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Kopsavilkums 

Aplūkotā zinātniskā darba mērķis ir vieglu, monotropu (robežgadijumā 
izotropu) putuplastu ar izteiktu stieņveida struktūru deformatīvo īpašību 
matemātiskā modelēšana mazu deformāciju robežās. Deformatīvo īpašību 
integrālai raksturošanai putuplastiem kā mikroneviendabīgiem kompozītiem 
materiāliem to elastiskās simetrijas asīs ir noteiktas piecas neatkarīgās un septiņas 
atkarīgās efektīvās elastības konstantes. 

Modelējot putuplastu uzbūvi, ir piedāvāts lokālais modelis, kas sastāv 
no nepārtrauktas vides modeļa spriegumu noteikšanai un lokālā struktūras 
mode}a. Lokālais struktūras modelis ir veidots kā elipsoidāla modeļšūna ar tās 
iekšpusē telpiski vienmērīgi izvietotiem polimēra stieņiem. Lai izvairītos no 
putuplastu struktūras mākslīgas regularizācijas, stieņu sistēma tiek grozīta kā 
viens vesels pa visām iespējamām telpiskajām orientācijām, kuras uzdod ar Eilera 
leņķiem. Tādā veidā iegūst putuplastu uzbūves mikrosituāciju kopu jeb ansambli, 
kas |auj ievērot putuplastu uzbūves būtisko polidispersumu un stieņu bezgalīgi 
daudzās telpiskās orientācijas. 

Lai aprēķinātu efektīvās elastības konstantes, kas saista vidējos 
spriegumus un deformācijas, ir pieņemts, ka realizējas ergodiskuma nosacījums. 
Līdz ar to ir iespējams nomainīt vidējošanu pa tilpumu ar vidējošanu pa 
ansambli. 

Vienasīgas spiedes/stiepes matemātiskajos modeļos ir parādīta iespēja 
izmantot modeļšūnas pēcdeformācijas formas variāciju analīzi un deformācijas 
potenciālās enerģijas minimizāciju atbildes deformācijas noteikšanai. Sprieguma 
aprēķināšanai, sakarā ar precīza risinājuma trūkumu elipsoīdam, ir pierādīta 
iespēja aizvietot modeļšūnas elipsoidālo formu ar cilindrisku. Skaitlisko aprēķinu 
gaitā ir konstatēts, ka aprēķināmās modeļelipsoīda pusasis ir jāsaista ar saites 
nosacījumu. Ir parādīta vienasīgas spiedes/stiepes modeļu savstarpējā 
savietojamība. 

Pak|aujot modeļšūnas virsmas punktus noteiktai telpiskai transformācijai, 
ir parādīta iespēja adekvāti modelēt putuplastu bīdes deformāciju. Ar skaitliskiem 
aprēķiniem pierādīta vienasīgas spiedes/stiepes un bīdes deformācijas modeļu 
savstarpējā savietojamība. 

Ir izpētīta aprēķināto elastības konstanšu atkarība no galvenajiem 
putuplastu struktūras raksturlielumiem. Salīdzinot teorētiskos rezultātus ar 
eksperimentu datiem, ir konstatēta apmierinoša sakritība. Tas ļauj izmantot 
piedāvāto matemātisko modeli un izstrādāto programmu kompleksu, lai 
projektētu putuplastus ar iepriekš uzdotām deformatīvajām īpašībām. 
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Summary 
Objective of the scientific investigation proposed is a mathematical 

modelling of deformative properties of light-weight, monotropic (or isotropic in 
the boundary case) plastic foams with a pronounced strut-like structure in the 
region of small deformations. For integral characteristics of deformative 
properties of plastic foams as micro-nonhomogeneous composite materials five 
independent and seven dependent effective elastic constants have been 
determined in the axes of elastic symmetry. 

In order to model the plastic foams structure a local model consisting 
of two parts has been proposed, that is, a model of continuous medium and a 
local structure model. The latter has been chosen in the shape of a rotational 
ellipsoid as a model cell with polymeric struts distributed spatially randomly 
inside it. To avoid the artificial regularization of structure, the strut system has 
been turned as one whole throughout all the possible spatial orientations given 
by Euler's angles. Thus, a cluster or an ensemble of structure microsituations 
has been obtained permitting to take into account the essential polydispersity of 
foams structure and infinitely numerous orientations of struts in foams. 

When effective constants connecting the average stresses and strains 
were calculated the ergodic condition was assumed to realize. Therefore, it was 
possible to replace the averaging throughout the volume with an averaging 
throughout the ensemble. 

The possibility to use a variational analysis of model cells post-
deformation form and a minimization of deformation potential energy as a 
criterion for determination of this post-deformation form has been shown in the 
mathematical models of uniaxial compression/tension. In order to calculate 
stresses the ellipsoidal model cell was replaced by a cylindric one, since there 
is no precise solution for ellipsoids known to the author. The necessity to 
connect the semiaxes to be calculated by some tie condition has been stated 
during the numerical calculations. The mutual compatibility of uniaxial 
compression/tension models was proved. 

Subjecting points of the model cells surface to a spatial transformation 
of pure shear, the possibility to model plastic foams deformation in this way has 
been shown. With the help of numerical calculations the compatibility of shear 
model and models of uniaxial loading was proved. 

The dependence of calculated elastic constants on the main 
characteristics of plastic foams has been examined. A satisfactory agreement 
was found to exist between the theoretical results and the experimental data. 
Hence, the mathematical model proposed and the calculation programmes 
elaborated can be used to project plastic foams with a preassigned set of 
properties. 
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Zusammenfassung 

Das Ziel der vorliegenden wissenschaftlichen Arbeit ist mathematische Modellierung der 
Verformungseigenschaften von leichten monotropen (im Grenzfall isotropen) 
Schaumstoffen mit ausgeprägter Stabstruktur in den Grenzen von Kleinverformungen. 
Für Integralcharakteristik der Verformungseigenschaften sind für die Schaumstoffe als 
mikrounhomogene Kompositmaterialien in deren Elastizitäts Symmetrieachsen fünf 
unabhängige und sieben abhängige effektive Elastizitätskonstanten bestimmt. 

Bei der Modellierung der Schaumstoffstruktur wird das Lokalmodell vorgeschlagen, das 
aus einem Modell des Kontinuums für Spannungsbestimmung und einem lokalen 
Strukturmodell besteht. Das Lokalstrukturmodell ist als eine ellipsoide Modellzelle mit 
räumlich gleichmäßig angeordneten Polymerstäben im Inneren der Zelle gebildet. Um 
künstliche Regulierung der Schaumstoffstruktur zu vermeiden, wird das Stabsystem als 
ein Ganzes in allen möglichen räumlichen Orientierungen gedreht, die mit Euler-Winkeln 
aufgegeben werden. In dieser Weise bekommt man die Gesamtheit bzw. das Ensemble 
der Mikrosituationen der Schaumstoffstruktur, und dies läßt die wesentliche 
Polydispersität der Schaumstoffstruktur und die unendlich vielen räumlichen 
Orientierungen der Stäbe in Betracht ziehen. 

Für die Berechnung der effektiven Elastizitätskonstanten, die die Mittelspannungen und 
Verformungen verbinden, wird angenommen, daß sich die Bedingungen des Ergodens 
verwirklicht. Hiermit ist es möglich, die Mitteneinstellung im Rauminhalt durch 
Mitteneinstellung im Ensemble zu ersetzen. 

In den matematischen einachsigen Druck/Zug-Modellen ist die Möglichkeit für die 
Ausnutzung der Variationsanalyse der Nachverformungsformen der Modellzelle und die 
Minünisierung der potentiellen Energie der Verformung als Kriterium für die 
Bestimmung der Gegenverformung gezeigt. Für Spannungsberechnung ist infolge des 
Mangels einer genauen Lösung für einen Ellipsoiden eine Möglichkeit gezeigt, die 
ellipsoide Form der Modellzelle durch eine zylindrische zu ersetzen. Auf Grund von 
Berechnungen hat man festgestellt, daß die zu berchnenden Halbachsen eines 
Modellellipsoiden mit der Bedingung der Bindung zu verbinden sind. Es ist die 
gegenseitige Vereinigung der einachsigen Druck/Zug-Modelle gezeigt. 
Bei bestimmter räumlichen Transformation von Oberflächepunkten einer Modellzelle ist 
die Möglichkeit gezeigt, Verschiebungsverformung der Schaumstoffe adäquat zu 
modellieren. Auf Grund von Berechnungen ist die gegenseitige Vereinigung der 
einachsigen Druck/Zug- und Verschiebungsverformungsmodelle bewiesen worden. 

Für die berechneten Elastizitätskonstanten ist deren Abhängigkeit von den wichtigsten 
Kennwerten der SchaumstofTstruktur erforscht. Beim Vergleich der teoretischen 
Ergebnisse mit Experimentalangaben ist eine befriedigende Übereinstimmung festgestellt 
worden. Dies läßt das angebotene matematische Modell und den ausgearbeiteten 
Programmkomplex ausnutzen, um Schaumstoffe mit vorher aufgegebenen 
Verformungseigenschaften zu projektieren. 
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1 Properties, Application and Mathematical Modelling of 
Plastic Foams. (Literature Review) 

1.1 Classification and Application of Plastic Foams 

Plastic foams are multiphase cellular composite materials consisting 
of a polymeric matrix and a mobile, usually gaseous, phase. The progress 
made in the technology of producing plastic foams has enlarged considerably 
the application sphere of these materials, to mention but consumer goods and 
elements of cosmic appliances [36]. 

Cellular materials can be obtained almost from all polymers but only 
some of them are suitable for industrial use. Polyurethanes (PUR), 
polystyrenes and polyolefines have the greatest consumption rate [20,52]. 
Plastic foams can be classified differently: most frequently according to their 
mechanical characteristics or composition and morphological properties of 
cells. 

In view of cellular structure the plastic foams fall into open- and 
closed-cell foams [2,13,52]. The open-cell plastic foams can be used as 
filters, amortization materials (in aircraft fuel reservoirs), etc. The closed-cell 
plastic foams can find their application in building and fuel industry, as well 
as machine-building, mainly as heat and hydroisolation materials because of 
their low thermal conductivity and low gas and liquid permeability. The roof 
of restaurant "Sēnīte" covered with plastic foam "Ripors" can be given as an 
example of an extensive usage of the material [2]. 

When considering physically-mechanical properties, the plastic foams 
can be divided into elastic, half rigid and rigid ones. The elastic foams are 
used in furniture industry, machine-building and consumer goods. The half 
rigid plastic foams have found wide application for foot-wear and car 
finishing (panels, buffers, etc.). Polystyrene foams widely used as a packing 
material can be mentioned as an example of employment of the rigid plastic 
foams. The rigid PUR plastic foams are used in aviation, house, railway 
carriage and machine building, as well as in refrigerators [36]. 

According to a relative quantity of the polymer per unit volume (the 
space filling coefficient PI) the plastic foams can be divided into following 
groups [26]: 

1) heavy PI > 40 % 
2) medium 40 % > PI > 15 % 
3) light weight , PI < 15 % . 
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In the heavy weight plastic foams mutually unconnected gaseous bubbles are 
dispersed in the polymeric matrix. The light-weight plastic foams are formed 
by polymeric struts, knots, membranes and a gaseous phase. Elements of 
both kinds of the structure are found in the medium-weight foams [13,26]. 
Particular characteristics of each group of the materials can be used in 
practical applications. 

Depending on the foaming process, isotropic, monotropic, ortho-
tropic or completely anisotropic plastic foams can be manufactured [52]. The 
specific anisotropy of physically - mechanical properties is used in various 
applications: filtering, heat isolation, load-bearing structural elements etc. In 
machine building integral plastic foams are widely used. An external, slightly 
porous layer with a practically constant density changes gradually into an 
inner, highly porous layer of almost equally constant density. In 
manufacturing ship bodies and wind rotor blades sandwich composites of 
fibreglass plastics and plastic foams are used more and more frequently. 

To increase elastic moduli, compression and shear strengths, heat 
resistance without substantial weight growth the plastic foams can be filled 
with glass fibres, sand, hollow glass spheres (syntactic foams) [52]. 

1.2 Plastic Foams with a Pronounced Strut-Like Structure 

By varying components of the composition and foaming conditions, plastic 
foams having prevailingly an open or closed cell structure can be obtained. 
According to [13,52] elastic plastic foams most often have an open-cell 
structure, while in rigid plastic foams the structure is closed, although many 
exceptions are possible. In all kinds of the plastic foams the relative quantity 
of open cells increases, while foams density decreases. In rigid PUR foams 
two maxima are observed for volume fraction of open cells when volume 
fraction of gas (porosity) P2 is the following: 1.0 < P2 < 0.5 [13]. 

A strut-like polyhedral structure is usually characteristic for the open-cell 
plastic foams (absolute poroplasts). The base polymer is concentrated in struts 
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and knots. There are no polymer membranes in these foams or they are so 
thin that their participation in deformation process can be neglected. 
Reticulated rigid PUR foams with low density QF and the corresponding space 
filling coefficient PI can be mentioned as an example [ 2 0 ] : 

gf < 2 0 0 kg/m3 PI = Q / Q ^ = < 0 . 1 7 

where is density of the base polymer. 
When PI < 0 . 1 5 the lengthwise dimension IQ of a strut exceeds the 
crosswise dimension t. The struts are straight or slightly curved, with a 
practically constant cross-section along the whole strut. For the PUR plastic 
foams the following relationship can be observed [ 2 0 , 5 2 ] : 

when PI < 0 . 1 0 , lo/t > 1.5 

When PI < 0 . 1 0 yt > 1.5 practically for all the open-cell plastic 
foams and the struts may be considered as slim ones. The shape of the struts 
cross-section can be well described by a hypocycloid with three return points 
[ 5 2 ] . It can be approximated by an equilateral triangle with side length t. 
Area F of the cross-section is approximately equal for all struts. 

Four to six struts usually enter a knot in the plastic foams with a uniform 
structure (polyurethane plastic foams). More than six struts may enter the 
knot in plastic foams with irregular structure [4]. 

The distribution of struts throughout spatial directions is uniform in 
isotropic foams. An additional orientation of the struts parallel to rise 
direction can be observed in monotropic plastic foams [ 1 5 ] . 

Open-cell plastic foams can be obtained from the closed-cell ones with the 
help of chemical and physical methods (reticulation) [ 2 6 ] . The main methods 
of reticulation are: hydrolysis, oxidation, high and low pressure, treatment 
with heat, etc. Membranes are broken or leached in these processes. With 
reticulation the plastic foams having a strut-like structure, a very low density 
and low space filling coefficient can be obtained: 

3 kg/m3 < QF < 10 kg/m3 , 0.3 % < PI < 10 % 
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1.3 Deformative Properties of Plastic Foams with 
a Pronounced Strut-Like Structure 
(Experiments and Mathematical Investigations) 

1.3.1 Experimental Investigations 

One of the first experimental investigations on deformative properties 
of plastic foams has been reported by A.N.Gent and A.G.Thomas in 1959, 
[9]. Young's modulus and Poisson's coefficient were determined for isotropic 
natural rubber foams in a wide range of PI (0.093 < PI < 0.568). With PI 
increasing, the Young's modulus increased, too, while Poisson's coefficient 
exhibited no systematic trend. 

Investigating the scatter of mechanical properties (strength and space 
filling coefficient PI) I.G.Romanenkov [50] found it to be great for plastic 
foams. The coefficient of variation for samples cut out from one moulding 
reached = 16% This should be taken into consideration when choosing 
the number of samples for one point measurements. 

J.A.Rinde [18] made a vast study on Poisson's effect for rigid 
plastic foams. The Poisson's coefficient for isotropic foams was found to be 
greater in tension than in compression. When anisotropic foams were 
considered, the Poisson's coefficient was the greatest when loading was 
parallel to the rise direction. A similar experimental result was obtained by 
A.G.Dement'yev et al. [32]. However, no systematic experiments have been 
made for the dependence of Poisson's coefficients on the degree of anisotropy 
A (Section 2.2) of plastic foams. The conclusions about the dependence of 
Poisson's coefficients on PI are contradictory in various publications 
[18,19,32] both for isotropic and anisotropic plastic foams. 

Generalizing a large number of experimental data of different 
isotropic plastic foams, A.G.Dement'yev [32] concludes that the Poisson's 
coefficient depends on space filling coefficient PI (0.05 < PI < 0.80 ): 

PI = 0.05 v = v m = 0.45 
PI = 0.10 v = v m m = 0.25 ; 
PI = 0.80 , v = 0.30. 
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To prove this conclusion convincingly experiments should be made for 
dependence v = v(Pl) by using samples of one and the same plastic foams. 

Young's modulus, Poisson's coefficient and space tilling coefficient 
PI were determined for latex foams in [15] and for foamed polystyrene in 
[4]. Conclusions about mutual relationships of E, v and PI were the same as 
in [9]. Young's modulus, PI and average cell size d were determined for 
PUR and other plastic foams by K.C.Rusch [19]: 

when 0.028 < PI < 0.24 , 0.2 mm < d < 1.3 mm 

With PI reducing, cell dimension are increasing. 
A.G.Dement'yev [33,35] has determined stress-strain curves in 

tension and compression. These curves are essentially different for rigid and 
elastic plastic foams. Axial deformation, buckling, bending and crushing of 
struts were evaluated as the main deformation mechanisms of a single strut. 
Compression tests were made on samples whose transversal dimensions were 
comparable with the lengthwise ones. In tension tests the lengthwise 
dimensions exceeded the transversal ones by several times. In such conditions 
all struts of a foam sample were load-carrying elements. 

Investigating anisotropic PUR foams S.V.Kanakkanatt [11] found 
the difference between moduli £, , E2 and £ 3 was more expressed in tension 
than in compression. Average dimensions of the cells were also determined, 
since it allows to evaluate the degree of anisotropy A and dependence of 
moduli Eu E2, Ej on A. 

An extensive investigation on slightly anisotropic, light-weight PUR 
and polyvinylchloride (PVC) foams ( P I < 0.15 ) was made by R.Renz 
[20]. Qualitative foam structure photographs taken with a scanning electron 
microscope reveal the structure of foams. Young's moduli Eu E2, £ 3 , shear 
moduli G|3, G2 3, G,2 as well as their dependence on PI were determined 
(investigations of other authors usually have no data on shear moduli). It was 
found that 

G,3 = G¡ r23 

£ 3 > £, 
G 1 2 > G, 13 

,E2 

G, r23 

Stress-strain curves in compression, tension and shear were presented. 
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Young's modulus, Poisson's coefficient and density were determined for PUR 
and PVC base polymers. These data are of great importance for a further 
theoretical treatment. However, no Poisson's coefficients of foams themselves 
as well as degree of anisotropy A were determined. 

Of great practical interest are the rarely found experimental data 
on the relationship Ei/E] = J{A) , [52]. This relationship was investigated in 
compression and tension for elastic PUR foams. The same conclusion as in 
[11] was made: anisotropy of deformative properties is more pronounced in 
tension than in compression even for small deformations. Measurements of 
average cell diameters d in [52] provided the following range: 

when PI < 0.05 0.01 < d < 2.5 mm 

F.A.Shutov in [13] reported the existence of microcells in rigid phenolic as 
well as polyurethane foams. Microcells were found to be about two or three 
orders smaller than macrocells. 

K.CTrule [53] determined average dimensions of struts, average 
degree of anisotropy A and PI for samples of rigid PUR foams. PUR foams 
with A up to A = 3 were examined. When PI = 0.03 the length of struts 
exceeded their side length up to five times. 

V.P.Valuiskikh and S.A.Mavrina [27,28,29,47] have vastly 
investigated the dependence of deformative and strength properties on the 
variational coefficient of struts dimensions. A conclusion was made that the 
Young's modulus and the strength could be increased several times by 
achieving the regularity of struts length (a reduction of the variational 
coefficient). A method was proposed permitting to determine the statistical 
characteristics of struts grid using the grids projections on coordinate planes. 
However, the moduli E, , E2 , E 3 of anisotropic foams (A < 1.7) were 
assumed to be equal: E, = E2 = £3 = E. No examination of relationship 
£1.2 .3 fiA) was made (the anisotropic foams were assumed to be 
quasiisotropic). 
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1.3.2 Empiric Relationships 

The dependence of deformation mechanism on geometric parameters 
of cellular structure is complicated. Some knowledge about this dependence 
in compression can be acquired expressing the compressive stress a as a 
product of compressive strain e Young's modulus E and a function of 
inelastic processes F(e) ( K.C.Rusch [19] ): 

a = E e F(e) 

Function F(e) can be determined empirically from stress - strain curves as 
well as related to deformation of a single strut [9,10]. F(e) depends greatly 
on geometry of cellular structure, and it is practically independent of E0 . The 
dependence on PI and cells dimensions is inconsiderable [19,52]. 

The classical expressions 

E = K C / " £ = E 0 P P (1.1) 

connecting deformative properties of foams with their density and PI are still 
widely used [3,52]. Constants K , n and m are determined from experiments. 
It was proved that expressions in the form of Eq.(l.l) are valid in 
compression and tension as well as for strength properties. 

Empiric constants have been used in other theoretical investigations 
as well. For example, in [9,15] a coefficient k is introduced denoting the 
fraction of knot surface covered by cross-sections of struts. The coefficient 
k should be determined experimentally. 

1.3.3 Model Cells Shaped as Geometric Figures 

The cellular structure of plastic foams can be modelled by various 
geometric figures. Only five of them (a cube, a hexagonal prism, a rhombic 
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dodecahedron, a tetragonal pillar and a cubooctahedron) can Fill the space 
densely, without holes. Although very simple model cells shaped as 
geometric figures reveal the main features of deformation of structural 
elements. 

A.N.Gent and A.G.Thomas [10] modelled isotropic plastic foams 
with a cubical grid of polymeric struts. Intersections of the struts formed 
undeformable knots. The struts were considered to be subjected to axial 
loading. Using a cubic cell, the space filling coefficient PI and Young's 
modulus E were determined as functions of struts dimensions and E0. 

W.L.Ko [12] has proposed another kind of struts grid to study the 
deformative properties of open-cell elastic plastic foams. This grid was 
formed when the base polymer fills the holes between the closest packing of 
uniform spheres. Hexagonal and body centered cubic closest packings were 
considered. The author proved that a part of grid distinguished by a 
hexagonal prism could be used as a representative model cell. Struts were 
considered to be under combined axial, bending and shear loading. After 
several simplifications Poisson's coefficient v and relative Young's modulus 
EIE0 were calculated for both kinds of sphere packing. 

R.Chan and M.Nakamura [7] proposed a space-unfilling figure: a 
pentagondodecahedron as a model cell. An expression for the Young's 
modulus of open-cell plastic foams was derived from a differential equation 
of struts bending for a small deflection. Initial curvature of a strut was taken 
into account. 

In a series of investigations [31...37] A.G.Dement'yev used a 
cubooctahedron as a model cell. The shape of this figure was similar to that 
observed in experiments. The struts were assumed to be subjected to axial as 
well as transversal bending. This assumption was used in analysis of both the 
small and large deformations. Stress-strain curves in compression, the 
Young's modulus and Poisson's coefficient i»3, were derived from a 
differential equation of struts bending. It was concluded that the deformative 
and strength properties were independent of cell dimensions. 

Although methods of orientational averaging were mainly proposed 
by J.M.Lederman in [15], the model cell shaped as a sphere was used in 
some stages of this investigation, too. This permits to relate deformation of 
a single strut to deformation of the whole material. 

S.V.Kanakkanatt [11] described a model cell shaped as a 
parallelepiped in order to calculate the Young's modulus parallel and 
perpendicular to the rise direction. Small compression and small tension 
deformations were considered separately. 
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R.Renz [20] applied the method of finite elements to the model cell 
shaped as a cubooctahedron. Calculations were performed for one eighth of 
the cubooctahedron in view of its symmetry properties. The Young's modulus 
and Poisson's coefficients were calculated both for the closed - and open 
cell foams. 

In order to analyse mechanical properties of light-weight plastic 
foams with oval microcells in a polymeric frame A.G.Dement'yev [37] 
proposed a multistage method. A cube was used for description of microcells 
and a pentagondodecahedron for macrocells. As a result PI , E/E0 and the 
compression strength were calculated. 

m investigations of V.P.Valuiskikh and S.A.Mavrina [27,28,29,47] 
a stochastic simulation model was proposed as a new approach to the 
theoretical treatment of plastic foams. However, numerical calculations in this 
case could be realized only for a small number of struts. Therefore, a 
combined imitating model was elaborated. It consisted of regular 
cubooctahedrons whose structural elements were given to random deviations. 
In such a case advantages of geometrically determined and stochastic 
simulation models could be joined avoiding problems in numerical 
calculations. 

1.3.4 Mathematical Models Based on Methods of Orientational Averaging 

One of the first theoretical investigations of plastic foams by 
A.N.Gent and A.G.Thomas [9] was based on orientational averaging and 
comprised all the main assumptions of this method. The combined strut 
knot element deformed according to the global deformation of the specimen. 
The struts were distributed randomly in space. The orientational averaging 
of deformation energy of a single strut was used to calculate the deformative 
properties of the whole composite. 

A.Cunningham [8] used an orientated composite structural unit 
consisting of a gaseous matrix and a polymeric strut as reinforcement. 
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Assuming a continuity of strain to exist from one strut to the next the Voigt 
averaged foam stiffness and compliance were calculated. Their relationship 
to the basic structural unit properties were found by standard fourth rank 
tensor transformations involving the orientation distribution function of 
structural units. 

Small as well as large deformations of elastic foams were 
considered by J.M.Lederman in [15]. The model proposed consisted of 
struts of any orientation in an undeformed material. During elongation, the 
struts stretched and oriented in the direction of stretching. Relating the 
deformation of a strut to global deformation of the bulk material, stress-strain 
equations were derived by means of orientational averaging of the tensile 
stress in a strut element. As a special case the Young's modulus and the 
Poisson's coefficient for isotropic foams were calculated. The model 
predicted that a cell structure orientation parallel to the rise direction was a 
reasonable method for achieving a desired modulus without altering the 
density. 

A.Zilaucs and A.Lagzdins [38] proposed a one-strut model to 
describe large deformations of elastic foams. Till now it is one of the most 
extensive investigations in methods of orientational averaging applied to 
plastic foams. Deformation of a strut - knot element was assumed to be equal 
to average deformation of foams in direction of the strut. The stress in a 
single strut under large deformations was calculated. Further, considering 
plastic foams as a continuous medium, its deformation was defined by a 
linear nondegenerated transformation T. Redistribution of struts in result of 
deformation T was taken into account. Tensor of macrostresses was found 
by averaging the stress in a single strut element over all the possible spatial 
orientations. Uniform three dimensional tension and compression, simple 
uniaxial tension/compression, pure tension/compression and simple/pure shear 
were considered as particular cases of deformation T. When foams were 
isotropic the one-strut model provided the Young's modulus and Poisson's 
coefficient as follows 

E = 1/6 (1 - P2) E0 , v = 0.25 

where porosity P2 = 1 - PI . These relationships are characteristic for all 
the theoretical treatments using the methods of spatial averaging. 



11 

1.3.5 Stochastic Simulation Models 

A new theoretical approach to modelling the structure and 
deformation of plastic foams was proposed in [27,28,29,47] by 
V.P.Valuiskikh and S.A.Mavrina. These are stochastic simulation models 
taking into account the essential polydispersity of foams structure. N points 
are distributed randomly in a parallelepiped imitating the foams sample. This 
distribution is performed in such a way that the average length of struts and 
variational coefficient of struts lengths equal to those found in foams. Models 
of centres and knots were proposed. The calculations of these models were 
very time-consuming because of their combinatoric character. Therefore, a 
combined simulation model was introduced. It consisted of regular model 
cells shaped as cubooctahedrons. The knots of these cells were assigned to 
random deviations.Thus a model of plastic foams consisting of an ensemble 
of structural elements was obtained. 

Stress - strain curves were calculated with the finite element method. 
It was proved that rising the regularity of struts length made it possible to 
improve considerably deformative as well as elastic properties of foams 
without changing their density. The calculations showed that the mechanical 
properties of foams depended not only on the average length of structural 
elements but also on the variational coefficient of these lengths. 

1.4 Objective and Problems of the Investigation 

Advances in plastic foams production are made above all by progress 
in the practical technology that demands a great consumption of materials and 
considerable funding. Therefore, theoretical investigations permitting to 
project the plastic foams with a prescribed set of properties are of particular 
importance. 
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In the result of literature analysis the following situation can be 
found to exist in the mathematical modelling of deformative and structural 
properties of plastic foams with a strut-like structure. 

1. The deformative properties of isotropic plastic foams have been 
investigated rather well by choosing some geometrically regular strut system 
as a model cell. The Young's modulus and the Poisson's coefficient were 
calculated, as well as their dependence on the space filling coefficient was 
investigated. Yet only separate elastic constants were determined for 
monotropic plastic foams. Stress - strain relationships for both the isotropic 
and the monotropic foams were characterized in uniaxial 
tension/compression. The models, however, did not reflect the essential 
polydispersity of the plastic foams structure and infinitely numerous spatial 
orientations of struts. The structure was artificially regularized. The shear 
deformations have not been considered at all. No complete set of elastic 
constants has been derived for the monotropic plastic foams. 

2. Infinitely numerous spatial orientations of struts have been taken 
into account in mathematical models by using the methods of spatial 
averaging. However, all the struts were assumed to have the same length, 
and therefore no polydispersity of the foams was considered. One-type 
situations of the ensemble were formed by a single strut or a strut gas 
element. In result, the geometry of strut connection in the knot has been 
neglected. Stress - strain relationships have been determined for several types 
of deformation. The numerical values of elastic constants have been neither 
calculated, nor compared with experimental data. 

3. Stochastic simulation models have taken into account the 
polydispersity of foams structure and the infinitely numerous spatial 
orientations of struts. The numerical calculations became too complicated due 
to a great execution time of standard PC programme. Consequently, model 
cells with completely stochastic characteristics were replaced by partially 
regular ones. According to these models some separate elastic constants have 
been derived. No complete set of elastic constants of monotropic plastic 
foams has been calculated. 

4. In experimental investigations elastic properties of foam samples 
have practically never been determined together with all essential structural 
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characteristics, which made it difficult to use these experimental data for 
elaborating theoretical investigations. 

In view of all this, objective of the investigation presented is to 
elaborate a mathematical model as well as the corresponding numerical 
calculation methods for describing and predicting the deformative properties 
of monotropic/isotropic plastic foams with a pronounced strut-like structure 
in dependence of the plastic foams structure and polymeric phase properties. 

In order to realize this objective the following problems should be treated: 

1. Elaboration of a local structure model cell of monotropic/isotropic 
plastic foams and an ensemble of structural elements considering the 
essential polydispersity of plastic foams structure. 

2. Modelling the uniaxial compression/tension deformation parallel and 
perpendicular to rise direction, as well as the shear deformation. 
Testing the minimum of deformation energy as the criterion for 
finding the post-deformation form of the model cell. 

3. Elaboration of mathematical models for calculating five independent 
and seven dependent , altogether twelve, effective elastic constants. 
Application of the orientational averaging method for calculating the 
plastic foams effective deformative properties. 

4. Working out the numerical calculation procedures for evaluating and 
predicting the dependence of deformative properties on the plastic 
foams structure and properties of the polymeric phase. 

The investigation proposed has been presented in the following chapters: 

Chapter 1. Urgency of the investigation is motivated. A plastic 
foams group with a strut-like structure is outlined in order to subject it to a 
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further theoretical treatment. The present situation in theoretical and 
experimental studies is characterized according to the literature analysis. The 
objective and problems of the investigation are generally formulated. 

Chapter 2 describes the proposed mathematical model of 
deformation and structure of monotropic plastic foams. The choice of 
independent effective elastic constants to be calculated is specified in the axis 
of elastic symmetry. The replacement of averaging physical quantities 
throughout the volume with an averaging throughout the ensemble is justified 
in calculations of integral characteristics of plastic foams. 

Calculation of the corresponding elastic constants for the 
compression/tension deformation parallel to rise direction, and assumption of 
the semiaxes hypothesis are discussed in Chapter 3. The possibility to use 
a minimum of potential deformation energy as the criterion to calculate a post 
- deformation form of the model cell is demonstrated. 

Two types of deformation of struts, as well as the finding of average 
stresses in the model cell are described. Methods of numerical calculations 
and inaccuracies of results are characterized. 

Deformation of the model cell under compression/tension parallel to 
rise direction and the assumption of the volume deformation hypothesis are 
presented in Chapter 4. Analysis of numerical results permits to conclude 
that both mathematical models (Chapters 3 and 4) are fully compatible. 

Chapter 5 deals with deformative properties in compression/tension 
applied perpendicular to rise direction. Necessity to use the hypothesis of 
volume deformation as well as the hypothesis of a linear relationship between 
the volume deformation and the degree of anisotropy is motivated. Analysis 
of Poisson's coefficients numerical values shows a mutual compatibility of all 
the three mathematical models of uniaxial compression/tension (Chapters 3, 
4 and 5). 

Shear in the plane perpendicular to the plane of isotropy is 
considered in Chapter 6. Unlike cases of uniaxial compression/tension, the 
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post - deformation form of the model cell is defined by spatial transformation 
uniquely because of the lack of an appropriate deformation energy 
minimization criterion. 

Comparison of numerical results permits to check a mutual 
compatibility of mathematical models of shear and compression/tension 
deformations. Consequently, the calculation of independent constants has 
been completed. 

In Chapter 7 dependent elastic constants are derived using results 
of the previous calculations. Comparing the theoretical results with 
experimental data permits to evaluate both types of struts deformation. 

Chapter 8 gives main conclusions. 



2 Mathematical Model of the Structure and Deformation 
of Monotropic Plastic Foams 

2.1 Elastic Constants 

As regards deformative properties the free-rise plastic foams are 
monotropic (isotropic in the boundary case) materials with the isotropy plane 
perpendicular to the rise direction (Fig.2.1). 

A 

V 

Fig.2.1 
Monotropic plastic foams. 

2 o 12 is the plane of isotropy; 
o3 is the rise direction. 

1 

An elastic potential of the 
monotropic plastic foams w can be expressed as follows [6,43]: 

w = w( a 3 3, a,, + a22, a3,2 + a 2 3

2, ana22 - a,2

2, I J 

Within limits of the linear elasticity theory and by neglecting the cubic 
invariant I 3 o the elastic potential can be expressed as a quadratic form of 
stresses: 

w = C,<x33

2 + C2{an + a22)2 + CjO^an + o22) + 

+ C4(a3lff13 +ff23<J32) + C$(ono22 - a 1 2a 2 1) , (2.1) 

where C, 2 5 are constants. 
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Strains in the elastic material are connected with the elastic potential in the 
following manner: 

(2.2) 

Therefore: «i, = «.> {°u> CJ . where ijjcj = 1,2,3 
m = 1,2,...,5 

Expressions (2.1) and (2.2) result in 

«11 = 2C2a,, 4- (2C2 + C5)ff22 + Cjffjj 
«22 =(2C 2 + C5)ffn + 2C2<JN + Cjajj 
«33 C 3 <7 n + C3ff22 + 2C|ff33 

«23 C 4 ff23 ; 
«13 C4 ff13 

«12 - C5 ff,2 

«32 «23 «11 = - «13 «21 = «12 

(2.3) 

The monotropic materials can be characterized by 12 elastic 
constants; five of them independent [45,49]. Evaluating the possibilities to 
elaborate mathematical models for calculation of constants, the following 
technical constants are chosen as independent: 

"23 "31 

Here and further in Poisson's coefficients the first (stress) index corresponds 
to the loading direction, while the second (deformation) one denotes the 
direction, in which the transversal deformation is measured. 

For a better outline of relationships between the elastic constants, the 
Hooke's law for orthotropic materials is used. These materials are also 
characterized by 12 constants (nine of them independent), but the level of 
symmetry is lower than that of monotropic materials [49]: 
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-ET " E2 - £3 

" i l T (7-n — ——— 

£, £ 2
 2 2 £ 3 

-I-
E, E, 

' 3 3 . 

«23 = " 4 - ff23 (2-4) 
2 ^ 2 3 

1 1 „ 
2 G,3 

1 
2 Gn 

£32 £ 2 3 £31 £ 1 3 £ 2 i £12 

By comparing the coefficients at equal stresses in systems (2.3) and (2.4), 
mutual relationships between technical constants are found, expressing them 
with five independent ones: 

"12 = "21 " | 3 = "23 "32 = "31 

£ , = £ 2 £ 3 (2-5) 

G 2 3 — G i j G 1 2 — — £ 3 

2"3,<1 + * 2 , > 
In the boundary case, when isotropic plastic foams are considered, v and £ 
are chosen as two independent constants. The third one can be expressed as 
follows: G = E I [ 2 (1 + i>)] 

Microscopical observations and photographs show that the plastic 
foams are microscopically nonhomogeneous composite materials [20,26,52]. 
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Since the aim of the present research is to characterize the plastic foams as 
integral materials, an introduction of effective elastic constants is necessary. 
The tensor of effective elastic constants C * characterizes deformative 
properties of a nonhomogeneous material as an integral one. It connects 
stresses and strains averaged throughout the material [54]: 

< f f > = C ' < £ > 

The ergodic hypothesis is assumed to be valid in further calculations. This 
permits to replace an averaging of physical quantities throughout the volume 
of material with an averaging throughout a cluster of one-type situations (an 
ensemble). The ensemble is presented by a local model of the plastic foams 
which undergoes all the possible structural microsituations according to 
relationships (2.6) defined further. We shall neglect however, the 
interconnection of separate model cells of ensemble. 

Consequently, it is necessary to determine the following effective 
technical constants of the monotropic plastic foams: 

" 2 1 " " 2 3 " " 3 1 "
 Ei' Gn 

2.2 Local Model 

In order to obtain an ensemble of microsituations of plastic foams 
structure, a local model is proposed. Model cell is chosen to be in the form 
of a rotational ellipsoid [23,24], Fig.2.2. An extension degree A = c 0 / a0 

of the model cell is equal to the average extension degree of ellipsoidal 
gaseous incorporations in the plastic foams: 

A = d3 / d, = d3 / d2 

where d, d2 , d3 are average values of projections D, D 2 , D 3 of 
ellipsoidal incorporation axes d, d2 d3 on the measuring plane [52]. 
Monotropy of plastic foams is directly related to A. 
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Fig.2.2 
A local structure model of 
monotropic plastic foams. 

OQ , c 0 are semiaxes of 
an ellipsoidal model cell with 
a strut system and a knot 
situated inside. 

The mass of base polymer comprised 
in the model cell is denoted by m^. The model cell is treated both as a 
model of continuous media and as that of local structure. 

In order to define stresses in the corresponding point of plastic 
foams, the foams in the model cell are regarded as a continuous monotropic 
medium. The monotropy axis of this medium is parallel to the longer 
semiaxis c 0 of the model cell. Density of the plastic foams to be modelled 
is ascribed to the continuous medium: 

Qf=mpotl Vn = 4 / 3 * a0

2c0 

where Vx is volume of the model cell. 
A local structure model cell is obtained by cutting out a rotational 

ellipsoid (or a sphere when isotropic plastic foams are considered) around a 
polymeric knot so that a half of each strut entering the knot would belong to 
the model cell. For the sake of simplicity here and further the half-struts are 
referred to as struts . except for calculations of the strut stability (3.24). 
where the whole length of the strut is essential. Space filling coefficient PI 
of the plastic foams 

^1 = Qf I Qpol = "Ipo, I ( Vmc Qpol ) 

is ascribed to the model cell. 
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c o. 
Fig.2.3 
Dimensions of structural 
elements of the model cell 
b e f o r e a n d a f t e r 
deformation. 

k 
D/2 

lM , /„ are lengths of the n-th strut; 
QM , Q„ are lengths of the n-th half- strut; 
r^y , rn are lengths of the n-th radiusvector directed along 

the n-th half-strut; 
D is diameter of the knot. 

The following relationships exist between the dimensions of structural 
elements 

= 2 ; K = 2 Q„; 

r* = QM + D/2 ; r„ = Q„+ D/2. 

Since the spatial distribution of struts in isotropic plastic foams is 
uniform, a uniform distribution of N struts entering a knot in the local 
structure model cell has to be known. It is found by minimizing the aim 
function * constructed in the following way [23]: 

N N 

*= E E V 

where L,y is a distance between crossing points of i-th and y-th struts with 
the surface of unity sphere. The function * reaches its minimum when the 
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spatial distribution of N struts is uniform. Orientation of the n-th strut is 
defined by spherical coordinates <pM, 0M in the O{TJT frame of reference, 
connected with N struts system. Then the function 4» can be expressed as 
follows: 

N N 

* = £ f 2 ( 1 ~ sine / 0sine / 0cosV j Dcos^ 0+ 
I - I j • lift 

+ s i n ^ i n ^ i n ^ i n ^ + COStfioCOS^ ] 2 

where v?rf, 0 ,̂ are the sought angles. 
The aim function is minimized by using the steepest descent method for the 
following numbers of struts: N = 2 , 3 , . . . , 14. It is clear that N = 2 , 3 struts 
uniformly distributed in space do not form a spatial configuration and 
therefore cannot represent adequately the deformation of plastic foams. In the 
plastic foams, knots with N = 2 , 3 entering struts are found only as separate 
defects, not as common structural elements. Knots with the smallest and most 
frequently met N are those with N 4, and after minimization the 
respective strut configuration will be spatial. Accordingly, N = 4 is assumed 
to be the lower boundary of strut number N investigated in further 
calculations. The upper boundary of N - range is determined from stabilizing 
the dependence "effective moduli - strut number N" when N increases and the 
law of "great numbers" starts operating. 

The stabilization begins at N > 9 , therefore N = 10 is the greatest 
number of struts used in calculations. The results of <pM,6M calculations are 
summarized in Table 2 . 1 . 

T 

Fig.2.4 Spatial configurations of N = 4,5,6,8 struts in the body 
frame of reference O£J/T. 



Table 2.1 Spherical coordinates of N struts uniformly distributed in space. 

Number 
of 

struts 
N 

Spher. 
coord. 

rad 

Order number n of a strut, « = 1,2,...,N 
Number 

of 
struts 

N 

Spher. 
coord. 

rad 
n = 1 n = 2 n = 3 n = 4 /1 = 5 /2 = 6 n = 7 /1 = 8 /1 = 9 n = 10 

4 
**; 2.186 

5.498 
2.186 
2.356 

0.955 
0.785 

0.955 
3.927 

5 
^ ; 3.142 

1.000 
0.000 
1.000 

1.571 
2.094 

1.571 
4.189 

1.571 
0.000 

6 
3.142 
1.000 

0.000 
1.000 

1.571 
1.571 

1.571 
3.142 

1.571 
4.712 

1.571 
0.000 

7 
^ ; 2.503 

1.043 
1.018 
1.525 

2.104 
2.823 

0.970 
3.404 

2.136 
4.679 

0.710 
5.202 

1.571 
6.283 

8 <PnO 

2.186 
0.785 

2.186 
2.356 

2.186 
3.927 

2.186 
5.498 

0.955 
5.498 

0.955 
0.785 

0.955 
2.356 

0.955 
3.927 

9 <P*0 

0.499 
0.702 

1.647 
1.293 

2.143 
2.472 

0.961 
2.724 

1.886 
3.800 

0.779 
4.537 

1.859 
5.102 

2.859 
6.435 

1.571 
6.283 

10 
0.905 
1.032 

2.040 
1.337 

0.417 
3.061 

1.473 
2.397 

2.452 
3.138 

1.430 
3.774 

1.899 
4.840 

0.833 
5.294 

2.685 
6.058 

1.571 
6.283 
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Spatial configurations for those N which make it possible to form an obvious 
drawing: N = 4,5,6 and 8, are depicted in Fig.2.4. When N = 4,6 and 8, 
the configurations found in the result of minimization are equal to those 
found with geometric considerations and using the symmetry properties of a 
cube. 

It must be taken into account that the struts may occupy any spatial 
orientation in the isotropic plastic foams. Therefore, the system of N struts 
uniformly distributed in the model cell as one whole is turned around the 
initial point o of the laboratory frame of reference ol23. In the process of 
turning, the strut system goes throughout all possible spatial orientations 
defined by the Euler's angles 6E, >(>E,^E. Thus, a cluster or an ensemble of 
one-type situations is obtained. With the following transformation 

where l,m = 1,2,3, new spherical coordinates 6E, <pE of the n - th strut in 
ol23 frame of reference in every microsituation BE, <pE, \pE can be found 

matrix £ t a [39]: 

Sim 

c o s ^ c o s ^ - s in^s in^cos 0E 

s i n ^ C O S ^ + C O S Q U I V?gCOS 6E 

sinyjgSin 6E 

- cos\¡/E$m<f>E - sin^gCos^jCOS 6E 

úmpEs,mipE + c o s ^ g C o s y j j C o s 6E 

c o s ^ ^ i n 6E 

sin^sint^ 
c o s ^ £ s i n 0 f 

COS0 f 

[25]: 

0„ = arceos [ sinflnoSintffSiní <Pno + Ve) + cos0„oCOS0£ ] 

sin f>„= ( s i n ^ o s ^ g j , + sin&Vinc^g^ + 
+ c o s ^ g 2 3 ) / s'md„ (2.6) 

cos IF>„ = ( sin0 a Ocos^B OgM + s i n ^ i n ^ g . j 
+ COSA*, g 1 3 ) / sinfl,, , 

+ 

where n = l,2,...,N. 
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In order to model a nonuniform distribution of the struts observed 
in the monotropic plastic foams it is assumed that the distribution in question 
develops gradually out of the uniform distribution observed in isotropic 
plastic foams. When a chemical compound is foamed in a high and narrow 
vessel, an additional orientation in the rise direction appears in the uniform 
distribution of struts (defined by a random distribution of gas bubbles). A 
model cell of the monotropic plastic foams is obtained from the model cell 
of isotropic plastic foams by the following space transformation (transversal 
dimensions of the model cell are assumed to remain constant): 

Axj ; A = Co/Oq (2.7) 

Fig.2.5 Change (2.8) of the 
spherical coordinate 
0 < 0„ < t / 2 of uniformly 
distr ibuted struts when 
monotropy is introduced by the 
transformation (2 .7 ) (the 
calculations are carried out for 
6„ values after every 
ten degrees). A - 4.9. 

After an introduction of 
monotropy by Eq.(2.7), spherical coordinates of the n-ih strut become as 
follows (Fig.2.5): 

e„ arctg (A \gd„) 0 < 6„ < t/2 

e.' e. = t/2 
- 4 

fl.' = ir - arctg [A tg(w - 6n)] -k/2 < 6„ < ir ; (2.8) 

<Pn — fn

 = const. , n = l,2,...,N . 
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From (2.6), (2.8) it can be concluded that 

Transformation (2.7) changes the spherical model cell of the isotropic plastic 
foams with radius OQ into a model cell of anisotropic plastic foams in the 
form of a rotational ellipsoid with semiaxes OQ , q. 

In order to characterize every microsituation of the ensemble, 
expressions (2.6) comprising all the three Euler's angles are used. 
Therefore, an averaging of physical quantities is made in the following 
manner [44,54]: 

Integral plastic foams (having foamed inner core which changes gradually 
into solid base polymer in the outer layer of a foams sample) are left 
unconsidered, so the texture function becomes the following: 

2 i 2 i r 

< a > = 1 

x sin0£ dB^^^ (2.9) 

/ (0 £ ,¥> £ ,^ £ )= 1 
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2.3 Dimensions of Structural Elements 
in Model Cell of Local Structure 

Volume of the model cell of local structure V w and volume of the 
polymer in this model cell are the following: 

V ^ = 4 / 3 W c o Vft = PlVmc. 

Effective constants are calculated for two cases of the mathematical model: 
a model cell of local structure has no knot ( D = 0 ) and it has a knot. In the 
first case the polymer volume is distributed between N struts with a 
total volume V„ 

Y* = F E &N0 

fi-1 

Q-o = r*o = <kfo I ( co

2sin0„' + ^cosf l / )" 2 

Then a cross-sectional area F of the struts can be calculated as follows 

3 £ ( c0

2sin26V + ao2cos2eY )"2 

A = 1 

If the cross-section shape is assumed to be an equilateral triangle, its side t 
is 

t = v7 F 1 0.433 

In the second case an attempt to introduce a knot with a constant 
volume Vk when PI is given ( Vk ~ ^( PI )) , does not allow us to model 
a whole variety of the plastic foams observed in experiments with PI = const. 
Therefore, the knot is introduced as an undeformable sphere with 
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surface area St completely or partially covered by cross-sectional area SN of 
N struts entering the knot: 

Sk = xD2 SN = NF k = SN/ Sk; 

where D is a diameter of the knot. Quantity k is further denoted as parameter 
of the knot. Variation of the parameter k in the following range: 

0.1 < k < 1.0 ; when PI = const. 

permits us to model various distributions of the polymer between the struts 
and the knot when k is given. 

As mentioned in [15] the parameter k remains constant for each 
compound of the plastic foams (irrespectively of the space filling coefficient 
PI obtained in the result of the foaming process) provided the frothing 
technique and surface properties of the uncured compound are kept 
unchanged. Thus, once the parameter k has been determined for a few 
samples with PI = const., the same value can be used for all the subsequent 
samples prepared by the same process, even when PI changes. The above 
statements, however, have been supported by no experimental proofs. 

Dimensions /, F, and D of structural elements in the model cell 
having a knot can be found from the following equations [6]: 

PI = Plk + Pl„ ; 

PI  D'  3 F N Y ejd') (2.10) 
8c 0 a 0 4 x c 0 a 0 

where P l t and Pl„ are space filling coefficients of the plastic with knots or 
struts. 
In view of 

Qjfin') = U6M') - D/2 ; 
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D = v7 NF/(*k) and F = 0.433 f2 

expression (2.10) results in the following cubic equation with respect to t 

Gr3 + Hf2 + J = 0 , (2.11) 
where 

G = bN 

H = * £ U<?.') 

bN [ bN 

rJ<Sn') = floe, / (c 0

2 s i n ^ ' + O o 2 cos 2 ^')" 2 

J = - 4/3x PlCoflo 2 b = 0.433 

With substitution r = y - H/3 Eq.(2.11) is reduced to its canonical form: 

y 3 + py + q = 0 where p = -H2/3 q = 2(H/3)3 + J. 

Further treatment of the problem depends on the value of quantity Q [40]: 

Q = (p/3)3 + (q/2)2 

which may be positive, negative or zero. Control calculations showed that all 
the three cases were realizable. The Cardano formula and the trigonometric 
solution method were used to find roots. One root of the three was chosen 
according to the following conditions: 
l)the side length t of the struts cross-section lies in the range of 

0 < t < 2a0 
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2)t can assume only one numerical value. When /, F and D are calculated in 
every microsituation, their average values < / > <F> and <D> are 
found according to Eq.(2.9). 

The discussed kind of a knot introduction into the model cell has the 
following disadvantage : a mathematical model with a knot cannot be reduced 
to a knotless model in a direct way. The model cell always comprises a knot, 
whatever the combinations of k and PI may be. 

2.4 Conclusions 

For consideration of monotropic plastic foams in the main axes of 
elastic symmetry five independent elastic constants have been chosen from 
twelve constants to be calculated according to the possibilities to elaborate 
mathematical models. The remaining seven constants are expressed by 
independent ones. In order to characterize deformative properties of the 
plastic foams as integral materials the elastic constants are defined as 
effective ones. 

A local model consisting of a model of continuous medium and a 
model of local structure has been proposed. The model of a local structure 
comprises an ellipsoidal model cell with N struts orientated spatially 
uniformly By turning the system of struts as one whole around the knot 
centre, a cluster of one-type situations is obtained permitting to define 
average quantities. The way of introducing monotropy has been proposed, as 
well as dimensions of structural elements in model cell have been calculated. 
In order to model various distributions of polymer between struts and the 
knot when PI is constant, an empiric coefficient, a knot parameter it, is 
introduced. 



3 Deformative Properties in Compression/Tension 
Applied Parallel to Rise Direction. 
(Semiaxes Hypothesis) 

3.1 Mathematical Model 

3.1.1 Effective Moduli 

If the strain e„ parallel to the rise direction is applied to a model cell of 
monotropic plastic foams: 

£33 = (c - c 0)/Co = const. (3.1) 

effective Poisson's coefficients i»31", j»32' and effective Young's modulus £ 3 " 
can be expressed as follows: 

" 3 1 " < « m > / « 3 3 ; "32" = "31" (3-2) 

£ 3 " < a 3 3 > ^ e 3 3 where 

2r2w w 

¿ 5 j J J £ , , ( W ^ ) s i n ^ M v ^ ^ 

The value of < <r33 > can be calculated in the same way as <en> 
From the viewpoint of deformations, the model cell can be considered as a 
rotational ellipsoid cut out in an infinite plastic foam medium. It is assumed 
that model cell retains its ellipsoidal (not obligatory rotational) form, when 
a compression/tension deformation is applied in the direction of one of the 
coordinate axes. Then deformation of the surface of model cell is defined by 
nondegenerated, linear transformation T^ [38]: 

T = 
0 

^ 2 

0 0 

XjSiny 
0 
\cosy 

(3.3) 

X, = a, / a,, ; = a 2 / a„ ; X3 = c I c„ 

file:///cosy
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The angle of pure shear is 7 = 0 when compression/tension deformation is 
considered. To calculate eu(8E, <PE,tI/E) in every microsituation, the semiaxis 
a, of the model cell after deformation has to be known: 

« n ( e f . <Pe>Ve) ~ 

Although <e22> <&i\> . when the monotropic plastic foams are 
considered, semiaxis a^B^ <pE,\pE) IS n o t obligatory equal to at(BE, <PE,^e)-
So parameters of the ellipsoidal model cell are the following: 

Coordinate Semi axes of the Semi axes of 
model cell the model cell 

axes before deformation after deformation 

ol Oo a,(0£, <pE,il>E) 
ol OQ a2(6E, ipE,yj/E) 
oh c0 c = const. 

At first we consider the most general case, when the axes to be 
calculated are completely independent. The values of a, and a2 are found 
from the local structure model, using a variational analysis of after-
deformation form a, , a2 , c of the model cell. The variational analysis is 
based on the theorem of the potential energy minimum of deformation. 
According to this theorem, due to deformation the model cell assumes such 
a form a, , a2 , c , which corresponds to deformation energy minimum 
of the N strut system: 

Wmi,(a„a2,c,eE,<pE,iE) = min £ Wn(a„a2,c,BE,<f>E^E), (3.4) 

where energy to be minimized is calculated according to Eqs.(3.8), (3.9) or 
(3.14), (3.17). Here and in further Chapters the following assumptions are 
made: 

1) The clamping of struts ends in the knot is hinge-like. The struts 
carry axial loads only. 
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2) The deformation of a single strut and therefore of the whole model 
cell is restricted (Paragraph 3.2.1) so no buckling occurs. 

An unconditional minimization of the corresponding two-argument 
energy function has shown the incapability of a model with independent 
varying semi axes to describe adequately the experiments. In some 
microsituations, in directions of axes o\ and o2 reaction strains by several 
orders exceeding the deformation c } 3 applied may appear. Then few or no 
struts have directions ol and o2, which means that large deformations in 
these directions are energetically favourable to the model cell. Practically an 
interaction of neighbouring cells in the plastic foams does not permit large 
reaction deformations of one cell. To take into account the interaction of 
neighbouring cells , the axes to be calculated have to be connected by some 
tie condition. 

A tie condition is formulated using two experimentally measurable 
macroproperties of the plastic foams: a monotropy and an effective relative 
volume deformation c* The macroscopically monotropic plastic foams are 
known to deform equally in all directions of the isotropy plane, if the 
deformation applied is parallel to the monotropy axis. Assigning this 
macroproperty as a hypothesis to the model cell in the form of a rotational 
ellipsoid, after deformation the model cell retains the same form in the case 
of the mentioned above deformation. So the axes a, and a2 to be calculated 
are mutually equal in every microsituation 6E,ipE,\l/E (the semiaxes 
hypothesis, Fig.3.1): 

a\ifiE,<pE,^E)= a2(eE,(f>E,\PE)= a ( 0 F , < 0 £ , i / / £ ) . (3.5) 

2 

Fig.3.1 Deformation of the model cell in 
isotropy plane o\2, when the 
compression deformation applied 
is parallel to monotropy axis o3 
and the semiaxes hypothesis (3.5) 
is assumed. 

L 
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In case of the semiaxes hypothesis a volume deformation e(0E,<pE,^E) of the 
model cell changes from one microsituation to another. Then the effective 
volume deformation e' can be calculated as follows: 

2» 2 i r 

e _L. j j | e i S ^ M ^ O ^ , ( 3 . 6 ) 

where e = £,, + E n + e 3 3 

Deformation of the model cell, when e(6E,<pE,\l/E) = const, in all 
microsituations (the volume deformation hypothesis), is considered in 
Chapters 4 and 5. 

3 . 1 . 2 Deformation Energy (AQ„ - Calculation Scheme) 

It is assumed that in the local structure model the struts do not 
change their spatial orientation due to deformation. Initially, we consider a 
no-knot model cell D = 0. Then (Fig.2.3) 

'no = Qno rn = Q» . where n = 1,2,. . . ,N 

Now deformation energy of the n-th strut in every microsituation 6E,tpE,\l/E 

can be expressed as follows: 

W. = 1/2 PJ±Q„ where AQ„ = Q„ -

Here PN is an axial load carried by the n-th strut. 

As P„ = EvFAQJQJ, , 

then: WN = 1/2 E ^ A Q ^ / Q I C (3.7) 

where E0 is the Young's modulus of the base polymer. 
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In order to express AQ„ for the model cell of local structure in the form of 
a rotational ellipsoid the length and Q„ of the n­th strut (that is, half­

strut) is calculated: 

Q-o = 
( co

2sin20„' + ao2cos20e' ) , n 

Q . = 
ac 

( c2sin20„' + a 2cos 20.' )" 
(3.8) 

where 0„' is a spherical coordinate of the n­th strut in the laboratory reference 
frame after modelling of the monotropy (2.7) ( 0,' = 8M , when isotropic 
plastic foams are considered). Now deformation potential energy of the 
knotless model cell can be expressed (3.4, 3.7) as: 

z a

o
c

o «-i 

a(0£,¥>£) с a0cQ 

(3.9) 

where /„,, = c„2 sin20„' + Oo
2cos20„' 

/. = В sin 20/ + a2(0£,*>£)cos20/ 

In the case of a model cell of local structure having a knot, the deformation 
potential energy is: 

W(a, 0 £ , y>£) = ^ 0
Г 'N0> 

2 _ , I 

(3­10) 

гл=<кс0/(/мУ
а rn = a c / ( / „ ) " 2 (3.11) 

Half­axis a is obtained by minimizing Eq.(3.9) or (3.10). According to 
Eqs.(3.9) and (3.10), the deformation energy depends only on 
0„' ­ coordinate of the struts. However, as it has been proved in Section 2.2, 
0„' does not depend on фЕ. Consequently, min W, a and e M are independent 
of angle фЕ, too: e,, = e,,(0£, vE). 
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The numerical value of £,, found from the model cell of local 
structure is related to the point of a continuous medium. Then the 
deformation ЕИ(ВЕ,<РЕ) of the plastic foams viewed as a continuous medium 
is calculated in every microsituation of the ensemble, and calculation of 
< £ u > simplifies: 

2т t 

< £ , l > "4V ( ( e

u^E-VE)siB0sde^pE (3.12) 

Further in the text a notation "AQ„ - calculation scheme" is used to denote 
equations describing such a deformation of the struts, when their length is 
changed on A Q , , but their spatial orientation remains unchanged. 

3.1.3 Deformation Energy (X. - Calculation Scheme) 

The numerical calculations show that the results given by the 
AQ„ calculation scheme do not always agree with experimental data 
(Paragraph 3.3.3). Therefore, it is assumed that struts in the local structure 
model may change their spatial orientation due to deformation of the model 
cell. 

Initially, the model cell without a knot is considered. If projections of a 
unity vector n directed along the n­th strut in an undeformed model cell are: 

x c o s y ? sin0 ' 
• y„ sin^sinfl/ 

Z„ COS0/ 

a relative change \ n T in the /i­th strut length after deformation T^ (3.3) is: 

Kt = QJQNO = ( T ^ T ^ r 

X„r = (X t

2

cosV„sin2

0„' + VsinVi,sin2

0„' + X^cos'fl.')"2, (3.13) 
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where n = \,2,...,N (For the sake of obviousness the oxyz frame of 
reference is considered in Paragraph 3.1.3) 

According to the semiaxes hypothesis: 

XI = Xy = X = a / a 0 and 

\ , r = (X2sin20„' + Vcos 2*/)" 2 

Deriving from Eq.(3.8) and taking into consideration that 6„' does not 
depend on ^ £ the deformation energy of N-strut system in each 
microsituation 6E,<pE can be presented as: 

E F N 

W(K,Oe,Ve)= —l— £ [ \ T (\,0e,<PE) - I ] 2

 E - ( E E , ^ £ ) . ( 3 . i 4 ) 

Semiaxis a„ = a is calculated by using variational analysis of the after-
deformation form of the model cell and minimizing energy W, Eq.(3.14). 
Likewise as in Paragraph 3.1.2, it can be proved that < £ „ > is calculated 
from Eq.(3.12). 

When a model cell of local structure with a knot is considered, the 
relative change in the n-th strut length X .̂ is derived by using the coordinates 
of struts ends (Fig.3.2): 

(*„/ XJ2 + (y.i yJ1 + ( z„ z J-
(3.15) 

In conformity with x, = x- we have 

*«i2 = \ x„\ y„2 = Xv y„, z,a ' \ Z„i 

In view of 



3 8 

6 ' 

n 

Flg.3.2 Change in the 
n-th strut spatial 
orientation due to 
space transformation 

*«o. >V» Z«o is a point 
of the n-th strut 
entering the knot; 

ẑ z are points of the 
n-th strut crossing the 
model cells surface 
before and after 
d e f o r m a t i o n , 
respectively. 

and sin a . = 
D/2 cos a, = D/2 cos<pn 

we obtain: 

( 1 

i/fl .) 
1 / / 3 B ) 

1//3. ) 
0* D I i2Qn0) 

As xj + yj + zj (D/2)1 then: 

K = UMft. + i) - / 3 j 2 cosV„sin 2e; + 
+ [ M 0 . + 1 ) - / 3 J 2 sinV.sin 2^' + 
+ [ \ 0 3 . + 1 ) - / 3 J 2 cos 2 */}" 2 

( 3 . 1 6 ) 

(If there is no knot, /3„ = 0 for each n = 1 , 2 , ..., TV and reduces to 
\ T = \ T . ) According to the hypothesis of semiaxes, XT = X̂  = X, and 

K = + 1 ) - / 3 J 2 sin % ' + 
+ [\tf„ + i) - 0fcos2e„'}^ . 
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Deriving from Eq.(3.11) and taking into consideration that 
0„' does not depend on the deformation energy of N strut system in each 
microsituation 6E, <pE can be presented: 

WiKB,,^ = £ i M X , eE, Ve)- 1] j (rM - D/2) (3.17) 

Likewise to Paragraph 3.1.2, it can be proved that <ea> can be calculated 
from Eq.(3.12). 

Further in the text the notation " X„ - calculation scheme" will be 
used for equations describing such a deformation of the struts when they 
change not only their spatial orientation but also their length. 

3.1.4 Average Stress 

In order to calculate average stress <ff 3 3> from Eq.(3.2), stress 
on(0E,<f>E,\J/E) in every microsituation QE,<pE$E of the plastic foams structure 
has to be known. The stress in question is considered for the local model cell 
of continuous medium (Section 2.2), with force P applied parallel to rise 
direction o3 (Fig.3.3). The force P deforms the model cell by 
£ 3 3 = (c — c0)/c0 Eq.(3.1). According to the semiaxes hypothesis, after 
deformation the shape of model cell is still a rotational ellipsoid. The stress 
<r33(0£,Y?£,^£)is defined as the volume-averaged stress considering the post-
deformation volume V^. of the model cell. Then: 

M^E-VCI/ 'E) = On"*, 

where d3r f d** W*J DV~ <318) 

To perform averaging using Eq.(3.18), a three-dimensional stress state of the 
rotational ellipsoid under uniaxial compression/tension deformation £ 3 3 has 
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Fig.3.3 
A local model of the 
plastic foams considered 
as a continuous medium 
(see Section 2.2) and 
used for the calculation of 
stress On(6B,<pE,+J. 

R(Be,tp^ is the radius of 
the cylinder. 

I 2 
o 

j to be known. Since solution of 
such a problem is unknown to the 

author, the post-deformation rotational ellipsoid is replaced by a circular 
cylinder [5,39] whose height h and volume V^, are equal to those of the 
rotational ellipsoid: 

h = 2c; V« = 
As 

= 4 / 3 « at\eE,<pE) and Vol = liccR2 

the radius of the cylinder can be calculated as follows: 

R= y/273 = R<0E.vd, (3.19) 

where ax{6E,<pE) is derived from Eq.(3.4). 
Therefore: 

7, 
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where d n « * = _ J _ [ OyflMJ dV^ 

Since in cylindrical model cell the stress о-^ХМ^) is known to remain 
constant throughout the whole volume 

о^ЧМСУД = = const, for every M# E , 

then a„ (0Е,<рЕ,фЕ) = = PI{*F?) (3.20) 

The force P in every microsituation is calculated from the model cell of local 
structure. When e 3 3 = Ac/q, , deformation energy of the model cell is the 
following: 

W(EE,vE,tE)= l/2P\0E,vM Ah ; 

Ah = 2Ac = 2{c - Co) 

Р(вЕ,^>Е,фЕ)= W(.EE,vE,TE)/ ( с - Co) 

The deformation energy of the model cell is also equal to the energy (3.9), 
(3.10), (3.14) or (3.17) accumulated in N struts. 

Then the force P is 

1 " 

P = P ( £ W = min £ Wn( аГЕЕ,ч>Е) (3.21) 

According to Eqs.(3.19), (3.20) and (3.21), the stress a 3 3 can be calculated 
in every microsituation 6E , <pE: 

N 

min V W(a, ,0r,<pc) 
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" 3 3 * OM'E) 

Since the stress a 3 3 is independent of angle the calculation of average 
stress <o- 3 3> using Eq.(2.9) simplifies: 

IT t 

< a 3 3 > 

3.1.5 Compatibility of Mathematical Models 

Mathematical models of uniaxial compression/tension of the foams 
(Chapters 3, 4 and 5) should be mutually compatible. It means that in the 
case of isotropic foams when deformative characteristics are independent of 
the loading direction, constants V and E~ calculated according to these 
different models should be equal in the limits of calculation errors. 

To calculate the post-deformation shape of the model cell in 
mathematical models of uniaxial compression/tension, a variational analysis 
of post-deformation form was used. In calculating shear modulus G13* 
(Chapter 6), the post-deformation form of the model cell is uniquely defined 
by transformation matrix T,-, , Eq.(6.3). Therefore, a mutual compatibility 
of these different theoretical approaches has also to be checked. It can be 
done in case of the isotropic plastic foams, when: 

G" = ET I [2( 1 + / ) ] (3.22) 

Derivation of G" from Eq.(3.22), therefore, employs the data obtained by 
variational analysis of post-deformation form of the model cell. The values 
of G" calculated in this way are compared with the values calculated in 
Chapter 6, and the data should be equal in the limits of calculation errors. 
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3.2 Numerical Calculations 

3.2.1 Small Deformations of Model Cell 

The proportional limit, as experimentally determined for plastic 
foams, in tension E„ is greater than that in compression ek [9,20,52]. For 
rigid, isotropic polyurethane foams: 

e f c = - 1.0 % ; E„ = 1.5 % 

When elastic, isotropic polyurethane foams are considered these 
characteristics are almost by one order greater: 

ek = - 6.5 % ; E„ = 12.0 % 

Therefore, for a greater versatility of the mathematical model, the numerical 
value of deformation e 3 ] applied to the model cell has been restricted: 

| e „ | < | e t | = 1.0 % (3.23) 

Since we are lacking information about the proportionality region for 
monotropic plastic foams and its dependence on the degree of anisotropy and 
the loading direction, Eq.(3.23) of isotropic plastic foams has been used 
initially as deformation for the model cell of monotropic plastic foams. 
Simultaneously, a subsequent testing of the strut stability was carried out. 

Although the strain e 3 3, Eq.(3.1), applied to the whole model cell 
is smaller than the limit strain, the critical deformation ecr„ may be 
exceeded in compression for some separate strut when PI becomes very 
small [30]: 

•K1 I 

e - 0 1 (3.24) 
4 F C ! - D/2)2 

where /„, is a minimum inertia moment of struts cross-section, C = 1 for a 
hinge-like clamping of struts end in the knot. If ecrn is exceeded for some 
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strut of the model cell, the limit strain of the whole plastic foam is considered 
to be exceeded. In this case deformation of the model cell is reduced by a 
half and the calculations are repeated (Fig.3.4) (control of the strut stability 
is realized during calculation of all the five independent constants). 

As concluded later from numerical calculations, the elastic constants 
are independent of length of the semiaxes OQ, C0 . But we are also interested 
in dimensions t, F, D of structural elements (these characteristics depend 
on absolute values of Og, c 0 ). Therefore, values of OQ, q, are chosen equal to 
those determined experimentally. The distance IOQ between the centres of 
cells is independent of PI for rigid PUR open-cell plastic foams when PI < 
0.1 [52]: 

2oo = 2 x 10 u m = const. PI < 0.1 

3.2.2 Numerical Averaging and Variational Series 

For numerical calculations of the effective constants, the programme 
"CONSTANTS" with flowcharts depicted in Figs.3.4 and 3.5 has been used. 
Average values < a 3 3 > , < e , i > etc. are calculated by numerical 
integration with the Simpson's formula [48]. To provide the desired accuracy 
of data averaging, the effect of numerical integration steps A6E, A<pE should 
be evaluated. 

Since the parameters to be averaged are complicated functions of 
BE and <pE, it is practically impossible to determine how they affect the 
calculation data by just using the remainder term of the Simpson's formula. 
That is why the effect was judged from changes in the data caused by 
reduction of A6E, A<pE values. The calculation data presented in Table 3.1 
allow us to draw the following conclusions 

1) Changes in the effective constants caused by reducing A6E, A<pE 

from 10° to 5° are close to the errors AvM' , AE3" , AG" brought 
in by the minimization process The errors, in their turn, are 
basically independent of A8E, A<pE. 

2) A reduction of A0E, A<pE increases considerably the time for 
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executing a PC job of standard problem, whereas data changes are 
insignificant as compared with absolute values of the data to be calculated. 
It can be summarized that steps AdE = AipE = 10° give data sufficiently 
accurate for solving standard problems. The values in Table 3.1 have been 
calculated for a model cell with a knot according to the X, scheme, 
although all the conclusions drawn may also be applied to knotless model 
cell and AQ„ - scheme. 

If steps in numerical integration of Eq.(2.9) are A6E, A<pE,A\l/E the 
theoretically infinite number of ensembles microsituations 0E,<pE,\l/E will be 
substituted by a set of microsituations of finite number 6B, ipEj, ^ a 

6Ei = (i - \)A6E ; V e j = (j - l)A<pE; * a = (* - l ) A * a , 

where i = 1,2 1 ;j = 1,2 J ; k = 1,2,...,K ; 

/ = *7A0E + 1 ; J = 2x/A<pE+ 1 ; K = 2 i r /A^ £ + 1 

Altogether there are A W = IxJxK microsituations. An averaging of the 
physical values throughout A W microsituations requires that a mutual 
difference of these values in various microsituations is evaluated. For this 
purpose local values of the data to be averaged are stored in arrays. Each 
array is a selection x„ ,n = 1,2,..., A W from the general set of the infinite 
number of microsituations. Elements of the selection xn are grouped into 
MM — 10 classes. Minimum and maximum elements of the selection 
xm i n , x^ as well as the class interval cl , cl = (x^ - xmin)/MM are 
calculated. A starting number of the first class is chosen to be equal to 
* m m and a variational series is formed so that central numbers xm are given 
instead of classes: 

*„ = £ m = 1,2,....MM. 

After calculating the frequency Mm of each class, a histogram of the 
variational series of selection x„ is drawn (Paragraph 3.3.3). Asymmetry AS 
and excess EX are calculated for the series obtained. Characteristics of AS 
and EX calculated are compared with those of normal distribution: AS=0, 
EX = 0 [1]. 
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I 
Characteristics of a model cell: 

£o. G0, i>0, a,,. -4. pl> N> *«o. V*).*-
Kind of a deformation: zn, e 3 3 (2 hypothesis) or e l 3 . 

Modelling of structural microsituations: 
turning of the strut system over YJ/E. 

Turning of the strut system over <pE. | 

<PeJ <PeJ 

Turning of the strut system over BE. | 

^B> SIM 

Calculation of spherical coordinates of 
the struts in the new microsituation 

E*< <PN=AOm.<PNO>SIMFE><(>Eida)-

I ON, <PN 

Modelling of monotropy: 
e„' = en'(en,A) = V a 

+ 
D = 0 

Knotless model cell: 
t,F=f(Pl). 

Model cell with a knot: 
t,F,D = f(Pl,k). 

t, F, D 
e' = 0 . 5 x E 

e. 2: £„, 

Calculation blocks corresponding to 
deformation e^, £ 3 3 (2 hypothesis) or £,3 

0e, <Pe,^e 

Avaraged stresses and strains 

Calculation of the effective constants, their errors and parameters 
of variational series with deformation £ 2 2 . £33 (2 hypothesis) or 

£ 1 3 applied. 

Fig.3.4 Flowchart of the programme "CONSTANTS" for calculating 
effective elastic constants of the monotropic plastic foams. 
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Variational analysis of 
the post-deformation form 

a , c of model cell. 

a„+i = am + Aa ; c 
+ 

IK = 1 

Calculation and 
minimization of 

deformation energy W 
(AQ„ scheme). 

Calculation and 
minimization of 

deformation energy W 
(X, scheme). 

Wm+l(am+l , c) 

+ 
a , min W 

Calculation of < e n > 
and <ff 3 3> 

< £ , , > < ( J 3 3 > 

Fig.3.5 Calculation blocks corresponding to deformation e 3 3 in the programme 
"CONSTANTS" (Fig.3.4) when the semiaxes hypothesis is assumed. 



Table 3.1 Effect of numerical integration steps A6E , AtpE on the calculation data. 

№ A6E ; A 
Range of 
semiaxis a / ± A / ; 

"SI'IAIV 
£ " ± A F ; 

E;±AE,\ 
MPa 

CR 
± A G \ 
MPa 

£* 

± A £ ­ , 
% 

t„. A6E ; 

(am,„±Aa) 
x 10°, m 

(a I W±Afl) 
x 10°, m 

/ ± A / ; 

"SI'IAIV 
£ " ± A F ; 

E;±AE,\ 
MPa 

CR 
± A G \ 
MPa 

£* 

± A £ ­ , 
% 

1 10 1.0 0.100130 
±0.000001 
(±0.001%) 

0.100494 
±0.000001 

(±0.01%) 

0.256 
±0.001 

(±0.4%) 

23.547 
± 0.001 
(±0.004%) 

9.37 
±0.01 

(±0.1%) 

­0.487 
±0.002 

(±0.4%) 

0'30" 

2 5 1.0 0.100124 0.100494 0.256 23.552 9.37 ­0.487 1'50" 

3 10 1.5 0.100181 0.101107 0.399 37.171 — ­0.200 0'50" 

4 5 1.5 0.100163 0.101107 0.399 37.189 — ­0.201 2'40" 

Initial calculation data: PUR plastic foams, EQ = 2300MPa, PI = 0.075, N = 4, k = 0.1, 
X„ scheme, c = 0.99c0 (1% compression), Aa = 10' 5xa 0 , a0 = 10"4 m 
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3.2.3 Deformation Energy Minimization. 
Errors Caused by Minimization Process 

A minimum of deformation energy W is sought for by varying the 
post-deformation form of the model cell. For this purpose the semiaxis to be 
calculated is varied in the range (3.25) with a step Aa (Fig.3.5): 

a^ < a < ; (3.25) 

an, = anm + Aam, where m = 0 , 1 (a^ - a^) I Aa 

A graph of the energy function W(a) calculated in several points was found 
to be a concave parabola with its top corresponding to the m i n i m u m value of 
energy ruin W and the sought value amw of semiaxis a (the function W(a) 
has an absolute, unconditional minimum). The function W(a) remains 
nonnegative for all values of argument a and parameters OQ C 0 , c. 
Moving from asum with a given step Aa, the function W(a) is calculated 
in every step. The minimum of deformation energy min IV = W(am i n) 
when the semiaxis a equals a = amin is considered to be found whenever: 

W(a + Aa) > W(a) , 

Accuracy of the values calculated in the minimization process 
depends on step Aa: 

a m i n = a ± Aa min W = W(a) ± AW 

where AW = W(a ± Aa) - W(a) 

Therefore, we need to evaluate effect of Aa on the calculation results. 
(Spherical coordinates ip^, 6M found by minimization of function $ have 
been also determined not quite precisely. However, their effect is 
insignificant, therefore it is neglected). Since the error Af of multivariate 
function / is [1]: 

A / = E •••>*,,) AX,. . 
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Aav 

Ac,, = Aa / ûo ; 

AW 2W. Aa ] 

Considering that the maximum error | Af | depends on relationship: 

I A / l ^ Ê \ fx\ xiyx2,...jn ) Ax, I (3.26) 

we obtain the evaluation of maximum errors of the values to be calculated as 
a function of step Aa: 

A*„ I < Aa 

AE;\< Ifl [ [ f I— 
3 1 8*>(c - c 0 ) I l { I a 2 

AW 2WAa 
a 3 

x s in 8E ddE d<pE; 

and A < / > < A / > , we obtain the following: 

APJI* = — l/e 3 3 <Ac,, > 

A£3" = l /e 3 3 <Atr 3 3 > 

AG" AET I [ 2(1 + O l - ETAv I [2(1 + vf\ 

Ae" = 2 < A e „ > 

where A£" , A / are errors of effective constants of the isotropic plastic 
foams. It can be proved that 
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| AG" | < 1 A £ " 1 • E ' 2 I A K " I 
1 1 2(1 + »•) 2(1 + I / " ) 2 

(3.27) 
| Ae" | < 2Aa / OQ 

Investigations performed by the Monte-Carlo method have revealed that 
practically the error is usually smaller than the maximum one determined by 
equality sign in Eq.(3.26). Therefore, the evaluation (3.27) is considered to 
be sufficient. 

According to the calculation results given in Tables 3.2 and 3.3 the 
following conclusions can be made: 

1) When Aa = 10 u x OQ or Aa = 10s x relative errors of the 
values to be calculated are less than 5 %. It can be considered to be 
of sufficient accuracy as compared with the variation range of these 
values in the investigated relationships P 3 1" , £j" , e" = fl.Pl, k. A). 

2) Step Aa has the most significant effect on Poisson's coefficients 
v~ , v-n' It may be concluded that step Aa = 10"4 x a^ insures a 
sufficient accuracy of results. 

3) Reduction of step Aa ( an improvement of the accuracy increases 
considerably the time tC I of executing standard problems PC job. 

All the previous conclusions are true also for knotless model cells 
and AQ„ scheme. 

http://fl.Pl


Table 3.2 Effect of minimization step Aa on calculation data. 
Isotropic plastic foams, A = 1.0. 

№ A Step 
Aa, m 

V ±Au ET, 
MPa 

±AET, 
MPa 

(?, 
MPa 

±AGT, 
MPa % 

±Ae' , 
% * fi 

1 10­ 3xa 0 0.2 0.1 
(50%) 

23.6 0.8 
(3%) 

9 1 
(10%) 

­0 .4 0.2 
(50%) 

0'50" 

2 
1.0 

I O ^ X C Q 0.25 0.01 
(4%) 

23.55 0.01 
(0.04%) 

9.37 0.08 
(1%) 

­0.48 0.02 
(4%) 

T O O " 

3 10 5

Xfl 0 0.256 0.001 
(0.4%) 

23.553 0.001 
(0.004%) 

9.374 0.008 
(0.1%) 

­0.487 0.002 
(0.4%) 

1'50" 

Initial calculation data: PUR plastic foams, E0 = 2300MPa, P\ = 0.075, AT = 4, k = 0.1, X„ ­ scheme, 
c = 0.99c0 (1% compression), A8E = A<pE= 5° a0 = 10A m 



Table 3.3 Effect of minimization step Aa on calculation data. 
Monotropic plastic foams, A = 1.5. 

№ A Step Aa, 
m 

" 3 1 " ±AJ­ 3 1 " 
MPa 

± A £ 3 ­ , 
MPa 

£*, 
% 

±Ac­, 
% 

t„, 

1 10 3xfl 0 0.4 0.1 
(25%) 

37.2 0.7 
(2%) 

­0 .1 0.2 
(200%) 

0'40" 

2 1.5 
lO^Xflo 0.39 0.01 

(3%) 
37.18 0.01 

(0.02%) 
­0 .20 0.02 

(10%) 
0'50" 

3 1 0 5

X f l 0 0.399 0.001 
(0.3%) 

37.189 0.001 
(0.002%) 

­0.201 0.002 
(1%) 

2'40" 

Initial calculation data: PUR plastic foams, E0 = 2300MPa, PI = 0.075, N = 4, k = 0.1, X„ ­ scheme, 
c = 0.99c0 (1% compression), A8E = A<pE = 5°, a0 = 10^ m 
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3.3 Analysis of Calculation Results 

3.3.1 Dimensions of Structural Elements in Model Cell 
of Local Structure (Isotropic Plastic Foams) 

For a better understanding of the mathematical model presented, it 
is necessary to determine dimensions of structural elements in the local 
structure model cell of isotropic plastic foams (the radius of the model cell 
is: OQ = 1 . 0 x 10"* m). In F i g . 3 . 6 the dependence of < / > and <D> 
(Section 2 . 3 ) on PI is depicted for those values of parameter k, which permit 
the modelling of PUR (k = 0 . 1 ) and PVC (Jfc = 0 . 5 ) plastic foams. It is 
obvious that for all the values of PI < 0 . 1 7 5 

<D> > <t> when k = 0 . 1 and 

<D> <t> when k = 0 . 5 

The numerical values of < r > and <D> are in good agreement with other 
theoretical [ 5 2 ] and experimental data [ 1 1 , 2 0 ] . 

In F i g . 3 . 7 the distribution of base polymer between structural 
elements is depicted in dependence of knot parameter k when PI = 0 . 0 7 5 . 

where V„f and Vt are relative volumes of struts and knot, 
is volume of base polymer in the model cell. 

It is seen that with growth of the parameter k the polymer volume in struts 
increases while in the knot decreases. The same theoretical result was 
obtained in [ 1 5 ] . However, no experimental data for this relationship are 
available to the author. 

Figure 3 . 8 shows the dependence of strut's characteristic 
/3 = <t>/l0 on the parameter k for P I = 0 . 0 7 5 . The struts are the thickest 
when k = 0 . 5 and /3 reaches its maximum. Besides this graph determines 
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the character of relationships E~IE0 = flk) and G 1 3 7G 0 = fik) (Figs.3.15 
and 6.6). A similar result based on another method has been obtained in [15]. 

The calculated dimensions of structural elements for N = 4 and 
Jt = 0.1;Jfc = 0.5are depicted in schematic planar scheme, Fig. 3.9. When 
k = 0.1 , the struts are thin and the knot is well expressed while at A: = 0.5 
the struts become not so thin and the knot is less distinguished. The 
proportions in the figures presented are in good agreement with those in 
photographs of PUR and PVC plastic foams given in [20]. 

Since the model cell of the isotropic plastic foams is a sphere, 
dimensions of the structural elements are the same for all microsituations. 
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F i g . 3 . 6 Dependence of average struts cross-section side < / > and average 
knot diameter <D> on space filling coefficient PI. 

Theoretical results. 
1.5 < D > , < f > , [52]; 
2.6 <D>, <t>, k = 0.1; 
3,4 < D > , <t>, k = 0.5; 

Experimental data. 
• , • <D>, <t>, [11]; 
• , o <D>, <t>, [20]. 

Initial calculation data: PI = 0.075, N = 4, OQ = 10"*m, X„ scheme, 
A6E = A<pE= 10°, Aa = W^xog. 
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Fig.3.7 Distribution of base polymer volume between structural elements 
in dependence of the knot parameter k. 

Theoretical results. 

1 relative volume of struts VTO; 
2 - relative volume of knot Vk. 

Initial calculation data: PI = 0.075, N = 4, = lO^m, \ n - scheme, 
A0 £ = A<pE = 10°, Aa = lO^xoo. 
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Fig.3.8 Dependence of the strut characteristic /3 < />/ /„ on knot 
parameter k. 

Theoretical results. 

Initial calculation data: PI = 0.075, N = 4, a0 = lO^m, \„ scheme, 
A$E = A<pE = 10°, Aa = IO^XOQ. 



Plg.3.9 Dimensions of the structural elements (a planar scheme). 

a ) * = 0 . 1 , <t> = 0 . 3 1 x 1 0 ^ , <D> = 0 . 7 3 x 1 0 ^ ; 
b) k = 0.5 , < r > = 0.44x10^01, <D> = 0 . 4 6 x 1 0 ^ . 

Initial calculation data: PI = 0.075, N = 4, OQ = 10"*m, \„ - scheme, 
A0E = Af>E= 10°, Aa = lO^xo,,. 

3.3.2 Dependence of Calculation Results 
on the State of Strut System 

It is important that the effect of the state of strut system on 
calculation results is known. Strut systems state comprises: the number of 
struts N, the character of spatial system formed by these struts, dimensions, 
the spatial orientation and defects of strut system, etc. The calculation data 
have revealed that the semi axes hypothesis (3.5) yields the following 
relationships for semiaxes a, and a2 in various orientations of the strut 
system: 

I. £j3 < 0 , compression: 
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II. £„ > 0 tension (3.28) 

а, = аг = а < 0 

It means that compression/tension deformation £ 3 3, applied parallel 
to rise direction o3, causes either a buckling/ shrinking of the strut system in 
the plane of isotropy in all orientations or there occurs no deformation at all. 

In model cells with uniform spatial distribution of the struts based 
on the cube symmetry (N = 4, 6, 8 ; Fig.2.4), there exist orientations 
where transversal deformation in plane ol2 takes place, yet at the same time 
no energy is consumed: 

The struts distributed according to the cube symmetry in several orientations 
make it possible to trace the surface of the deformed model cell through 
crossing­points of the struts with the surface of an undeformed model cell 
(Fig.3.10). Then the struts do not change their length and no energy is 
consumed. This conclusion can also be referred to model cells of the 
monotropic plastic foams, where a uniform distribution of the struts in space 
is based on the symmetry of a parallelepiped. 

a(0E,<pE) * °o ; ЩвЕ,<еЕ)= 0 

2 

1 

Fig.3.10 Model cell of the isotropic 
plastic foams, N = 4 
(a planar scheme). 

An orientation where surface of a 
deformed model cell can be traced 
through crossing­points of the struts 
and the surface of an undeformed 
model cell. 
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When the number of struts in a model cell of isotropic, as well as 
monotropic plastic foams is N = 5,6 a uniform distribution of the struts 

3 

- , , p Fig.3.11 Model cell of the isotropic plastic 
foams, N = 5 or 6. 

(In the planar scheme the o2 axis is 
perpendicular to the scheme plane 
and the fifth and sixth struts are 
not shown). 

An orientation where load carrying 
struts 1 and 2 are perpendicular to 
the location plane of other struts o 12. 

in space in the body frame of reference is the following (Fig.3.11): two 
struts are placed on one straight line perpendicular to the plane where the 
other N 2 struts are situated. In these orientations where the two struts 
mentioned are situated along o3 axis in the laboratory frame of reference, 
while the others are found in ol2 plane, the deformation energy is 
consumed, but no transversal deformation occurs: 

a(6E,<fE)= Oo ; W(6E,vE)*0 

This situation can be explained in the following manner: the load-carrying 
struts are situated perpendicular to the location plane of other struts, but 
mutually perpendicular forces are known to have no interaction. These two 
kinds of orientations of the strut system will be further called singular 
orientations. 

To evaluate the effect of a slight deviation of some struts from their 
uniform distribution in space, the spherical coordinate 6M of the two struts 
is assigned with an initial deviation A0„ = 10°. The calculation results 
remain unchanged. 
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In averaging the values to be calculated, the results are independent 
of the initial orientation of the strut system as a whole in the laboratory frame 
of reference. 

The elastic constants under consideration are independent of the 
absolute values of the semiaxes , c0 of the model cell. For the isotropic 
plastic foams the dependence of results on the number N of struts entering the 
knot is quite insignificant. Therefore, the deformation energy minimization 
and the numerical integration were carried out with increased accuracy: 

Aa = 10 s x oo ; A6E = A<pE = 5° 

For the monotropic plastic foams, however, the dependence of results on N 
is greater, and consequently, the calculations were carried out with usual 
accuracy: 

Aa = 10 - 4 x a,, ; A6E = A<pE= 10° 

The following conclusions may be made basing on the data of 
Tables 3.4 and 3.5 (Initial calculation data: PUR plastic foams, 
E0 = 2300MPa, PI = 0.075, A = 1.0 or A = 3.0, Jt = 0.1, X„ scheme, 

A<pE= 5° , Oo = 10"* m ): 

l)Relative dependence of results on 
Af is insignificant for the isotropic 
plastic foams (Fig.3.12). The effect 
of N on P j , " and £3" is 
considerable for the monotropic 
plastic foams. 

Fig.3.12 
Dependence of Poisson's ratio of 
isotropic plastic foams v on the 
number of struts N in the model 
cell (Table 3.4). 



Table 3.4 Dependence of calculation data on the number N of struts entering the knot 
(a model cell of the isotropic plastic foams). 

№ N 

Range of 
semiaxis a v'± Av' ET 

±AET, 
MPa 

<? 
±AGT, 
MPa 

e" 
±Ae ­, 

% 
№ N 

(amm±Aa) 
x 10 3 m 

(«m«±Afl) 
X 10° m 

v'± Av' ET 
±AET, 
MPa 

<? 
±AGT, 
MPa 

e" 
±Ae ­, 

% 

1 4 
0.100124 

±0.000001 
(±0.001%) 

0.100494 
±0.000001 
(±0.001%) 

0.256 
±0.001 

(±0.4%) 

23.552 
±0.001 

(±0.004%) 

9.374 
±0.008 

(±0.1%) 

­0.487 
±0.002 

(±0.4%) 
1'50" 

2 5 0.100000 0.100424 0.260 23.214 9.206 ­0.487 2'05" 

3 6 0.100000 0.100494 0.263 22.858 9.047 ­0.473 2'20" 

4 7 0.100005 0.100408 0.256 23.511 9.352 ­0.486 3'00" 

5 8 0.100124 0.100494 0.256 23.552 9.374 ­0.487 3'30" 

6 9 0.100211 0.100329 0.250 24.154 9.660 ­0.499 3'45" 

7 10 0.100217 0.100276 0.249 24.192 9.678 ­0.500 4'00" 



Table 3.5 Dependence of calculation data on the number N of struts entering the knot 
(a model cell of the monotropic plastic foams). 

№ N 

Range of 
semiaxis a £ 3 "±AE 3 \ e"±Ae", t„. 

№ N 
(flm i n±Aa) 

x 10­3 m 
( f l m „±Aa) 

x l O 3 m 
MPa % 

1 4 
0.10013 

±0.00001 
(±0.001%) 

0.10434 
±0.00001 
(±0.001%) 

0.96 
±0.01 
(±1%) 

64.58 
± 0.01 

(±0.02%) 

0.0092 
±0.0002 
(±0.23%) 

0'20" 

2 6 0.10000 0.10386 1.09 61.31 0.0118 0'25" 

3 10 0.10019 0.10176 0.65 72.27 0.0030 0'34" 
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2) With N increasing, K 3 1 ' decreases and E3" grows: the plastic foams 
become more rigid. When the value of N is relatively great, the 
results become stable: the law of great numbers starts operating. 
With a small number of struts, the results depend on the geometry 
of strut system (N = 6). 

3) Since the strut system with N = 4 struts is sufficiently 
representative and the most commonly found in plastic foams it is 
used in further calculations. 

All the previous conclusions can be referred both to model cells 
without and with knot, as well as to both calculation schemes (AQ„ and X„). 

3.3.3 Analysis of Results and Conclusions 

a) Variational Analysis 

Deformation c l l m u corresponding to maximum element of 
the selection an of semiaxis a is about four times greater than deformation 
£ U m i„ corresponding to minimum element a m i n (a model cell of the isotropic 
plastic foams, N = 4, Fig.3.13, 1). For monotropic plastic foams, ellnax 

exceeds E l l m i n by one order (Fig.3.13, 2)). Consequently, the structural 
microsituations 8En ip^, ^ a are quite different from one another and the 
averaging of deformation £,, Eq.(3.12) has a physical sense. When the 
number of struts N becomes greater (N = 10), the range of a - values 
a m i n < a < narrows: the microsituations become equivalent. 
Theoretically, when N is sufficiently great, the semiaxes are almost equal in 
all microsituations and no averaging of e n is necessary: 

For model cell of the isotropic plastic foams, the averaging can be avoided 
already when N > 10 (Fig.3.13, 3)). Usually in practice for plastic foams 
N < 10, and the averaging of e,, can be maintained. 
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Elements of the selection an are not subjected to the normal 
distribution AS ^ 0, EX ^ 0. 

b) Elastic Constants, Isotropic Plastic Foams 

When the number of struts is N = 4, 5, 8, the Poisson's 
coefficient v = 0.26 (Table 3.4 ). It has been found that the value of v~ 
does not depend either on such characteristics of the plastic foams as P I , 
k, a,,, whether the model cell has or has not a knot. Yet it does depend on N, 
i.e. the geometry of strut system. The calculated and experimental results 
have been found to agree well (Fig.3.14) in the limits of PI considered in the 
present investigation. 

When the space filling coefficient of model cell PI increases, the 
Young's modulus f increases, too (Figs.3.15, 3.17 and 3.18). The range 
of ET/E0 values defined by values of knot parameter Jt (0.1 < k < 1.0) and 
that calculated for a knotless model cell is situated within the experimental 
data set E*/E0 of various plastic foams [3,9,15,16,17,20,52]. It is impossible 
to vary values of £* in the knotless model cell in the limits of PI = const., 
(Fig.3.16). This leads to £" = const, and it does not match with the 
experimental data.The modulus E~ reaches its greatest values when a half of 
the knot surface is covered by struts: k = 0.5 This result agrees well with 
the theoretical results obtained in [15]. 

The comparison of the calculated relationships E~ = £"(P1) 
(Figs.3.17 and 3.18) with experimental data when PUR and PVC foams are 
concerned gives a sufficient agreement. For PUR plastic foams, this 
agreement realizes in a wide range of parameter k values: 0.1 < k < 1.0. 
For PVC plastic foams , the experimental data available are insufficient, and 
the best agreement has been found for the theoretical curve corresponding to 
k = 0.5. 

All the presented statements are correct for both deformation modes 
of the model cell: according to A Q b and A„ - scheme. 

c) Elastic Constants, Monotropic Plastic Foams 

The Poisson's coefficient i»31" = vM'(A) depicted in Fig.3.19 is 
presented together with coefficients v2~ and p^' calculated in Chapter 5. 
When extension degree A of the model cell increases, i>31" increases, too, 
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and this agrees well with the experimental data. If the deformation energy is 
determined according to the AQ„ - scheme, i>31" increases very slightly, and 
it contradicts with the experimental data. Effect of a knot of the model cell, 
as well as the parameter k is so small that it can be neglected. The 
calculations have revealed, however, a slight dependence of vM' on the 
number of struts TV. As a result it can be generalized that the Poisson's 
coefficients are governed by the following relationships: 

"si" 2» P2\' ^ "a" 

which has been confirmed experimentally in Table 3.6, [32]. 
The Young's modulus £3" = ^"(Pl) depicted in Figs.3.21 and 3.22 

is presented together with moduli £,", E2' calculated in Chapter 7. In 
calculations it has been assumed that A = 1.05, k = 0 . 1 for the PUR plastic 
foams and A = 1.5, k = 0.5 for the PVC plastic foams. It can be 
generalized that: 

£3* > £," , E2 when A > 1. 

The agreement with the experimental data is sufficient. All the calculations 
were performed according to the X„ - scheme, because data given by the 
AQ„ scheme contradicted with the experimental data. 

There are no direct experimental data available to the author for the 
relationship £ 3" = E3"(-4), Fig.3.23. Yet judging from photographs [8,11,20] 
the icrease of A is associated with an additional orientation of load - carrying 
elements - struts in the direction of o3 axis. Accordingly, it can be expected 
that £," and E2 will, at least, remain constant or decrease, while £ 3" will 
increase. This consideration has been also confirmed by experimental data of 
relationship £ 3 7 £ , " = /04), Fig.3.20, [52] where relation £ 3 7 £ , " 

( £ 3 7 £ , " = £ 3 7 £ 2 " ) increases rapidly with the growth of A. Modulus £3" 
calculated according to the AQ„ - scheme increases too slowly compared with 
the experimental data presented in Fig.3.20. 

The theoretical results concerning modulus are equal both for tension 
and compression (in the limits of calculation process errors). Experimental 
data show (Figs.3.17 and 3.18) that Young's modulus for light-weight foams 
is usually greater in tension than in compression tests. This happens because 
of reorientation of the load-carrying elements struts in the direction of 
tension load [52]. As it can be seen from Figs.3.17 and 3.18 the theoretical 
results are situated between experimental data of tension/compression tests. 
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Conclusions 

1. A knotless model cell does not allow to describe all the variety of 
plastic foams structural and deformative properties possible for 
PI = const. 

2. The elastic constants calculated according to the AQ„ - scheme do 
not always agree well with the experimental data. 

3. The elastic constants v\ E~, v3l', calculated for a model cell with 
a knot and according to the A, - scheme exhibit good agreement with 
the experimental data. 

4. The theoretical results of Young's modulus and Poisson's 
coefficients concerned are equal for tension and compression . 



M. 1) N = 4, A = 1 M m 2) N = 4, A = 3 

m 
0 1 2 3 4 3 6 7 1 9 10 o 1 2 3 4 3 6 7 1 9 10 

m 

a m b l = 0.100130x 10 3 m ; 

= 0.100494x10° m ; 
a4 = 0.100257x10° m . 

amin = 0.100129xlO"3 m ; 
= 0.104343xlO"3 m ; 

d, = 0.100340xlO 3 m . 

M m 3) N = 10, N = 1 

10000 

5000 

m 
1 2 3 4 3 6 7 8 9 10 

ami„ = 0.10022xlO 3 m; 
a™ = 0.10028xlO 3 m; 
at = 0.10026xlO 3 m. 

Mm 4) N= 10, A = 3 

10000 

woo 

m 
0 1 2 3 4 5 6 7 1 9 10 

a m i n = 0.10019x10° m; 
= 0.10176xlO 3 m; 

d2 = 0.10042x10° m. 

Fig.3.13 Histograms of variational series of selection an. 

Initial calculation data: k = 0.1, c = 0.99c0 (1% compression), 
\ n - scheme, A6E = A<pE = A^E = 10°, Aa = 10sXOQ. 
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Fig.3.14 Dependence of Poisson's coefficient v on the space filling 
coefficient PI . Isotropic plastic foams. 

Theoretical results: Experimental data: 

1 [20]; o [15]; 
2 present investigat. • - [9]; 
3 [9,15]; H , A [32]. 
4 [32]. 

Initial calculation data: N = 4, k = 0.1, A = 1, c = 0.99c0 

(1% compression), AQ„ and \„ - schemes, AdE = A<pE= 10°, Aa = 10~*XOQ. 
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Fig.3.15 Dependence of relative Young's modulus E~/EQ on the space filling 
coefficient PI. Elastic and rigid isotropic plastic foams. 

Theoretical results: Experimental data: 
Shaded area- 1,7 [52,3]; 

0.1 < k < 1.0; 4 empiric relationship 
2 - k = 0.5; ET/E0 = 1/6 PI, [19]; 
3 - f c = 1 . 0 ; 1^7 [16,17,52,20,9,15]; 
5 - no knot model cell; 8,9 - elastic latex foams [9,15]. 
6-J t = 0.1. 

Initial calculation data: P I = 0.075, N = 4, 0.1 < k < 1.0, A = 1, 
c = 0.99c0 (1% compression), AQ„ and X N schemes, A0E = A<pE= 10°, 
Aa = lO^xo,. 
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Fig.3.16 Dependence of relative Young's modulus E~/E0 on the knot 
parameter k. Isotropic plastic foams. 

Theoretical results. 
1 P\ = 0.075; 
2 PI = 0.075, no knot model cell; 
3 P\ = 0.025; 
4 PI = 0.025, no knot model cell. 

Initial calculation data: E0 = 2300MPa, A = 1, /V = 4, 
c = 0.99c 0(l% compression), AQ„ - scheme, X,, - scheme, 
A0E = A<pE= 10°, Aa = lO^xao. 
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Fig.3.17 Dependence of Young's modulus Ë on the space filling 
coefficient PI . Isotropic, rigid PUR plastic foams (see the next page for 
initial calculation data). 
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Fig.3.17 Dependence of Young's modulus E~ on the space filling 
coefficient PI . Isotropic, rigid PUR plastic foams (see the previous page for 
graph). 

Theoretical results: 

1 -k = 0.5, k = 1.0; 
2 - k = 0 .1. 

Experimental data: 

A , • - tension, compression, [52]; 
o . D - E"3 , f , , A ~ 1.05, tension, [20]; 
• - compression, [14]; 
• - compression, [19]; 
Q - compression, [17]; 
<>,• tension, compression, [16]. 

Initial calculation data: E0 = 2300MPa, PI = 0.075, N = 4, k = 0 .1 , 
,4 = 1, c = 0.99c0 (1% compression), AQ„ - scheme, \„ - scheme, 
A0£ = Acp£= 10°, Aa = lO^xa,,. 
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Fig.3.18 Dependence of Young's modulus E~ on the space filling 
coefficient PI. Isotropic, rigid PVC plastic foams. 

Theoretical results. 
1 present investigation. 

Experimental data: 
o,% tension, compression, [52]; 
A , D - Ej", £,", A = 1.50, tension, [20]. 

Initial calculation data: E0 = 3000MPa, N = 4, Jt = 0.5, A = 1 
c = 0.99c0 (1% compression), \„ and AQ„ schemes, A0E = A<pE = 
Aa = lO^xao-
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Fig.3.19 Dependence of Poisson's coefficients P 3 , \ v2l', J»23" on the 
extension degree A of model cell. Monotropic, rigid plastic foams. 

Theoretical results: Experimental data: 

1 "31 k = 0.5, k = 1.0; O,0 " 3 1 " . " 2 3 " . [18], 
2 " 3 l " k = 0.1; loading mode 
3 " 2 l " k = 0.1, k = 0.5; unknown; 
4 " 3 l " k = 0.1, A e „ scheme; o , D , A " 3 1 " " 2 1 " " 2 3 ' . 

5 "23" k = 0.1, k = 0.5. tension in 
Table 3.6, [32]. 

Initial calculation data: PI = 0.075, N = 4, c = 1.01c0 (1% tension), 
X„ scheme, A6E = A<pE= 10°, Aa = lO^xa,,. 



Table 3.6 Experimental data for Poisson's coefficients i>31" v2l' v2{ of various monotropic, rigid plastic foams 
in tension (T) and compression (C), [18,32,34]. 

№ Foams 
"2l" "23* A , **) 

№ Foams 
T C T C T C T C T C 

1 PI-1, 
plastic, [32]. 

0.33 0.33 0.23 0.22 1.50 1.12 

2 PUR-305, 
plastic, [32]. 

0.40 0.39 0.30 0.32 0.26 0.25 1.54 1.56 1.16 1.32 

3 PUR-3, 
plastic, [34]. 

0.69 0.38 1.82 1.24 3 PUR-3, 
plastic, [34]. 

0.69 0.38 1.82 

1.20 (exp.) 

4 PUR-305, 
plastic, [32]. 

0.57 0.56 0.39 0.38 0.30 0.30 1.90 1.87 1.25 1.43 4 PUR-305, 
plastic, [32]. 

0.57 0.56 0.39 0.38 0.30 0.30 1.90 1.87 

1.30 (exp.) 

5 Carbon, [18]. 0.25 0.12 2.08 1.48 

6 Carbon, [18]. 0.33 0.15 2.20 1.50 

7 PUR-3, 
plastic, [32]. 

0.77 0.75 0.24 0.25 0.18 0.19 4.28 3.95 1.70 1.86 

**) The degree of monotropy A is determined after relation v^'/v2i' using experimental data from [52], Fig.3.19. 
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1.0 1.1 1.2 1.3 1.4 1.5 

Fig.3.20 Experimental data for relationship £ 3 7£," in dependence of degree 
of anisotropy A of elastic PUR plastic foams, [52]. 

o tension; 
• - compression. 
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Fig.3.21 Dependence of Young's moduli E{, E2, £j" on the space filling 
coefficient PI. Monotropic, rigid PUR plastic foams. 

Theoretical results: Experimental data: 

1 Young's modulus £3"; o , Q E3~, E\~ tension, [20]. 
2 Young's moduli £2" 

Initial calculation data: E0 = 2300MPa, k = 0.l,A = 1.05, N = 4, 
c = l.OlCo (1% tension), X„ scheme, A6E = A<pE = 10°, Aa = lO^xa,,. 
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Fig.3.22 Dependence of Young's moduli £,", £ 2", £ 3" on the space filling 
coefficient P I . Monotropic, rigid PVC plastic foams. 

Theoretical results: Experimental data: 

1 E3"; o , D - £ 3", £," tension, [20]. 
2 £*, isotropic foams; 
3 £,- £ 2" 

Initial calculation data: £ 0 = 3000MPa, k = 0.5, A = 1.5, N = 4, 
c = I . O I c q (1% tension), X„ scheme, A0E = A<pE= 10°, Aa = I O ^ X û o . 



Fig.3.23 Dependence of Young's moduli E2', £ 3" on the extension 
degree A. Monotropic, rigid PUR plastic foams. 

Theoretical results: 
1 E; k = 0.5; 
2 E; k = 1.0; 
3 E; k = 0.1; 
4 E; , k = 0.1, AQ„ 
5 E; E{, k = 0.1. 

scheme; 

Initial calculation data: E0 = 2300MPa, PI = 0.075, N = 4, 
c = 0.99c„ (1% compression), \„ - scheme, A0E = A ^ £ = 1 0 ° , Aa = lO^x 



4 Deformative Properties in Compression/Tension 
Applied Parallel to Rise Direction 
(Volume Deformation Hypothesis) 

4.1 Mathematical Model 

4.1.1 Effective Moduli 

In Chapter 3 the calculation of moduli p,,', yn' and £ 3" has been 
based on the hypothesis (3.5) that a model cell shaped as a rotational ellipsoid 
retains the same form after deformation applied parallel to the rise direction. 
However, deformation of the model cell subjected to the loading parallel to 
the rise direction can be defined otherwise, yet in an equivalent manner. 
Macroproperty of plastic foams concerning their experimentally measurable 
effective relative volume deformation e" is also related to the model cell. 
The relative volume deformation of the model cell e is assumed to be 
numerically equal to c* and to remain constant in all microsituations (the 
volume deformation hypothesis): 

According to numerical calculations when hypothesis (4.1) is assumed 
(Section 4.3), semi axes a, and a2 are mutually linked, but not obligatory 
equal (Fig. 4.1): 

£(8e><Pe>Ïe) = e = const. (4.1) 

a 2 (0£,V£.^£) = 
Û 0 2 CQ (1 + E •) 

(4.2) 

It can be generalized that assuming the tie condition (4.2) the post-
deformation form of model cell in various microsituations can be a rotational, 
as well as a three-axial ellipsoid. 
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Fig.4.1 
Deformation of model cell 
in the isotropy plane ol2 
by the strain applied 
parallel to the axis of 
monotropy o3 and the 
v o l u m e d e f o r m a t i o n 
hypothesis 4.1 assumed. 

Then effective Poisson's 
coefficients vJX~ , v32" and effective Young's modulus £ 3" can be expressed 
as follows: 

" 3 i " < C i i > / «33 " 3 2 " 

E; = <a3i>/ e3: 

< £ 2 2 > / e 3 3 

(4.3) 

where < £ , , > , < £ 2 2 > and < a 3 3 > are calculated according to Eq.(2.9). 
Then the semiaxes a, a 2 of model cell after deformation have to be 
determined from 

£27(0E,<PE,ypE) 

al(6E,VeiE) a0 

(4.4) 

With other considerations similar to those in Paragraph 3.1.1, a, and 
a2 are calculated from the local structure model cell using variational analysis 
of the post-deformation form a, , a 2 , c of model cell and the deformation 
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energy (4.5), (4.6) or (4.7), (4.8) minimization (3.4). The tie condition (4.2) 
allows to reduce the two-argument minimization of energy function to one-
argument minimization. 

To calculate vyi' v-^ , E3" from Eq.(4.3) in a wide range of 
extension degree A = CJOQ of the model cell, the experimental data for 
relationship e" = E'(A) should be known. However, such data are not 
available to the author. Moduli v31", vi2, £ 3" calculated in Chapter 3 agree 
well with the experimental data (Paragraph 3.3.2). Then the effective volume 
deformation e' calculated from Eq.(3.6) can also be considered to be in 
good agreement with the experimental data. Therefore, in further calculations 
will be used those numerical values of e", which have been obtained in 
Chapter 3 using the semi axes hypothesis. 

4 .1 .2 Deformation Energy ( AQ„ - Calculation Scheme) 

Since the post-deformation form of model cell is a three-axial 
ellipsoid with determined semiaxis c, a^O^g^g), o2(^E>v7E>^'E) ^ T N E 

semiaxes to be calculated. Considerations are similar to those in 
Paragraph 3.1.2. Then deformation energy of a knotless model cell can be 
expressed as follows: 

x (4.5) 

where /„ = co

2sin20„' + ao

2cos20„' 

[ a 2(0 £,«> s,^ e)c sintycos*>„ ] 2 + 

+ [ at(eE,<f>E,i>E)c sin0 £ ' s in^ ] 2 + 
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n = 1,2,....TV 

If the model cell of local structure has a knot, then: 

W(A.RAl,6E,<pE,\l/E) 2 E «-î 

N 

(4.6) 

where r*> = ° o Co / r - = fl>a2C/ v^T 

Expressions of the deformation energy (4.5) and (4.6) comprise a spherical 
coordinate <p„of the n-th strut. In Section 2.2 it has been proved that 
<P,= <P.(8E,(pE,\l/E). Then semiaxes A^T^, strains £,, ,£22 and stress an 

in every microsituation depend on all the three Euler's angles 0E, <pE, \pE. 
The values of Eu(6e,<PE,^E), En(QE,ipE,$E) calculated from the model 

cell of local structure are related to the point of plastic foams when foams are 
considered as a continuous medium. Therefore, average strains <£,, > and 
< £ 2 2 > in the plane of isotropy can be derived from Eq.(4.4) and (2.9). 

4.1.3 Deformation Energy ( X„ - Calculation Scheme) 

With considerations similar to those in Paragraph 3.1.3, the 
deformation energy of a knotless model cell can be expressed as follows: 

W ( A „ x 2 , 0 £ , ^ £ ) _ £ _ £ [ KAKKH^E) - 1 I2 QJJE.VE), 
EnF * 

where 

M ^ V E ^ E ) ^ O W E ^ E ) / <H • (4.7) 
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X„ R is calculated from E q . ( 3 . 1 3 ) and Q„Q from E q . ( 3 . 8 ) . 
If the model cell of local structure has a knot then: 

«-l 

x [ rJ.6E,<pE) - D/2 ) , ( 4 . 8 ) 

where X^. is calculated from E q . ( 3 . 1 6 ) and from E q . ( 3 . 1 1 ) . 
Average strains < £ M > <en> in the plane of isotropy can be 

derived from Eq . (4 .4 ) and ( 2 . 9 ) . 

4.1.4 Average Stress 

The average stress is defined for the local model cell of a continuous 
medium. Post-deformation form of the model cell can be either a rotational, 
or a three-axial ellipsoid, E q . ( 4 . 2 ) . Theoretical considerations are equal to 
those described in Paragraph 3 . 1 . 4 , except the post-deformation form of 
model cell which is approximated now with an ellipsoidal and not a circular 
cylinder. Then, the stress in every microsituation is the following: 

where P(8E,<pE,4/E) is a force applied to the model cell, and 
R,(dE,<pE,\l/E), 7?2(0£,<p£,i/<£)are semiaxes of cylinders base ellipse. 

To calculate product R{R2, heights and volumes of the ellipsoid and 
the cylinder are assumed to be equal: = Vt = V^,. Since: 

O^Oe'Ve^e) 

P( eE,<pe^E ) 
tt Rt( 9E,<ppiE ) K2( 9E,ipB1,E ) 

Vr = 4/3TT c a , ( 0 £ , v £ , ^ £ ) a 2 ( 0 £ , v £ , i A £ ) ; 
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min £ W( AT,A2,eE,<PetE ) 

M ^ . V E . ^ E ) = -~—j- - r „ , fl""'—, > , 0 T^— • (4-9) 
2TT(C - c0) a,( 9E,VB1>E ) A2( 6E<V>B^E ) 

where Wn is derived from Eqs.(4.5), (4.6) or (4.7), (4.8). Then the average 
stress < a 3 3 > is calculated using Eqs.(4.9) and (2.9). 

4.2 Numerical Calculations 

Parameters used for the numerical calculations are similar to those 
described in Paragraph 3.2.1. The numerical value of strain e 3 3 applied to 
model cell has been restricted, for a greater versatility of the mathematical 
model, to | e 3 3 | < 1 % The calculations have been carried out according 
to programmes depicted in Figs.3.4 and 4.2. In conformity with control 
calculations, numerical integration steps A0£ = A<,pE= A^ E = 10° provided 
sufficient accuracy of the data obtained. Analysis of variational series was 
carried out for a selections of semiaxes a,„ and , n = 1,2,..., NN. 

= IT C Rt(dE,<pE^E)R2(eE,VE,IE), then 

RAOE^E^RIWE^E^E) = 2/3 a ,(0 E .e £ .* e )a 2 (0 E ,e e ,* E ) . 

Force P in every microsituation can be calculated from the model cell of 
local structure: 

P(0E,<PE,II>E) = W(0E,¥>E,*E)/Ac. 

On the other hand, according to Paragraph 3.1.4: 

i N 

WE.<PE.+E) = min E W.( a

i-ai-EE'F>B^E ) 

Hence, stress a 3 3 can be calculated in every microsituation 8E, <pE,^/E: 
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Variational analysis of the post-deformation form of model cell was carried 
out with a step Aa, = 10"* x Effect of Aa, on the calculation data 
was evaluated 

Aa, 

|Av3 2-| < 
2 i 2 T 

III Ae- (1 + e -)Aa, 

x sin 0 ^ 0 , ^ % ; 

| A £ 3 - | < 
1 6 t 3 ( C - c 0 ) £ 3 3 in AW 

WAa, WAa, 

a,a2 

sin 6Ed8EdipEd\l/E 

I AG"I < A£ * 
2(1 + e-) 2(1 + K") 

I Av-

where AW = W(a, + Aa,) - W(a,) ; 
/ E" , G" are effective constants of isotropic plastic foams; 
e" , Ac" are calculated according to the mathematical model 

described in Chapter 3. 



«" eEi< <PEj< tut 
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Variational analysis of 
the post-deformation form 
a, , Oj , c of model cell. 

= ai.«+Aa, ; a 2 = fl2(a„e") 
— 

D C = 1 
+ 

D C = 1 

Calculation and 
minimization of 

deformation energy W 
(AQ„ - scheme). 

Calculation and 
minimization of 

deformation energy W 
{\ - scheme). 

W M + , (a, . m + 1 , a2 , c) 

a, , a 2 ,min W 

Calculation of < £, [ > , < c 2 2 > 
and < a 3 3 > 

<£,,> <£22> < " n > 

Fig.4.2 Calculation blocks corresponding to deformation £ 3 3 in the programme 
"CONSTANTS" (Fig.3.4) when the hypothesis of volume deformation is 
assumed. 
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4.3 Analysis of Results and Conclusions 

The calculation results when the hypothesis of volume deformation 
( 4 . 1 ) is applied, have revealed the following relationships between the 
semiaxes a , and a2 in various orientations of the strut system: 

I. £ 3 3 < 0 , compression 

1 ) a , <. ao , a j <, Oo ; 

2 ) a , > Of, , a 2 < OQ ; 

3) a, < Oo , a2 > OQ 

II. £ 3 J > 0 , tension 

1 ) a , > Oo , a 2 > OQ ; 

2 ) a , > OQ , a 2 < OQ ; 

3 ) a , < ao , a 2 > OQ 

It means that in several orientations compression/tension £ } 3 causes 
buckling/shrinking of the strut system in the plane of isotropy along both 
semiaxes a , , a2 ; or no deformation occurs at all. Unlike to the model cell 
deformation ( 3 . 2 8 ) according to semiaxes hypothesis, there are now also such 
orientations where shrinking may occur along one semiaxis and buckling 
along the other: 1 . 2 ) 1 . 3 ) and I I . 2 ) ; I I . 3 ) The other conclusions about 
effect of the state of strut system on the calculation results are the same as 
those described in Paragraph 3 . 3 . 2 . 

Semiaxes with corresponding great deformations, for example: 

a , = a l m m = 0 . 9 3 1 9 x 1 0 4 m ; £ , , = - 7 % 

have appeared ( F i g . 4 . 3 ) in value sets of a , and a2 in distinction to those 
calculated in Chapter 3 . Since the strains £,, , £ 2 2 corresponding to various 
values of semiaxes a] , a2 are mutually very different, the averaging of £,, 
and £ 2 2 when TV < 1 0 has a physical sense. The elements of selections a,„ 
, are not subjected to normal distribution. 
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Conclusions 

The calculation results depicted in Figs.4.4 to 4.9 allow us to draw 
the following conclusions (as calculation of constants *>3," , £ 3 " when 
A > 2 on personal computer was extremely time-consuming it was omitted): 

1. The calculations based on the semi axes (Chapter 3) and volume 
deformation (Chapter 4) hypothesis provide results, which 
practically coincide both for the isotropic and monotropic foams. 
Both mathematical models are mutually compatible. 

2. The two mathematical models suggested for deformation of plastic 
foams parallel to rise direction o3 are equivalent. 

3. The theoretical results of Young's modulus and Poisson's 
coefficients concerned are equal for tension and compression. 
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MM 1) N = 4, A - 1; 

m 
0 1 2 3 4 5 6 7 1 9 10 

a I n ) i n = 0.9609x10' m; 
a l r a i = 0.1018X10 3 m; 
d 1 8 = 0.1004 X10 3 m. 

A/. I) W - 4 , A - 1.5; 

0 1 2 3 4 5 6 7 1 9 10 

almw = 0 . 9 3 1 9 X 1 0 ' m ; 
almix = 0.1052x10° m; 
a,.4 = 0 .9982x10 'm. 

MM 1 ) W - 4 , A' 1; 

0 I 2 I 4 1 1 T I I IT 

flimin = 0 . 9 8 7 0 X 1 0 ' m ; 

= 0.1046X 10 3 m; 
dj,3 = 0.1002 x 10 3 m. 

M. 1 ) , V - 4 , A - 1.5; 

0 1 : 1 4 5 6 7 « 9 10 

a 2 m i n = 0 . 9 5 7 7 X 1 0 ' m ; 
a?.™* = 0.1081 x 10 3 m; 
d 2 4 = 0.1001 X 1 0 3 m. 

Fig.4.3 Histograms of variational series of selections a,„ , a*,. 

Initial calculation data: N = 4 , k = 0.1, c = 0.99c 0 (1% compression), 
X„ scheme, A6E = Ayjf = A^ E = 10°, Aa, ^ 0 ' x o q . 



Fig.4.4 Dependence of Young's modulus Ë on the space filling 
coefficient PI , AQ„ scheme. Isotropic, rigid PUR plastic foams. 

Theoretical results. 

1 semi axes hypothesis assumed, Chapter 3; 
2 volume deformation hypothesis assumed. 

Initial calculation data: E0 = 2300MPa, PI = 0.075, N = 4, k 
/4 = 1, c = 0.99c„ (1% compression), AQ„ scheme, 
AdE = A<p£ = A\l/E = 10°, AÛ, = lO^xoo. 



94 

Fig.4.5 Dependence of Poisson's 
coefficient v31" on the extension degree A 

0.50 of model cell, A Q , - scheme. 

1 Theoretical results. 
0.261 • * 

1 - semi axes hypothesis assumed, 
0 . A Chapter 3; 

2 - volume deformation hypothesis 
1.0 1.5 2.0 assumed. 

Initial calculation data: N = 4, k = 0.1, c = 0.99c 0 (1 % compression), 
AQ„ - scheme, A0 £ = A<e£ = A ^ £ = 10°, Aa, = lO^XOo. 

E*} , MPa 
Fig.4.6 Dependence of Young's modulus 
E3" on the extension degree A , 

50 AQ„ - scheme. Rigid PUR plastic foams. 
i 

Theoretical results. 

1 - semiaxes hypothesis assumed, 
Q A Chapter 3; 

2 volume deformation hypothesis 
1-0 1-5 2.0 assumed. 

Initial calculation data: E0 = 2300MPa, PI = 0.075, N = 4, * = 0.1, 
c = 0.99c0 (1% compression), AQ„ - scheme, A0 £ = A<^£= A^ £ = 10°, 
Aa, = lO^xoo. 
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E*, MPa 

Fig.4.7 Dependence of Young's modulus E~ on the space filling 
coefficient PI, \„ scheme. Isotropic, rigid PUR plastic foams. 

Theoretical results. 

1 - A: = 0.5, semiaxes hypothesis assumed, Chapter 3; 
2 - k = 0.5, volume deformation hypothesis assumed; 
3 - k — 0.1, semiaxes hypothesis assumed. Chapter 3; 
4 - k = 0.1, volume deformation hypothesis assumed. 

Initial calculation data: £<, = 2300MPa, N = 4, A = 1 , c = 0.99c0 

(1% compression), X„ - scheme, A6E - A<pE= A^ £ = 10°, Aa, = I O ' X O Q . 
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Fig.4.8 Dependence of Poisson's 
coefficient v3l' on the extension 
degree A of model cell, A„ - scheme. 

Theoretical results. 

1 - semi axes hypothesis assumed, 
Chapter 3; 

2 - volume deformation hypothesis 
assumed. 

1.0 1.5 2 . 0 

Initial calculation data: N = 4, k = 0 .1 , c = 0.99c„ (1% compression), 
X„ scheme, ABE = AtpE = A\j/E - 10°, Aa, = 10"* X a , , . 

E* , MPa 
3 1 

50 

20 

10 

1 

0 A 

1.0 1 5 2.0 

Fig.4.9 Dependence of Young's 
modulus E3 on the extension degree 
A \„ scheme. Rigid PUR plastic 
foams. 

1 semi axes hypothesis assumed, 
Chapter 3; 

2 - volume deformation hypothesis 
assumed. 

Theoretical results. 

Initial calculation data: E0 = 2300MPa, PI = 0.075, N = 4, k = 0.1, 
c = 0.99c0 (1% compression), \„ - scheme, A0 £ = AipE= A\f/E = 10°, 



5 Deformative Properties in Compression/Tension 
Applied Perpendicular to Rise Direction 

5.1 Mathematical Model 

5.1.1 Effective Moduli 

If the strain £ n is applied perpendicular to the rise direction of a 
local model cell of monotropic plastic foams [25]: 

= const. 

effective Poisson's coefficients v2l' , J>b" can be expressed as follows 

= - <en>/e: •22 »»23* = - < e 3 3 > / e 2 2 

where < e n > and < £ 3 3 > are calculated from Eq.(2.9). 

3 

c 

a 

a 
o 

1 

Fig.5.1 
Déformation of the model cell in the 
plane ol3 perpendicular to the loading 
direction ol. 

To calculate the strains £ M , £ 3 3 in 
every microsituation 6E, <pE, \pE, 
semiaxes a,, c of the model cell after 
deformation have to be known 
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esjV^c *>E. WE) (5.1) 
c o 

Experimental data [32] show that monotropic plastic foams are governed by 
the following relationship: 

"2 

Therefore, in various microsituations the semi axes a , , c should be allowed 
to vary not necessarily equally. In Paragraphs 3.1.1 and 4.1.1 it has already 
been proved that in such a case a tie condition between a, and c should be 
introduced. The condition expressed in the form of (4.2) provides ax , c the 
required possibility to vary not necessarily equally, as well as it ensures a 
compatibility of the mathematical model presented with those described in 
Chapters 3 and 4. 

For this reason the tie condition between a, and c has been 
expressed by the hypothesis of relative volume deformation: 

E(fiE,<pE,4>E) = e" = const. then 

c(eE,<pE,+E) n

 0 _ (5.2) 

To calculate i»21" P 2 3" for a wide range of extension degree A of 
the model cell, experimental data of relationships e" = e'(A) should be 
known. Since there are no such data available, the plastic foams to be 
modelled are divided into several groups: 

Group 1.Isotropic plastic foams, 
A = 1 

Group 2.Plastic foams with a medium degree of monotropy, 
1< A < 3 ; 

Group 3.Plastic foams with a high degree of monotropy, 
A > 3. 
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Mathematical models of these plastic foam groups differ with the tie 
condition between semiaxes a, , c and the mode of finding the numerical 
value of e' 

Group l.The numerical values of e" calculated in Chapter 3 
Eq.(3.6) are used for tie condition (S.2) ; 

Group 2.The semiaxes a, , c are connected with tie condition (S.2). 
To calculate the strain e" for every extension degree 1 < A < 3, the data 
of foam groups 1 and 3 are used. As the values of strain c* in points A = 
1 and A = 3 are known (Eqs.(3.6) and (5.5)), the relationship e" = e"(A) 
is assumed to be linear (Fig.5.2). Then the strain c" can be calculated for 
each 1 < A < 3 

e ' I C | A ~ 1 (5.3) 
E\ O - 1) 

3 
E * 

Fig.5.2 
Calculation of effective volume 
strain £* in the mathematical 
model of plastic foams with a 
medium degree of monotropy. 

0 j ~ ~ ~A 3 Group 3. When the plastic 
foams with a high degree of 
monotropy are considered, the 

strut orientation in rise direction o3 is assumed to be so pronounced that 
practically no deformation occurs in this direction (the hypothesis of great 
monotropy) 

= 0 then c = cn = const, and = 0 (5.4) 

Assuming (5.4), there is no need either for the tie condition (5.2) or the 
previous data of e" value, because only one semiaxis remains in the 



1 0 0 

expression of energy function, i.e., a,. The effective volume strain e 
corresponding to the condition ( 5 . 4 ) can be expressed as follows: 

It should be mentioned that boundaries of groups 2 and 3 of plastic foams are 
not strictly defmed. The cell extension degree sufficient to realize condition 
( 5 . 4 ) can be determined from photos of the plastic foams. When A > 3 , the 
struts are oriented practically parallel to rise direction [ 2 0 ] . To defme the 
lower boundary of group 3 correctly, it would be necessary to determine the 
relationship v& = "a (A) experimentally. 

The semi axes a , , c in every microsituation are found, using the 
variational analysis of the post-deformation form of model cell and the 
m i n i m i z a t i o n of deformation energy ( 5 . 6 ) , ( 5 . 7 ) or ( 5 . 8 ) , ( 5 . 9 ) . Tie 
conditions ( 5 . 2 ) , ( 5 . 4 ) make it possible to reduce the two-argument 
minimization of deformation energy to that of one-argument. 

5 . 1 . 2 Deformation Energy (AQ„ - Calculation Scheme) 

According to tie conditions (5.2) and (5.4) the post-deformation form 
of model cell is a three-axial ellipsoid with determined semiaxis a2. Then 
0|(^E>VE>^E)> C^EIVE'V'E) are the semiaxes to be calculated. Considerations 
are similar to those in Paragraph 3.1.2. Then deformation energy of a 
knotless model cell can be expressed as follows: 

£ = < £ , , > + £ n = 0 ( 5 . 5 ) 

x 
M W u l M c(0E,vBiE) a, 

(5.6) 

where = ûo2cos2t9B' + c0

2sin 20„' ; 
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5.1.3 Deformation Energy (X. - Calculation Scheme) 

Considering similar to Paragraph 3.1.3, the deformation energy of 
a knotless model cell can be expressed as follows: 

ES N 

V^APME.****) — k - E [ M V M E - ^ E ) l ] 2 x 

x qJ.9e,Ve)\ (5-8) 

where We^e^b) = OIWE.^E.^E)/ °o 

X3(0e»*'E»^E) = c(BE,^>E,iE)l c0. 

fni = [ <h c(0E,«? e,i>^sin0/cos<pJ2 + 

+ [ a,(0E,^B,^B)c(0 e, (pE,^B)siri0 ),'siri<pJ2 + 

+ [ a 2 aStntpnUcasB; ] 2 n = 1,2,...,AT 

If, however, the model cell of local structure has a knot, then: 

W(auc,0E^s> = — 5 - E ' _ oil '  ( 5- 7 )  

where rM = a<>c0 / Jf^ r„ = a ^ c / Jf^ 

Likewise to Paragraph 4.1.2, it can be proved that strains e,, , c 3 3 

depend on all the tree Euler's angles 6E, <pEAE. No simplification is possible 
in calculating average strains and therefore, < e M > and < e 3 3 > are 
calculated from Eqs.(5.1) and (2.9). 
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\ n T is calculated from Eq.(3.13) and qm from Eq.(3.8). 
If, however, the model cell of local structure has a knot, then: 

wix^.e^M I£- £ [A^ApX, ,eE,ipBiE) - i ] 2 x 
*• (i-i 

x [ r A . » > £ ) - 0 / 2 ] , (5.9) 

where is calculated from Eq.(3.16) and from Eq.(3.11). 
Average strains < C n > and < 6 3 3 > are calculated from Eqs.(5.1) 

and (2.9). 

5.2 Numerical Calculations 

Parameters used in the numerical calculations are similar to those 
described in Paragraph 3.2.1. For a greater versatility of the mathematical 
model the numerical value of strain c 2 2 has been restricted to: 
| £22 I ^ The calculations were performed according to the 
programmes depicted in Figs.3.4 and 5.3. Control calculations showed that 
numerical integration steps A6E = A(pE = A^ £ = 10° insured sufficient 
accuracy of data. Analysis of variational series was carried out for selections 
of semiaxes a 1 ( I c„ n = 1,2, .... NN. Variational analysis of the post-
deformation form of model cell was carried out with a step Aa, = 10'xa,,. 
Effect of Aa, on the calculation data was evaluated 

Group 1 and 2 of the plastic foams. 

C 2 2 f l O 



e", Ac" 
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9Ei> <Plj,^Ek 

A 23 + 

c = c(a,, e') c = cn 

Variational analysis 
of post-deformation 

form (a,, a2, c) 
of model cell. 

ai.m+i = + Aa, 
c = c(a,, e") 

Calculation and 
minimization of 

deformation energy W 
(AQ„ - scheme). 

I 
IK = 1 

Variational analysis 
of post-deformation 

form (a,, a 2, c) 
of model cell. 

' I . m + I — " l . m 

= C N 

= a l m + A a , 

Calculation and 
minimization of 

deformation energy W 
(X„ - scheme). 

W m + I (a , . m + I , a 2, c) 

+ 
a,, c, min W 

Calculation of <e , ,> and < e 3 3 > 

<PE 

<Eu>, <e„> 

Fig.5.3 Calculation blocks corresponding to strain in the programme 
"CONSTANTS" (Fig.3.4). 
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|A* 2 3-| < 
£.1 I T • III A£ 

(1 + t -)Aa, 

where e', Ae' have been calculated in Chapter 3. 
Group 3 of the plastic foams. 

|A"2."I ^ 
Aa, 

; | A»i,-1 = o 

5.3 Analysis of Results and Conclusions 

The calculation results have revealed that in various orientations of 
the strut system the following relationships exist between the semiaxes a, and 
c when plastic foams of groups 1 and 2 are considered 

I. £22 < 0 , compression 

1) a, > OQ , c ;> c 0 ; 

2) a, > O o , c < c 0 ; 

3) a, < OQ , c > c0 

II. > 0 , tension 

1) a, £ do , c ^ c 0 ; 

2) a, > Oo , c < Co ; 

3) a, < Oo , c > c 0 
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It means that in several orientations of the strut system compression/tension 
deformation of model cell causes buckling/ shrinking of the strut system 
along both semiaxes a, , c ; or no deformation occurs at all: 1 . 1 ) , II. 1 ) 
Besides there are also such orientations where the shrinking occurs along one 
semiaxis and the buckling along the other: 1.2) , 1.3) , II.2) , II.3) 

The mathematical model of group 3 of plastic foams provides the 
following relationships: 

I. £2 < 0 , compression 

a, > Oo . c = Co 

II. £22 > 0 , tension 

a, < Oo , c = Co 

It means that in all orientations of the strut system compression/tension 
deformation £22 of the model cell provides buckling/shrinking along 
semiaxis a, and no deformation along semiaxis c. All other conclusions 
about effect of the state of strut system on the calculation results are similar 
to those described in Paragraph 3.3.2. 

Histograms of variational series of selections au , cn, 
n = 1,2,..., AW are depicted in Fig.5.4. As soon as the strains £,, and £ 3 3 

corresponding to various values of a, and c mutually differ by several 
orders, the averaging of £,, , c 3 3 when N < 10 is physically substantial. 
Elements of selections a,„ , c„ are not subjected to a normal distribution 
AS * 0, EX * 0. 

Conclusions 

The following conclusions can be made with regard to the Poisson's 
coefficients calculated (Fig.5.5): 

1 . In the case of isotropic plastic foams (A = 1 ) AQ„ and X„ - schemes 
provide equal values of the Poisson's coefficient v 

v = 0.26 ± 0.01 

Since the v' - value is equal to that calculated for deformation £ 3 3 



(Chapters 3 and 4), it can be concluded that the three mathematical 
models of uniaxial deformations en (one mode) and e 3 3 (two 
modes) are compatible. 
In the case of monotropic plastic foams (A > 1) the Q„ - calculation 
scheme provides the following result: 

"21" = "23" 

In addition, values of Poisson's coefficients »<2," v& decrease 
when the extension degree A of model cell increases, which 
contradicts with experimental data. The results calculated according 
to the X„ - scheme agree well with the experimental data: 

"21" ^ "23" A > I 

When A increases, i»2I" grows, too, while v& decreases. 

The Poisson's coefficients v21" »»23" are independent of such 
characteristics of plastic foams as £„ , PI and k. v2x~ , K 2 3" do not 
depend on whether the model cell has or has not a knot. 
Experimental data [11,32,52] available to the author are depicted in 
Fig.5.6 for relationship 

E;IE; = E;/E2 = f{A) 

But in conformity with Eq.(2.5) we have 

£ 3 " / £ , " = £ 3 7 £ 2 " = r / 3 I 7y 2 3 " 

Depicting the theoretical curve 

"3."/"23" =f(A ) 

together with the experimental data a good agreement can be 
observed. Then the mathematical models described in Chapters 3, 
4 and 5 characterize the transversal deformations (Poisson's 
coefficients vit' v13' ) of monotropic plastic foams adequately 
The theoretical results of Poisson's coefficients concerned are equal 
both for tension and compression . 
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M. 1) N = 4, A = 1; 
a , 

J . m 

Mm 2) N - 4, A - 1; 

h 

0 1 2 3 4 5 6 7 S 9 10 0 12 3 4 5 6 7 8 9 10 

a l i n i„ = 0.9609 xlO*m; 
almx = 0.1018x10° m; 
fl,j = 0.1004x10° m. 

e*. = 0.9870x10^111; 
= 0.1046x10° m; 

c\ = 0.1002 x 10 3 m. 

Mm 3)N= 4, A = 3; M. 4)N~ 4, A = 3; 

m 

0 1 2 3 4 5 6 7 8 9 10 —- m 0 1 2 3 4 5 6 7 1 9 10 

a l m i n = 0.1000x10° m; 
alwu = 0.1018x10° m; 
a,, = 0.1001 x 10° m. 

c = c0 = 3.0x10^ m; 

Fig.5.4 Histograms of variational series of selection al„, c„. 

Initial calculation data: N = 4, k = 0.1, a2 = 0.99oo (1% compression), 
\„ scheme, A6E = Av?£= Ai/-£ = 10°, Aa, =10" 5xao. 
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Fig.5.5 Dependence of Poisson's coefficients i»21", on the 
extension degree A of model cell. Rigid plastic foams. 

Theoretical results: Eperimental data: 

X„ scheme, v2]', 
k = 0 . 1 , A: = 0 . 5 ; 
A Q b - scheme, f21" 
k = 0 . 1 ; 
X„ - scheme, i»23" 
k = 0 . 1 , A: = 0 . 5 . 

0 
• . A "21 • " 2 3 

[18 ] ; 
»»,,", tension. 

Table 3 . 6 , [ 3 2 , 3 4 ] . 

Hypothesis of great 
monotropy assumed: 
*4 AQ„ - scheme, v2]', k = 0 . 1 ; 
*5 AQ„ - scheme, v1}', k = 0 . 1 . 

Initial calculation data: N = 4 , a2 = I . O I O Q ( 1 % tension), 
A 0 £ = A*?£ = 1 0 ° , Aa, = 1 0 J , x a 0 . 
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E* /E* 
3 1 

E* /E* 
3 2 

1.0 1.5 2.0 

Fig.5.6 Dependence of relations E37/f," = £377f2" = "yi'/"rj on the extension 
degree A of model cell. Rigid and elastic plastic foams. 
Theoretical results: 

2 - A„ scheme; 
5 Ag„ scheme. 

Initial calculation data: PI = 

Experimental data: 
• , • tension 1, compression 4, 

[52]; 
3 - [8]; 
o , # - tension,compression, [11]; 
A , A - tension,compression, 

[32,34]; 
O [18]. 

0.075, N = 4, a2 = 0.99oo 
(1% compression), k = 0.1, A6E =AtpE= 10°, Aa, =10 J ' xa 0 . 



6 Shear in the Plane Perpendicular 
to the Plane of Isotropy 

6.1 Mathematical Model 

6.1.1 Effective Shear Modulus 

If the strain £ 1 3 in the plane ol3 is applied to the local model cell 
of monotropic plastic foams: 

e,j = 1/2 y , 

effective shear modulus Gn~ can be expressed as 

G„~ = <ff 1 3 > / ( 2 e 1 3 ) , 

where 7 is a shear angle and < an > is the following 

< a , 3 > — L - f [ f oli(eE,v^E)smeEdeEdVii^E ( 6 . i ) 

Stress on(dE,<pE,\l/E) in every microsituation is defined for the local model 
cell of a continuous medium (Section 2.2). In pure shear £ , 3 the volume 
does not change, so the volume of model cell before and after deformation 
is the same: 

V« = v'~ = 4 / 3 * c o aQ

2 = const. 

If the shear deformation energy accumulated in the unit volume of a 
continuous medium is the following [49,51]: 

w0 = l/2ff^. = 1/2 (ff 1 3£i3 + cr 3 , e 3 1 ) = < T | 3 £ i 3 , then 



I l l 

« 1 3 (BE,ipE,^/E) 1/2 V v (6.2) 

where W(0£,<t7 £ li/' £) is the shear deformation energy accumulated in the whole 
model cell in every microsituation 0£,v>£,f£. 

W(0EiVe,+e)= W0VX = 4 / 3 x c o a 0

2 a 1 3 « 1 3 . 

6.1.2 Deformation Energy (X, - Calculation Scheme) 

Previously, in calculation of Young's moduli and Poisson's 
coefficients both deformation energy calculation schemes, AQ„ and X „ , were 
used. When isotropic plastic foams are considered, the constants calculated 
are equal in both cases and are in good conformity with experimental data. 
When monotropic plastic foams are considered, the AQ„ - calculation scheme 
has been found to be inadequate (Table 6.1). The theoretical results obtained 
by using the AQ„ - scheme are in poor conformity with experimental data. 
Therefore, only X„ calculation scheme is used for calculation of shear 
modulus G13" and dependent constants in Chapter 7. 

A numerical value of the deformation energy in every microsituation 
may be determined from the local structure model. Then a post-deformation 
form of the model cell should be known. Deformation of the model cells 
surface is determined by transformation T,-,, Eq.(3.3). For pure shear [38]: 

X, = X, = 1 X 3 = I/COS7 

Then 

T = 
V 

1 0 tgy 
0 1 0 
0 0 1 

(6.3) 
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/ 

Flg.6.1 Deformation of model cell in the plane o l3 , when the post-
deformation form of model cells surface is determined by 
transformation T& , Eq.(6.3). 

At first, a knotless model cell is considered: D = 0. A relative 
length change \ T of the /i-th strut can be calculated (with neglecting the 
bending of struts axial line due to deformation) as follows [38]: 

1/2 _ 
Kt = QjQ* = ( T™ Tmj £ l iy) = 

+ 2 tgy cos<pnsindii' costV 
cos0n' 

sin20„' + 
cos0n' 
COS7 

1/2 

where £, and £, are projections of the unity vector directed along the /i-th 
strut, prior to deformation: 

£, = cos^siníV ¿ 2 = sinv>„sin0„' £ 3 = COS0„' 

Due to shear deformation the model cell comprising N struts accumulates 
energy, which can be found similar to that in Paragraph 3.1.2: 
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N 

W„( W c ) = -L E0F 1 M W « > - Q ^ , . ^ ) I 2

 ( 6 . 4 ) 

Then energy IV in every microsituation is expressed in the following way 

1 N 

WßE.Ve.i'B) = 4"EoF E [ 1 1 QJAE^E)- (6-5) 

According to Eq.(6.4), the deformation energy depends on all the three 
Euler's angles. In the result, no simplification can be made in the calculation 
expression (6.1) of < < T i 3 > 

When the model cell of local structure with a knot is considered, a 
relative length change of the /i-th strut can be calculated using the 
coordinate method, Eq.(3.15), Fig.3.2 (for a greater clearness the oxyz frame 
of reference is considered in Paragraph 6.1.2.). Using Fig.3.2 it can be 
proved that 

where /3. = D/(2 6 n 0 ) 
Since in pure shear the following relationships can be wiitten for every 
surface point of the deformed model cell: 

y* = xm = const. 

= z . i = c o n s t -

and J f l 0

2 + y ^ 3 + z j = (D/2)2 , then: 



x ( fa -x^)2 +ylo [ ( 1 + 1 Iß. ) -1 ] 2 +zlo\{ 1 +1 /0 . ) -1 ] 2 

" x^[( l + l / | 8 B ) - l ] J

+ ^ [ ( U l / / 3 B ) - l ] J

+ z i [ ( U l / | 3 B ) - l ] J 

= (2/D)2 [ ft2 (** - x j 2 + v„o2 + z„o2 ] 

Besides, considering radius vectors r„ and rm , it can be written that 

r„ = V * = (Xa2 + y Ä

2 + z,, 2)" 2 where 

X„r is derived from Eq.(3.13) and rm from Eq.(3.11). Then: 

Using Fig.3.2, it can be proved that 

X n 0 = D/2cos*»B sin0B' 
. y^ = D/2sinv5a sin0n' 

Z n 0 = D/2cos0„' 

After several transformations, we obtain: 

K = I l/Q«o< Xni ~ D/2 cos^sin0„' ) 2 + 
+ sinV„sin20„' + cos20„' ] m 

x* = [ \ . r V - 05. + DV„o - Dllf x 
x ( sinV„sin20B' + cos2 0„')] 1 / 2 

where = — D/2 If there is no knot then: 

D = 0 /3, = 0 and K - \.r 

The deformation energy IV in every microsituation can be expressed as: 

WE,<PE.+E) E (K - 1 y (r*o D/2) (6 
* <I-I 

The stress <<r I 3 > is calculated using Eqs.(6.1), (6.2), (6.5) or (6.6). 



Table 6.1 Agreement of theoretical results of independent constants with experimental data in terms of the 
deformation energy calculation scheme (monotropic plastic foams). 

Material 
The deformation 
energy calculation 

scheme 

Independent 
constants 

Agreement of 
theoretical results with 

experimental data 

Semiaxis hypoth. 
(Chapter 3) 

Poor 

Ap „ - scheme Volume deform, 
hypoth. (Chapter 4) 

Poor 

Monotropic 
plastic foams 

"2l"."23" (Chapter 5) Poor 
Monotropic 
plastic foams (Chapter 6) -

Semiaxis hypoth. 
(Chapter 3) 

A„ - scheme 
£ 3 " . " 3 1 ' Volume deform, 

hypoth. (Chapter 4) Good 

"2l". "23* (Chapter 5) 

G» (Chapter 6) 

Calculation schemes' evaluation (poor, good) criterions: 
Agreement with experimental results of: 

1 functional dependence mode between physical quantities considered, 
2)Order of calculated numerical values of physical quantities considered. 
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6.2 Numerical Calculations 

The boundary deformations of linear proportionality of isotropic 
plastic foams determined experimentally in shear are the following [20,52]: 

Therefore, for the versatility sake of mathematical model the 
numerical value of deformation e 1 3 applied to the model cell has been 
restricted: 

Calculations are carried out according to the programmes depicted in 
Figs.3.4 and 6.2. In conformity with control calculations, numerical 
integration steps A6E = A<pE= A\pE = 10° provide a satisfactorial accuracy 
of results. Analysis of variational series has been carried out for selection 
ffij, n 1,2,...,AW of stress <J13. Since no minimization of energy 
function is made in shear modulus G13" calculations , errors of results are 
caused only by the numerical integration. 

6.3 Analysis of Results and Conclusions 

a) Variational analysis 

The histograms of variational series for stress <r13 of selection 
a 1 3 ) I n 1, 2, . . . AW are depicted in Fig.6.3. Since in various 
microsituations stresses aliK differ mutually by several orders, it can be 
stated that the averaging (6.1) of stress CT,3 is physically substantial when 
A' < 10 Elements of the selection <Ji3 are not subjected to a normal 
distribution: AS ^ 0 , EX ^ 0. 

a) rigid PUR plastic foams 
b) rigid PVC plastic foams 
c) elastic PUR plastic foams 

7 = 0.02 , 
7 = 0.04 , 
7 = 0.10 

7 < 0.02 £ 1 3 = 1/2 7 £ 0.01 
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°Ei' fEj, ^Ek 

Calculation of deformation energy W 1 
( \ , - scheme). 1 

y = 2f l 3 

<ff,3> 

Fig.6.2 Calculation blocks corresponding to deformation e 1 3 in the 
programme "Constants", Fig.3.4. 
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b) Elastic Constants, Isotropic Plastic Foams 

Shear modulus G~ = C(Pl) increases, when the space filling 
coefficient PI grows (Figs.6.4 and 6.5). When PUR foams are considered, 
the best agreement of theoretical results with experimental data can be 
observed for the knot parameter k = 0.1 There are no experimental data 
available to the author for shear modulus G" of PVC plastic foams. A good 
compatibility (Paragraph 3.1.5) can be observed between mathematical 
models of uniaxial compression/tension (Chapters 3 and 4) and shear 
deformation (Chapter 6): the values of modulus G" calculated according to 
these models are practically equal (Fig.6.4, curves 1,2 and 4,5). 

Dependence of shear modulus G" on the knot parameter k is 
depicted in Fig.6.6. The modulus G" reaches its greatest values when a half 
of the knot surface is covered with struts: k = 0.5. The same theoretical 
results was obtained in [15]. No experimental data are available to the author 
for relationship G" = C(k). 

c) Elastic Constants, Monotropic Plastic Foams 

Relationship G, 3 " = G,3"(P1) depicted in Figs.6.7 and 6.8 is given 
together with shear moduli G 2 3 " and G, 2 " calculated in Chapter 7 Assuming 
k = 0.1 ; A = 1.05 for PUR and k = 0.5 ; A = 1.50 for PVC plastic foams 
a good agreement of theoretical results and experimental data [20,52] can be 
observed. For both values of degree of monotropy A (A = 1.05 and 
A 1.50) modulus G 1 3 " differs very slightly from modulus G" of isotropic 
foams. It can be concluded that 

G 1 2 " = GJJ" > G 1 2 " when A > 1 

Relationship G, 3 " = G 1 3 " 04) for PUR plastic foams depicted in 
Fig.6.9 is given together with moduli G 2 3 " and G, 2" calculated in 
Chapter 7 After a slight maximum at A 1.5 G, 3" decreases. No 
experimental data are known to the author for these relationships. 
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Conclusions 

1. Conclusions about the effect of strut systems state on calculation 
results are similar to those described in Paragraph 3.3.2. No 
singular orientations are observed in the model cell under shear 
deformation e„ , because the post-deformation form of model cell 
is defined uniquely by transformation , Eq.(6.3). 

2. Mathematical models of uniaxial compression/tension and shear 
deformation are mutually compatible. 

3. Since the theoretical results concerning the shear moduli G n " agree 
satisfactorily with available experimental data, it can be concluded 
that the mathematical model proposed describes the shear 
deformation c 1 3 adequately. 
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In™ = 8231 N/m 2; = 33000 N/m 2; 
a l l M I = 330000 N/m 2; a , ^ = 240000 N/m 2; 
a I 3 1 0 = 342242 N/m 2. &,„ = 210977 N/m 2. 

Fig.6.3 Histograms of variational series of selection o^. 

Initial calculation data: 7V = 4, A: = 0.1, 7 = 0.02, X, - scheme, 
A0E = A<pE = Ayf/E = 10° 

Fig.6.4 Dependence of shear modulus G~ on the space filling coefficient PI . 
Isotropic, rigid PUR plastic foams (see the next page for graph). 

Theoretical results: Experimental data: 

1 A: = 0.5; • [52]. 
2 - k = 0.5, 1.0, semiaxes hypothesis assumed; 
3 no knot model cell; 
4 - A: = 0.1; 
5 - A; = 0 . 1 , semiaxes hypothesis assumed. 

Initial calculation data: G „ = 870MPA, N = 4, A = 1, 7 = 0.02, 
\„ scheme, AdE = A<pE= A\f/E = 10°. 
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Fig.6.4 Dependence of shear modulus G" on the space filling coefficient PI . 
Isotropic, rigid PUR plastic foams (see the previous page for initial 
calculation data). 
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Fig.6.5 Dependence of shear modulus C on the space filling 
coefficient PI. Isotropic, rigid PVC plastic foams. 

Theoretical results. 

Initial calculation data: G 0 = 1136MPa, N = 4, k = 0.5, A 
7 = 0.02, X„ - scheme, A0£ = &<pE= Ai>£ = 10°. 
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G*IG G*, MPa 
0 

0.023 20 

0.017 15 

0.011 10 

0.006 5 

0 

Fig .6 .6 Dependence of shear modulus G" on the knot parameter k Isotropic, 
rigid PUR plastic foams. 

Theoretical results: 

1 PI = 0.075; 
2 no knot model cell, PI = 0.075; 
3 PI = 0.025; 
4 no knot model cell, PI = 0.025. 

Initial calculation data: G „ = 870MPa, A = 1, N = 4, y = 0.02, 
X„ - scheme, A6E - A<pE= A^ £ = 10°. 
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Flg.6.7 Dependence of shear moduli G,3", G a ' and G12" on the space filling 
coefficient PI . Monotropic, rigid PUR plastic foams. 

Theoretical results: Experimental data: 

1 G 1 3 \ G23"; • G~ [52]. 
2 - G" (isotropic foams); 
3 G l 2" 

Initial calculation data: G„ = 870MPa, N = 4, k = 0.1, A = 1.05, 
7 = 0.02, \„ - schemes, A6E = A<p£= 10°. 
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Fig.6.8 Dependence of shear moduli G,3", G23" and G l 2" on the space filling 
coefficient PI. Monotropic, rigid PVC plastic foams. 

Theoretical results: Experimental data: 

1 G13", G23"; H, A G,/, G 1 2 \ [52]. 
2 - G" (isotropic foams); 
3 G l 2-

Initial calculation data: G 0 = 1136MPa, N = 4, k = 0.5, /4 = 1.5, 
7 = 0.02, X, schemes, A0£ = A<pE= 10°. 
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F i g . 6 . 9 Dependence of shear moduli Gn~, G 2 3 " and G 1 2 " on the extension 
degree A Monotropic, rigid PUR plastic foams. 

Theoretical results: 

1 < V k = 1 . 0 ; 

2 - G 1 3 ; . G 2 3 " k = 0 . 1 ; 

3 - Gn . it = 1 . 0 ; 

4 - G 1 2 " , k = 0 . 1 . 

Initial calculation data: G 0 = 8 7 0 MPa, PI = 0 . 0 7 5 , N = 4 , y = 0 . 0 2 , 

\„ - schemes, A 0 E = A<pE = Ai/^ = 1 0 ° . 



7 Calculation of Dependent Elastic Constants. 
Analysis of the Results and Conclusions 

In Section 2.1 it has been proved that seven dependent effective 
elastic constants can be derived from Eq.(2.5) using the five independent 
ones calculated previously: 

"12* = "2l" "13* = "23* "32* = "3l" 

EC =E{ = J^L. Ej" (7.1) 
"31 

G-a' = G I 3" G12" = — — £j* 
2i»3",(l + I - , , ) 

For derivation of dependent constants (7.1) only those previous 
theoretical results are used, which have been obtained by the \ - scheme. 
The following conclusions can be made about the dependent constants 
calculated. 

According to conclusions made in Paragraph 3.3.3 about v2J', v2l' 
and v31", the Poisson's coefficients vi2', vl2' and i>,3" are independent of such 
model cell characteristics as £ 0 and PI . Dependence on the strut number N 
and the knot parameter k is very slight. For all extension degrees A of the 
modell cell 

"32" ^ "12" ^ "13" 

A sufficient agreement between theoretical results and experimental data was 
observed (Paragraph 3.3.3). 

Relationship £," = E2 = fl.Pl) for PUR and PVC plastic foams 
depicted in Figs.3.21 and 3.22 is given together with Young's modulus 
E; =flP\). 

= E2 < E3' for all PI considered and A > 1 

When PI increases, and E2 grow, too. The theoretical results agree 
well with experimental data (Paragraph 3.3.3). 

http://fl.Pl
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Dependence of and on the extension degree A of model cell 
for PUR plastic foams depicted in Fig.3.23 is given together with modulus 
£3" = Ej'(A) calculated in Chapter 3. When A increases, moduli Ex' and E2 

decrease. Direct experimental data of dependence = E2' = fiA) are not 
available to the author. However, £," and E2' can be calculated from 
Eq.(7.1) = E2' = Vjy'lv^ £3* Therefore the comparison with 
experimental data is made separately for modulus E3' = fiA) 
(Paragraph 3.3.3) and relation v^lv-n' = fiA) (Section 5.3). In both cases the 
agreement has been proved to be well. Therefore, and E2 should be in 
a good agreement, too. 

Dependence of Ga' and Gl2' on the space filling coefficient PI of 
model cell for PUR and PVC plastic foams depicted in Figs.6.7 and 6.8 is 
presented together with modulus G,3* calculated in Chapter 6. When PI 
increases, Ga' and G,2" grow, too. A sufficient agreement was observed 
between theoretical results and experimental data for PVC plastic foams. 
Only the experimental data characterizing the isotropic materials shear 
modulus are known to the author, when PUR plastic foams are considered. 
It can be seen that the theoretical results of slightly anisotropic 
(A = 1.05 ) PUR plastic foams are almost equal with the experimental data 
for isotropic PUR plastic foams. 

Relationship G23" , G12" = fiA) for PUR plastic foams depicted in 
Fig.6.9 is given in Chapter 6 together with shear modulus G I3" When the 
extension degree A of model cell increases, G23" enlarges and G,2" decreases. 
It can be concluded that: 

G23" = G13" > G12" for all A > 1. 

No experimental data are available to the author for this relationship. 

Conclusions 

Since the theoretical results concerning the dependent elastic 
constants agree well with available experimental data, it can be 
concluded that the mathematical model proposed describes the seven 
dependent constants (7.1) adequately. 



8 Main Conclusions 

I A mathematical model of deformative properties and structure of 
light-weight, monotropic (or isotropic in the boundary case) plastic foams 
with a pronounced strut-like structure has been elaborated in the linear 
deformation theory. All the twelve elastic constants have been determined 
when treating monotropic plastic foams in the axes of elastic symmetry. To 
achieve integral characterization of the deformative properties of plastic 
foams as micro-nonhomogeneous composite materials, the elastic constants 
have been introduced as effective ones. 

II In order to describe the plastic foams structure a local model 
consisting of two parts has been proposed, i.e., a model of continuous 
medium for calculation of stresses and a local structure model. Both models 
are chosen shaped as rotational ellipsoids. When calculating stresses due to 
the lack of a precise solution for an ellipsoid the possibility to replace the 
latter by a cylinder has been shown. As the result of minimization of the aim 
function composed in a definite way, configurations of spatially uniformly 
distributed N struts have been found. Assuming that the nonuniform 
distribution of struts in monotropic plastic foams develops gradually from the 
uniform distribution, the way of introducing monotropy into the model cell 
has been proposed. 

HI Using methods of orientative averaging the possibility to avoid 
artificial regularization of plastic foams structure has been shown. 
Accordingly, turning the uniform struts configurations as one whole 
throughout all the spatial orientations defined by three Euler's angles, a 
cluster or an ensemble of plastic foams structure microsituations has been 
found. Thus, the infinitely numerous spatial orientations of struts as well as 
the essential polydispersity of plastic foams structure have been taken into 
account. In order to calculate the effective elastic constants connecting 
average stresses and strains the ergodic hypothesis has been assumed to take 
place. Hence, the possibility to replace the hard-to-realize averaging 
throughout the volume by an averaging throughout a set of one-type situations 
has been shown. 

IY Basing on capabilities to elaborate the corresponding calculation 
models, the selection of five independent constants has been described. The 
usage of variational analysis of model cells post-deformation form and the 
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minimization of deformation potential energy as a criterion for determination 
of this form have been verified in mathematical models of uniaxial 
compression/tension. The necessity to connect the semi axes to be calculated 
by some tie condition has been stated during numerical control calculations. 
Thus the mutual interaction of neighboring model cells has been taken into 
account. The tie condition has been proposed in two formulations. Similarly, 
the insufficiency of considering only the axial deformation of struts even in 
the region of small deformations has been shown with the help of control 
calculations. It is necessary to evaluate also the reorientation of struts during 
deformation. The mutual compatibility of mathematical models of uniaxial 
compression/tension has been proved by analysis of numerical results. The 
theoretical results of Young's modulus and Poisson's coefficients concerned 
are found to be equal both for tension and compression. 

V Subjecting surface points of the model cell to a definite spatial 
transformation the possibility of adequate modelling of the plastic foams shear 
deformation has been proved. Control calculations have shown the 
independence of the shear modulus sought on the struts reorientation in the 
process of deformation. The mutual compatibility (realization of the isotropy 
relationship) of the mathematical models of shear and uniaxial deformation 
has been proved by comparing the numerical results. 

VI In order to perform numerical calculations a complex of 
programmes has been developed.The numerical values of five + seven = 
twelve elastic constants have been determined using the Simpson's method for 
calculation of the triple integral and step-type unconditional minimization of 
one-argument function. The parameters of numerical calculation process 
providing the acceptable accuracy of results have been evaluated. The 
necessity to perform an orientative averaging to obtain the desired quantities 
has been verified with the help of variational series analysis. 

VII The dependence of calculated elastic constants on the main 
characteristics of plastic foams structure (the space filling coefficient, the 
degree of anisotropy, the number of struts, the knot parameter) has been 
investigated. A satisfactorial agreement has been found to exist between the 
theoretical results and the experimental data of plastic foams of various 
rigidity. Hence, the mathematical model proposed can be used to project 
plastic foams with a preassigned set of properties. 
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