDPs (Table 1,
Supplementary Fig. 2a), while this truncation did not have any
observable effect on the formation of small type particles in
emcCrrunc + D BDPs (Supplementary Fig. 3b).

In our subsequent experiments, we co-expressed the full
structural gene sets cmcABC+D+E and ¢cmcABC’ +D +E.
emcE contained an around 30 amino acid C-terminal elongation
if compared to cmcA, emeB, or cmeC (Supplementary Fig. 8), and
we observed its co-migration with the BDPs (Supplementary Fig.
1d, ). While cmcE had no influence on the size distribution or
yield of the cmcABC’ + D BDPs, for the native gene set cmcABC
+D cmcE inclusion caused the formation of the large type
particles in a pattern similar to that of cmcABC’ + D (Supple-
mentary Fig. 1d). We also tested both mutant and C-terminally
truncated cmeC’ + D and emcCryne + D BDP variants (Fig, 1b,
Supplementary Figs. 3a, b) and observed that there were no
differences in the yield or size distribution of BDPs between all
three cmeC variants (Supplementary Fig. 3). An obvious common
trait of cmcE and mutant cmeC’ is the presence of a C-terminal
elongation that consists of 8 residues for cmecC’ and 40 residues
for emcE.

When the e¢mcABC and ¢cmcABC’ were expressed in the
absence of BMC-P cmcD, we could purify almost none of the
BMC proteins in the case of cmcABC; however, for cmcABC/, it
was possible to observe an even “smear” of BMC proteins at the
gel filtration volumes of 60-100 ml (Supplementary Fig. 1c). A
very similar “smear” was also observed for cmcE particles during
cmcE + D co-expression (Supplementary Fig. 3f). In this latter
case, cmcD was not observed in the gel filtration profile,
suggesting a lack of interaction between these two proteins.
When analyzing such “smeared” material of the cmcABC gel
filtration 40-42 ml and ecmcE + D 94-96 ml fractions with TEM
(Supplementary Fig. 9), both rounded and elongated nanotube-
like particles could be observed. Curiously, although both were C-
terminally elongated, cmeC’ and emcE had different abilities to

Table 1 Summary of BDP self-assembly experiments (Supplementary Figs. 1-3 and 12).

pET-Duet-1 T7-1 pET-Duet-1 T7-2 pRSF-Duet T7-1 Results

cmcABC = ~ No purified particles

cmcABC cmeD % Predominantly small type particles

cmcABC cmeD cmcE Large, intermediary, and small type particles
cmcABC’ cmeD cmeC’ Large, intermediary, and small type particles
cmcABC’ cmeD cmcAB Large, intermediary, and small type particles
cmcABC’ - - Irregular “smeared” material

cmcABC’ cmeD = Large, intermediary, and small type particles
cmcABC! cmeD cmcE Large, intermediary, and small type particles
emcABCyyne cmeD - Large, intermediary, and small type particles
cmcAB cmeD = Predominantly small type particles

cmcA cmeD = No purified particles

cmeB cmeD = No purified particles

cmeC cmeD = Predominantly small type particles

cmeC cmeD cmcE Predominantly small type particles

cmcE cmeD - Irregular “smeared” material

cmeC’ cmeD - Predominantly small type particles
cmcCirunc cmeD = Predominantly small type particles
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Fig. 2 Characterization of cmcABC’ -+ cmcD BDPs. a Gel filtration of sedimented BDPs and SDS-PAGE analysis of the fractions. Two noticeable BDP peaks
were formed: one immediately after the empty volume of 60 ml (large type particle zone) and one at approximately 90-100 ml (small type particle zone).
An intermediary zone with smaller BDP protein amounts was formed between these two zones. b Examples of TEM analysis of the BDP samples in the
large particle zone (66 ml), intermediary zone (76 and 84 ml), and small particle zone (96 ml). Scale bar: 200 nm.

interact with the pentameric units; the former is able to interact
with them, while the latter is unable to interact with them.
Mass spectrometry analysis identified peaks matching all
four shell proteins in the cmcABC—+ D, cmcABC’'+D and
c¢mcABCyyne + D BDPs (Supplementary Fig. 10a-e). cmcC’ was
identified as the major BMC-H protein in cmcABC’ + D BDPs.
Curiously, in the case of cmcABC, e +D BDPs the major
protein was cmcB. It was virtually impossible to distinguish
between cmcB and cmcC in cmcABC + D small type BDPs, so
both could be the major shell components. While cmeD could be
detected in small type particles, it was practically undetectable
in large type particles (Supplementary Fig. 10a, b and 10d, e).
This would be expected, since increased triangulation numbers in
larger particles would significantly reduce the proportion of
fivefold vertices occupied by cmeD. In cmcABC’ + D particles the
proportion of BMC-H proteins among large and small type BDPs
were largely similar; however, the proportion of cmcCiyy,c was
significantly increased in large type c¢cmcABCyyne+ D BDPs
(Supplementary Fig. 10d, e). Unlike cmcC’, cmcCpyy is not the
major protein in cmcABCyyne + D BDPs but instead is present in
minor amounts in large type particles. Also, we identified several
unexpected m/z peaks in several cases (Supplementary Fig. 10a, b,
d, e, 1). The identities of these peaks could be degradation products
of BMC proteins. Since we did not observed any such peaks in
cmcC’' + D, ecmcCiyne +D, or cmcC+D small type BDPs
(Supplementary Fig. 10f-h), and they appear in cmcAB+ D
particles (Supplementary Fig. 10i), source of these peaks are cmcA
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and/or cmcB proteins. It is unclear whether these products have
any significant impact on assembly process.

We compared expression levels of BMC-H components of
cmcAD, cmeBD, cmceCD, cmcC’D, and ¢cmcCi,n D constructs
and observed in SDS-PAGE gel that the expression levels of these
proteins are fairly similar (Supplementary Fig. 11), with cmcCiync
exhibiting slightly lower expression levels than others. It could be
possible that these lower expression levels are responsible for its
low content in cmcABC,,,n + D BDPs. All tested proteins were
also soluble in similar amounts, except in the case of cmcA. cmcA
is much more insoluble than other BMC-II proteins, although
mass spectrometry analysis confirmed its inclusion in soluble
composite cmcABC’' + D, cmcABC+ D, and cmcABCiyne +D
BDPs (Supplementary Fig. 10a-b and c-d). Thus, the solubility
and availability of BMC-H proteins could be dependable on the
composition of other shell components. We tested the influence
of expressing additional cmcC’and cmcAB from another
promoter on the BDP size and yield (Supplementary Fig. 12);
however, we did not observe any dramatic differences in yield or
particle size distributions in gel filtration, just a very minor
improvement of overall yield in case of additional cmcC'. Tt is
possible that additional cmcC’ or cmcAB expressed from a
different promoter do not take part in the complex interplay
between cmcA, cmcB, and cmcC genes located so closely to each
other during their translation; perhaps formation of particular
heterohexamers consisting of more than one type of BMC-H
protein is the key to this process.
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Table 2 Summary of BDP encapsulation experiments (Supplementary Figs. 13-16).

pET-Duet-1 pET-Duet-1 pRSF-Duet-1 pRSF-Duet-1 pRSF-Duet-1 pRSF-Duet-1 Results

T71 17-2 71 17-2, 71, T7-2,

cmcABC’ cmeD CutC = = = CutC in all zones

cmcABC! cmeD CutF = - - No encapsulation observed

cmcABC’ cmeD CutO - - = No encapsulation observed

cmcABC’ cmeD CutH = = = No encapsulation observed

cmcABC’ cmeD CutC cmcE i = CutC in all zones

cmcABC’ cmeD CutF cmcE = = No encapsulation observed

cmcABC’ cmeD CutO cmcE - - No encapsulation observed

cmcABC’ cmeD CutH cmcE - = No encapsulation observed

c¢cmcABC’ cmeD CutCizos - - - No encapsulation observed

cmcABC’ cmeD CutCazg s - - - CutCazg12g in all zones

cmcABC’ cmeD CutCazgqi28 CutO = = CutO and CutCazgpzs in all zones

cmcABC’ cmeD CutC335_1123 CutF - - CutC335_1123 in all zones

cmcABC’ cmeD CutC CutO = = CutO and CutC in all zones

cmcABC! cmeD CutC CutF ~ = CutC in all zones, CutF predominantly in
large type particle zone

cmcABC’ cmeD CutC CutH = = CutC in all zones

cmcABC! cmeD CutC CutF CutO - CutC, CutF, and CutO predominantly in
large type particle zone

cmcABC’ cmeD CutC CutF CutO CutH CutC, CutF, and CutO predominantly in
large type particle zone

cmeC’ cmeD CutC - - = CutC predominantly in small type
particle zone

cmeC’ cmeD CutC CutF CutO - No encapsulation observed

cmeC cmeD CutC - = = CutC predominantly in small type
particle zone

cmeC cmeD CutC CutF CutO = No encapsulation observed

Hierarchy of the GRM2 core encapsulation mechanism. Since
the GRM2 locus has several unusual traits, we wanted to test
whether it is possible to encapsulate some of the core enzymes by
the recombinant co-expression of our BDPs. We demonstrate our
experiments with three core enzymes: CutC (signature enzyme
choline lyase), CutO (alcohol dehydrogenase), and CutF (aldehyde
dehydrogenase). CutD (CutC-activating enzyme) is an insoluble
protein when produced recombinantly*®, and we were not able to
detect encapsulation of CutH (phosphotransacylase) at all in any
of tested BDPs (Supplementary Fig. l4c-e). We selected the
c¢cmcABC’ + D pET-Duetl construct as the BDP platform for
encapsulation experiments since it offered a more convenient co-
expression setup in a two-plasmid expression system and a greater
yield than that of native cmcABC + D particles. Our results are
summarized in Table 2 and Supplementary Figs. 13-16.

To illuminate the role of the unique N-terminal extension of
CutC, we created two new constructs by cutting CutC into two
parts containing either the N-terminal 326 amino acids or the C-
terminal 792 amino acids, which were visible within the electron
density of our previously reported crystal structure?s. We
performed control experiments to test whether Superose 6 gel
filtration can properly separate core enzymes from BDPs
(Supplementary Figs. 17 and 18). For these experiments we used
purified His6x-tagged core enzymes and as a size marker
representing BDPs we chose 29 nm diameter bacteriophage AP
205 virus-like particles®®. We concluded that gel filtration on the
Superose 6 column is able to separate CutC (116-132 ml), CutO
(116-140ml), and CutH (120-144 ml) from AP 205 virus-like
particles migrating as small type BDPs (Supplementary Fig. 11b).
This confirmed that these three core enzymes as such generally do
not overlap with BDP elution fractions. However, CutF eluted in
a pattern both consistent with a tetrameric oligomerization state
(roughly the same as a dimeric CutC) and also as a larger
complex starting as early as 64 ml (Supplementary Figs. 17a, ¢
and 18a), thus partially overlapping with BDP elution zones. The
presence of CutF caused shift of elution of full-length CutC

towards larger-sized aggregates as early as 60 ml, but not N-
terminally truncated CutCszg 112e, indicating a crosslinking
influence of CutF on full-length CutC. We also tested whether
there is some direct interaction between formed shells and core
enzymes or any such interactions mediated by Esherichia coli
proteins. We expressed core enzymes (CutC+ CutO or CutC+
CutF + CutO) and BDPs (cmcABC’ + D) in separate batches,
then mixed the biomasses in equivalent amounts, and proceeded
further with cell lysis, ultracentrifugation, and gel filtration as
usually (Supplementary Figs. 18¢, e). CutC+ CutO and CutC +
CutF + CutO biomasses without addition of cmcABC’ + D BDPs
were treated in a similar fashion as controls. Only in the case of
CutC + CutF + CutO mixed with e¢mcABC’+ D biomass we
were able to detect low amounts of CutC core enzyme
(Supplementary Fig. 12e), suggesting some association with
BDPs. However, neither CutC nor CutO without BDPs, nor
CutC or CutO, when mixed with cmcABC’ + D BDPs, could be
observed in fractions before 108 ml (Supplementary Figs. 12b-d),
confirming the absence of association with already formed BDPs.
This strongly suggests that the observed co-migration of CutC
and CutO with BDPs after co-expression described below is
almost certainly due to encapsulation. In gel filtration on
Superose 6 column CutO is generally eluted slightly later than
CutC (Supplementary Fig. 17) and in 6xHis tagged CutC pull-
down assays CutO also failed to associate with it (Supplementary
Fig. 11b). It could be that the chromatography is a too aggressive
method disassembling unencapsulated CutC-CutO complexes.
Alternatively, it is also possible that CutC and BMC shell forms a
composite binding site for CutO. This, however, would result in
CutO being localized exclusively on the inner shell surface and
thus being encapsulated in relatively small amounts, especially,
when the larger volume/surface ratios of native-type BMCs are
considered. Such mechanism would result in a very uneven
distribution of CutO in BMC.

Of all three tested core enzymes, CutC was the only enzyme
capable of co-migration with BDPs by itself when co-expressed
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with emcABC’ 4D shell genes (Supplementary Fig. 13a). The
encapsulation of CutC was further confirmed by His6x tag
capture experiments. Both large and small type BDPs containing
encapsulated His6x-tagged CutC could not bind to the HisTrap
column, although free CutC could be efficiently purified by this
method®, suggesting that the CutC along with the His6x tag is
sequestered inside the BDP lumen (Supplementary Fig. 19a, b).
This was true for both small type and large type BDP materials.
The presence of 6xHis tag in BDP-associated CutC was confirmed
by western blot (Supplementary Fig. 19¢). Neither CutO nor CutF
was able to co-migrate with BDPs in detectable amounts. This
was somewhat unexpected, considering that CutF (but not CutO)
has an EP-like elongation (NEQNVERVIRQVLERLG) at the C-
terminal end®®. CutH contains an N-terminal EP-like elongation
(MIDTLVREKIAARL)®®, but we failed to detect any CutH co-
migration with BDPs as well. The presence or absence of cmcE
had no influence on co-migration—CutC was present, and CutO
and CutF absent irrespective of the presence or absence of cmcE
(Table 2, Supplementary Fig. 13d-1f).

An unexpected observation was that both CutO and CutF co-
migration with BDPs could be observed if they were co-expressed
with CutC (Table 2, Supplementary Fig. 14). Testing the N- and
C-terminal domains of CutC revealed that the N-terminal
domain was not essential for the encapsulation of CutC C-
terminal part and the encapsulation of the N-terminal domain as
such could not be detected either (Supplementary Fig. 15a, b).
Thus, the first 335 amino acids of CutC are not necessary for its
encapsulation. The presence of the CutC N-terminal domain was
also not needed for the encapsulation of CutO, which could be
encapsulated by both full-length CutC and truncated
CutCssg 11250 However, the N-terminal domain was essential for
the CutC-mediated co-migration of CutF with BDPs, which
further highlighted the role of the N-terminal CutC domain
(Supplementary Figs. 14 and 15). The presence of CutF changed
the co-migration pattern; while encapsulated CutC and CutC +
CutO were evenly spread throughout all BDP-containing
fractions after gel filtration, indicating that there was no
preference for a certain particle size, CutF co-migrated pre-
dominantly with large type BDPs (Supplementary Fig. 15b, c).
Remarkably, the presence of CutF even shifted a portion of
the CutC and CutO proteins from the small type BDP zone into
large type BDP particle zone (Supplementary Fig. 15¢). When the
CutC+ CutF + CutO proteins were co-expressed with the
cmeC’+ D and cmeC+ D constructs, capable of forming only
small type BDPs, no co-migration of any protein was detected,
suggesting that the core size could be too large for encapsulation
in small type particles. However, CutC alone could be
encapsulated in ecmeC + D particles very efficiently (Supplemen-
tary Fig. 16). To ensure proper identification, the identity of the
encapsulated CutO and CutF bands were additionally confirmed
by peptide mass fingerprinting analysis (Supplementary Fig. 20).

Our observations of CutF migration in co-expression with
BDPs are consistent with the observations for purified core
enzymes (Supplementary Fig. 17a)—in both cases CutC and CutF
interaction had a size-increasing effect. We also concede that
some proportion of CutC+ CutF and CutC+ CutF + CutO
could be present in a free form intermixed with BDPs in the
case of coexpressions with BDPs, since the presence of CutC
could be observed in small amounts mixed with BDPs as well
(Supplementary Fig. 12e). Thus, encapsulation of the core
enzymes in the presence of CutF is not certain.

Nevertheless, our data strongly suggest that CutC acts as a
mediator of the encapsulation of the enzymatic core. It must be
noted that our recombinant BDP system may not completely
accurately represent native encapsulation system of K. prneumo-
niae, but it is very likely that CutC plays the central encapsulation

6 NATURE

46

cmcABCDE

Fig. 3 Proposed enzymatic core encapsulation mechanism of CutC, CutF,
and CutO in GRM2 BDPs. CutC is serving as an adaptor for the
encapsulation of other enzymes. CutC C-terminal domain is responsible for
encapsulation and also for interaction with CutO. The CutC N-terminal
domain is responsible for CutC interaction with CutF. CutF together with
CutC N-terminal domain crosslinks the enzymatic core and increases

its size.

role in native conditions as well and the interaction between the
CutC N-terminal portion and CutF is most likely necessary for
the assembly of the native, large-sized enzymatic cores. An analog
of CutF from a different BMC locus has been demonstrated to
form a tetramer in a crystal structure®’; therefore, it could serve as
a multivalent cross-linker in the BMC core. Our proposed
enzymatic core encapsulation mechanism is summarized in Fig. 3.
The C-terminal part of CutC anchors itself and the entire
enzymatic core to the shell and simultaneously ensures the
encapsulation of CutO, while the N-terminal part of CutC
ensures the encapsulation of CutF, which then further crosslinks
the enzymatic core and increases its size.

Cryo-EM characterization of BDPs. We analyzed cmcABC'D +
CutCs36 1128 BDPs with cryo-EM. The peak containing the small
type BDPs in the gel filtration volumes from 90 to 100 ml was
chosen for analysis because this material appeared to be the most
uniform in TEM analysis (Fig. 2) and contained encapsulated
CutCszs 1128 (Supplementary Fig. 6B).

We calculated a near-atomic (3.3 A) resolution map for the
icosahedral particles and built an atomic model (Fig. 4). The
particles had a pT = 4 quasi-symmetry with 12 cmcD pentamers
occupying the vertices of the icosahedron and 180 BMC-H
monomers that were arranged in 30 hexamers within the facets.
The ¢mcABC’ + D small type particle peak contains all three
BMC-H proteins; most likely, they all contribute to the averaged
electron density of BMC-H positions. The map is not of
sufficiently high resolution to distinguish between these three
types of proteins, so we chose to model cmcC’ in the model, since
the mass spectrometry data identified it as the most abundant
BMC-H protein in ¢cmcABC’+ D small type particles (Supple-
mentary Fig. 10a). Electron density for cmcC’ chain in
pentameric-hexameric contacts was interpretable from residues
3 to 88, for the rest of cmcC’ chains in hexameric-hexameric
contacts it was interpretable from residues 3 to 83. The resulting
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250 A

Qutside facet (flat) Inside facet (convex)

Qutside facet (concave) Inside facet (convex)

cmeC’

Fig. 4 Cryo-EM structure of pT=4 quasi-icosahedral BDP and its penatameric and hexameric components. a Surface model of pT =4 quasi-icosahedral
BDP particle, displayed on the left side. A ribbon model of a emeD pentamer and three cmeC’ hexamers is displayed on the right side. Pentameric cmeD
protein is colored in yellow and hexameric cmeC’ is colored in green. Note that the fivefold symmetry axis is located at the center of cmeD pentamer and
threefold axis is located in the middle between three emeC’ hexamers. b Electrostatic surface potential of pentameric cmeD and hexameric emeC’. Note
the pores in the centers of pentamers and hexamers. The surface contour levels were set to —1 kT/e (red) and +1 kT/e (blue).

pT =4 BDP particles are 250 A in diameter. These particles are
formed similarly to previously reported larger pT =9 pseudo-
symmetric particles from Haliangium ochraceum?®s, pT=4
particles comprised double-fused Haliangium ochraceum BMC-
H proteins®’, mixed icosahedral and elongated pT =4 and pT =
3 particles from Halothece sp®8, and smaller T=1 particles
comprised circularly permutated BMC-H proteins™®.

In the pT =4 BDP shell, there are three pores: one is in the
center of the cmcC’ hexamer, the second is at the threefold axis
between the cmcC’ hexamers, and the third is in the center of the
cmeD pentamer (Fig. 4). The pore in the center of the hexamer is
approximately 7 A in diameter as judged after subtraction of
atomic Van der Waals diameters and contains typical GSG pore
motifs on the rim (Fig. 4b, Supplementary Fig. 8). The pore in the
center of the c¢mcD pentamer has a funnel shape and is
approximately 16 A wide on the outer surface but is only
approximately 4 A in diameter on the inner surface as judged by
the Van der Waals diameters of atoms forming it (Fig. 4b). In
electrostatic surface potential map it is visible that the cmeC’
hexamer inner facet is charged more positively than the outside
facet (Fig. 4b). The convex facets of cmeC’ and ecmeD are directed
towards the lumen, a feature observed in earlier studies of other
types of BMCs?8°7:58, The narrowest part of the pentameric pore
is very hydrophobic in nature, as it is lined by tyrosines and
phenylalanines (Supplementary Fig. 21). Such a ring-like
structure of aromatic amino acids in the BMC-P pore is unusual
and seems to be a characteristic of the GRM2-type (Supplemen-
tary Fig. 8). This feature is not completely conserved, as
Aeromonas hydrophila GRM2-type BMC-Ps have only one
aromatic amino acid instead of two in the matching central pore
forming motif (Supplementary Fig. 8). Most BMC-P proteins
encoded by other loci contain a small helix between the 5 and
B6 strands, and the rim of the pore is lined by GS motifs to form a
pore of comparable size. Beta carboxysomal shell protein CemL
can be illustrated as an example of this typical fold (Supplemen-
tary Fig. 21). Compared to BMC-P proteins from other hosts, the

GRM2-type BMC-P sequence contains a deletion of five amino
acids downstream from the pore motif, which thus transforms the
small helix between the p5 and P6 strands into a shorter loop. In
our structure the tip of this loop is disordered—residues K66,
D67, and R68 and side chains of L64, N65, Y69, and K70 are
invisible in electron density and are not modeled. The bulky
aromatic amino acids seem to compensate for the shorter loop in
terms of closing the pore. Remarkably, the GRM3-type BMC-P
contains the same five amino acid deletion but retains the typical
GS pore motif, so the GRM3 BMC-P pore would be significantly
wider than that of any other BMC-P (Supplementary Fig. 8). The
third pore at the BDP threefold axis is 3 A in diameter and mostly
featureless, as it is formed by the nearby main chain of glycine
residues. Substrate and cofactor transport across the shell is
probably mediated by the largest cmcC’ pore since the other two
types of pores are too small or hydrophobic to be involved in this
process, if it is assumed that the pores are mostly static in their
conformations.

The cryo-EM analysis revealed significant heterogeneity among
the particles (Fig. 5). While the majority of particles were revealed
to be pT = 4 pseudosymmetric icosahedrons, roughly a quarter of
these pT = 4 particles were missing at least one pentameric unit,
resulting in an incomplete particle. There were also smaller
quantities of elongated pT =4, Q=6 and pT = 4, Q = 8 particles,
and there were more elongated filamentous particles and
icosahedrons with larger pseudosymmetry numbers (possibly
pT =7 or pT=9). A very unusual subpopulation consisted of
smaller triangular-shaped particles, which, judging by their size,
could be derivatives of three fused pT = 4 icosahedrons (Fig. 5d).
Several asymmetric Cl classes of icosahedral particles with visible
electron density inside the BDP particle could also be identified
(Supplementary Fig. 22), which we hoped contained encapsulated
CutCazg 112e- However, despite extensive efforts, including
particle subtraction, we failesl to generate any meaningful
reconstructions beyond 20-30 A resolution of the object inside
the particles. There are several possible reasons for this result.

NATURE COMMUNICATIONS [ (2020)11:388 [ https://doi.org/10.1038/s41467-019-14205-y | www.nature.com/naturecommunications 7

47



ARTICLE

NATURE COMMUNICATIONS | https.//doi.org/10.1038/s41467-019-14205-y

69% intact
icosahedral
particles with pT =4
quasi-symmetry

23% pT = 4 derived
particles with at
least one missing
pentameric unit

0.2% icosahedral

03%pT=4,Q=8
particles, with two
additional hexameric
rings

particles with pT =7 or
pT = 9 quasi-symmetry

6% pT=4, Q=6
particles with one
additional hexameric
ring

0.7% pT = 4 derived
triangular-looking
particles

< 0.1% pT =4, pT =7 or pT =9 derived
particles with more than two additional
hexameric rings

RPN S

Fig. 5 Cryo-EM classes of BDP subtypes. a 3D class at 3.3 A resolution and atomic model of whole intact pT = 4 quasi-symmetric icosahedral particles,
in total 69%. b 8.8 A resolution 3D class of pT = 4 derived particles, with at least one missing pentameric unit, in total 23%. € 9.6 A resolution 3D class of
pT =4, Q=6 quasi-symmetric particles, in total 6%. d 2D class of triangular-looking particles, judging from the size probably derived from three fused
pT =4 particles, in total 0.7%. e 2D class of pT = 4, Q@ = 8 particles, in total 0.3%. f 2D class of pT = 7 or pT =9 quasi-icosahedral particles, in total 0.2%.
g Separate micrographs of tubular particles elongated with more than two hexameric rings, in total less than 0.1%. Scale bar: 60 nm.

First, the number of such particles is quite small, with only 3-5
thousand particles in each class. Additionally, choline-free CutC
is partially disordered, as demonstrated in our previous
research?®, and this could complicate the process of the sorting
of proper two-dimensional (2D) classes. In addition, it is also
possible that encapsulated CutC is not rigidly bound at a
particular position within the BDP shell. If this is indeed the case,
the CutC protein acts as a nucleator of shell assembly. Still, the
fact that the unidentified electron density was located in the
inside of the particles suggests that some kind of cargo is
encapsulated, and it can reasonably be suspected as CutC.

The minor BDP shell subpopulations illustrate the flexibility of
BMC-H proteins in creating different shapes, including the ability
to form curved surfaces in small tubular particles, more planar
surfaces in larger icosahedral particles and semi-regular poly-
hedrons by fusing separate icosahedrons into more complex
formations. This is not surprising since native metabolosomes,
when visualized in TEM, have large, irregular shapes!?1313, The
multiple building modes are a result of the flexible contacts
between BMC-H hexamers that range from 150° in pT=4
icosahedrons to 160° in the elongated pT =4, Q=6 particles
(Supplementary Fig. 23) to a planar 180° (ref. 21), as has been
previously demonstrated in the crystal structure of a BMC-H
protein homolog.

The main hexamer-hexamer contacts between cmcC’ are
formed by the conservative K-R-X triad (Fig. 6a, Supplementary
Fig. 24), which has already been demonstrated in previous
reports?1:22. A hydrogen bond is formed between the K25 side
chain nitrogen and the main chain of R78 in the adjacent
monomer. The R78 side chain can in turn form a hydrogen bond
with the main chains of K25 and A27 in the opposite monomer.
These interactions result in a ring structure of four linked emeC’
monomers. On the inside surface, there is also a probable network
of salt bridges formed by the E62, R66, E16, and R74 residues.
The side chain electron density is very poor for this network, and
it is impossible to visualize the exact contacts between the
particular residues, but their positions in the main chain suggest

that interactions between them do occur. These residues are not
completely conserved, but most cmcC BMC-H homologs contain
several basic and acidic residues in the same regions (Supple-
mentary Fig. 8). This salt bridge network could play a significant
role in controlling the planarity of the contacts between the
hexameric units; for example, the distances between the amino
acids at the E62 and R66 positions in opposite monomers can
vary significantly from 8 A in a planar crystal contact, as shown
previouslyZl, to almost 3 A in the 150° contact found in our pT =
4 BDP structure.

There are also several specific polar pentameric-hexameric
cmeC’-cmeD interactions (Fig. 6b). There are hydrogen bonds
between the cmcD G49 main chain and the emeC’ K25 side
chain and between cmcD E79 side chain and emeC’ G51 side
chain. There are also two possible salt bridges between the cmeC’
R78 and cmcD D54 and the cmeC’ D49 and cmcD K80 side
chains. The solvent-accessible buried surface areas between the
hexameric-hexameric and the pentameric-hexameric contacts
are very similar (1050 and 1010 A2, respectively). Nevertheless,
in our case, roughly a quarter of the pT = 4 BDPs were missing
at least one pentameric subunit, a somewhat surprising fact when
the numerous pentameric-hexameric contacts and comparable
buried surface areas are considered. In another case, a pT =4
BMC shell particle was formed by a double-fused BMC-H
protein even in the absence of any BMC-P proteins®’. This
demonstrates that BMC-P proteins are much more loosely
integrated into GRM2 BDPs than BMC-H proteins and has
potential implications for designing synthetic BMC particles with
encapsulated cargo.

Discussion

Our results demonstrate that even highly similar BMC-H proteins
may have significantly different assembly properties. A compu-
tational study has shown that shell proteins with high spontaneous
curvature are more efficient in forming empty particles®0. High
spontaneous curvature components would form nanotube-like or
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Fig. 6 Detailed view of hexameric-hexameric and pentameric-hexameric interfaces. a Hexameric-hexameric cmeC'-ecmeC’ interface; K-R-X (in our case
K-R-A) triad and salt bridge networks are viewed as stick models, distances are measured in angstroms. b Hexameric-pentameric emeC’-cmeD interface;
amino acids invelved in contacts are viewed as stick models. Distances are measured in angstroms.

irregular assemblies in the absence of pentameric subunits or small
icosahedral particles in the presence of pentameric subunits, and
the likelihood of purifying such material with our method would
be increased. Low spontaneous curvature components would form
large planar surfaces that would be too insoluble or unstable to be
purified with our methods. If our experimental results are con-
sidered in this light, then individual cmcA and ecmcB would cor-
respond to components with low spontaneous curvature, and
cmeC’, emcE, cmcCiune and, to a lesser extent, native cmeC would
correspond to high spontaneous curvature components. It is
possible that some synergic effects could also be involved in the
determination of curvature—cmcAB + D are able to form small
type particles in contrast to individual cmcA + D and emeB + D
unable to do so. If this hypothesis is indeed the explanation of our
results, the formation of larger and more native-type BDP shells
requires a fine balance between separate high-curvature and low-
curvature components.

Recombinant BMC shell particles are sometimes smaller and
more regular than native BMCs in their natural hosts?8:38:39.53.61,
as was also demonstrated in our case. In our recombinant
expression system, larger, more complete enzymatic core (CutC
+ CutF + CutO) does not enlarge the shells of predominantly
smaller BDPs (¢cmcC + D) and, as a result, are not encapsulated.
This observation may not be true for formation of native BMCs
where the expression and assembly processes could be sig-
nificantly different and the complete native core itself could be a
significant factor in particle assembly and size determination.

It is rather unclear exactly which part of the protein or which
set of interactions could be playing the role of the “switch”
between the high-curvature and the low-curvature BMC-H
components in our case. The nature of these components is not
necessarily individual—for example, formation of particular

heterohexamers of different types of BMC-H proteins could be
possible. A good candidate for the “switch” role would be the salt
bridge network located on the lumenal interface between the
hexamers since it shows variability among c¢meC, cmcA, and
cmceB and between different BMC types, yet it can still be iden-
tified in most of the short BMC-H proteins (Supplementary
Fig. 20). Another potential candidate for this role could be the
BMC-H C-terminal portion beyond residue 85. C-terminally
elongated BMC-H proteins (cmcC’ and cmcE), at least in our
case, seem to be crucial in forming larger assemblies; however, in
the case of cmcABC,, . + D a C-terminal truncation also had a
similar enlarging effect on the size distribution of BDPs. Since the
C-terminus is located close to the interhexamer contacts, it is
tempting to speculate that it might also somehow control the
contact angle between the hexamers in such a way that it reg-
ulates the size of the final particle. Remarkably, there are reports
that describe another case of an artificially created C-terminally
elongated BMC-H mutant, designated PduA*6263, In this case,
the solubility of the mutant PduA* was greatly enhanced, and it
was also more capable of nanotube-like structure formation in E.
coli. Although C-terminal elongation does not seem to improve
the solubility of GRM2 BMC-H proteins, it is indeed associated
with formation of elongated nanotubes for cmcE and cmcABC’
and also with formation of elongated BDPs. Depending on its
binding partner, the cmeC’ C-terminal helix can assume different
conformations; in a hexamer-pentamer contact, it is more
structured than in a hexamer-hexamer contact (Supplementary
Fig. 25). A somewhat analogous mechanism exists in some ico-
sahedral plant and animal viruses, where an N-terminal “arm”
containing coat protein is assembled and inserted between
monomers in hexameric contacts, which makes them flat but
results in disordered pentameric contacts that are bent, which was
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first noticed in tomato bushy stunt virus (TBSV)®4. Whether this
actually contributes to the contact angles between BMC-H hex-
amers remains unclear.

The assembly of the enzymatic core is a crucial step in BMC
formation. Carboxysomes contain specific adaptor proteins, the
purpose of which is to ensure the crosslinking and encapsulation
of the enzymatic core?3#2-#, This is not the case for metabolo-
somes, where there are no specific additional adaptor proteins
and encapsulation must be carried out by EP that is directly
attached to enzymes. However, not all core enzymes contain
identifiable EP, and it has been hypothesized previously that a
piggybacking mechanism ensures the encapsulation of the core
components without EP°6, Experimental observations supports
this as well—activating enzyme of GRM3 signature enzyme binds
to the signature enzyme and is probably encapsulated in such
manner®, There is also some evidence of EP-independent
interaction of core enzymes with the BMC shell—for example,
PduS interacts with one of the Citrobacter freundii pdu shell
component PduT without mediation of an identifiable EPS°.
There is a benefit to a piggybacking strategy, as it would provide
an opportunity to control the stoichiometry of encapsulated
enzymes and ensure that no component is present in such low
quantities as to bottleneck the enzymatic cascade.

Our experimental results show that this mechanism could be
true for GRM2 enzymatic core components as well, as the
interactions between some GRM2 core components are strictly
hierarchical. Encapsulation is dependent on sequential interac-
tions between particular enzymes, where CutC is responsible for
core encapsulation in the shell and, together with CutF, is most
likely responsible for crosslinking the core into a larger assembly
(Fig. 3). It is interesting that CutCss6 1108 has no identifiable EP
sequence and therefore results in encapsulation that seems to be
different from that resulting from the canonic EP-shell interac-
tion. A reason for this could be the lack of BMC-T proteins in the
GRM2 locus. BMC-T PduB has been shown to be an essential
component for EP-mediated encapsulation of cargo?0; because of
this, an entirely different BMC encapsulation system may have
evolved in the GRM2 locus to compensate for the absence of
BMC-T. Interestingly, CutF still contains an EP-like sequence at
the C-terminal end and CutH has an analogous sequence at the
N-terminal end, but their functions in our recombinant BDP
system, if any, are limited purely to crosslinking. We failed to
detect any CutH encapsulation or co-migration with BDPs or
core enzymes, although it is vital for regeneration of coenzyme A
inside the lumen and most likely is encapsulated in native
BMCs®. The observations are not necessarily true for native
GRM2-type BMCs—it is possible that EPs of CutF and CutH
become functional only in native conditions. Nevertheless, the
role of the CutC as a central adaptor stays strongly suspected in
native GRM2 BMCs as well. The encapsulation pattern could
point to another important consideration for metabolosome
organization. An independent encapsulation of CutO and CutF
mediated by CutC could be a good way to ensure that
both alcohol and aldehyde dehydrogenase are in close proximity
to the signature enzyme. Proper NADT/NADH recycling inside
the enclosed compartment is based on the requirement that the
aldehyde intermediate is more or less equally divided between
the alcohol and aldehyde dehydrogenase components®2%, and this
could be a good mechanism for ensuring this.

Methods

Construct design. GenBank™ entry ARRZ01000032.1 was used for PCR primer
design, with the following entries that correspond to named proteins: CutC
(EPO20241.1), CutO (EPO20327.1), Cutk (EPO20363.1), cmcA (EPO20272.1),
cmcB {EP020357.1), cmcC {EP020328.1), cmcE (EP020271.1), and cmcD
(EP020293.1). cmcB had to be obtained via separate gene synthesis by General
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Biosystems (USA), since it was not possible to amplify it due to interference from
the cmcA and cmcC genes. Two additional constructs were made from full-length
CutC: CutC, 335, corresponding to the first 325 amino acids of CutC, and
CutCsss 1125, corresponding to amino acids 336-1128. Constructs containing
cmcABC and cmcABC’ were generated by amplifying and cloning the whole
cmcABC region with forward cmcA and reverse cmcC primers. Genomic DNA
obtained from a Klebsiella pneumoniae strain MSCL535 {Microbial Strain Col-
lection of Latvia) was used as a PCR template. The primer pairs used are listed in
Supplementary Table 1. To ensure maximal simplicity in the design and co-
expression, the proteins were expressed in a pET-Duet1/pRSE-Duetl two-plasmid
system. These plasmid vectors contain identical Duet regions that contain dual
promoters and can also be cotransformed. DNA transcribed under the T7-1 pro-
moter was inserted using Neol and HindlII sites, and for insertion after the T7-2
promoter, Ndel and Xhol sites were used. To increase the number of available
promoters from four to six for cmcABC’ + D + CutC + CutF +

CutO and emcABC’ + D + CutC + CutF + CutO + CutH constructs, we amplified
the whole Duet region containing CutQ or CutOQ + CutH and inserted it at the end
of the pRSE-Duetl vector at the Xhol site.

Protein expression and purification. pET-Duet1 plasmids containing cmcABC +
cmeD and, optionally, pRSE-Duetl plasmids containing CutC/CutO/CutF/cmcE
were transformed into Escherichia coli BL21-DE3 chemically competent cells
(Sigma-Aldrich, cat. No CMC0014). Cells were grown in 2xTY medium containing
50 pg/ml ampicillin and (if pRSE-Duetl vector was used) 30 pg/ml kanamycin.
Cells were grown at +37 °C to ODsgp 0.7 and shaken at 200 r.p.m., cooled at 20 °C
for 30 min and induced with 1 mM IPTG. Induction was performed overnight for
approximately 16 h at 20 °C with shaking at 200 rpm. The biomass was then col-
lected, centrifuged, and frozen at —20 °C.

Cell lysis was performed in a buffer containing 100 mM Tris-HCl (pH 8.0),
300 mM NaCl, 0.1% Triton X-100, 20 mm MgSQy, 0.1 mg/ml DNase, 1 mg/ml
lysozyme, 1 mM PMSE, and 2 mM DTT. The lysate was incubated at +6 °C with
shaking for 1h and then centrifuged at 10,000g for 10 min. The supernatant was
then collected and centrifuged at 50,000g for 3 h. The supernatant was discarded,
and the pellet was suspended in a small volume of 300 mM NaCl and 20 mM Tris-
HCI {pH 8.0), maintaining a proportion of 4 ml per 5-10 g of the initial cell
biomass. The suspension was then centrifuged at 10,000g for 10 min, and the
supernatant was collected. The solution was then loaded on a 16/900 Superose 6 gel
filtration column {GE Healthcare) equilibrated in 300 mM NaCl and 20 mM Tris-
HCI (pH 8.0), and 2 ml fractions were collected. Fractions 30-60 (corresponding to
60-120 ml), which contained the BMC proteins, were analyzed with 15% SDS-
PAGE and TEM.

Hiséx-CutC, His6x-CutCssg 1125 His6x-CutH, His6x-CutF, and His6x-CutH
purification and BDP capture tests were performed by Ni2* affinity
chromatography. The frozen biomass was suspended in lysis buffer containing
100 mM Tris-HCl {pH 8.0), 200 mM NaCl, 1% Triton X-100, 1 mM PMSF, and
2mM DTT. Cells were lysed by ultrasound, and the lysate was centrifuged at
14,000g for 40 min. CmcE and CutO were purified on a 1-ml HisTrap column {GE
Healthcare). Por this step, 20 mM imidazole in 40 mm Tris-HCl (pH 8.0) and
300 mm NaCl was used as a washing buffer, and 300 mm imidazole in 40 mm Tris-
HCI (pH 8.0) and 300 mm NaCl were used for the elution buffer. The cmcABC’ +
D + CutC and cmcABC’ + D + CutC + CutP + CutO capture tests were
performed in the same manner; all fractions were equalized by volume and the
volume of the sample loaded on the SDS-PAGE gel was equalized as well. Gel
filtration experiments were repeated at least twice to confirm the observations.

‘Western blot analysis of His6x-CutO and BDP-encapsulated CutC were
perfomed by using HissTag Antibody HRP Conjugate Kit (Novagen, cat. No
71840-3). The samples were loaded on a 8% SDS-PAGE gel and transferred
afterwards to a nitrocellulose membrane in a semi-dry fashion. The blot was
visualized with ECL Prime chemiluminescent detection reagent kit {(GE Healthcare,
cat. No RPN2232).

Mass spectrometry analysis. The SDS-PAGE bands of CutO, CutF, and the
individual components of BDPs were identified by the peptide mass fingerprinting
method. The protein band was cut out from the Coomassie blue-stained poly-
acrylamide gel and washed twice for 1h with 500 pl of 0.2 M ammonium bicar-
bonate and 50% acetonitrile. Then, the gel fragments were washed twice with 200 pl
of 100% acetonitrile and incubated with a trypsin (Sigma- Aldrich, cat. No T6567)
solution containing 40 mM ammonium bicarbonate and 10% acetonitrile for 3 h at
+37 °C. A total of 1 pl of the obtained peptide solution was mixed with 1 pl of 0.1%
TPA and 1yl of matrix solution containing 15 mg/ml 2,5-dihydroxyacetophenone
in 20 mM ammonium citrate, and 75% ethanol. For BDP analyses, samples from
particular fractions of gel filtration on Superose 6 were used directly instead of
peptide solution. Then, 1 pl of the obtained mixture was loaded on the target plate,
dried, and analyzed using a Bruker Daltonics Autoflex MALDI-TOR mass
spectrometer.

TEM analysis. BDPs were visualized by TEM with uranyl acetate negative staining.
A 5 pl sample drop was placed on a formvar-coated TEM 200 copper grid (Sigma-
Aldrich) and incubated for 3 min. The grids were dried, briefly washed with 1 mM
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EDTA solution, and negatively stained with 1% uranyl acetate for 1 min. The grids 3.  Yeates, T. O., Kerfeld, C. A, Heinhorst, S, Cannon, G. C. & Shively, J. M.
were then dried and analyzed on a JEM-1230 TEM electron microscope at 100 kV. Protein-based organelles in bacteria: carboxysomes and related
microcompartments. Nat. Rev. Microbiol. 6, 681-691 {2008).

Cryo-EM analysis of BDPs and model building. A total of 4 pl of purified 4 Kerfeld, C. A& Melnicki, M. R Assen’lxbly, fu.nctipn and evolution of

cmCABC’ -+ cmeD + CutCssg 1126 BDPs with a concentration of 1 mg/ml in cyanobacterial carbo.xysomes. Curr. Opin. .Plant Bfol. 31, 66-75 {2016). )

100 mM NaCl and 20 mM Tris HCl (pH 8.0) were applied to the EM grid. The 5. Kerfeld, C. A, Aussignargues, C., Zarzycki, J, Cai, F. & Sutter, M. Bacterial

grids {Quantifoil, Cu grids, 200 mesh, R2/1) were blotted for 4 s using a Vitrobot microcompartments. Nat. Rev. Microbiol. 16, 277-290 (2018).

(Mark IV, Thermo Risher) at 18 °C and in 100% humidity, plunge-frozen in liquid ~ 6- Lee, M.]., Palmer, D. J. & Warren, M. J. Biotechnological advances in bacterial

ethane—propane and stored in liquid nitrogen until further use. Cryo-EM data were microcompartment technology. Trends Biotechnol. 37, 325-336 (2018).

collected with a 200 kV Talos Arctica microscope (Thermo Scientific) equipped 7. Cheng, 8, Liu, Y., Crowley, C. S, Yeates, T. O. & Bobik, T. A. Bacterial

with a Palcon 3EC direct electron detector (Thermo Scientific). A total of 1316 microcompartments: their properties and paradoxes. BioEssays 30, 1084-1095

images {Supplementary Pig. 26) was collected in an automated manner using EPU (2008).

software (Thermo Scientific). The data were collected at the nominal magnification ~ 8. Jorda, J., Lopez, D., Wheatley, N. M. & Yeates, T. O. Using comparative

of x120,000, corresponding to a calibrated pixel size of 1.23 Apx !, with an genomics to uncover new kinds of protein-based metabolic organelles in

underfocus in the range of —1.4 to —3.0 pm and an exposure time of 1.0s, com- bacteria. Protein Sci. 22, 179-195 (2013).

prising an overall dose of 60 eA 2 for each specimen. Data from a single exposure 9. Axen, S. D., Erbilgin, O. & Kerfeld, C. A. A taxonomy of bacterial

were stored as a set of 40 movie frames. microcompartment loci constructed by a novel scoring method. PLoS Comput.

Motion-correction and dose-weighting of the frames were performed in Biol. 10, €1003898 {2014).

MotionCor?2 (ref. 67), and CTF correction was performed with GcetfS8. The single 10. Cannon, G. C, Heinhorst, S. & Kerfeld, C. A. Carboxysomal carbonic

particle analysis was performed with the RELION 3.0 pipeline®. The general anhydrases: structure and role in microbial CO, fixation. Biochim. Biophys.

scheme used for the analysis is given in Supplementary Fig. 13. Approximately 900 Acta 1804, 382-392 (2010).

particles were picked by log-based autopicking. After several rounds of reference- 11, Turmo, A., Gonzalez-Esquer, C. R. & Kerfeld, C. A. Carboxysomes: metabolic

based autopicking and a final manual inspection, a total of 62,533 particles were modules for CO2 fixation. FEMS Microbiol. Lett. 364, fnx176 (2017).

selected. A subsequent 2D classification was performed that illuminated a 12. Bobik, T. A, Havemann, G. D., Busch, R. J., Williams, D. S. & Aldrich, H. C.

noticeable heterogeneity in }he BDP particle morphology: PiveFZD classes with a The propanediol utilization (pdu) operon of Salmonella enterica serovar
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CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been
previously described as able to produce trimethylamine (TMA) from carnitine,
gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in
humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide
(TMAO), has been associated with atherosclerosis and heart and renal failure. We
isolated four different Rieske oxygenases and determined that there are no significant
differences in their substrate panels. All three had high activity toward carnitine/
gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity
toward choline. We tested the influence of low oxygen concentrations on TMA
production in CntA-containing Providencia rettgeri cell cultures and discovered that
this process, although dependent on the amount of oxygen, is still feasible in

environments with 1 and 0.2% oxygen, which is comparable to oxygen levels in some

KEYWORDS

1| INTRODUCTION

Iron-containing metalloenzymes are a diverse class of
proteins that perform various oxidative chemical conversions.
Iron-containing metalloenzymes can be divided into two
groups — heme-containing enzymes and non-heme iron-
dependent enzymes. Non-heme iron-dependent enzymes
include Rieske oxygenases, a diverse class of two- and
three-component systems that characteristically contain an
iron atom in the active site and Rieske-type 2S-2Fe
clusters [1]. Rieske oxygenase systems always contain
oxygenase and reductase components and sometimes contain
an additional ferredoxin component [2].

Abbreviations: FMO3, flavin-containing monooxygenase 3; TMA, trime-
thylamine; TMAO, trimethylamine oxide.

parts of the digestive system.

carnitine, CntA, Rieske oxygenase, trimethylamine

The first Rieske oxygenases discovered were Pseudomonas
putida toluene dioxygenase and naphthalene dioxygenase [3,4].
Since then, numerous Rieske oxygenases that oxidize other
aromatic compounds have been identified [5-8]. A common
property of these enzymes is the ability to break aromatic rings,
making them interesting for biotechnological applica-
tions [9,10]. The functions of Rieske oxygenases are not limited
to oxidizing aromatic rings. Recently, other Rieske oxygenase
systems have been identified that oxidize compounds such as
cholesterol [11], amine groups of 4-aminobenzylamine [12],
stacchydrine [13] and caffeine [14]. Furthermore, Rieske-type
oxygenase systems are not limited to microorganisms. In
nematodes and insects, DAF-36/Nvd Rieske oxygenases have
been found to oxidize cholesterol [15], in plants, choline
monooxygenase has been found to oxidize choline to
form betaine aldehyde [16], and some mammals express

J Basic Microbiol. 2017;1-8.
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CMP-N-acetylneuraminic acid hydroxylase, also a Rieske-type
oxygenase [17].

Recently, a two-component CntA/CntB oxygenase
system from Acinetobacter baumanii has been discovered,
capable of cleaving carnitine into trimethylamine (TMA)
and malic semialdehyde [18]. CntA is almost exclusively
found in Gammaproteobacteria [19]. It is related to
bacterial aromatic dioxygenases and, curiously, also to
plant choline monooxygenases [18]. A closely related iron-
sulfur protein, YeaW from Escherichia coli, has been
described previously, but its enzymatic activity was not
determined [20]. The same protein was later reported to
have TMA-producing capability, with substrates such as
carnitine, gamma-butyrobetaine, glycine betaine, and
choline [21]. A significant difference between CntA from
A. baumanii and YeaW from E. coli is the ability to cleave
choline, the latter having this property and the former
lacking it. The reason for this difference is not clear and
requires further investigation.

The CntA-produced metabolite TMA is of particular
interest because of its possible involvement in the
pathogenesis of cardiovascular diseases [22-24], insulin
resistance [25], heart failure [26], and renal failure [27].
TMA in humans is exclusively of bacterial origin, since
humans lack the genes to produce TMA. However, TMA
can be further metabolized by hepatic monooxygenase
FMO3 (flavin-containing monooxygenase 3) into odorless
trimethylamine oxide (TMAO). Defective or downregulated
FMO3 can cause trimethylaminouria or “fish odor syn-
drome” [28]. The exact mechanism by which TMA/TMAO
exercises its influence is not exactly known, although there
have been several suggestions: negative influence of TMAO
on cholesterol efflux from foam cells [29]; influence of
TMA/TMAO on FMO3, a key known regulator of
cholesterol metabolism activity [30]; possible hypersensiti-
zation of platelets by TMAO [31]; and impairment of
pyruvate and fatty acid oxidation in cardiac mitochon-
dria [32]. There is also some controversy about whether
TMAO is actually a cause of atherosclerosis or merely a
marker of it [33,34)].

Apart from CntA, there are also other enzymes that could
be responsible for production of TMA in microbiota —
trimethylamine reductase [35], CutC choline lyase [36-38],
and ergothionase [39]. Unlike CntA, these enzymes do not
need oxygen and therefore could function in anaerobic
environments, including the digestive system. However,
whether oxygen-consuming CntA can actually contribute to
TMA production in humans is unclear.

In this study, we investigated and compared the
substrate specificity of CntA oxygenases from different
organisms and determined oxygen requirements for aerobic
carnitine degradation by TMA-producing Providencia
rettgeri [40].

56

2 | MATERIALS AND METHODS

2.1 | Plasmid construction and protein
expression

E. coli DE3 cells were purchased from Sigma. Klebsiella
pneumoniae MSCL535, Serratia marcescens MSCL1476, and
Providencia rettgeri MSCL730 cultures were obtained from
The Microbial Strain Collection of Latvia. Genomic DNA
was extracted from cells by proteinase K treatment and
ethanol precipitation. For primer design, CntA gene
sequences were obtained by searching for Acinetobacter
baumanii CntA [18] homologs in respective organisms
(Suupporting Information Table S1). DNA fragments were
amplified with PCR and subcloned into the pRSF-TEV Duet
vector, containing an N-terminal hexahistidine tag and a
tobacco etch virus protease cleavage site. Constructs were
sequenced for confirmation.

Proteins were expressed in E. coli BL21-DE3 cells. Cells
were grown at 37 °C with shaking until ODsgq reached 0.5,
and then the flask was chilled at 20 °C for 30 min. Protein
expression was induced with 1 mM IPTG, and cells were
grown overnight at 20°C. Cells were collected with
centrifugation at 6000Xg for 5 min and stored at —20 °C.

2.2 | Protein purification

Frozen cell paste was suspended in lysis buffer (40 mM Tris-
HCI (pH 8.0), 200mM NaCl, 1% Triton X-100, 20 mM
MgSO,, 1 mM PMSF, and 2 mM DTT). Cells were lysed by
ultrasound for 5 min using an S200 ultrasound generator on
the 0.5s pulsation setting. The lysate was cleared by
centrifugation at 14,000xg for 40min. CntA and CntB
proteins were further purified by nickel affinity chromatog-
raphy using 1-ml or 5-ml HisTrap columns (GE Healthcare).
For this step, 20 mM imidazole in 40 mM Tris-HCI (pH 8.0)
and 300 mM NaCl was used as a washing buffer, and 300 mM
imidazole in 40 mM Tris-HCI1 (pH 8.0) and 300 mM NaCl
was used as an elution buffer. Eluted proteins were further
purified by gel filtration on a Superdex 200 16/600 column in
20 mM Tris-HCI (pH 8.0). Brown-colored fractions contain-
ing CntA or CntB proteins were pooled, concentrated to
10mg ml~’, flash-frozen in liquid nitrogen and stored at
-20°C.

2.3 | In vitro CntA oxygenase activity assay

Activity assays were performed in 20mM Tris-HCI and
50mM NaCl in a volume of 400 ul, with CntA and CntB
protein concentrations of 0.1 mg ml~. Potential substrates —
L-carnitine (Acros), choline (Sigma-Aldrich), gamma
butyrobetaine (Sigma-Aldrich), and glycine betaine
(Sigma—Aldrich) — were added to concentrations of 2 mM.
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Two approaches were used for reducing the CntA Rieske
cluster. In the first approach, P. rettgeri CntB oxidoreductase
and 0.5 mM NADH were added to the reaction mixture. In the
second approach, the CntA Rieske cluster was reduced
directly with 0.5 mM sodium dithionite. After adding all
components, reaction mixtures were sealed in 0.5-ml micro-
tubes and incubated for 18 h at room temperature. Reactions
were stopped by adding formic acid to a final concentration of
5%. Samples were stored at —20 °C.

For experiments with different oxygen amounts, mixtures
were made as described above, with the exception of the
P. rettgeri CntA protein concentration, which was lowered to
0.01 mgml™. All procedures were performed in a sealable
glove bag (Sigma), and all flasks, tubes and solutions were
equilibrated in 99.99% argon gas (AGA, Estonia). Solution
containing CntA oxygenase was equilibrated in an argon
stream for 15 min, and 0.5 M sodium dithionite and 1 M L-
carnitine solutions in water were added to final concentrations
of 0.5 and 2 mM, respectively. Five milliliters of the mixture
was put into open tubes that were placed in 0.5L flasks.
Outside air was added via a tube connected to the flask until
concentrations reached 0.2, 1, 5, or 21%. For experiments
with pure argon, gas was added to the flasks until oxygen
values dropped to undetectable amounts. A Vernier O, Gas
Sensor was used for monitoring oxygen levels. Flasks were
then sealed and incubated for 18 h at room temperature.
Reactions were stopped by adding formic acid to a
concentration of 5%. Samples were stored at —20 °C. TMA
was quantified as previously described [37].

2.4 | Growth of P. rettgeri and E. coli at
various oxygen concentrations

P. rettgeri and E. coli BL21-DE3 were grown in 2xTY
medium, with 0.1% carnitine, betaine, choline, or gamma-
butyrobetaine as additives. For negative controls, bacteria
were grown in 2XxTY medium without additives. For
experiments with E. coli BL21-DE3 transformed with
pRSF-CntA coli plasmid, cells were grown in 2xTY medium
containing 30 ug ml~! kanamycin and with or without 1 mM
IPTG. Cells were grown in 1 ml volumes in 3.5-ml sterile
tubes that were placed in 0.5-L flasks. For experiments under
hypoxic conditions, flasks were equilibrated with 99.99%
argon 4.0 (AGA) in a sealable glove bag (Sigma). Oxygen
concentrations were monitored with a Vernier O, Gas Sensor.
After reaching undetectable oxygen amounts, 20 pl of seeding
stock was added to 2xTY medium containing either 0.1%
carnitine or no additives. Outside air was then slowly added to
flasks via a tube until desired oxygen concentrations of 0.2, 1,
or 5% were reached, except for samples that were left in pure
argon. Flasks were then immediately sealed and incubated for
24 h at 30 °C. After incubation, formic acid was immediately
added to 5% final concentration to stop TMA production, and
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cultures were centrifuged for 1 min at 15,000Xg to remove
cells. Supernatant was then collected, transferred to fresh
tubes, sealed and stored at —20 °C. TMA was quantified as
previously described [37].

3 | RESULTS

3.1 | Substrate profiles of different CntA
oxygenases

We isolated, expressed, and purified four CntA oxygenases
from different microorganisms — E. coli BL21-DE3,
S. marcescens, P. rettgeri, and K. pneumoniae. The latter
three have been reported to be able to produce TMA from
carnitine [41-42]. In the case of E. coli, the SE11 strain has
been reported to be able to produce TMA from carnitine [18],
but the BL21-DE3 strain has not yet been characterized.
Nevertheless, we were able to isolate CntA and CntB from
E. coli BL21-DE3 as well.

‘When compared using the maximum likelihood method,
CntA oxygenases from K. pneumonia and E. coli are very
similar (88%), but A. baumanii and S. marcescens CntA are
no more than 75% similar to one another, and P. rettgeri CntA
is only 46% similar to its closest relative (Fig. 1). Neverthe-
less, when we compared the activities of all four oxygenases
with four different substrates, there were no significant
differences between the substrate profiles of different
oxygenases (Fig. 2). The highest TMA production was
observed from carnitine and gamma-butyrobetaine (with
insignificant differences between them), followed by glycine
betaine with 40-60% of the production levels compared to
carnitine and gamma-butyrobetaine. TMA production from
choline was very low, at least 10-fold lower than that of
carnitine and gamma-butyrobetaine and at least fivefold

E. coli

K. pneumoniae

S. marcescens

A. baumanii

P. rettgeri

0.32

Brm—
0.050

FIGURE 1 Maximum likelihood tree of CntA oxygenase amino
acid sequences from E. coli, K. pneumoniae, S. marcescens, A.
baumanii, and P. rettgeri. The tree was generated with the MEGA7
program
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FIGURE 2 Substrate profile comparison of different CntA oxygenases. Experiments were performed in aerobic conditions (21% O,). Each
result is average value of three independent experiments. Error bars indicate standard deviations

lower than that of betaine. Therefore, these results were more
in accordance with the study from Zhu et al. [18] than with the
study from Koeth et al. [21], the latter showing much higher
TMA-production from choline. To exclude the influence of
different activity assay methods, we isolated, expressed and
purified CntB component from E. coli and tested its TMA
producing activity together with CntA (Fig. 2). The detected
TMA-production activities were not different when compared
with results using sodium dithionite method. We found
equally high activities for carnitine and gamma-butyrobe-
taine, lower activity for betaine and very little activity for
choline. These results indicate that the presence of the
reductase CntB component does not influence CntA substrate
specificity.

3.2 | Production of TMA from E. coli and
P. rettgeri cultures

To determine if the CntA gene-containing bacteria used in our
study are capable of producing TMA, we grew E. coli BL21-
DE3 and P. retigeri cultures in 2xTY medium containing
0.1% carnitine, gamma-butyrobetaine, glycine betaine, and
choline (Table 1). As expected, P. rettgeri was capable
of producing TMA, but only from carnitine and

gamma-butyrobetaine. Unexpectedly, E. coli BL21-DE3
was unable to produce TMA in detectable amounts, despite
the fact that it contains a fully functional CntA oxygenase
system. When E. coli BL21-DE3 cells were transformed with
pRSF plasmid containing CntA gene from E. coli, the ability
to produce TMA from carnitine was observed and it was
enhanced by addition of IPTG. Low expression of CntA and/
or CntB genes in E. coli BL21-DE3 cells is probably the
reason for this observation. These results indicate that the
ability to produce TMA may be strain-specific and it is
possible for certain bacterial strains to have a functional CntA
gene with very different expression levels.

3.3 | Production of TMA in vivo and in vitro at
low oxygen levels

To determine the exact oxygen requirements for TMA
production in P. rettgeri cultures in hypoxic conditions, we
grew P. rettgeri in rich 2xTY medium containing additional
carnitine for 24 h in different atmospheres (Fig. 3). We
considered rich medium to be more appropriate since the
human gut is also rich in nutrients. Despite the large scattering
of our data, a general trend of decreasing amounts of TMA
produced in decreasing oxygen concentrations can be noticed.

TABLE 1 TMA production in P. retigeri and E. coli BL21-DE3 cell cultures in aerobic conditions
Carnitine Butyrobetaine Choline Betaine
P. rettgeri 158.15 212.35 ND ND
E. coli BL21-DE3 ND ND ND ND
E. coli BL21-DE3 + pRSF _coliCntA 13.49
E. coli BL21-DE3 + pRSF _coliCntA + IPTG 28.99

Values indicate detected TMA amounts (uM) in medium after 24 h incubation. ND, not detected.
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substrate were incubated in 21% oxygen environment

Our data also show that TMA can be produced at even 0.2%
oxygen concentration and 99.99% argon. Interestingly, we
detected some TMA production in negative controls
incubated for 24 h with no carnitine substrate at all. This is
most likely due to small amounts of carnitine in yeast extract.
In general, our data show that TMA production from carnitine
in P. rettgeri is dependent on oxygen to a certain level, but
even under very anoxic conditions, it is still possible to detect
TMA.

To test the influence of low levels of oxygen on P. rettgeri
CntA oxygenase activity, we performed in vitro activity
assays in different atmospheres as before with cell cultures
(Fig. 4). Our findings unexpectedly showed that CntA is not
only active in 99.99% argon, but the catalysis trends towards
higher efficiency in more anaerobic environments. This is
probably due to the fact that sodium dithionite in water
solution slowly combusts and is more stable in environments
with lower amounts of oxygen. Therefore, CntA Rieske 2Fe-
2S cluster is reduced more efficiently and the observed
enzymatic activity is higher. Nevertheless, we can conclude
from these data that in principle low oxygen concentrations
are not a major obstacle to CntA-mediated catalysis.

4 | DISCUSSION

Rieske oxygenases typically have a wide range of substrates,
for example, more than 100 substrates have been discovered
for naphthalene 1,2-dioxygenase [43]. For CntA oxygenase,
four possible substrates have been described — carnitine,
gamma-butyrobetaine, glycine betaine, and choline. In a
study performed by Zhu et al. [18], it was shown that the CntA

oxygenase system from A. baumanii can produce TMA from
carnitine, gamma-butyrobetaine and, to a lesser extent,
glycine betaine. These results were in agreement with a later
study on YeaW oxygenase from E. coli [21]. The crucial
difference between these two studies is that the former study
showed non-detectable activity using choline as a substrate,
while the latter study showed the largest activity of all tested
substrates for choline. The simplest explanation for such
differences would be both enzymes having different substrate
profiles — a potential option, considering the diversity of
Rieske oxygenases and close CntA relation to plant choline
monooxygenases [18]. However, substrate profiles for all
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€ 30.00
b~}
£ 25.00
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FIGURE 4 P. retigeri CntA in vitro activity in atmospheres with
different oxygen concentrations. Each result is medium of three
independent experiments. Error bars indicate standard deviation.
Carnitine was used as substrate

59




L journal of Basic licrobiology

KALNINS ET AL.

tested CntA oxygenases, including CntA from E. coli
(identical to YeaW), were similar among themselves and
more consistent with data from experiments with A. baumanii
CntA oxygenase: high activity for carnitine/butyrobetaine,
medium for glycine betaine, very small or non-detectable for
choline. Structural data from another C-N bond-cleaving
Rieske-type oxygenase, stacchydrine demethylase, shows
that the substrate is bound to active site iron atom via a
carboxyl group [13]. Since choline has no carboxyl group, this
suggests that it could bind to active sites much less efficiently.

The human digestive system itself is a diverse environ-
ment, containing gradients of different pH, nutrient concen-
trations, and oxygen levels. There is a general understanding
about the presence of anaerobic conditions in digestive tract
lumen, but direct measurements have been performed in only
a few studies. Measurements with electrodes and phospho-
rescence quenching methods have suggested that the amount
of oxygen in intestinal and rectal lumens is less than
0.5-1 Torr [44-46]. Methods based on electron paramagnetic
resonance have shown larger values — from 32 Torr in the
duodenum to 3 Torr in the sigmoidal-rectal junction [47]. This
oxygen in digestive tract comes from both diffusion across
serosa [46,47] and swallowed air [48]. High affinity
cytochrome bd oxygenases are essential to E. coli for
intestine colonization, indicating the importance of aerobic
respiration for gut microflora [49]. E. coli can also consume
oxygen even at 3 nM concentrations, which is comparable to
or even lower than concentrations detected in digestive
systems [50]. TMA production from carnitine by bacteria in
digestive systems has been clearly demonstrated several
times [22,42,51], but the only known enzyme to produce
TMA from carnitine is aerobic CntA oxygenase. This raises
the question of whether there is enough oxygen in the gut for
this process and if not, whether there is another undiscovered
TMA-producing enzyme. To determine whether oxygen
availability is indeed a limiting factor for TMA production
from carnitine, we tested the capability of P. rettgeri to
produce TMA in various oxygen environments — starting with
air (21%), normal human tissue concentration (5%), higher
oxygen concentrations from gut environment (1%), lower
oxygen concentrations from gut environment (0.2%), and
argon gas (less than 0.01%). Our data showed that TMA
production is dependent on oxygen concentration, indicating
that it is performed by an aerobic enzyme. However, this
process is still possible in oxygen levels of 1% (7.6 Torr) and
0.2% (1.5 Torr) that are comparable to the digestive tract
environment. Moreover, we found that the CntA oxygenase
itself in vitro can be fully active in the same conditions
(Fig. 4). These data certainly imply that CntA oxygenase,
despite being an aerobic enzyme, could still be responsible for
carnitine degradation in the human digestive system. More
detailed studies of CntA kinetics are required to confirm this
hypothesis.
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4. DISCUSSION

4.1 Structure of CutC choline lyase

Glycyl radical enzyme CutC choline lyase is a significant contributor to the TMA
pool in mammal organism (Roberts et. al., 2018). Since inhibition of this enzyme has
potential therapeutic and preventive effect, structural characterization of this enzyme could be
useful for rational drug design. As both our results and later structural studies of GRM1 type
CutC from Desulfovibrio alaskensis (Bodea et. al., 2016) has demonstrated, the choline
molecule is located in a very tightly fitting pocket. A rational drug design benefits from large-
sized active sites where a large variety of chemical compounds can easily be localized;
however, for CutC such opportunities are therefore few. Still, some promising inhibitors has
nevertheless been identified — 3,3-dimethylbutanol (Wang et. al., 2015), halomethylcholine
and halomethylbetaine analogues (Roberts, et. al. 2018) and betaine aldehyde (Orman et. al.,
2019). These inhibitors are all highly similar to choline, having only small additional
modifications. lodomethylcholine even could be an irreversible inhibitor of CutC, binding
covalently to a nucleophilic residue in the active site (Roberts, et. al. 2018). This illustrates
that there could be some future prospects designing synthetic ligands targeted to the CutC
active site.

The conformational shift driven by the substrate binding discovered in Klebsiella
pneumoniae CutC is unique among GRE. A very similar shift was noticed for
benzylsuccinate synthase, but in this particular case the switching from open to closed form
was driven by the binding of accessory subunits (Funk et. al., 2014). Curiously, this was not
the case for GRML1 type CutC (Bodea et. al., 2016) — both choline-bound and choline-free
mutant forms are matching the GRM2 type choline bound closed structure. In that case it was
actually impossible to purify a native choline-free GRM1 type CutC since the substrate was
collected by the enzyme from the cell environment. The role of the GRM2 type CutC
conformational shift is not clear — it could be associated with making the GRE active site
accessible to GRE-AE or it could be also a mechanism for increasing the affinity for
substrate. It could be possible that advantage could be taken of this conformational shift — by
designing an appropriate compound binding to the open, choline free CutC form it could be

possible to lock the whole enzyme in a permanent open state.
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4.2 CutC-associated GRM2 type bacterial microcompartment structure and
encapsulation mechanisms

Bacterial microcompartments are proteinaceous self-assembling organelles that are
widespread among prokaryotes. These organelles are built with a specific purpose of
enclosing enzymatic pathways and increasing their efficiency and protecting the cell from
toxic intermediates. Since CutC is a BMC-associated enzyme, this supramolecular assembly
itself is a critical factor for functioning of this enzyme in bacteria.

There are two general ways the assembly process is thought to occur: core-first or
concomitant assembly (Kerfeld et. al., 2018). In a core-first mechanism the enzymatic core is
built first and the shell is then formed around it. In concomitant assembly, the shell and the
core are formed simultaneously. A core-first mechanism seems to characteristic to -
carboxysomes and concomitant assembly to a-carboxysomes. A computational study has
suggested that these building modes are dependent on the binding efficiency of components —
weak core interactions results in concomitant assembly and strong core interactions results in
a core-first assembly (Perlmutter, et. al., 2016). The properties of shell also have to be noted
— different spontaneous curvature of the shell components could result in different BMC
particle sizes and different building modes (Mohajerani & Hagan, 2018).

Our data shows that even highly similar BMC-H proteins can have different shell-
forming properties. cmcA and cmcB, having properties matching low spontaneous curvature
components are unable to form any particles as such or together with pentameric subunits.
cmcC’, cmcCrunc, CMCE and, to a lesser extent, native cmcC would correspond to high
spontaneous curvature components. It is possible that some synergic effects could also be
involved in the determination of curvature — cmcAB+D are able to form small type particles
in contrast to individual cmcA+D and cmcB+D unable to do so. We propose that a large type
BDP shell, up to 200-300 nm in size, is a balanced combination of components with both
high and low spontaneous curvature properties and that their proportion is a critical factor for
the particle size.

Our results also show that in the GRM2 core encapsulation process CutC is most
likely playing a central adaptor role. It turned out that the two domains of CutC have different
functions — while the N-terminal extension of 336 residues were responsible for binding of
CutF aldehyde dehydrogenase and increasing the resulting complex size, the C-terminal part,
in addition to its catalytic functions, was responsible for encapsulation of it in the BDPs and
binding of CutO alcohol dehydrogenase. Interestingly, CutF still contains an EP-like

sequence at the C-terminal end and CutH has an analogical sequence at the N-terminal end,
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but their functions in our recombinant BDP system, if any, are limited purely to crosslinking.
This illustrates that the core is built in a hierarchical manner. For proper recycling of
NAD*/NADH it is necessary to ensure that the aldehyde intermediate is more or less equally
divided between alcohol and aldehyde dehydrogenases, and locating both enzymes in a close
proximity to the signature enzyme could be a good way how to achieve this.

Data about the assembly of the BDP shell is consistent with previous studies. These
particles are formed similarly to previously reported larger pT=9 pseudosymmetric particles
from Haliangium ochraceum (Sutter et. al., 2017), pT=4 particles comprised of double-fused
Haliangium ochraceum BMC-H proteins (Sutter et. al., 2019a), mixed icosahedral and
elongated pT=4 and pT=3 particles from Halothece sp. (Sutter et. al., 2019b) and smaller
pT=1 particles comprised of circularly permutated BMC-H proteins (Jorda et. al., 2016) — in

all cases convex side of BMC-H and BMC-P proteins are directed towards lumen.

4.3 CntA oxygenase substrate profile and oxygen dependency

TMA production from carnitine by the gut microflora has been convincingly
demonstrated several times (Wang et. a., 2011; Kuka et. al., 2014; Weinert et. al., 2017), but
the identity of the responsible bacterial enzyme is less clear. CntA Rieske oxygenase is a
Rieske 2Fe-2S cluster-containing enzyme capable of producing TMA from carnitine, and so
far it is the best candidate for this process.

In vitro CntA characterization has been scarce so far, with only two studies
investigating the substrate panel (Zhu et. al, 2014; Koeth et. al., 2014). While these two
studies are in agreement on a high TMA-producing capability for carnitine and gamma-
butyrobetaine, and a somewhat lower activity for glycine betaine, the results for choline were
markedly different. Study by Zhu (2014) reported no detected activity for choline at all, but
study by Koeth (2014) reported a higher TMA producing activity from choline than from
carnitine. We investigated CntA oxygenase activities from four different organisms and
concluded that our results are in a better agreement with Zhu (2014) study, since our results
demonstrated a high activity for carnitine and gamma-butyrobetaine, medium for betaine and
very low for choline. The CntA activity in bacteria most likely is targeted towards carnitine
and gamma-butyrobetaine, since Providencia rettgeri culture was unable to produce any
TMA in aerobic conditions from choline or glycine betaine.

Since CntA requires oxygen for proper functioning and the gastrointestinal tract is
mostly anaerobic, we tested the capability of Providencia rettgeri cultures and purified CntA
enzyme to produce TMA in different oxygen concentrations. We discovered that there is a

65



trend for lower TMA amounts produced in decreasing oxygen concentrations in the presence
of carnitine, but even at very low oxygen concentrations comparable to ones in
gastrointestinal tract — 1%, 0.2% and <0.01% - it was still possible to detect some TMA
production. This suggests that the oxygen availability as such in gastrointestinal system is not
a principal obstacle for CntA and it could indeed contribute to a degree to TMA production
from carnitine and gamma-butyrobetaine in the intestines. This does not exclude the
possibility that this contribution is small or that there are other pathways involved in bacterial
carnitine degradation — a recent study, actually, has found no correlation of fecal CntA gene
abundance with TMAO production in mice (Wu et. al., 2018).
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5. CONCLUSIONS

. GRM2 type CutC has a typical GRE fold of 10-B/a barrel.
. GRM2 type CutC choline lyase exists in two different conformations: more

structured, choline bound form and more disordered, choline free form.

. The conformational CutC differences between choline bound and choline free states

exist in solution as well as in crystal.

. The minimal gene set required for production of recombinant GRM2 type BDPs in
Escherichia coli expression system is cmcC and cmcD.

. Adding C-terminally elongated BMC-H proteins cmcC™ and cmcE and C-terminally
truncated cmcCirunc to the BDP shell gene set can cause formation of larger BDPs.

. CutC is the only GRM2 core enzyme capable of encapsulation in BDPs in detectable
amounts as such and it mediates the encapsulation of CutO alcohol dehydrogenase
and, possibly, also CutF aldehyde dehydrogenase.

. Small type, 25 nm large cmcABC +D+CutCsss-1128 GRM2 BDPs are pT=4 quasi
symmetric.

Rieske type CntA oxygenase has high specific TMA-producing activity for carnitine
and GBB, medium for betaine and very low for choline.

. Availability of oxygen has a significant impact on the TMA production by
Providencia rettgeri in the presence of carnitine, but this process could still be

feasible at oxygen concentrations comparable to ones in gastrointestinal tract.
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6. MAIN THESIS OF DEFENSE

1. CutC choline lyase have a typical GRE fold of 10-B/a barrel and binding of choline to
its active site triggers conformational shift from open to closed state.

2. GRM2 signature enzyme CutC plays a central adaptor role in the encapsulation of
GRM2 type enzymatic BMC core and the BMC-H proteins in the GRM2 locus have
specialized roles in the formation of BMC shell.

3. Rieske type non-heme CntA oxygenase can produce TMA with high efficiency from
carnitine and gamma-butyrobetaine, with medium efficiency from betaine and in with
very low efficiency from choline and, despite low oxygen concentrations in
gastrointestinal system, CntA could nevertheless contribute to a certain amount to

TMA production in mammalian intestines.
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