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Kopsavilkums

Aplukota zinatniska darba merkis ir vieglu, monotropu (robeZgadijuma
izotropu) putuplastu ar izteiktu stiepveida strukturu deformative ipasibu
matematiska modeléfana mazu deformaciju robeZias. Deformativo 1padibu
integralai raksturo¥anai putuplastiem ka mikroneviendabigiem kompozitiem
materialiem to elastiskas simetrijas asis ir noteiktas piecas neatkarigas un septinas
atkarigas efektivas elastibas konstantes.

Modelgjot putuplastu uzbiivi, ir piedavats lokilais modelis, kas sastav
no nepartrauktas vides modela spriegumu noteik3anai un lokald struktiras
mode]a. Lokalais struktiras modelis ir veidots ka elipsoidala mode]§una ar tas
iek¥puse telpiski vienmérigi izvietotiem polimera stieniem. Lai izvairitos no
putuplastu struktiiras maksligas regularizacijas, stiepu sistema tiek grozita ka
viens vesels pa visam iespgjamam telpiskajam orientacijam, kuras uzdod ar Eilera
lepkiem. Tada veida iegust putuplastu uzbuves mikrosituaciju kopu jeb ansambli,
kas |auj ieverot putuplastu uzbuves butisko polidispersumu un stiepu bezgaligi
daudzas telpiskas orientacijas.

Lai aprékinatu efektivas elastibas konstantes, kas saista vidgjos
spriegumus un deformacijas, ir pienemts, ka realizgjas ergodiskuma nosacijums.
Lidz ar to ir iespgjams nomainit vidéjoSanu pa tilpumu ar videjo¥anu pa
ansambli.

Vienasigas spiedes/stiepes matematiskajos mode|os ir paradita iespéja
izmantot model3inas peécdeformacijas formas variaciju analizi un deformacijas
potencialas energijas minimizaciju atbildes deformacijas noteik3anai. Sprieguma
aprekina$anai, sakara ar preciza risindjuma trikumu elipsoidam, ir pieradia
iesp€ja atzvietot mode|Sinas elipsoidalo formu ar cilindrisku. Skaitlisko aprekinu
gaita ir konstatéts, ka aprékindmas modelelipsoida pusasis ir jasaista ar saites
nosacijumu. Ir paradita vienasigas spiedes/stiepes modelu savstarpgja
savietojamiba.

Pak]aujot mode]3tnas virsmas punktus noteiktai telpiskai transformacijai,
tr paradita iespéja adek vati model€t putuplastu bides deformaciju. Ar skaitliskiem
aprekiniem pieradita vienasigas spiedes/stiepes un bides deformicijas modeju
savstarpeja savietojamiba.

Ir izpétita aprekinato clastibas konstaniu atkariba no galvenajiem
putuplastu struktiras raksturlielumiem. Salidzinot teorétiskos rezultatus ar
eksperimentu datiem, ir konstateta apmierinoa sakritiba. Tas Jauj izmantot
piedavato matematisko modeli un izstradato programmu kompleksu, lai
projektetu putuplastus ar iepriek§ uzdotam deformativajam ipaSibam.



X

Summary

Objective of the scientific investigation proposed is a mathematical
modelling of deformative properties of light-weight, monotropic (or isotropic in
the boundary case) plastic foams with a pronounced strut-like structure in the
region of small deformations. For integral characteristics of deformative
properties of plastic foams as micro-nonhomogenecus composite materials five
independent and seven dependent effective elastic constants have been
determined in the axes of elastic symmeltry.

In order to model the plastic foams structure a local model consisting
of two parts has been proposed, that is, a model of continuous medium and a
local structure model. The latter has been chosen in the shape of a rotational
ellipsoid as a model cell with polymeric struts distributed spatially randomly
inside it. To avoid the artificial regularization of structure, the strut system has
been turned as one whole throughout all the possible spatial orientations given
by Euler’s angles. Thus, a cluster or an ensemble of structure microsituations
has been obtained permitting to take into account the essential polydispersity of
foams structure and infinitely pumerous onentations of struts in foams.

When effective constants connecting the average stresses and strains
were calculated the ergodic condition was assumed to realize. Therefore, it was
possible to replace the averaging throughout the volume with an averaging
throughout the ensemble.

The possibility to use a variational analysis of model cells post-
deformation form and a minimization of deformation potential energy as a
criterion for determination of this post-deformation form has been shown in the
mathematical modeis of uniaxial compression/tension. In order to calculate
stresses the ellipsoidal model cell was replaced by a cylindric one, since there
is no precise solution for ellipsoids known to the author. The necessity to
connect the semiaxes to be calculated by some tie condition has been stated
during the numerical calculations. The mutual compatibility of uniaxial
compression/tension models was proved.

Subjecting points of the mode! cells surface to a spatial transformation
of pure shear, the possibility to model plastic foams deformation in this way has
been shown. With the help of numerical calculations the compatibility of shear
mode! and models of uniaxial loading was proved.

The dependence of calculated elastic constants on the main
characteristics of plastic foams has been examined. A satisfactory agreement
was found to exist between the theoretical results and the experimental data.
Hence, the mathematical model proposed and the calculation programmes
elaborated can be used to project plastic foams with a preassigned set of
properties.
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Zusammenfassung

Das Ziel der vorliegenden wissenschaftlichen Arbeit ist mathematische Modellierung der
Verformungseigenschaften von leichten monotropen (im Grenzfall isotropen)
Schaumstoffen mit ausgeprdgter Stabstrukwr in den Grenzen von Kieinverformungen,
Fiir Integralcharakteristik der Verformungseigenschaften sind fir die Schaumstoffe als
mikrounhomogene Kompositmaterialien in deren Elastizitits Symmetricachsen fiinf
unabhiangige und sieben abhangige effektive Elastizititskonstanten bestimmi.

Bei der Modellierung der Schaumstoffstruktur wird das Lokalmodell vorgeschlagen, das
aus einem Modell des Kontinuums fir Spannungsbestimmung und einem lokalen
Strukturmodell besteht. Das Lokalstrukturmodell ist als emne ellipsoide Modellzelle mit
riumlich gleichmaBig angeordneten Polymerstiben im Inneren der Zelle gebildet. Um
kiinstliche Regulierung der Schaumsioffstruktur zu vermeiden, wird das Stabsystem als
ein Ganzes in allen moglichen riumlichen Crientierungen gedreht, die mit Euler-Winkein
aufgegeben werden. In dieser Weise bekommt man die Gesamtheit bzw. das Ensemble
der Mikrosituationen der Schaumstoffstrukiur, und dies 1Bt die wesentliche
Polydispersitit der Schaumstoffstrukiur -und die unendlich vielen raumlichen
Orientierungen der Stibe in Betracht ziehen,

Fir die Berechnung der effektiven Elastizitiiskonstanten, die die Mittelspannungen und
Verformungen verbinden, wird angenommen, daB sich die Bedingungen des Ergodens
verwirklicht. Hiermit ist es moglich, die Mitteneinstellung im Rauminhalt durch
Mitteneinstellung im Ensemble zu ersetzen.

In den matematischen einachsigen Druck/Zug-Modellen ist die Maoglichkeit fir die
Ausnutzung der Variationsanalyse der Nachverformungsformen der Modellzelle und die
Minimisierung der potenticllen Energie der Verformung als Kriterium fir die
Bestimmung der Gegenverformung gezeigt. Fir Spannungsberechnung ist infolge des
Mangels einer genauen Losung fiir einen Ellipsoiden eine Mdoglichkent gezeigt, die
ellipsoide Form der Modellzelle durch eine zylindrische zu ersetzen. Auf Grund von
Berechnungen hat man festgestellt, daB die zu berchnenden Halbachsen eines
Modellellipsoiden mit der Bedingung der Bindung zu verbinden sind. Es ist die
gegenseitige Vereinigung der einachsigen Druck/Zug-Modelle gezeigt.

Bei bestimmiter raumlichen Transformation von Oberflichepunkten einer Modellzelle ist
die Moglichkeit pezeigt, Verschiebungsverformung der Schaumstoffe adiquat zu
modellieren. Auf Grund von Berechnungen ist die gegenseitige Vereinigung der
einachsigen Druck/Zug- und Verschicbungsverformungsmodelle bewiesen worden.

Fiir die berechneten Elastizititskonstanien ist deren Abhangigkeit von den wichtigsten
Kennwerten der Schaumstoffstruktur erforscht. Beim Vergleich der teoretischen
Ergebnisse mit Experimentalangaben ist ¢ine befriedigende Ubereinstimmung festgestellt
worden. Dies 1iBt das angebotene matematische Modell und den ausgearbeiteten
Programmkomplex ausnutzen, um Schaumstoffe mit vorher aufgegebenen
Verformungseigenschafien zu projektieren.
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1 Properties, Application and Mathematical Modelling of
Plastic Foams. (Literature Review)

1.1 Classification and Application of Plastic Foams

Plastic foams are multiphase cellular composite materials consisting
of a polymeric matrix and a mobile, usually gaseous, phase. The progress
made in the technology of producing plastic foams has enlarged considerably
the application sphere of these materials, to mention but consumer goods and
elements of cosmic appliances [36].

Cellular materials can be obtained almost from all polymers but only
some of them are suitable for industrial use. Polyurethanes (PUR),
polystyrenes and polyolefines have the greatest consumption rate [20,52].
Plastic foams can be classified differently: most frequently according to their
mechanical characteristics or composition and morphological properties of
cells.

In view of cellular structure the plastic foams fall into open- and
closed-cell foams [2,13,52]. The open-cell plastic foams can be used as
filters, amortization materials (in aircraft fuel reservoirs), etc. The closed-cell
plastic foams can find their application in building and fuel industry, as well
as machine-building, mainly as heat and hydroisolation materials because of
their low thermal conductivity and low gas and liquid permeability. The roof
of restaurant "Sénite™ covered with plastic foam "Ripors” can be given as an
example of an extensive usage of the material [2].

When considering physically-mechanical properties, the plastic foams
can be divided into elastic, half rigid and rigid ones. The elastic foams are
used in fumiture industry, machine-building and consumer goods. The half
rigid plastic foams have found wide application for foot-wear and car
finishing (panels, buffers, etc.}. Polystyrene foams widely used as a packing
material can be mentioned as an example of employment of the rigid plastic
foams. The rigid PUR plastic foams are used in aviation, house, railway
carriage and machine building, as well as in refrigerators [36].

According to a relative quantity of the polymer per unit volume (the
space filling coefficient P1) the plastic foams can be divided into following
groups [26]:

1) heavy Pl =240 %
2) medium W% > Pl=215%
3) light weight , Pl <15% .
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In the heavy weight plastic foams mutually unconnected gaseous bubbles are
dispersed in the polymeric matrix. The light-weight plastic foams are formed
by polymeric struts, knots, membranes and a gaseous phase. Elements of
both kinds of the structure are found in the medium-weight foams [13,26].
Panticular characteristics of each group of the materials can be used in
practical applications.

Depending on the foaming process, isotropic, monotropic, ortho-
tropic or completely anisotropic plastic foams can be manufactured [52]. The
specific anisotropy of physically - mechanical properties is used in various
applications: filtering, heat isclation, load-bearing structural elements ¢tc. In
machine building integral plastic foams are widely used. An external, slightly
porous layer with a practically constant density changes gradually into an
inner, highly porous layer of almost equally constant density. In
manufacturing ship bodies and wind rotor blades sandwich composites of
fibreglass plastics and plastic foams are used more and moere frequently.

To increase elastic moduli, compression and shear strengths, heat
resistance without substantial weight growth the plastic foams can be filled
with glass fibres, sand, hollow glass spheres (syntactic foams) [52].

1.2 Plastic Foams with a Pronounced Strut-Like Structure

By varying components of the composition and foaming conditions, plastic
foams having prevailingly an open or closed cell structure can be obtained.
According to [13,52] elastic plastic foams most often have an open-cell
structure, while in rigid plastic foams the structure is closed, although many
exceptions are possible. In all kinds of the plastic foams the relative quantity
of open cells increases, while foams density decreases. In rigid PUR foams
two maxima are observed for volume fraction of open cells when volume
fraction of gas (porosity) P2 is the following: 1.0 < P2 < 0.5 [13].

A strut-like polyhedral structure is usually characteristic for the open-cell
plastic foams (absolute poroplasts). The base polymer is concentrated in struts



3

and knots. There are no polymer membranes in these foams or they are so
thin that their participation in deformation process can be neglected.
Reticuiated rigid PUR foams with low density g, and the corresponding space
filling coefficient P1 can be mentioned as an example [20]:

o < 200 kg/m’ Pl = glgy = < 0.17

where g, is density of the base polymer.

When Pl < 0.15  the lengthwise dimension [, of a strut exceeds the
crosswise dimension f. The struts are straight or slightly curved, with a
practically constant cross-section along the whole strut. For the PUR plastic
foams the following relationship can be observed [20,52]:

when Pl =0.10, /i =15

When PI < 0.10 Lit > 1.5 practically for all the open-cell plastic
foams and the struts may be considered as slim ones. The shape of the struts
cross-section can be well described by a hypocycloid with three return points
[52]. It can be approximated by an equilateral triangle with side length ¢
Area F of the cross-section is approximately equal for all struts.

Four to six struts usually enter a knot in the plastic foams with a uniform
structure (polyurethane plastic foams). More than six struts may enter the
knot in plastic foams with irregular structure [4].

The distribution of struts throughout spatial directions is uniform in
isotropic foams. An additional orientation of the struts parallel (o rise
direction can be observed in monotropic plastic foams [15].

Open-cell plastic foams can be obtained from the closed—cell ones with the
help of chemical and physical methods (reticulation) [26]. The main methods
of reticulation are: hydrolysis, oxidation, high and low pressure, treatment
with heat, etc. Membranes are broken or leached in these processes. With
reticulation the plastic foams having a strut-like structure, a very low density
and low space filling coefficient can be obtained:

Jkg/m’ < g, < 10kg/m’, 03 % <Pl <10%.
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1.3 Deformative Properties of Plastic Foams with
a Pronounced Strut-Like Structure
(Experiments and Mathematical Investigations)

1.3.1 Experimental Investigations

One of the first experimental investigations on deformative properties
of plastic foams has been reported by A.N.Gent and A.G.Thomas in 1959,
[9). Young's modulus and Poisson’s coefficient were determined for isotropic
natural rubber foams in a wide range ¢f P1 (0.093 < P1 < 0.568). With Pl
increasing, the Young’s modulus increased, too, while Poisson’s coefficient
exhibited no systematic trend.

Investigating the scatter of mechanical properties (strength and space
filling coefficient P1) I.G.Romanenkov [50] found it to be great for plastic
foams. The coefficient of vanation for samples cut out from cne moulding
reached = 16% This should be taken into consideration when choosing
the number of samples for one point measurements.

J.A.Rinde [18]) made a vast study on Poisson’s effect for rigid
plastic foams. The Poisson’s coefficient for isotropic foams was found to be
greater in tension than in compression. When amisotropic foams were
considered, the Poisson’s coefficient was the greatest when loading was
paralle] to the rise direction. A similar experimental result was obtained by
A.G.Dement’yev et al. {32]. However, no systematic experiments have been
made for the dependence of Poisson’s coefficients on the degree of anisotropy
A (Section 2.2) of plastic foams. The conclusions about the dependence of
Poisson’s coefficients on Pl are contradictory in varigus publications
[18,19,32] both for isotropic and anisotropic plastic foams.

Generalizing a large number of experimental data of different
isotropic plastic foams, A.G.Dement’yev [32] concludes that the Poisson’s
coefficient depends on space filling coefficient P1 ( 0.05 < P1 < 0.80 ):

Pl = 0.05 y = v, = 0.45
Pl = 0.10 = vy = 0.25;
Pl = 0.80, =~ 0.30.
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To prove this conclusion convincingly experiments should be made for
dependence » = W P1) by using samples of one and the same plastic foams.

Young’'s modulus, Poisson's coefficient and space filling coefficient
P1 were determined for latex foams in [15] and for foamed polystyrene in
[4]. Conclusions about mutual relationships of E, v and P1 were the same as
in [9]. Young's modulus, Pl and average cell size d were determined for
PUR and other plastic foams by K.C.Rusch [19]:

when0.028 < P1 <024 ,02mm < d < 1.3 mm

With Pl reducing, cell dirpension are increasing.

A.G.Dement’yev [33,35] has determined stress-strain curves in
tension and compression. These curves are essentially different for rigid and
elastic plastic foams. Axial deformation, buckling, bending and crushing of
struts were evaluated as the main deformation mechanisms of a single strut.
Compression tests were made on samples whose transversal dimensions were
comparable with the lengthwise ones. In tension tests the lengthwise
dimensions exceeded the transversal ones by several times. In such conditions
all struts of a foam sample were load-carrying elements.

Investigating anisotropic PUR foams §.V.Kanakkanatt [11] found
the difference between moduli E, , E, and E; was more expressed in tension
than in compression. Average dimensions of the cells were also determined,
since it allows to evaluate the degree of anisotropy A and dependence of
moduli £, E,, E, on A.

An extensive investigation on slightly anisotropic, light-weight PUR
and polyvinylchloride (PVC) foams ( P1 < 0.15) was made by R.Renz
[20]. Qualitative foam structure photographs taken with a scanning electron
microscope reveal the structure of foams. Young's moduli E,, E,, E, , shear
moduli Gy, Gy, G;; as well as their dependence on Pl were determined
(investigations of other authors usually have no data on shear moduli). It was
found that

E = E E, 2 E ,E
Gl] GH GIZ = GI] GIJ

t

Stress-strain curves in compression, tension and shear were presented.
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Young's modulus, Poisson’s coefficient and density were determined for PUR
and PVC base polymers. These data are of great importance for a further
theoretical treatment. However, no Poisson’s coefficients of foams themselves
as well as degree of anisotropy A were determined.

Of great practical interest are the rarely found experimental data
on the relationship E;/E; = f{4) , [52]. This relationship was investigated in
compression and tension for elastic PUR foams. The same conclusion as in
[11] was made: anisotropy of deformative properties is more pronounced in
tension than in compression even for small deformations. Measurements of
average cell diameters d in [52] provided the following range:

when P £ 0.05 001 <d < 2.5 mm

F.A.Shutov in (13] reported the existence of microcells in rigid phenolic as
well as polyurethane foams. Microcells were found to be about two or three
orders smaller than macrocells.

K.Cirule [53] determined average dimensions of struts, average
degree of anisotropy A and P1 for samples of rigid PUR foams. PUR foams
with Aupto A = 3 were examined. When Pl = 0.03 the length of struts
exceeded their side length up to five times.

V.P.Valuiskikh and S.A.Mavrina [27,28,29,47] have vasily
investigated the dependence of deformative and strength properties on the
variational coefficient of struts dimensions. A conclusion was made that the
Young’s modulus and the strength could be increased several times by
achieving the regularity of struts length (a reduction of the vanational
coefficient). A method was propesed permitting to determine the statistical
characteristics of struts grid using the grids projections on coordinate planes.
However, the moduli E, , E, , E; of anisotropic foams (4 < 1.7) were
assumed to be equal: E, = E, = E, = E. No examination of relationship
E ., JTA) was made (the anisotropic foams were assumed to be
quasiisotropic).



1.3.2 Empiric Relationships

The dependence of deformation mechanism on geometric parameters
of cellular structure is complicated. Some knowledge about this dependence
in compression can be acquired expressing the compressive stress ¢ as a
product of compressive strain € Young’s modulus £ and a function of
inelastic processes F(g) ( K.C.Rusch [19] ):

o = E ¢ F(e)

Function F(g) can be determined empirically from stress - strain curves as
well as related to deformation of a single strut [9,10]. F(g) depends greatly
on geometry of cellular structure, and it is practically independent of £, . The
dependence on P1 and cells dimensions is inconsiderable [19,52].

The classical expressions

E=Kgq' E=EPI (1.1)

connecting deformative properties of foams with their density and PI are still
widely used [3,52]. Constants K , n and m are determined from experiments.
It was proved that expressions in the form of Eq.(1.1) are valid in
compression and tension as well as for strength properties.

Empinc constants have been used in other theoretical investigations
as well. For example, in [9,15] a coefficient k is introduced denoting the
fraction of knot surface covered by cross-sections of struts. The coefficient
k should be determined experimentally.

1.3.3 Model Cells Shaped as Geometric Figures

The cellular structure of plastic foams can be modelled by various
geometric figures. Only five of them (a cube, a hexagonal prism, a rhombic
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dodecahedron, a tetragonal pillar and a cubooctahedren) can fill the space
densely, without holes. Although very simple model cells shaped as
geometric figures reveal the main features of deformation of structural
elements.

A.N.Gent and A.G.Thomas [10] modelled isotropic plastic foams
with a cubical grid of polymeric struts. Intersections of the struts formed
undeformable knots. The struts were considered to be subjected to axial
loading. Using a cubic cell, the space filling coefficient P1 and Young's
modulus E were determined as functions of struts dimensions and E,,.

W.L.Ko [12] has proposed another kind of siruts grid to study the
deformative properties of open-cell clastic plastic foams. This grid was
formed when the base polymer fills the holes between the closest packing of
uniform spheres. Hexagonal and body centered cubic closest packings were
considered. The author proved that a part of grid distinguished by a
hexagonal prism could be used as a representative model cell. Struts were
considered to be under combined axial, bending and shear loading. After
several simplifications Poisson’s coefficient » and relative Young's modulus
E/E, were calculated for both kinds of sphere packing.

R.Chan and M.Nakamura [7] proposed a space-unfilling figure: a
pentagondodecahedron as a model cell. An expression for the Young's
modulus of open—cell plastic foams was denved from a differential equation
of struts bending for a small deflection. Initial curvature of a strnut was taken
into account.

In a series of investigations [3]...37] A.G.Dement’yev used a
cubooctahedron as a model cell. The shape of this figure was similar to that
observed in experiments. The struts were assumed to be subjected to axial as
well as transversal bending. This assumption was used in analysis of both the
small and large deformations. Stress-strain curves in compression, the
Young’'s modulus and Poisson’s coefficient #,, were derived from a
differential equation of struts bending. It was concluded that the deformative
and strength properties were independent of cell dimensions.

Although methods of orientational averaging were mainty proposed
by J.M.Lederman in [15], the model cell shaped as a sphere was used in
some stages of this investigation, too. This permits to relate deformation of
a single strut to deformation of the whole material.

S.V.Kanakkanatt [11] described a model cell shaped as a
parallelepiped in order to calculate the Young’s modulus parallel and
perpendicular to the rise direction. Small compression and small tension
deformations were considered separately.
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R.Renz [20] applied the method of finite elements to the model cell
shaped as a cubooctahedron. Calculations were performed for one eighth of
the cubooctahedron in view of its symmetry properties. The Young’s modulus
and Poisson’s coefficients were calculated both for the closed - and open
cell foams.

In order to amalyse mechanical properties of light-weight plastic
foams with oval microcells in a polymeric frame A.G.Dement'yev [37]
proposed a multistage method. A cube was used for description of microcells
and a pentagondodecahedron for macrocells. As aresult Pl , E/E, and the
compression strength were calculated.

I[ninvestigations of V. P, Valuiskikh and S.A.Mavrina [27,28,29,47]
a stochastic simulation model was proposed as a new approach to the
theoretical treatment of plastic foams. However, numerical calculations in this
case could be realized only for a small number of struts. Therefore, a
combined imitating model was eclaborated. It consisted of regular
cubooctahedrons whose structural elements were given to random deviations.
In such a case advantages of geometrically determined and stochastic
simulation models could be joined avoiding problems in numerical
calculations.

1.3.4 Mathematical Models Based on Methods of Orientational Averaging

One of the first theoretical investigations of plastic foams by
A.N.Gent and A.G.Thomas [9] was based on orientational averaging and
comprised all the main assumptions of this method. The combined strut
knot element deformed according to the global deformation of the specimen.
The struts were distributed randomly in space. The orientational averaging
of deformation energy of a single strut was used to calculate the deformative
properties of the whole composite.

A.Cunningham (8] used an orientated composite structural unit
consisting of a gaseous matrix and a polymeric strut as reinforcement.
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Assuming a continuity of strain to exist from one strut to the next the Voigt
averaged foam stiffness and compliance were calculated. Their relationship
to the basic structural unit properties were found by standard fourth rank
tensor transformations involving the orientation distribution function of
structural units.

Small as well as large deformations of elastic foams were
considered by J.M.Lederman in [15]. The model proposed consisted of
struts of any orientation in an undeformed material. During elongation, the
struts stretched and oriented in the direction of stretching. Relating the
deformation of a strut to global deformation of the bulk material, stress-strain
equations were derived by means of orientational averaging of the tensile
stress in a strut element. As a special case the Young's modulus and the
Poisson’s coefficient for isotropic foams were calculated. The model
predicted that a cell structure orientation paralle] to the rise direction was a
reasonable method for achieving a desired modulus without altering the
density.

A.Zilaues and A.Lagzdin$ [38] proposed a one-strut model to
describe large deformations of elastic foams. Till now it is one of the most
extensive investigations in methods of orientational averaging applied to
plastic foams. Deformation of a strut - knot element was assumed to be equal
to average deformation of foams in direction of the strut. The stress in a
single strut under large deformations was calculated. Further, considering
plastic foams as a continuous medium, its deformation was defined by a
linear nondegenerated transformation T. Redistribution of struts in result of
deformation T was taken into account. Tensor of macrostresses o; was found
by averaging the stress in a single strut element over all the possible spatial
orientations. Uniform three dimensional tension and compression, simple
uniaxial tension/compression, pure tension/compression and simple/pure shear
were considered as particular cases of deformation T. When foams were
isotropic the one-strut model provided the Young’s modulus and Poisson’s
coefficient as follows

E=16(0—-PHE,, v=025

where porosity P2 = 1 — Pl. These relationships are charactenstic for all
the theoretical treatments using the methods of spatial averaging.
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1.3.5 Stochastic Simulation Models

A new theoretical approach 1o modelling the structure and
deformation of plastic foams was proposed in [27,28,29.47] by
V.P.Valuiskikh and S.A.Mavrina. These are stochastic simulation models
taking into account the essential polydispersity of foams structure. N points
are distributed randomly in a parallelepiped imitating the foams sample. This
distribution is performed in such a way that the average length of struts and
variational coefficient of struts lengths equal to those found in foams. Models
of centres and knots were proposed. The calculations of these models were
very time-consuming because of their combinatoric character. Therefore, a
combined simulation model was introduced. It consisted of regular model
cells shaped as cubooctahedrons. The knots of these cells were assigned to
random deviations. Thus a model of plastic foams consisting of an ensemble
of structural elements was obtained.

Stress - strain curves were calculated with the finite element method.
It was proved that nising the regularity of struts length made it possible to
improve considerably deformative as well as elastic properties of foams
without changing their density. The calculations showed that the mechanical
properties of foams depended not only on the average length of structural
elements but also on the variational coefficient of these lengths.

1.4 Objective and Problems of the Investigation

Advances in plastic foams production are made above all by progress
in the practical technology that demands a great consumption of materials and
considerable funding. Therefore, theoretical investigations permitting to
project the plastic foams with a prescribed set of properties are of particular
imponance.
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In the result of literature analysis the following situation can be
found to exist in the mathematical modelling of deformative and structural
properties of plastic foams with a strut-like structure.

1. The deformative properties of isotrapic plastic foams have been
investigated rather well by choosing some geometrically regular strut system
as a model cell. The Young's modulus and the Poisson’s coefficient were
calculated, as well as their dependence on the space filling coefficient was
investigated. Yet only separate elastic constants were determined for
monotropic plastic foams. Stress - strain relationships for both the isotropic
and the monotropic foams were characterized in uniaxial
tension/compression. The models, however, did not reflect the essential
polydispersity of the plastic foams structure and infinitely numerous spatial
orientations of struts. The structure was artificially regularized. The shear
deformations have not been considered at all. No complete set of elastic
constants has been derived for the monotropic plastic foams.

2. Infinitely numerous spatial orientations of struts have been taken
into account in mathematical models by using the methods of spatial
averaging. However, all the struts were assumed to have the same length,
and therefore no polydispersity of the foams was considered. One-type
situations of the ensemble were formed by a single strut or a strat  gas
element. In result, the geometry of strut connection in the knot has been
neglected. Stress - strain relationships have been determined for several types
of deformation. The numerical values of elastic constants have been neither
calculated, nor compared with experimental data.

3. Stochastic simulation models have taken into account the
polydispersity of foams structure and the infinitely numerous spatial
orientations of struts. The numerical calculations became too complicated due
to a great execution time of standard PC programme. Consequently, model
cells with compietely stochastic characteristics were replaced by partially
regular ones. According to these models some separate elastic constants have
been derived. No complete set of elastic constants of monotropic plastic
foams has been calculated.

4. In experimental investigations elastic properties of foam samples
have practically never been determined together with all essential structural
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characteristics, which made it difficult to use these expenimental data for
elaborating theoretical investigations.

In view of all this, objective of the investigation presented is to
elaborate a mathematical model as well as the corresponding numerical
calculation methods for describing and predicting the deformative properties
of monotropic/isotropic plastic foams with a pronounced strut-like structure
in dependence of the plastic foams structure and polymeric phase properties.

In order to realize this objective the following problems should be treated:

1. Elaboration of a local structure model cell of monotropic/isotropic
plastic foams and an ensemble of structural elements considering the
essential polydispersity of plastic foams structure.

2. Modelling the uniaxial compression/tension deformation parallel and
perpendicular 1o rise direction, as well as the shear deformation.
Testing the minimum of deformation energy as the criterion for
finding the post-deformation form of the model cell.

3. Elaboration of mathematical models for calculating five independent
and seven dependent , altogether twelve, effective elastic constants.
Application of the orientational averaging method for calculating the
plastic foams effective deformative properties.

4. Working out the numerical calculation procedures for evaluating and
predicting the dependence of deformative properties on the plastic
foams structure and properties of the polymeric phase.

The investigation proposed has been presented in the following chapters:

Chapter 1. Urgency of the investigation is motivated. A plastic
foams group with a strut-like structure is outlined in order to subject it to a
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further theoretical treatment. The present situation in theoretical and
experimental studies is characterized according to the literature analysis. The
objective and problems of the investigation are generally formulated.

Chapter 2 describes the proposed mathematical model of
deformation and structure of monotropic plastic foams. The choice of
independent effective ¢lastic constants to be calculated is specified in the axis
of elastic symmetry. The replacement of averaging physical quantities
throughout the volume with an averaging throughout the ensemble is justified
in calculations of integral characteristics of plastic foams.

Calculation of the corresponding elastic constants for the
compression/tension deformation parallel to rise direction, and assumption of
the semiaxes hypothesis are discussed in Chapter 3, The possibility to use
a minimum of potential deformation energy as the criterion to calculate a post
- deformation form of the model cell is demonstrated.

Two types of deformation of struts, as well as the finding of average
stresses in the model cell are described. Methods of numerical calculations
and inaccuracies of results are characterized.

Deformation of the model cell under compression/tension parallel to
rise direction and the assumption of the volume deformation hypothesis are
presented in Chapter 4. Analysis of numerical results permits to conclude
that both mathematical models (Chapters 3 and 4) are fully compatible.

Chapter 5 deals with deformative properties in compression/tension
applied perpendicular 1o rise direction. Necessity to use the hypothesis of
volume deformation as well as the hypothesis of a linear relationship between
the volume deformation and the degree of anisotropy is motivated. Analysis
of Poisson’s coefficients numerical values shows a mutual compatibility of all
the three mathematical models of uniaxial compression/tension (Chapters 3,
4 and 5).

Shear in the plane perpendicular to the plane of isotropy is
considered in Chapter 6. Unlike cases of uniaxial compression/tension, the
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post - deformation form of the model cell is defined by spatial transformation
uniquely because of the lack of an appropriate deformation energy
minimization criterion.

Comparison of numerical results permits to check a mutual
compatibility of mathematical models of shear and compression/tension

deformations. Consequently, the calculation of independent constants has
been completed.

In Chapter 7 dependent elastic constants are derived using results
of the previous calculations. Comparing the theoretical results with

experimental data permits to evaluate both types of struts deformation.

Chapter 8 gives main conclusions.



2 Mathematical Model of the Structure and Deformation
of Monotropic Plastic Foams

2.1 Elastic Constants

As regards deformative properties the free-rise plastic foams are
monotropic (isotropic in the boundary case) materials with the isotropy plane
perpendicular to the rise direction (Fig.2.1).

3

Fig.2.1
Monotropic plastic foams.

o /= 2 012is the plane of isotropy;
03 1s the rise direction.

An elastic potential of the
monotropic plastic foams w can be expressed as follows [6,43]:

w = w(ay, 0, 1 oy, 00 + 0y, 0,0y — 0,0, 1)
Within limits of the linear elasticity theory and by neglecting the cubic
invariant I,, the elastic potential can be expressed as a quadratic form of
stresses:
w = le'n2 + Ci(o), + ‘-’12)2 + Goylo,, + op) +
+ Cy(0y,013 +0p05) + G005, — 003)) , 2.0

where C,,  are constanis.
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Strains in the elastic material are connected with the elastic potential in the
following manner:

e, L |2%w ., 9w 2.2)
¥ 2 d o, da,
if Ji
Therefore: ¢; = ¢; (0, C), where ijk! =123
m=12,..5
Expressions (2.1) and (2.2) result in
g, = 2C0,, + 2C, + Coy + Cyoy,
Ep =(2C; + Cyo,, + 20,0, + Cioyy
Ex Gy + Cyopn + 2C 0y
&y C, 0y ; 2.3
€3 Ciop
€2 - Goy,
£y £x &y = &y € = &

The monotropic materials can be characterized by 12 elastic
constants; five of them independent [45,49]. Evaluating the possibilities to
claborate mathematical models for calculation of constants, the following
technical constants are chosen as independent:

¥3 ¥y Yn E, Gy
Here and further in Poisson’s coefficients the first (stress) index corresponds
to the loading direction, while the second (deformation) one denotes the
direction, in which the transversal deformation is measured.

For a better outline of relationships between the elastic constants, the
Hooke's law for orthotropic materials is used. These materials are also
characterized by 12 constants (nine of them independent), but the level of
symmetry is lower than that of monotropic materials [49]:
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1
€ —__ a g Oy &
n E 1 E n E, ”
| V]
£y o, + O — O3 .
1 2 E,
¥y v 1
£y o, 2 op + O3 5
1 Ez 3
| 1
&y = — o (2.4)
7 7 G, b1
€1y __.1_ _._1 O3
2 G,
&2 _1_ ! o
2 G,
£y €n £y £y £ €12

By comparing the coefficients at equal stresses in systems (2.3) and (2.4),
mutual relationships between technical constants are found, expressing them
with five independent ones:

Piz = by Yin T ¥n Py = ¥y
vy,
E = E, : E, 2.5
Vi
_ Pn
Gza = Gu G, = ———= E]

2u, (1 + »)
In the boundary case, when isotropic plastic foams are considered, v and E
are chosen as two independent constants. The third one can be expressed as
follows: G=FE/[2(1 + »)]
Microscopical observations and photographs show that the plastic
foams are microscopically nonhomogeneous composite materials [20,26,52].
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Since the aim of the present research is to characterize the plastic foams as
integral materials, an introduction of effective elastic constants is necessary.
The tensor of effective elastic constants C * characterizes deformative
properties of a nonhomogeneous material as an integral one. It connects
stresses and strains averaged throughout the matenial [54]):

<g>=C"<¢ >

The ergodic hypothesis is assumed to be valid in further calculations. This
permits to replace an averaging of physical quantities throughout the volume
of matenal with an averaging throughout a cluster of one-type situations (an
ensemble). The ensemble is presented by a local mode! of the plastic foams
which undergoes all the possible structural microsituations according to
relationships (2.6) defined further. We shall neglect  however, the
interconnection of separate model cells of ensemble.

Consequently, it is necessary to determine the following effective
technical constants of the monotropic plastic foams:

2.2 Local Model

In order 1o obtain an ensemble of microsituations of plastic foams
structure, a local model is proposed. Model cell is chosen to be in the form
of a rotational ellipsoid [23,24], Fig.2.2. An extension degree A = ¢, / a4,
of the model cell is equal to the average extension degree of ellipsoidal
gaseous incorporations in the plastic foams:

A=d,/d =d,y/d,

where d, d,, d, are average values of projections D, D,, D, of
ellipsoidal incorporation axes d, d, d, on the measuring plane [52].
Monotropy of plastic foams is directly related to 4.
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3 Fig.2.2
} e A local structure model of
e monotropic plastic foams.

dg , Co are semiaxes of

2 an ellipsoidal model cell with
a strut system and a knot
situated inside.

The mass of base polymer comprised
in the model cell is denoted by m,,. The model cell is treated both as a
model of continuous media and as that of local structure.

In order to define stresses in the corresponding point of plastic
foams, the foams in the model cell are regarded as a continuous monotropic
medium. The monotropy axis of this medium is parallel to the longer
semiaxis ¢, of the model cell. Density of the plastic foams to be modelled
is ascribed to the continuous medium:

o = My ! Vo V. = 4/3x% ajc,

where V. is volume of the model cell.

A local structure model cell is obtained by cutting out a rotational
ellipsoid (or a sphere when isotropic plastic foams are considered) around a
polymeric knot so that a half of each strut entering the knot would belong to
the model cell. For the sake of simplicity here and further the half-struts are
referred to as struts , except for calculations of the strut stability (3.24),
where the whole length of the strut is essential. Space filling coefficient Pl
of the plastic foams

P1=QIIQM=MM/(V”QM)

is ascribed to the model cell.
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1
UL
: Fig.2.3
o, \ r 0, Dimensions of structural
['j . \1 elements of the model cell
o L | ' before and after
; A ’ - I i deformation.
i r I Vo
e > .

{,.,1,  are lengths of the n-th strut;

0w +» 0, are lengths of the n-th half- strut;

rg.r, are lengths of the n-th radiusvector directed along
the n-th half-strut;

D is diameter of the knot.

The following relationships exist between the dimensions of structural
clements

s =204: L =20,

To =0 +D/12; r,=p,+ D2

Since the spatial distribution of struts in isotropic plastic foams is
uniform, a uniform distribution of N struts entering a knot in the local
structure model cell has to be known. It is found by minimizing the aim
function & constructed in the following way [23):

N N

3

=1 j=iel

where L; is a distance between crossing points of i-th and j-th struts with
the surface of unity sphere. The function ¢ reaches its minimum when the
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spatial distribution of N struts is uniform. Orientation of the r-th strut is
defined by spherical coordinates ¢, 8, in the ofnr frame of reference,
connected with A struts system. Then the function ¢ can be expressed as
follows:

N N
$ = E E [ 2( 1 — sinfsinfcospcospyt

i= 1 je=ist

+ 5in8osind,Sing,sing,, + cosycosy) 12

where ¢, 0, are the sought angles.
The aim function is minimized by using the steepest descent method for the
following numbers of struts: N = 2,3,...,14. Itis clear that N = 2,3 struts
uniformly distributed in space do not form a spatial configuration and
therefore cannot represent adequately the deformation of plastic foams. In the
plastic foams, knots with N = 2,3 entering struts are found only as separate
defects, not as common structural elements. Knots with the smallest and most
frequently met N are those with N 4, and after minimization the
respective strut configuration will be spatial. Accordingly, N = 4 is assumed
to be the lower boundary of strut number N investigated in further
calculations. The upper boundary of N - range is determined from stabilizing
the dependence "effective moduli - strut number N when N increases and the
law of "great numbers” starts operating.

The stabilization begins at N > 9, therefore N = 10 is the greatest
number of struts used in calculations. The results of ¢,,, 8,, calculations are
summarized in Table 2.1.

Fip.2.4 Spatial configurations of N = 4,5,6,8 struts in the body
frame of reference ofn7.



Table 2.1 Spherical coordinates of N struts uniformly distributed in space.

Number
of
struts

N

O 2.186 |2.186 | 2.186 | 2.186 | 0.955 | 0.955 | 0.955 | 0.955
8 w0 |0.785 |2.356 | 3.927 | 5498 | 5.498 | 0.785 | 2.356 | 3.927

9.0 0.499 |1.647 | 2.143 | 0961 | 1.886 | 0.779 | 1.859 | 2.859 | 1.571
9 v |0.702 |1.293 | 2.472 | 2.724 | 3.800 | 4.537 | 5.102 | 6.435 | 6.283

0. 0.905 |12.040 | 0.417 | 1.473 | 2452 [ 1.430 | 1.899 | 0.833 | 2.685 | 1.571
10 @ 1.032 |1.337 | 3.060 | 2.397 | 3.138 | 3.774 | 4.840 | 5.294 | 6.058 | 6.283

L34
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Spatial configurations for those N which make 1t possible to form an obvious
drawing: N = 4,5,6 and 8, are depicted in Fig.2 4. When N = 4,6 and 8,
the configurations found in the result of minimization are equal to those
found with geometric considerations and using the symmetry properties of a
cube.

It must be taken into account that the struts may occupy any spatial
orientation in the isotropic plastic foams. Therefore, the system of N struts
uniformly distributed in the model cell as one whole is turned around the
initial point ¢ of the laboratory frame of reference ¢123. In the process of
turning, the strut system goes throughout all possible spatial orientations
defined by the Euler's angles 8, ¢, ¥ Thus, a cluster or an ensemble of
one-type situations is obtained. With the following transformation
matrix g, [39]:

COSYLOSw, — Siny,Sinecos §,

& siny Cosp, + COSp,Sin @ cos b,
sing,sin @,
- cosy,Sing, ~ siny Cospcos 0, siny,sinf,
siny,sing, + cosy Lospcos b, cosy,sinf,
cosp,Sinf, cosé,

where {m = 1,2,3, new spherical coordinates ., ¢, of the n - th strut in
0123 frame of reference in every microsituation 60, ¢z ¢, can be found
[25]:

6, = arccos [ sinf gsinfisin( v, + ¢p + cosbgosd, ]

sin ¢, = { Sin@,Lo0s¢p By + SING SINY, gLy, +
+ cosfg Exy )/ sind, (2.6)

cos ¢, = ( 5inf cosp g, + sind Sing. g, +
+ cosf, g,3) / sind, ,

where n=1,2,... N.
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In order to model a nonuniform distribution of the struts observed
in the monotropic plastic foams it is assumed that the distribution in question
develops gradually out of the uniform distribution observed in isotropic
plastic foams. When a chemical compound is foamed in a high and narrow
vessel, an additional oriemtation in the rise direction appears in the uniform
distribution of struts (defined by a random distribution of gas bubbles). A
model cell of the monotropic plastic foams is obtained from the model celi
of isotropic plastic foams by the following space transformation (transversal
dimensions of the model cell are assumed to remain constant):

=X X =X, 5 =45; 4= cjg 2.7

Fig.2.5 Change (2.8) of the
spherical coordinate

0 = 68, < x/2 of uniformly
distributed struts when
monotropy is introduced by the
transformation (2.7) (the
calculations are carried out for
6, values after every

ten degrees). A =4.9.

After an introduction of
monotropy by Eq.(2.7), spherical coordinates of the n-th strut become as
follows (Fig.2.5):

-4
6, arctg (A 1g8,) 0=8,< w2
g, a, 9, = /2
)
8, ==& — arcig [A rg(r — 8] w2 <8 < 7, (2.8)

’

¢, = ¢, = const. , n=172,...
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From (2.6), (2.8) it can be concluded that

0,,' = 0,.'(¢5.0E) N

e, = ¢, = o0, v is)

Transformation (2.7) changes the spherical model cell of the isotropic plastic
foams with radius g, into a model cell of anisotropic plastic foams in the
form of a rotational ellipsoid with semiaxes a; , ¢,

In order to characterize every microsituation of the ensemble,
expressions (2.6) comprising all the three Euler's angles are used.
Therefore, an averaging of physical quantities is made in the following
manner [44,54]:

2z «
1

<o>= l [ [ (0,05 W) MO e ) X

X sinf; df dedy;. (2.9)
Integral plastic foams (having foamed inner core which changes gradually

into solid base polymer in the outer layer of a foams sample) are left
unconsidered, so the texture function becomes the following:

f(e -(!DEv\"E): 1.
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2.3 Dimensions of Structural Elements
in Model Cell of Local Structure

Volume of the model cell of local structure V,  and volume of the
polymer in this model cell V,, are the following:

vV, = 4/3 xalc Vo =P1V,.

Effective constants are calculated for two cases of the mathematical model:
a model cell of local structure has no knot ( D = 0 ) and it has a knot. In the
first case the polymer volume V,, is distributed between N struts with a
total volume V,

N
V.=F )Y e
a=1

00 = Fo = Gl / { Cy'sind,’ + a,’cosh,")"?
Then a cross-sectional area F of the struts can be calculated as follows

4 x Pl g,
N
Y (cosin®, + ajcosf,’ )2

F

If the cross-section shape is assumed to be an equilateral triangle, its side 7
is

=  F70433

In the second case an attempt to introduce a knot with a constant
volume V, when Pl is given ( V, ~ r'( P1)), does not allow us to model
a whole variety of the plastic foams observed in experiments with Pl =const.
Therefore, the knot is introduced as an undeformable sphere with
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surface area S, completely or partially covered by cross-sectional area S, of
N struts entering the knot:

S,=xD* Sy=NF k=8,/8;

where D is a diameter of the knot. Quanitity & is further denoted as parameter
of the knot. Variation of the parameter £ in the following range:

0.1 =k =<10; when Pl = const.

permits us to model various distributions of the polymer between the struts
and the knot when k is given.

As mentioned in [15] the parameter k remains constant for each
compound of the plastic foams (irrespectively of the space filling coefficient
P1 obtained in the result of the foaming process) provided the frothing
technique and surface properties of the uncured compound are kept
unchanged. Thus, once the parameter kK has been determined for a few
samples with P1 = const., the same value can be used for all the subsequent
samples prepared by the same process, even when Pl changes. The above
statements, however, have been supported by no experimental proofs.

Dimensions ¢, F, and D of structural elements in the model cell
having a knot can be found from the following equations [6]):

P1 = Pl, + Pl

"o

3 N
= VY 00 2.10)
Be,ag dmC ay  ned

Pl

where P1, and P1,, are space filling coefficients of the plastic with knots or
struts.
In view of

end,) = rg@,) — D2
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D= [ NFi(=zk and F =0.433°7

expression {2.10) results in the following cubic equation with respect to ¢

GP+HP+1=0, (2.11)
where

= * [N )" aN ([ BN )"
6 | wk 2| Tk

N
H=b Y rd6)

ra8,) = auc, ! (¢ sin*8,’ +ay’ cos, )"
J = — 4/3x Plcay b = 0.433
With substitution r = y - H/3 Eq.(2.11) is reduced to its canonical form:
v’ +py +q=0 wherep = -H¥3 q = 2(H/3) + 1.
Further treatment of the problem depends on the value of quantity Q {40]:
Q = (p/3) + (g/2)
which may be positive, negative or zero. Control calculations showed that all
the three cases were realizable. The Cardano formula and the trigonometric
solution method were used to find roots. One root of the three was chosen
according to the following conditions:

1)the side length ¢ of the struts cross-section lies in the range of

0 <t< 2a,,
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2)¢ can assume only one numerical value. When 1, F and D are calculated in
every microsituation, their average values <i> < F> and <D> are
found according to Eq.(2.9).

The discussed kind of a’knot introduction into the model cell has the
following disadvantage : 2 mathematical model with a knot cannot be reduced
10 a knotless model in a direct way. The model cell always comprises a knot,
whatever the combinations of & and P1 may be.

2.4 Conclusions

For consideration of monotropic plastic foams in the main axes of
elastic symmetry five independent elastic constants have been chosen from
twelve constants to be calculated according to the possibilities to elaborate
mathematical models. The remaining seven constants are expressed by
independent ones. In order to characterize deformative properties of the
plastic foams as integral materials the elastic constants are defined as
effective ones.

A local model consisting of a model of continuous medium and a
model of local structure has been proposed. The model of a local structure
comprises an ellipsoidal model cell with N struts orientated spatially
unifornly By tuming the system of struts as one whole around the knot
centre, a cluster of one-type situations is obtained permitting to define
average quantities. The way of introducing monotropy has been proposed, as
well as dimensions of structural elements in model cell have been calculated.
In order to model various distributions of polymer between struts and the
knot when Pl is constant, an empiric coefficient, a knot parameter k, is
introduced.



3 Deformative Properties in Compression/Tension
Applied Parallel to Rise Direction.
(Semiaxes Hypothesis)

3.1 Mathematical Model
3.1.1 Effective Moduli
If the strain £,, parallel to the rise direction is applied to a model cell of
monotropic plastic foams:
£33 = (C - CQ)ICQ = const. (3.1)

effective Poisson’s coefficients »,,", »,,” and effective Young’s modulus E,
can be expressed as follows:

vy <€, >/Ey vy = vy 3.2)
ES <op>ley where
252y w
1
<g, >

= l I j; € 1 (Bepp V) sind, d0 dp d i,

The value of < ay; > can be calculated in the same way as <g,, >

From the viewpoint of deformations, the model cell can be considered as a
rotational ellipsoid cut out in an infinite plastic foam medium. It is assumed
that model cell retains its ellipsoidal (not obligatory rotational) form, when
a compression/tension deformation is applied in the direction of one of the
coordinate axes. Then deformation of the surface of model cell is defined by
nondegenerated, linear transformation T;; [38]:

A 0 Agsiny
Tij = 0 )\‘z 0 (3.3)
0 A cosy

0
AMN=ala;, N=ala; M=clg.


file:///cosy
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The angle of pure shear is v = 0 when compression/tension deformation is
considered. To calculate &,,(8;, @g ) in every microsituation, the semiaxis
a, of the model cell after deformation has 1o be known:

a,(0pes ¥y — 4,

2,

00, e ¥p) =

Although <egy,> <g,> , when the monotropic plastic foams are
considered, semiaxis a,(8;, w5 ¥ 1s not obligatory equal to a,(6;, ¢g, Vo).
So parameters of the ellipsoidal model cell are the following:

Coordinate Semiaxes of the Semiaxes of
model cell the model cell

axes before deformation after deformation
ol ay a,(0g, w5, V)
o2 dy ay(Oc, @p,¥g)
03 Co ¢ = const.

At first we consider the most general case, when the axes to be
calculated are completely independent. The values of a4, and g, are found
from the local structure model, using a vanational analysis of after-
deformation form a, , a; , ¢ of the model cell. The variational analysis is
based on the theorem of the potential energy minimum of deformation.
According to this theorem, due to deformation the model cell assumes such
aform a, , a,, ¢, which corresponds to deformation energy minimum W,
of the N strut system:

N
me'n(alnahc!eE!wE-'pE) = min E wu(aI!GZlcte.E'?E!wE) + (3-4)

where energy to be minimized is calculated according to Eqs.(3.8), (3.9 or
(3.14), (3.17). Here and in further Chapters the following assumptions are
made:
1) The clamping of struts ends in the knot is hinge-like. The struts
carry axial loads only.
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2) The deformation of a single strut and therefore of the whole model
cell is restricted (Paragraph 3.2.1) so no buckling occurs.

An unconditional minimization of the corresponding two-argument
energy function has shown the incapability of a model with independent
varying semiaxes to describe adequately the experiments. In some
microsituations, in directions of axes ol and o2 reaction strains by several
orders exceeding the deformation £;;, applied may appear. Then few or no
struts have directions ol and ¢2, which means that large deformations in
these directions are energetically favourable to the model cell. Practically an
interaction of neighbouring cells in the plastic foams does not permit large
reaction deformations of one cell. To take into account the interaction of
neighbouring cells , the axes to be calculated have to be connected by some
tie condition.

A tie condition is formulated using two experimentally measurable
macroproperties of the plastic foams: a monotropy and an effective relative
volume deformation & The macroscopically monotropic plastic foams are
known to deform equally in all directions of the isotropy plane, if the
deformation applied is parallel to the monotropy axis. Assigning this
macroproperty as a hypothesis to the model cell in the form of a rotational
ellipsoid, after deformation the mode! cell retains the same form in the case
of the mentioned above deformation. So the axes g, and a; to be calculated
are mumnually equal in every microsituation &.p.,¥ (the semiaxes
hypothesis, Fig.3.1):

a\(0g, 0¥ = (05,05 V) = allp06.¥5). (3.5)

Fig.3.1 Deformation of the model cell in
isotropy plane o012, when the
2 compression deformation applied
is parallel to monotropy axis o3
and the semiaxes hypothesis (3.5)
is assumed.
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In case of the semiaxes hypothesis a volume deformation £(0.,¢.¥;) of the

model cell changes from one microsituation to another. Then the effective
volume deformation £ can be calculated as follows:

Irds =

- 1 [ 1 1 £0r.05, o) sind di do,dVe, (3.6)

8x
where € =g, + & + €y
Deformation of the model cell, when &£(8, 5, ¥) = const. in all

microsituations (the volume deformation hypothesis), is considered in
Chapters 4 and 5.

3.1.2 Deformation Energy (Ap, - Calculation Scheme)

It is assumed that in the local structure model the struts do not
change their spatial crientation due to deformation. Initially, we consider a
no-knot model cell D = 0. Then (Fig.2.3)

re =00 f.=¢0,, wheren=12,..N

Now deformation energy of the n-th strut in every microsituation &.,¢.,y;
can be expressed as follows:

W, = 1/2 PAe, wheredg, = ¢, — e
Here P, is an axial load carried by the n-th strut,
As » = EFAg. /e .
then: W, = 112 E,F(Ag ) o, (3.7

where E,; is the Young’s modulus of the base polymer.



35

In order to express Ag, for the model cell of local structure in the form of
a rotational ellipsoid the length o, and g, of the n-th strut (that is, half-
strut) is calculated:

aOCO
Qw = 7. 2
( ¢osin’f,’ + agcos’8’ )7
ac
e, = (3.8

( c?sin’d,’ + a’cos’d’ )

where 8.’ is a spherical coordinate of the n-th strut in the laboratory reference
frame afier modelling of the monotropy (2.7) ( 8, = 8, , when isotropic
plastic foams are considered). Now deformation potential energy of the
knotless model cell can be expressed (3.4, 3.7) as:

N 2
Wa, b, vo= 20 ¥ Vfo [“(af"’"’-) < - “°C°] 3.9)

2a,¢, »/f—,. m

where [, = ¢ sin?6," + ag’cos’d,’

f. = & sin’8, + a*(b;,p5)c08%0,

[n the case of a model cell of local structure having a knot, the deformation
potential energy is:

EF X (r,—r,y
Wi - 0 L] o )
(@, 6. ¢¢) > E} ——pm (3.10)
T = age ! (fo )™ 1, =acl(f,)"? (3.11)

Half-axis a is obtained by minimizing Eq.(3.9) or (3.10). According o
Eqgs.(3.9) and (3.10), the deformation energy depends only on

8, - coordinate of the struts. However, as it has been proved in Section 2.2,
8, does not depend on . Consequently, min W, @ and £,, are independent
of angle ., too: &, = &,(f, ¢g).
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The numerical value of g,, found from the model cell of local
structure is related to the point of a continuous medium. Then the
deformation £,,(8,,¢,) of the plastic foams viewed as a continuous medium
is calculated in every microesituation of the ensemble, and calculation of
<g, > simplifies:

2z »
<e,> % “ € ,,(6,.¢;)sind d0,do, (3.12)

x

Further in the text a notation "Ag, - calculation scheme” is used to denote
equations describing such a deformation of the struts, when their length is
changed on Ag, , but their spatial orientation remains unchanged.

3.1.3 Deformation Energy (A, - Calculation Scheme)

The numerical calculations show that the results given by the
Ap, calculation scheme do not always agree with experimental data
(Paragraph 3.3.3). Therefore, it is assumed that struts in the local structure
model may change their spatial orientation due to deformation of the model
cell.
[nitially, the model cell without a knot is considered. If projections of a
unity vector ndirected along the n-th strut in an undeformed model cell are:

n
y, sing, sinf '’
z cosf

X, cosg,sind

a relative change A,r in the n-th strut length after deformation T; (3.3) is:
Aa = eden = (T T, xx)'"?

A = (N cos’esin’d,” + N Jsin’psin’d,’ + A cos6,)'?,  (3.13)
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where n = 1,2,....N (For the sake of obviousness the oxy; frame of
reference is considered in Paragraph 3.1.3)
According to the semiaxes hypothesis:

MN=A=AN=alg, and

Ay = (\sin,’ + Acos’d,’)"

Deriving g, from Eq.(3.8) and taking into consideration that §," does not
depend on ¥, the deformation energy of N-strut system in each
microsituation €g,¢; can be presented as:
EF Y )
WhBee= —— 3. [N (NOw) = 11 0 (Bepp).(3.14)

a=1

Semiaxis @, = a is calculated by using variational analysis of ihe after-
deformation form of the model cell and minimizing energy W, Eq.(3.14).
Likewise as in Paragraph 3.1.2, it can be proved that <g,_ > is calculated
from Eq.(3.12).

When a model cell of local structure with a knot is considered, the
relative change in the n-th strut length A, is derived by using the coordinates
of struts ends (Fig.3.2):

12
o, 1, ?
Ay =0,/ @o= [(xd Yo O V) * (o zj,] .(3.15)
PIRE

('xnl xu())2 + (ym' yﬂ)z M (znf

In conformity with x; = T, x, we have

qu = }\l xul ynl = )\'vynl thZ = )\z znl
In view of

v = Eg t 0,,C08¢,COSp_,
Yy Ym t 0,COSc Si0g ;
Z, =T, v QSN0 ,
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=11

. Z X
and sin o, = _ ™ cos a, = i

n

118,) B

As  xo +yo + 20 = (D2} then:

DR Di2 cosp,

Fig.3.2 Change in the
n-th  strut spatial
orientation due to
space transformation
T,
Xogr Yuor Zmp 1S @ point
of the n-th strut
entering the knot;

Xn1e Va1 Zat and Xe2s Va2
I are points of the

n-th strut crossing the
model cells surface
before and after
deformation,

respectively.

we abtain:

. D/1(20,)

A = {INGB, + 1) — ) cos’e,sin’d,” +
+ [N (B, + 1) — B,) sin’p,sin’, +
+ [N (B, + 1) — 8.} cos’s,'}'7? (3.16)

(If there is no knot,
e A

n

=0 foreach n =1, 2, ..
nc = Nyr) According to the hypothesis of semiaxes, A, = A, = A, and

.. N and A reduces to

A = JIMB, + 1) — B )Psin?, +
+ [AB,+ 1) — B8,)cos?8,’'}'7 .
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Deriving r,, from Eq.(3.11) and taking into consideration that
¢,' does not depend on Y, the deformation energy of N strut system in each
microsituation 8¢, ¢, can be presented:

E N
WNOg,00) = % Y (MO, e)— 1P (g — D) (3.17)

Likewise to Paragraph 3.1.2, it can be proved that <e¢,> can be calculated
from Eq.(3.12).

Further in the text the notation " A, - calculation scheme” will be
used for equations describing such a deformation of the struts when they
change not only their spatial orientation but also their length.

3.1.4 Average Stress

In order to calculate average stress <o,,> from Eq.(3.2), stress
033(8¢.2c.Yg) in every microsituation 8,0, ¥ of the plastic foams structure
has to be known. The stress in question is considered for the local model cell
of continuous medium (Section 2.2), with force P applied parallel to rise
direction 03 (Fig.3.3). The force P deforms the model cell by
£y, = (¢ — c)fcy, Eq.(3.1). According to the semiaxes hypothesis, after
deformation the shape of model cell is still a rotational ellipsoid. The stress
0330z, ) is defined as the volume-averaged stress considering the post-
deformation volume V,_ of the model cell. Then:

U}a(eso‘ﬂes'l’s) = oy,
where ™ v; J &y (M) dV,, (3.18)

To perform averaging using Eq.(3.18), a three-dimensional stress state of the
rotational ellipsoid under uniaxial compression/tension deformation &,; has
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. Fig.3.3

A A local model of the
plastic foams considered
as a continuous medium
(see Section 2.2) and
used for the calculation of

stress an(Bz, 05 Vo).

w 5 R(0e.pg) is the radius of
the cylinder.

,6

to be known. Since solution of
such a problem is unknown to the
author, the post-deformation rotational ellipsoid is replaced by a circular
cylinder (5,39] whose height A and volume V, are equal to those of the
rotational ellipsoid:

1

h=2c Vy= Ve

As
Vnt = 4/3=c a|2(85,'.°£) and V‘.’,‘ = ZTCRI

the radius of the cylinder can be calculated as follows:

R= 213 a0 = RB:vp, (3.19)

where  a,(8;,¢g) is derived from Eq.(3.4).
Therefore:

030, 0. ¥e) = @ :uqf
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- 1
where oy, = vV J 03" (M) dVo,
ot

~

Since in cylindrical model cell the stress ar,,"‘(Mq,) is known to remain
constant throughout the whole volume

on™M_) = P/(aR") = const. forevery M, E V,,,
then 03 Opee¥p) = 0,7 = PH(aRY) (3.20)
The force P in every microsituation is calculated from the model cell of local

structure. When &,, = Ac/c, , deformation energy of the model cell is the
following:

Wl e ¥p) = 112P(0c, 05, Y0 AR ;
Ah = 2Ac = 2(c — cp)
Pls.05¥0) = Wlepe¥p) (€ — )

The deformation energy of the model cell is also equal to the energy (3.9),
(3.10), (3.14) or (3.17) accumulated in N struts.

Then the force P is

N
min Y W, (a,.0,.¢,) (3.21)

0 n=l

P = P(ag"WE):

According to Eqs.(3.19), (3.20) and (3.21), the stress a4y can be calculated
in every microsituation f; , ¢g:

N
3 min y W(a,.0;,¢;)
na=l

27{c - &) a; (6;.0;)

a3 = 0y3(0,0p) =
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oy # opn{de)

Since the stress oy, is independent of angle ., the calculation of average
stress <oy, > using Eq.(2.9) simplifies:

x ¥
1 .
<op> 1 1 0x(0.05) sinf,dOdop

3.L.5 Compatibility of Mathematical Models

Mathematical models of uniaxial compression/tension of the foams
(Chapters 3, 4 and 5) should be mutually compatible. It means that in the
case of isotropic foams when deformative characteristics are independent of
the loading direction, constants »" and E calculated according to these
different models should be equal in the limits of calculation errors.

To calculate the post-deformation shape of the model cell in
mathermatical models of uniaxial compression/tension, a variational analysis
of post-deformation form was used. In calculating shear modulus Gy
(Chapter 6), the post-deformation form of the model cell is uniquely defined
by transformation matrix T; , Eq.(6.3). Therefore, a mutual compatibility
of these different theoretical approaches has also to be checked. It can be
done in case of the isotropic plastic foams, when:

G =E/[2(1 + )] (3.22)

Derivation of G from Eq.(3.22), therefore, employs the data obtained by
variational analysis of post-deformation form of the model cell. The values
of & calculated in this way are compared with the values calculated in
Chapter 6, and the data should be equal in the limits of calculation errors.
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3.2 Numerical Calculations

3.2.1 Small Deformations of Model Cell

The proportional limit, as experimentally determined for plastic
foams, in tension £, is greater than that in compression &, [9,20,52]. For
rigid, isotropic poltyurethane foams:

g =—10% ;¢ =15%

When elastic, isotropic polyurethane foams are considered these
characteristics are almost by one order greater:

6 = —65%;:¢ =120%

Therefore, for a preater versatility of the mathematical model, the numerical
value of deformation £,, applied to the model cell has been restricted:

les] < |e] = 1.0% (3.23)

Since we are lacking information about the proportionality region for
monotropic plastic foams and its dependence on the degree of anisotropy and
the loading direction, Eq.(3.23) of isotropic plastic foams has been used
initially as deformation for the model cell of menotropic plastic foams.
Simuitaneously, a subsequent testing of the strut stability was carried out.
Although the strain €,;, Eq.(3.1), applied to the whole model cell
i5 smaller than the limit strain, the critical deformation ¢, may be
exceeded in compression for some separate strut when Pl becomes very
small {30]:
2
e - ™ L (3.24)
e 4 F C? (r, — DI2)}

where I, is a minimum inertia moment of struts cross-section, C = 1 for a
hinge-like clamping of struts end in the knot. If ¢, , is exceeded for some
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strut of the model cell, the limit strain of the whole plastic foam is considered
to be exceeded. In this case deformation of the model cell is reduced by a
half and the calculations are repeated (Fig.3.4) (control of the strut stability
is realized during calculation of all the five independent constants).

As concluded later from numerical calculations, the elastic constants
are independent of length of the semiaxes 4, ¢, . But we are also interested
in dimensions ¢, F, D of structural elements (these characteristics depend
on absolute values of a,, ¢, ). Therefore, values of a@,, ¢, are chosen equal to
those determined experimentally. The distance 2d, between the centres of
cells is independent of P1 for rigid PUR open-cell plastic foams when P1 <
0.1 [52):

2, =2 x 10*m =const. Pl < 0.1

3.2.2 Numerical Averaging and Variational Series

For numerical calculations of the effective constants, the programme
"CONSTANTS" with flowcharts depicted in Figs.3.4 and 3.5 has been used.
Average values <oup>, <> etc. are calculated by numerical
integration with the Simpson's formula [48]. To provide the desired accuracy
of data averaging, the effect of numerical integration steps Af;, Ay, should
be evaluated.

Since the parameters to be averaged are complicated functions of
0c and ¢, it is practically impossible to determine how they affect the
calculation data by just using the remainder term of the Simpson’s formula.
That is why the effect was judged from changes in the data caused by
reduction of Afg, A, values. The calculation data presented in Table 3.1
allow us to draw the following conclusions

1)  Changes in the effective constants caused by reducing A6, Ag,
from 10° 10 5° are close to the errors Awy,” , AE,” , AG brought
in by the minimization process The errors, in their turn, are
basically independent of A8, Ap,.

2} A reduction of Af;, Ay increases considerably the time for
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executing a PC job of standard problem, whereas data changes are
insignificant as compared with absolute values of the data to be calculated.
[t can be summarized that steps A8, = Apz= 10° give data sufficiently
accurate for solving standard problems. The values in Table 3.1 have been
calculated for a model cell with a knot according to the )\, scheme,
although all the conclusions drawn may also be applied to knotless model
cell and Apg, - scheme.

If steps in numerical integration of Eq.(2.9) are A8, Aep., Ay the
theoretically infinite number of ensembles microsituations 8¢, will be
substituted by a set of microsituations of finite number &, ¢, Vg

O = (F — DAOg; o= (J — DAgg; ¥ = k — DAYy,
where i = 1,2,...0./=12,...J:k=12,...K;
I=x/00, + 1 J=2xlbpp+ 1 ; K = 2%/A¢ + |

Altogether there are NN = IXJxK microsituations. An averaging of the
physical values throughout NN microsituations requires that a mutual
difference of these values in various microsituations is evaluated. For this
purpose local values of the data to be averaged are stored in arrays. Each
array is a selection x, , m = 1,2,...,NN from the general set of the infinite
number of microsituations. Elements of the selection x, are grouped into
MM = 10 classes. Minimum and maximum elements of the selection

Xoin » ¥ s well as the class interval ¢l |, ¢l = (x,,, — x, /MM are
calculated. A starting number of the first class is chosen to be equal to
X..» and a variational series is formed so that central numbers ¥, are given
instead of classes:

M
v — - xﬂ —
X, = ; e m=1.2,..,MM.

After calculating the frequency M, of each class, a histogram of the
variational series of selection x, is drawn (Paragraph 3.3.3). Asymmetry AS
and excess EX are calculated for the series obtained. Characteristics of AS
and EX calculated are compared with those of normal distribution: AS=0,
EX = 0 [I].
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1

Characteristics of a model cell:
ED- GD- Yo, a{lt A! PI: Nt aﬂr wﬂ)lk‘
Kind of a deformation: &5, &3 (2 hypothesis) or &);.

Va

Tuming of the strut system over ;.

Pr

Modelling of structural microsituations:
wming of the strut system over .
Turning of the strut system over é,. J

aﬂ' Bim

Calculation of spherical coordinates of
the struts in the new microsituation

Bu- P =ﬁamv¢m-8hvoﬂr¢gn\ba)-

B0 .

Modelling of monotropy:
6, = 0,0,4) o, = o,

]

+ —
D=0
Knotless model cell: Model cell with a knot:
t, F = AP]). t, F, D = APLK).
t, F.D
£ =05 x¢
& =€,

Calculation blocks corresponding to
deformation &, &3 (2 hypothesis) or &,

95- L, \t’f

Avaraged stresses and strains

Calculation of the effective conants, their errors and parameters
of variational series with deformation &,, €5 (2 hypothesis) or
&3 applied.

J

Fig.3.4 Flowchart of the programme "CONSTANTS" for calculating
effective elastic constants of the monotropic plastic foams.
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85,' L
Variational analysis of
the post-deformation form
a , ¢ of model cell.
G, =a, +Aa;c
+
IK =1
Calculation and Calculation and
minimization of minimization of
deformation energy W deformation energy W
(Ap, scheme). (A, scheme).
Wm+l(am+l L] f)
Wm+l > Wm
+
a, min W

Calculation of <g, >
and <gy>

<g,> <op>

Fig.3.5 Calculation blocks corresponding to deformation £,; in the programme
"CONSTANTS" (Fig.3.4) when the semiaxes hypothesis is assumed.



Table 3.1 Effect of numerical integration steps Aé; , A, on the calculation data.

Range of
Ne [l as;; | A semiaxis @ v 1Ay, E +AFE; G £ L
Apg, ° vy tAw,’ Ey +AEY, +AG, tAae,
(amin :t Aa) (amu i Aﬂ) MPE MPa %
x103, m x10%, m
1 10 1.0 0.100130 0.100494 0.256 23.547 9.37 -0.487 |0'30"
+0.000001 10.000001 10.001 1+ 0.001 10.01 +0.002
(£0.001%) (10.01%) (£0.4%) (10.004%) (1£0.1%) (1£0.4%)
2 5 1.0 0.100124 0.100494 0.256 23.552 9.37 —0.487 1'50"
3 10 1.5 0.100181 0.101107 0.399 37.171 - -0.200 |0'50"
4 5 1.5 0.100163 0.101107 0.399 37.189 - -0.201 ([2'40"

Initial calculation data: PUR plastic foams, E,

A, scheme, ¢ = 0.95¢, (1% compression), Ag =

= 2300MPa, P1 = 0075, N =4,k =0.1,
IO'SXao, dy = 104 m

8P
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3.2.3 Deformation Energy Minimization.
Errors Caused by Minimization Process

A minimum of deformation energy W is sought for by varying the
post-deformation form of the model cell. For this purpose the semiaxis to be
calculated is varied in the range (3.25) with a step Aa (Fig.3.5):

Gy < a < Gy ) (3.25)
G, = Qg,, + Aa, , where m = 0,1, ..., (G5 — 4,,,) / Aa

A graph of the energy function W(g) calculated in several points was found
to be a concave parabola with its top corresponding to the minimum value of
energy min W and the sought value g, of semiaxis a (the function W{(a)
has an absolute, unconditional minimum). The function W{a) remains
nonnegative for all values of argument a and parameters g, ¢, , c.
Moving from a,,, with a given step Ag, the function W{g) is calculated
in every step. The minimum of deformation energy min W = Wia,.)

when the semiaxis a equals a = a,,, 15 considered to be found whenever:

W(a + Aa) > Wa) ,

Accuracy of the values calculated in the minimization process
depends on step Aa:

dnn =a t+ Az  min W= Wa) + AW
where AW = Wi(a + Aa) — Wia)
Therefore, we need to evaluate effect of Aa on the calculation results.
{Spherical coordinates ¢, 8, found by minimization of function & have
been also determined not quite precisely. However, their effect is

insignificant, therefore it is neglected). Since the error Af of multivariate
function f is [1]:

Af = Y f KXo X) AX;,
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and A< f > < Af >, we obtain the following:
Avy = — lgy <Ag,>
AE, = /ey, <Aay,>
AG AE /1 [2(1 + )] — EAY /201 + )]
Ag = 2 <Ag >

where AE , Ay" are errors of effective constants of the isotropic plastic
foams. It can be proved that

Ag, = Aal a,;
3 AW Aa
- 2W
Aﬂ:ﬂ 2‘!’((' — co) [ az ag ]

Considering that the maximum error | Af | depends on relationship:

| &f 1 s 3 |/ Cxmex ) o5 (3.26)

we obtain the evaluation of maximum errors of the values to be calculated as
a function of step Aa:

S

| vy = | — 2 __ Aa
Gl — &)
| B 3¢, 1 law |, [2waa |y
YT (e - o) l ‘[ a’ a?

X sin 8 db, de,;
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+

2(1 +»7) 2(1 + »*)?

a6 | « —2E | E  _Jar|
B3.27)
| A | < 2Aa/ a,

Investigations performed by the Monte-Carlo method have revealed that
practically the error is usually smaller than the maximum one determined by
equality sign in Eq.(3.26). Therefore, the evaluation (3.27) is considered to
be sufficient.

According to the calculation results given in Tables 3.2 and 3.3 the
following conclusions can be made:

1) When Aa = 10* x g, or Ae = 10° X g, relative errors of the
values to be calculated are less than 5%. It can be considered to be
of sufficient accuracy as compared with the variation range of these
values in the investigated relationships »," , E,", £ = fPl, k, A).

2) Step Aa has the most significant effect on Poisson’s coefficients
v, v, It may be concluded that step Aa = 10* X a, insures a
sufficient accuracy of results.

3) Reduction of step Aa ( an improvement of the accuracy )increases
considerably the time t, of executing standard problems PC job.

All the previous conclusions are true also for knotless model cells
and Ag, scheme.
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Table 3.2 Effect of minimization step Aa on calculation data.
Isotropic plastic foams, 4 = 1.0.

Step v +Av E, +AE, a, +AG, £, +Ag", i,
Aa, m MPa MPa MPa MPa % % L
10%%a, | 0.2 0.1 23.6 0.8 9 1 —-0.4 0.2 050"
(50%) (3%) (10%) (50%)

10%xa, | 0.25 0.01 23.55 0.01 9.37 0.08 —-(0.48 0.02 1'00"
4%) 0.04%) (1%) (4%)

10%xaq, | 0.256 0.001 23.553 | 0.001 9.374 0.008 | -—-0.487 0.002 | 1'50"
0.4%) (0.004 %) (0.1%) 0.4%)

Initial calculation data: PUR plastic foams, E, = 2300MPa, P1 = 0.075, N = 4, k = 0.1, A, - scheme,
¢ = 0.99¢, (1% compression), Af, = Ap;=5° g, = 10* m
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Table 3.3 Effect of minimization step Aa on calculation data.
Monotropic plastic foams,

A4 =15

Step Aa,
m

Yy

iAl’;l.

Ey,

TAE;,

+Af,

1![‘
n

. 0.7 . 040"
(25%) 2%) (200%)

10* xa, 0.39 0.01 37.18 0.01 -0.20 0.02 050"
(3%) (0.02%) (10%)

10% % a, 0.399 0.001 37.189 0.001 —-0.201 | 0.002 2'40"
(0.3%) (0.002%) (1%)

Initial calculation data: PUR plastic foams, E, = 2300MPa, Pl = 0.075, N = 4, k = 0.1, A, - scheme,

¢ = 0.99¢, (1% compression), Af; = Ape= 5° a6, = 10 m

€S
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3.3 Analysis of Calculation Results

3.3.1 Dimensions of Structural Elements in Model Cell
of Local Structure (Isotropic Plastic Foams)

For a better understanding of the mathematical model presented, it
is necessary to determine dimensions of structural elements in the local
structure model cell of isotropic plastic foams (the radius of the model cell
is: g, = 1.0 x 10* m). In Fig.3.6 the dependence of <¢> and <D>
(Section 2.3} on Pl is depicted for those values of parameter k, which permit
the modelling of PUR (¢ = 0.1) and PVC (k = 0.5) plastic foams. It is
obvious that for all the values of P1 < 0.175

<D> > <i> whenk = 0.1 and
<D> <t> when k = 0.5

The numerical values of <t> and <D)> are in good agreement with other
theoretical [52] and experimental data [!1,20].

In Fig.3.7 the distnbution of base polymer between structural
elements is depicted in dependence of knot parameter k¥ when P1 = 0.075.

Voo = Vil Vo Ve = Vi / Vo,
Vo = P1V,;

where V, and V, are relative volumes of struts and knot,
Vo is volume of base polymer in the model cell.
It is seen that with growth of the parameter k the polymer volume in struts
increases while in the knot decreases. The same theoretical result was
obtained in {15]. However, no experimental data for this relationship are
available to the author.
Figure 3.8 shows the dependence of strut’s characteristic

8 = <i>/l, on the parameter &k for F1 = 0.075. The struts are the thickest
when k = 0.5 and 8 reaches its maximum. Besides this graph determines
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the character of relationships E'/E, = fik) and G,;/G, = fik) (Figs.3.15
and 6.6). A similar result based on another method has been obtained in [15].

The calculated dimensions of structural elements for N = 4 and
k =0.1;k = 0.5 are depicted in schematic planar scheme, Fig.3.9. When
k = 0.1, the struts are thin and the knot is well expressed while at k = 0.5
the struts become not so thin and the knot is less distinguished. The
proportions in the figures presented are in good agreement with those in
photographs of PUR and PVC plastic foams given in [20].

Since the model cell of the isotropic plastic foams is a sphere,
dimensions of the structural elements are the same for all microsituations.
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-4
<r><pPD>%x10 ,m

10 L 2
3
i 4
05 |-
6
i
v
L ! P1
0 0.05 0.10 0.15 0.20

Fig.3.6 Dependence of average struts cross-section side <t> and average
knot diameter <D > on space filling coefficient P1.

Theoretical results.
1,5 <D>, <t>, [52);
2,6 <D>, <t>, k=10.1;
34 <D>, <t>,k =0.5;

Experimental data.
a0 <D>, <>, [L1],
®c <D>, <i>, [20].

Initial calculation data: P1 = 0.075, N = 4, @, = 10*m, A, scheme,
Ab; = Agg= 10°, Aa = 10" xa,.
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10 |-

Fig.3.7 Distribution of base polymer volume V,, between structural elements
in dependence of the knot parameter k.

Theoretical results.

1 relative volume of struts V,;
2 - relative volume of knot V,.

Initial calculation data: Pl = 0.075, N = 4, a; = 10”*m, A, - scheme,
Ab; = Ap= 10°, Aa = 10" Xa,
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0.30 B

025 |-

0.20 _ 5 : k
0 0.5 1.0
Fig.3.8 Dependence of the strut characteristic 8 <t>/l, on knot
parameter k.

Theoretical results.

Initial calculation data: P1 = 0.075, N = 4, @, = 10*m, A\, scheme,
Al = Ap,= 10°, Aa = 10*xa,.
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a) <>

Fig.3.9 Dimensions of the structural elements (a planar scheme).

ay)k =01, <> =031x10*m, <D> = 0.73x10"°m;
b k=05, <t> =044x10*, <D> = 0.46x10"*m.

Inmitial calculation data: P1 = 0.075, N = 4, a, = 10*m, A, - scheme,
A6, = Ape= 10°, Aa = 10*xa,,

3.3.2 Dependence of Calculation Results
on the State of Strut System

It is important that the effect of the state of strut system on
calculation results is known. Strut systems state comprises: the number of
struts N, the character of spatial system formed by these struts, dimensions,
the spatial orientation and defects of strut system, etc. The calculation data
have revealed that the semiaxes hypothesis (3.5) yields the following
relationships for semiaxes a, and @, in various orientations of the strut
system:

I. &, <0, compression:

a=a=a=0;



II. &, > 0 tension (3.28)
a=a=a=<0

It means that compression/tension deformation £4,, applied parallel
to rise direction 03, causes either a buckling/ shrinking of the strut system in
the plane of isotropy in all orientations or there cccurs no deformation at all.

In model cells with uniform spatial distribution of the struts based
on the cube symmetry (N = 4, 6, 8 ; Fig.2.4), there exist orientations
where transversal deformation in plane ¢12 takes place, yet at the same time
no energy is consumed:

a(fg,00) # ag ; W(b.er)= 0

The struts distributed according to the cube symmetry in several orientations
make it possible to trace the surface of the deformed model cell through
crossing-points of the struts with the surface of an undeformed model cell
(Fig.3.10). Then the struts do not change their length and no energy is
consumed. This conclusion can also be referred to model cells of the
monotropic plastic foams, where a uniform distribution of the struts in space
is based on the symmetry of a parallelepiped.

Fig.3.10 Model cell of the isotropic
plastic foams, N = 4
(a planar scheme).

An orientation where surface of a
deformed model cell can be traced
through crossing-points of the struts
and the surface of an undeformed
model cell.
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When the number of struts in a model cell of isotropic, as well as
monotropic plastic foams is ¥ = 5, 6 a uniform distribution of the struts

2 * l; Fig.3.11 Model cell of the isotropic plastic
foams, N = 5or6.

{In the planar scheme the 02 axis is

perpendicular to the scheme plane
3 and the fifth and sixth struts are
not shown).

An orientation where load carrying
struts 1 and 2 are perpendicular to
the location plane of other struts 012.

¥

in space in the body frame of reference is the following (Fig.3.11): two
struts are placed on one straight line perpendicular to the plane where the
other N 2 struts are situated. In these orientations where the two struts
mentioned are situated along 03 axis in the laboratory frame of reference,
while the others are found in 12 plane, the deformation energy is
consumed, but no transversal deformation occurs:

a6 -95)= a, . L) Pg) 0

This situation can be explained in the following manner: the load-carrying
struts are sitvated perpendicular to the location plane of other struts, but
mutually perpendicular forces are known to have no interaction. These two
kinds of onentations of the strut system will be further called singular
orientations.

To evaluate the effect of a slight deviation of some struts from their
unpiform distribution in space, the spherical coordinate 6, of the two struts
is assigned with an initial deviation Af; = 10°. The calculation results
remain unchanged.



62

In averaging the values to be calculated, the results are independent
of the initial orientation of the strut system as a whole in the laboratory frame
of reference.

The elastic constants under consideration are independent of the
absolute values of the semiaxes 2, , ¢; of the model cell. For the isotropic
plastic foams the dependence of results on the number N of struts entering the
knot is quite insignificant. Therefore, the deformation energy minimization
and the numerical integration were carmed out with increased accuracy:

Aa =10° X a,; Al = Ap,=5°

For the monotropic plastic foams, however, the dependence of results on N
is greater, and consequently, the calculations were carried out with usual
accuracy:

Aa = 10" X aq;; A6 = Ap.= 10°

The following conclusions may be made basing on the data of
Tables 3.4 and 3.5 (Initial calculation data: PUR plastic foams,
E, = 2300MPa, P1 =0.075,A = 100r A =30,k =0.1, A, scheme,
¢ = 0.99¢, (1% compression), A, = App= 5", 4, = 10" m )

DRelative dependence of results on

N is insignificant for the isotropic

v¥ 000 plastic foams (Fig.3.12). The effect

P of N on v, and E; s

considerable for the monotropic
plastic foams.

Fig.3.12

Dependence of Poisson’s ratio of

isotropic plastic foams »* on the
) ) N number of struts N in the model
5 67 3 9 10 cell (Table 3.4).




Table 3.4 Dependence of calculation data on the number N of struts entering the knot
(a model cell of the isotropic plastic foams).

Range of
semiaxis a VAV E c2 & texs
N TAE, +AG, TAE,
(a, L Aa) (G, T AG) MPa MPa %
x10° m x 107 m
0.100124 0.100494 0.256 23.552 9.374 —0.487
4 +0.000001 +0.000001 +0.001 +0.001 +0.008 | +£0.002 | 1'50"
(+0.001%) (£0.001%) (£0.4%) |(£0.004%) | (£0.1%) |(+0.4%)
5 0.100000 0.100424 0.260 23.214 9.206 -0.487 | 205"
6 0.100000 0.100494 0.263 22.858 9.047 -0.473 | 220"
4 7 0.100005 0.100408 0.256 23.511 9.352 -0.486 | 300"
5 8 0.100124 0.100494 0.256 23.552 9.374 -0.487 | 330"
6 9 0.100211 0.100329 0.250 24.154 9.660 —0.499 | 345"
7 10 0.100217 0.100276 0.249 24.192 9.678 —0.500 | 4'00"

t9



Table 3.5 Dependence of calculation data on the number N of struts entering the knot
(a model cell of the monotropic plastic foams).

Range of
semiaxis a

{@mntAa)

(@rx T AG)

vy Ay

ES+AEy,

MPa

&£ +Ae

%

x10* m X107 m
0.10013 0.10434 0.96 64.58 0.0092

+0.00001 10.00001 1+0.01 + 0.01 10.0002 020"

(£0.001%) (10.001%) (x1%) (10.02%) |(10.23%)
0.10000 0.10386 1.09 61.31 0.0118 0'25"
0.10019 0.10176 0.65 12.27 0.0030 034"
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2) With N increasing, »,” decreases and E,” grows: the plastic foams
become more ngid. When the value of N is relatively great, the
results become stable: the law of great numbers starts operating.
With a small number of struts, the results depend on the geometry
of strut system (N = 6).

3) Since the strut system with N = 4 struts is sofficiently
representative and the most commonly found in plastic foams it is
used in further calculations.

All the previous conclusions can be referred both to model cells
without and with knot, as well as to both calculation schemes (Ag, and A).

3.3.3 Analysis of Results and Conclusions
a) Variational Analysis

Deformation ¢€,,,,, corresponding to maximum element a4, of
the selection a, of semiaxis a is about four times greater than deformation
E11min  COITesponding (0 minimum element 4., (2 model cell of the isotropic
plastic foams, N = 4, Fig.3.13, 1). For monotropic plastic foams, &,
exceeds £,,,,. by one order (Fig.3.13, 2)). Consequently, the structural
microsituations &g, ©x ¥ are quite different from one another and the
averaging of deformation ¢,, Eq.(3.12) has a physical sense. When the
number of struts N becomes greater (N = 10), the range of a - values
d,, < a < a, Dnarows: the microsituations become equivalent.
Theoretically, when N is sufficiently great, the semiaxes are almost equal in
all microsituations and no averaging of ¢,, is necessary:

<> = £,(0p. ¢g.¥e)

For model cell of the isotropic plastic foams, the averaging can be avoided
already when N = 10 (Fig.3.13, 3)). Usually in practice for plastic foams
N < 10, and the averaging of £,, can be maintained.
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Elements of the selection 4, are not subjected to the mnormal
distribution AS # 0, EX = 0.

b) Elastic Constants, Isotropic Plastic Foams

When the number of struts is N = 4, 5, ..., 8, the Poisson’s
coefficient »° = 0.26 (Table 3.4 ). It has been found that the value of »
does not depend cither on such characteristics of the plastic foams as E,, P1,
k, a,, whether the model cell has or has not a knot. Yet it does depend on N,
i.e. the geometry of strut system. The calculated and experimental results
have been found to agree well (Fig.3.14) in the limits of P1 considered in the
present investigation.

When the space filling coefficient of model cell P1 increases, the
Young’s modulus E~ increases, too (Figs.3.15, 3.17 and 3.18). The range
of E/E, values defined by values of knot parameter X (0.1 < k < 1.0) and
that calculated for a knotless model cell is situated within the experimental
data set E'/E, of various plastic foams (3,9,15,16,17,20,52]. It is impossible
to vary values of E in the kmotless model cell in the limits of P1 = const.,
(Fig.3.16). This leads to = = const. and it does not match with the
experimental data. The modulus E” reaches its greatest values when a half of
the knot surface is covered by struts: & = 0.5 This result agrees well with
the theoretical results obtained in [15].

The comparison of the calculated relationships E = E(Pl)
(Figs.3.17 and 3.18) with experimental data when PUR and PVC foams are
concerned gives a sufficient agreement. For PUR plastic feams, this
agreement realizes in a wide range of parameter &k values: 0.1 < k < 1.0.
For PVC plastic foams , the experimental data available are insufficient, and
the best agreement has been found for the theoretical curve corresponding to
k=10.5.

All the presented statements are correct for both deformation modes
of the model cell: according to Ag, and N, - scheme.

¢) Elastic Constants, Monotropic Plastic Foams
The Poisson’s coefficient »;,” = »,,(A) depicted in Fig.3.19 is

presented together with coefficients »,” and v, calculated in Chapter 5.
When extension degree A of the model cell increases, #», increases, too,
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and this agrees well with the expenmental data. If the deformation energy is
determined according to the Agp, - scheme, v, increases very slightly, and
it contradicts with the experimental data. Effect of a kmot of the model cell,
as well as the parameter k is so small that it can be neglected. The
calculations have revealed, however, a slight dependence of »,” on the
pumber of struts N. As a result it can be generalized that the Poisson’s
coefficients are governed by the following relationships:

Py = ¥ay = ¥V

which has been confirmed experimentally in Table 3.6, [32].

The Young's modulus E;” = E;(P1) depicted in Figs.3.21 and 3.22
is presented together with moduli E,”, E, calculated in Chapter 7. In
calculations it has been assumed that A = 1.05, k = 0.1 for the PUR plastic
foams and A = 1.5, k = 0.5 for the PVC plastic foams. It can be
generalized that:

E- > E",E, whend > 1.

The agreement with the experimental data is sufficient. All the calculations
were performed according to the A, - scheme, because data given by the
Ap, scheme contradicted with the experimental data.

There are no direct experimental data available to the author for the
relationship E;” = E; (A), Fig.3.23. Yet judging from photographs [8,11,20]
the icrease of A4 is associated with an additional orientation of load - carrying
elements - struts in the direction of 03 axis. Accordingly, it can be expected
that E,” and E,” will, at least, remain constant or decrease, while E, will
increase. This consideration has been also confirmed by experimental data of
relationship E,/E,” = f(A), Fig.3.20, [52] where relation E,/E,

(Ey/E” = E;/E,) increases rapidly with the growth of 4. Modulus E;
calculated according to the Ag, - scheme increases too slowly compared with
the experimental data presented in Fig.3.20.

The theoretical results concerning modulus are equal both for tension
and compression (in the limits of calculation process errors). Experimental
data show (Figs.3.17 and 3.18) that Young's modulus for light-weight foams
is usually greater in tension than in compression tests. This happens because
of reorientation of the load-carrying elements struts in the direction of
tension load [52]. As it can be seen from Figs.3.17 and 3_18 the theoretical
results are situated between experimental data of tension/compression tests.
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Conclusions

1.

A knotless model cell does not allow to describe all the variety of
plastic foams structural and deformative properties possible for
Pl = const.

The clastic constants calculated according to the Ag, - scheme do
not always agree weill with the experimental data.

The elastic constants ¥, E, »y,", E,” calculated for a model cell with
a knot and according to the A, - scheme exhibit pood agreement with
the experimental data.

The theoretical results of Young’'s modulus and Poisson’s
coefficients concerned are equal for tension and compression .
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Fig.3.13 Histograms of variational series of selection a,.

Initial calculation data: k = 0.1, ¢ = 0.99¢; (1% compression),
A, - scheme, A8 = Ap.= Ay, = 10°, Aa = 10?xa,.
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vk

Pl

Fig.3.14 Dependence of Poisson’s coefficient »° on the space filling
coefficient P1. Isotropic plastic foams.

Theoretical results: Experimental data:
1 20 o (15);
2  present investigat. @ - [9];
3 [9,15]; m.. [32]
4 [32].

Initial calculation data: N =4, k = 0.1, 4 = 1, ¢ = 0.99¢,
(1% compression), Ag, and A, - schemes, A6, = Ap.= 10°, Aa = 10* xaq,.
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Fig.3.15 Dependence of relative Young’s modulus E/E, on the space filling
coefficient P1. Elastic and rigid isotropic plastic foams.

Theoretical results: Experimental data:
Shaded area - 1,7 [52,3];

01 <k < 10; 4 empiric relationship
2-k=05; EIE; = 1/6 P1, [19);
3-k=10 17  [16,17,52,20,9,15];

5 - no knot model cell; 8,9 - elastic latex foamns [9,15].
6-k=0.1.

Initial calculation data: P1 = Q.075, N=4,0.1 = k = 1.0, 4 = 1,
¢ = 0.99¢, (1% compression), Ag, and k, schemes, A, = Ap.= 10°,
Aa = 10™ xa,.
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Fig.3.16 Dependence of relative Young's modulus E/E, on the knot
parameter k. Isotropic plastic foams.

Theoretical results.

1 Pl =0.075
2 P1 = 0.075, no knot model cell;
3 Pl = 0.025;
4 Pl = 0.025, no knot model cell.

Initial calculation data: £, = 2300MPa, A = 1, N =4,
c = 0.99¢, (1% compression), Ag, - scheme, A\, - scheme,
Afy = Apg= 10°, Aa = 10" xa,.
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E*[E , E* MPa

0.0435

0.0391
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P1
0 0.05 0.10 0.15 0.20

Fig.3.17 Dependence of Young’s modulus E* on the space filling
coefficient P1. Isotropic, rigid PUR plastic foams (see the next page for
initial calculation data).
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Fig.3.17 Dcpendence of Young's modulus £ on the space filling
coefficient P1. Isotropic, rigid PUR plastic foams (see the previous page for

graph).

Theoretical results:

-k =0.5, k= 1.0;
-k =0.1.

1
2
Experimental data:

A,a - tension, compression, [52];

o0 -E,,E,,A = 105, tension, [20];
| | - compression, [14];

@ - compression, [19];

B0 - compression, [17];

¢, 4 tension, compression, [16].

Initial calculation data: E, = 2300MPa, P1 = 0075, N=4,k = 0.1,
A =1, ¢ =099, (1% compression), A¢g, - scheme, A, - scheme,
Al = Ap,= 10°, Aa = 10*xa,.
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Fig.3.18 Dependence of Young's modulus £ on the space filling
coefficient Pl. Isotropic, rigid PVC plastic foams.

Theoretical results.
1 present investigation.

Experimental data:
O,@® tension, compression, [52];
a,0-E, E, A = 1.50, tension, [20].

Initial calculation data: £, = 3000MPa, N =4, k = 0.5, 4 = 1

¢ = 0.99¢; (1% compression), A, and Ap, schemes, Af: = Ap.= 10°,
Aa = 10% xa,.
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Fig.3.19 Dependence of Poisson's coefficients »;”, »,°, », on the
extension degree 4 of model cell. Monotropic, rigid plastic foams.

Theoretical results: Experimental data:
1w, k=05k=1.0; <0 vy, vy, [181,
2 v k=01, loading mode
3 v k=0.1,k=05; unknown;
4 »" k=01, Ap, scheme; 0,00,a v, vy »y,
5 v, k=01k=05. tension in

Table 3.6, [32].

Initial calculation data: P1 = 0.075, N = 4, ¢ = 1.0l¢, (1% tension),
A, scheme, A8, = Ap,= 10°, Ag = 10")(4:10

H



Table 3.6 Experimental data for Poisson's coefficients »y,” ;.

in tension (T) and compression (C), [18,32,34)].

vy of various monotropic, rigid plastic foams

vy by vy vy Ty A."™
N¢ Foams
T C T C T C T C T C
1 PI-1, 0.33 0.33 0.23 0.22 1.50 1.12
plastic, [32].
PUR-305, 0.40 0.39 0.30 0.32 0.26 0.25 1.54 1.56 1.16 1.32
plastic, [32].
PUR-3, 0.69 - 0.38 - 1.82 - 1.24
plastic, [34].
1.20 (exp.)
PUR-305, 0.57 0.56 0.39 0.38 0.30 0.30 1.90 1.87 1.25 1.43
plastic, [32].
1.30 {exp.)
Carbon, [18]. 0.25 0.12 2.08 1.48
Carbon, [18]. 0.33 0.15 2.20 1.50
7 PUR-3, 0.77 0.75 0.24 0.25 0.18 0.19 4.28 3,95 1.70 1.86
plastic, [32].

**) The degree of monotropy A is determined after relation vy, /v,y

using experimental data from [52], Fig.3.19.
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E* /E
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1.0 1.1 1.2 1.3 1.4 1.5

Fig.3.20 Experimental data for relationship E,/E,” in dependence of degree
of anisotropy A of elastic PUR plastic foams, [52].

O  tension;
@ - compression.
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Fig.3.21 Dependence of Young's moduli E,", E,", E,” on the space filling
coefficient P1. Monotropic, rigid PUR plastic foams.

Theoretical results: Experimental data:

1 Young's modulus E;"; o,00 E;, E, tension, [20].
2 Young's meduli E,” Ey

Initial calculation data: £, = 2300MPa, k = 0.1, 4 = 1.05, N = 4,
¢ = 1.01¢, (1% tension), A, scheme, Af; = Ap.= 10°, Aa = 10*xa,.
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Fig.3.22 Dependence of Young's moduli E,", E;”, E; on the space filling
coefficient P1. Monotropic, rigid PVC plastic foams.

Theoretical results: Experimental data:
1 E; 0,0 - Ey", E,” 1tension, [20].
2 E, isotropic foams;
3 E Ey

Initial calculation data: £, = 3000MPa, k = 05, A =15 N =4,
¢ = 1.0lc, (1% tension), N, scheme, A8, = Ap.= 10°, Aa = 10*xa,.
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Fig.3.23 Dependence of Young’s moduli E;” E,’, E;" on the extension
depree A. Monotropic, rigid PUR plastic foams.

Theoretical results:

1 Ey k=075

2 E5 k=10

3 E5 k=0.1;

4 E  ,k=0.i, Ap, scheme;
5 E° E L k=0.1.

Initial calculation data: E; = 2300MPa, Pl = 0.075, N = 4,
¢ = 0.99¢, (1% compression), A, - scheme, Af; =Ag,=10°, Aa = 10* xaq,.



4 Deformative Properties in Compression/Tension
Applied Parallel to Rise Direction
(Volume Deformation Hypothesis)

4.1 Mathematical Model

4.1.1 Effective Moduli

In Chapter 3 the calculation of moduli »,’, », and E,” has been
based on the hypothesis (3.5) that a model cell shaped as a rotational ellipsoid
retains the same form after deformation applied parallel to the rise direction.
However, deformation of the model cell subjected to the loading parallel to
the rise direction can be defined otherwise, yet in an equivalent manner.
Macroproperty of plastic foams concerning their experimentally measurable
effective relative volume deformation & is also related to the model cell.
The relative volume deformation of the model cell £ is assumed to be
numerically equal to ¢ and to remain constant in all microsituations (the
volume deformation hypothesis):

&(B, e W) = € = const, @.1)

According 10 numerical calculations when hypothesis (4.1) is assumed
(Section 4.3), semiaxes g, and @, are mutually linked, but not obligatory
equal (Fig. 4.1):

aéco(l + £7)

az(eE,SOEv‘J’E) = g a|(BE'¢E’¢E)

(4.2)

It can be generalized that assuming the tie condition (4.2} the post-
deformation form of model cell in various microsituations can be a rotational ,
as well as a three-axial ellipsoid.
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Fig.4.1

Deformation of model cell
in the isotropy plane 012
by the strain applied
parallel 10 the axis of
monotropy o3 and the
volume deformation
hypothesis 4.1 assumed.

Then effective Poisson’s
coefficients »y,”, v, and effective Young’s modulus E; can be expressed
as follows:

vy <E>! £y vy <En>/! £n
E = <oy3,>/ £y 4.3)

where <g,,>, <g,;> and <a,,> are calculated according to Eq.(2.9).
Then the semiaxes a, a, of model cell after deformation have to be
determined from

a(0z¢p¥,) a,

a4,

£, (0.0 ¥g)

a(0p.0p¥:) — a,
4y

el 05, ¥8)

4.4)

With other considerations similar to those in Paragraph 3.1.1, g, and
a, are calculated from the local structure model cell using variational analysis
of the post-deformation form a, , g, , ¢ of model ccll and the deformation
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energy (4.5), (4.6) or (4.7}, (4.8) minimization (3.4). The tie condition (4.2)
allows to reduce the two-argument minimization of energy function to one-
argument minimization.

To calculate vy,” vy, , Ey from Eq.(4.3) in a wide range of
extension degree A4 = cfa, of the model cell, the experimental data for
relationship & = €£'(4) should be known. However, such data are not
available o the author. Moduli »,,", »;,, E, calculated in Chapter 3 agrec
well with the experimental data (Paragraph 3.3.2). Then the effective volume
deformation ¢ calculated from Eq.(3.6) can also be considered to be in
good agreement with the experimental data. Therefore, in further calculations
will be used those numerical values of £, which have been obtained in
Chapter 3 using the semiaxes hypothesis.

4.1.2 Deformation Energy ( Ag, - Calculation Scheme)

Since the post-deformation form of model cell is a three-axial
ellipsoid with determined semiaxis ¢, @, (0g,05 V), (0g¢5¥s) are the
semiaxes to be calculated. Considerations are similar to those in
Paragraph 3.1.2. Then deformation energy of a knotless model cell can be
expressed as follows:

W(anaz»es-‘Pe-\l’s) 2a Z fuﬂ x
0Co e
< a,(0;,05¥5) a,(0;,05¥,) C a,¢, ? @.5)

where [, = c¢’sin’® + ajcos’@.’
S [ axfg 0¥ c sinf cose, |* +

+ [ ay(fgyep¥e) € sind'sing, |° +



+ [ a,(0g 05 ¥ D A {0g 06 V) oSO, ]1 n=12...N

If the model cell of local structure has a knot, then:

EF & (r,—rpn”

W v :6 ] )
(@0 6e.0c-Ve) T X . =bn

{4.6)

where rg =a,¢/ fo r,,=a,a,cl1b:’

Expressions of the deformation energy (4.5) and (4.6) comprise a spherical
coordinate ,of the n-th strut. In Section 2.2 it has been proved that
@,= @a(0c,vc. ). Then semiaxes a,, a,, strains g, , &, and stress gy,
in every microsituation depend on all the three Euler's angles 8, o, ;.
The values of &,,(0¢,¢c.¥e), En{fr.¢r ) calculated from the model
cell of local structure are related to the point of plastic foams when foams are
considered as a continuous medium. Therefore, average strains <g, > and
<&, > in the plane of isotropy can be derived from Eq.(4.4) and (2.9).

4.1.3 Deformation Energy ( A, - Calculation Scheme)

With considerations similar to those in Paragraph 3.1.3, the
deformation energy of a knotless model cell can be expressed as follows:

EF X i
E ( )\ur(‘\nkz»asdoz-\bz)_ 1] Q.-.o{ﬁ We)s

n=l

W(An)\zvoe- P \I/E)

where A|(0;5;$91;! \{’5) al(as’i’md’s)l ay

MOoepe) = a0nve ¥/ a, . “.n
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A, is calculated from Eq.(3.13) and @, from Eq.(3.8).
If the model cell of local structure has a knot then:

EF X .
w(kltknefﬁa,plpf) T E [ RK(A"A:,G v¢£t¢’£) - l ] x

n=l

x [ o000 — D21, @.8)

where A is calculated from Eq.(3.16) and r, from Eq.(3.11).
Average strains <g&,,>> <é&n> in the plane of isotropy can be
derived from Eq.(4.4) and (2.9).

4.1.4 Average Stress

The average stress is defined for the local model ceil of a continuous
medium. Post-deformation form of the model cell can be either a rotational,
or a three-axial ellipsoid, Eq.(4.2). Theoretical considerations are equal to
those described in Paragraph 3.1.4, except the post-deformation form of
model cell which is approximated now with an ellipsoidal and not a circular
cylinder. Then, the stress in every microsituation is the following:

P( 6599’9"’5 )

) .
o350, 0. ¥e) x R ( QE,WE-V"E ) Ry 95,909\55 )

where P(8c, 0.4 is a force applied to the model cell, and
R\(0p0p.¥e), RolOg, 0¥ c)are semiaxes of cylinders base ellipse.

To calculate product R\R;, heights and volumes of the ellipsoid and
the cylinder are assumed to be equal: V, = V, = V_,. Since:

e ol

Vt = 4/31[' c a|(35,¢5,'f/5)a2(85,¢p5.\p5);
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Vq.; =2xc R|(05|’P£-\b£)R2(0 1‘p£!w£)' then
R8s 06V 5) R Op, 05, W) = 213 a\(0p, e, p) GO, 05, Vi) -

Force P in every microsituation can be calculated from the model cell of
local structure:

P(fc.pe¥e) = Wlg o) Ac.
On the other hand, according to Paragraph 3.1.4:

N
— _1 — min Y Wia.a.0,,0¥;)
A=]

P(B.E"pﬁu'pﬁ) =

Hence, stress ¢,; can be calculated in every microsituation 8, g, ¢

N
3 min Z W.(a,.a.6..0:¥;)
a=1

Bevedd = oy a0 STt

.{4.9)

where W, is derived from Eqs.(4.5), (4.6) or (4.7), (4.8). Then the average
stress <dy > is calculated using Egs.(4.9) and (2.9).

4.2 Numerical Calculations

Parameters used for the numerical calculations are sirmilar to those
described in Paragraph 3.2.1. The numerical value of strain &, applied to
model cell has been restricted, for a greater versatility of the mathematical
model, to | &,; | = 1% The calculations have been carried out according
to programmes depicted in Figs.3.4 and 4.2. In conformity with conitrol
calculations, numerical integration steps Af; = Ap,= Ay = 10° provided
sufficient accuracy of the data obtained. Analysis of variational series was
carried out for a selections of semiaxes a,,and a,,, n = 1,2,..., NN,



1]

Variational analysis of the post-deformation form of model cell was carried

out with a step Aa, = 10* x a, Effect of Aa, on the calculation data
was evaluated

1
QyEyy

|A"3|.| =

29 2x w
C Ae” (1 + & )Aa
|Avy, | < S% ! ‘[ ‘[ - * ] l
Bllsnc a, a;
x sin fpdfdpdV,;
2rlr ¥
|AE;| < i 3 ‘ AW .
16x°(c - ¢ )€, aa,

WAa, WAe,
in 6,d6 :
T > sin O, d8ediedi;
ag| = —LAE+l o BT ja-|

201 + v7) 201 + ¥7)

where AW = W(a, + Aa)) — W(a)) .

v E, G are effective constants of isotropic plastic foams;

£, A€ are calculated according to the mathematical moedel
described in Chapter 3.
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€ by o5 Va

Vanational analysis of
the post-deformation form
a, , a, , ¢ of model cell.

Qi = G utAg, a4 = a)a,E)

- +
K=1
_——
Calculation and Calculation and
minimization of minimization of
deformation energy W deformation energy W
(Ag, - scheme). (A, - scheme).
Wm+l(al.m+| ’ aI ' C)
Wm+| > Wm
+

a,,a, mnW

Calculation of <g,,>, <g,>
and <gj;>

<g, > <Ep>  <op>

Fig.4.2 Calculation blocks corresponding 1o deformation £y, in the programme
"CONSTANTS" (Fig.3.4) when the hypothesis of volume deformation is
assumed.
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4.3 Analysis of Results and Conclusions

The calculation results when the hypothesis of volume deformation
(4.1) is applied, have revealed the following relationships between the
semiaxes a, and ag; in various orientations of the strut system:

1. &3 < 0, compression
a, s ay, 8 54
2)a > a, 8; < aq,;
Ya <a,, a > aq

II. &, > O, tension
Na, =2a,, a = a,;
Da >a, a < ay;
Na <a, a4 >a

It means that in several orientations compression/tension €, causes
buckling/shrinking of the strut system in the plane of isotropy along both
semiaxes d, , @, ; or no deformation occurs at all. Unlike to the model cell
deformation (3.28) according to semiaxes hypothesis, there are now also such
orientations where shrinking may occur along onc semiaxis and buckling
along the other: 1.2) 1.3) and 11.2) ; I1.3) The other conclusions about
effect of the state of strut system on the calculation results are the same as
those described in Paragraph 3.3.2.
Semiaxes with corresponding great deformations, for example:

a = dign = 0.9319 x 104 m; &, = — 7%

have appeared (Fig.4.3) in value sets of a, and 2, in distinction to those
calculated in Chapter 3. Since the strains €,, , £, corresponding to various
values of semiaxes a, , a, are mutually very different, the averaging of ¢,,
and £,, when N < 10 has a physical sense. The elements of selections «,,
, a3, are not subjected 1o normal distribution.
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Conclusions

The calculation results depicted in Figs.4.4 to 4.9 allow us to draw
the following conclusions {as calculation of constants »;, , E, when
A > 2 on personal computer was extremely time-consuming it was omitted):

1. The calculations based on the semiaxes (Chapter 3) and volume
deformation {Chapter 4) hypothesis provide results, which
practically coincide both for the isotropic and monotropic foams.
Both mathematical models are mutually compatible.

2.  The two mathematical models suggested for deformation of plastic
foams parallel to rise direction 03 are equivalent.

3 The theoretical results of Young’'s modulus and Poisson’s
coefficients concerned are equal for tension and compression.
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M, 1)N=4, A=1;

M
al

- m
0 12345678910

- m
0 12345678910

.

@y = 0.9609%10* m

; Qymin = 0.9870%10* m;
Qe = 0.1018% 102 m; Gy = 0.1046 %10 m;
4,, =0.1004x10° m. a,, =0.1002x10° m.
M_, 1)N=4, A=15; M_ 1)N=4, A=15;
a, a,

20000 20000

10000 10000
= m = m

0 123 45678%90 0 12 3 4567 89%10
a, = 0.9319%10* m; yin = 0.9577 % 10* m;
Qpmae = 0.1052% 107 m; Qypyy = 0.1081 %107 m;
4, =0.9982x10* m.

4, = 0.1001x10° m.

Fig.4.3 Histograms of variational series of selections a,, , a,,

Initial calculation data: N =4,k = 0.1, ¢ = 0.99¢, (1% compression),
A, scheme, A6, = Ap.= Ay, = 10°, Aa, =10*xa,.



Pl

0 0.05 010 015 020

Fig.4.4 Dependence of Young's modulus E- on the space filling
coefficient Pl, Ap, scheme. Isotropic, ngid PUR plastic foams.

Theoretical results.

1 semiaxes hypothesis assumed, Chapter 3;
2 volume deformation hypothesis assumed,

93

Initial calculation data: £, = 2300MPa, P1 = 0.073, N =4,k = 0.1,

A =1, ¢ =0.99, (1% compression), Ag, scheme,
Ad; = Ap,= Ay, = 10°, Aa, = 10*xa,.
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V*
i Fig.4.5 Dependence of Poisson’s
: coefficient »,," on the extension degree A4
0.50.- - of model cell, Ag, - scheme.
|
i
L ! Theoretical results.
026 r—_—d—- 2
3
L 1 - semiaxes hypothesis assumed,
o | _ A Chapter 3;
2 - volume deformation hypothesis
1.0 1.5 2.0 assumed.

Initial calculation data: N = 4, k = 0.1, ¢ = 0.99¢, (1% compression),
Ag, - scheme, Af; = Ap,= Ay = 10°, Aa, = 107 Xaq,.

E* , MPa N
Fig.4.6 Dependence of Young’s modulus
" '_ E,” on the extension degree A,
50 ;rf Ap, - scheme. Rigid PUR plastic foams.
T 1
__—_‘_‘_‘___::_2 Theoretical results.
: 1 - semiaxes hypothesis assumed,
0 —— . A Chapter 3;
_ 2 volume deformation hypothesis
10 15 20 assumed.

Initial calculation data: E, = 2300MPa, P1 = 0.075, N =4,k = 0.1,
¢ = 0.99¢, (1% compression), Ag, - scheme, Af; = Ap.= Ay, = 10°,
Aa| = 104:(00.
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E*, MPa

- Pl
0 0.05 0.10 0.15 0.20

Fig.4.7 Dependence of Young's modulus £ on the space filling
coefficient P1, A, scheme. Isotropic, rigid PUR plastic foams.

Theoretical results.

.5, semiaxes hypothesis assumed, Chapter 3;
.5, volume deformation hypothesis assumed;
.1, semiaxes hypothesis assumed, Chapter 3;
.1, volume deformation hypothesis assumed.

1-k=0
2-k=0
3-k=0
4-k=0

Initial calculation data: £, = 2300MPa, N =4, 4 =1, ¢ = 0.99¢,
(1% compression), A, - scheme, A, = Ap= A, = 10°, Aq, = 10 xa,.



96

Fig.4.8 Dependence of Poisson’s
coefficient »,,” on the extension
degree A of model cell, A, - scheme.

Theoretical results.

1 - semiaxes hypothesis assumed,
o1- Chapter 3;
2 - volume deformation hypothesis
0 ' I 4 assumed.
10 15 20

Initial calculation data: N = 4, k = 0.1, ¢ = 0.99¢, (1% compression),
A, scheme, Af; = Ap.= Ay, = 10°, Ag, = 107 % a,.

Fig.4.9 Dependence of Young's
modulus E,” on the extension degree

2 A A\, scheme. Rigid PUR plastic
foams.
2, Theoretical results.
10 L 1 semiaxes hypothesis assumed,
, Chapter 3;
0 b . . 4 2 - volume deformation hypothesis
assumed.

1.0 LS 20

Initial calculation data: E, = 2300MPa, P1 = 0.075, N =4,k = 0.1,
¢ = 0.99¢, (1% compression), A, - scheme, Afy = Ap,= AY = 10°,



5 Deformative Properties in Compression/Tension
Applied Perpendicular to Rise Direction

5.1 Mathematical Model

5.1.1 Effective Moduli

If the strain €,, is applied perpendicular to the rise direction of a
local model cell of monotropic plastic foams [25]:

a, —
822 = :—ao = const.

a,

effective Poisson’s coefficients »;," , »;,° can be expressed as follows
VZI- = — <£“>I£n Vn. = — <€33>/€n

where <g,> and <&y,> are calculated from Eq.(2.9).

Fig.5.1

Deformation of the model cell in the
plane 013 perpendicular to the loading
direction 02.

To calculate the strains £,,, £, in
every microsituation 8, ¢g Vg
semiaxes 4,, ¢ of the model cell after
deformation have to be known

a (0¥ — a
£{Oe. 0¥ = i ZDE :
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b;. -
£33(B, 0.V ) e vee) 2 5.1)

S

Experimental data [32] show that monotropic plastic foams are govemned by
the following relationship:

¥y = ¥y

Therefore, in various microsituations the semiaxes q,, ¢ should be allowed
10 vary not necessarily equally. In Paragraphs 3.1.1 and 4.1.1 it has already
been proved that in such a case a tie condition between a, and ¢ should be
introduced. The condition expressed in the form of (4.2) provides a, , ¢ the
required possibility to vary not necessarily equally, as well as it ensures a
compatibility of the mathematical model presented with those described in
Chapters 3 and 4.

For this reason the tie condition between a, and ¢ has been
expressed by the hypothesis of relative volume deformation:

&0, 0c W) = £ = const. then

2% ¢ (1+&7)

0 * »
Preebr) a, a(6..0,V,)

(5.2)

To calculate v,;” », for a wide range of extension degree A of
the model cell, experimental data of relationships & = £(4) should be
known. Since there are no such data available, the plastic foams to be
modelled are divided into several groups:

Group 1.Isotropic plastic foams,
A=1

Group 2.Plastic foams with a medium degree of monotropy,
I< A<y

Group 3.Plastic foams with a high degree of monotropy,
A =3
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Mathematical models of these plastic foam groups differ with the tie
condition between semiaxes a, , ¢ and the mode of finding the numerical
valve of €

Group 1.The numerical values of & calculated in Chapter 3
Eq.(3.6) are used for tie condition (5.2) ;

Group 2. The semiaxes a, , ¢ are connected with tie condition (5.2).
To calculate the strain ¢ for every extension degree 1 < A < 3, the data
of foam groups 1 and 3 are used. As the values of strain £ in points A =
1 and A = 3 are known (Egs.(3.6) and (5.5)), the relationship £ = £7(A)
is assumed to be linear (Fig.5.2). Then the strain & can be calculated for
each 1 <A <3

- & A-1 (5.3)
£3 3-1)

4

Fig.5.2

Calculation of effective volume
strain € in the mathematical
model of plastic foams with a
medium degree of monotropy.

Group 3. When the plastic
foams with a high degree of
monotropy are considered, the
strut orientation in rise direction 03 is assumed to be so pronounced that
practically no deformation occurs in this direction (the hypothesis of great
monotropy}

£; =0 thenc = ¢, =const. and »,y =0 5.4)

Assuming (5.4), there i5 no need either for the tie condition (5.2) or the
previous data of £ value, because only one semiaxis remains in the
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expression of energy function, i.e., a,. The effective volume strain &
corresponding to the condition (5.4} can be expressed as follows:

E = <g > + &y &, =0 5.5

It should be mentioned that boundaries of groups 2 and 3 of plastic foams are
not strictly defined. The cell extension degree sufficient 1o realize condition
(5.4) can be determined from photos of the plastic foams. When A > 3, the
struts are oriented practically paraliel to rise direction [20]. To define the
lower boundary of group 3 correctly, it would be necessary to determine the
relationship vy = ryy (4) experimentally.

The semiaxes a,, ¢ in every microsituation are found, using the
variational analysis of the post-deformation form of model cell and the
minimization of deformation emergy (5.6), (5.7) or (5.8), (5.9). Tie
conditions (5.2), (5.4) make it possible to reduce the two-argument
minimization of deformation energy to that of one-argument.

5.1.2 Deformation Energy (Ap, - Calculation Scheme)

According to tie conditions (5.2) and (5.4) the post-deformation form
of model cell is a three-axial ellipsoid with determined semiaxis @,. Then
a,(0g,05¥s), c(0gpeVp) are the semiaxes to be calculated. Considerations
are similar to those in Paragraph 3.1.2. Then deformation energy of a
knotless model cell can be expressed as follows:

EUF il
W(a,,c.0c,¢00.¥¢) ‘Wzl: f-ﬂ X
oo n-

[ a,(0p0a¥s) cBpreg¥s) @ 4G ]2 (5.6)

Ve Vo

where f,, = a,cos?d,’ + c;lsin %8,
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fa = [ 8, cA0g ¥ sind, cosp, )t +
+[ a0, 05, ¥ ) €(0g, 05, V) sin8, 'sing, I’ +
+[ a, a){bg, ¥ dcost, | n=12,...N

If, however, the model cell of local structure has a knot, then:

EF X (r,—r,)

W(de.oE,‘PE-V’E) = 3 g To — D2

' 3.7

where Fg = ayCo / fo r,=aac/ I/fz.-

Likewise to Paragraph 4.1.2, it can be proved that strains ¢, , &y
depend on all the tree Euler's angles 8¢, ¢, y:. No simplification is possible
in calculating average strains and therefore, <¢g,> and <eg,> are
calculated from Eqs.(5.1) and (2.9).

5.1.3 Deformation Energy (), - Calculation Scheme)

Considering similar to Paragraph 3.1.3, the deformation energy of
a knotless model cell can be expressed as follows:

EF & 2
WA, Ay, 0p, 06,45 5 E [)‘nr()\la)‘gsagv'l’g'l‘s) 1]° x
n=i
X Qulfe02): (5.8)
where MoV = al(8£v¢.€!¢.€)/ a,

MOpvpde) = el e/ .
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A.r is calculated from Eq.(3.13) and g, from Eq.(3.8).
If, however, the model cell of local structure has a knot, then:
E N
—%F— E [)"'x(knxg -'ﬂgnﬂpﬂ\(‘g) - l]2 X

A=l

W(XI!AJ-OE:WE:wE)

X [ raBeee — D121, 5.9

where A_ is calculated from Eq.(3.16) and r, from Eq.(3.11).
Average strains <¢,,> and <s3;> are calculated from Eqs.(5.1)
and (2.9).

5.2 Numerical Calculations

Parameters used in the numerical calculations are similar to those
described in Paragraph 3.2.1. For a greater versatility of the mathematical
model the numerical value of strain &£,, has been restricted to:
| €2 | = 1%. The calculations were performed according to the
programmes depicted in Figs.3.4 and 5.3. Control calculations showed that
numerical integration steps Af; = Az = Ay, = 10° insured sufficient
accuracy of data. Analysis of variational series was carried out for selections
of semiaxes a,, ¢, n = 1,2, ..., NN. Variational analysis of the post-
deformation form of model cell was carried out with a step Aa, = 10 xq,.
Effect of Aa, on the calculation data was evaluated

Group 1 and 2 of the plastic foams.

| & "2&.| < .
1n%
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95'- PE» "l’g

g, Af

¢ = ca,, &) I

Varnational analysis
of post-deformation
form (a,, a,, ¢)
of model cell.

A=13

ey = 41 T Ag,

c = c{a,, €)

Variational analysis
of post-deformation
form (a,, a,, ©)
of model cell.

a!,m+l =al.m+Aal
¢ =g

Calculation and
minimization of
deformation energy W
(Ap, - scheme).

Calculation and
minimization of
deformation energy W
(A, - scheme).

Woii(@) pars @3, ©)

>W,

+

a,, ¢, min W

Calculation of <g,> and <gy,>

3

PE

Ve

Fig.5.3 Calculation blocks corresponding to strain &,

"CONSTANTS" (Fig.3.4).

<g;>, <£;>

in the programme
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dy

|Ary | < _—
8xa,¢,

|-

] sinfd6.dpdy..

(1 + €7)Aa,

3
a

where £', Ag” have been calculated in Chapter 3.
Group 3 of the plastic foams.

- Aa, . 1 =
| Awy | s 1 |A"u| =0

dyEn

5.3 Analysis of Results and Conclusions
The calculation results have revealed that in various orientations of
the strut system the following relationships exist between the semiaxes a, and
¢ when plastic foams of groups 1 and 2 are considered
I. g < 0, compression
Da z2a,, ¢c2¢;
Da >a, ¢c<6,;
Va<ag, ¢>qg
Il. &, > 0, tension
Da =g, ¢c=¢;
2)a, >a, ¢ <ay,;

3Ya, <a, ¢c>q.
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It means that in several orientations of the strut system compression/tension
deformation &, of model cell causes buckling/ shrinking of the strut system
along both semiaxes a,, ¢ ; or no deformation occurs at all: 1.1) , I1.1)
Besides there are also such orientations where the shrinking occurs along one
semiaxis and the buckling along the other: 1.2) , 1.3) , I1.2} , IL.3)

The mathematical model of group 3 of plastic foams provides the

following relationships:

I. £ < 0, compression

a >a, ¢

I
L

Il. &, > 0, tension

aQ<ag, c=q

It means that in all orientations of the strut system compression/tension
deformation €, of the model cell provides buckling/shrinking along
semiaxis a, and no deformation along semiaxis c. All other conclusions
about effect of the state of strut systern on the calculation results are similar
to those described in Paragraph 3.3.2.

Histograms of variational series of selections [ S
n =172 ..., NN are depicted in Fig.5.4. As soon as the strains &£,, and &4,
corresponding to various values of @, and ¢ mutually differ by several
orders, the averaging of ¢, , &, when N < 10 is physically substantial.
Elements of selections a,, , ¢, are not subjected to a normal distribution
AS = 0, EX # 0.

Conclusions

The following conclusions can be made with regard to the Poisson’s
coefficients calculated (Fig.5.5):
| In the case of isotropic plastic foams (4 = 1) Ag, and A, - schemes
provide equal values of the Poisson’s coefficient »

»© =026 1+ 001

Since the »° - value is equal to that calculated for deformation &,,
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(Chapters 3 and 4), it can be conciuded that the three mathematical
models of uniaxial deformations £, (one mode) and &; (two
modes) are compatible.

In the case of monotropic plastic foams (4 > 1) the p, - calculation
scheme provides the following result:

¥in = Pn
In addition, values of Poisson’s coefficients »,~ », decrease
when the extension degree A of model cell increases, which
contradicts with experimental data. The results calculated according
10 the A, - scheme agree well with the experimental data:

|’2|- = ’13- A=1
When A increases, »,, grows, too, while »,  decreases.

The Poisson's coefficients »,,” v»,; are independent of such
characteristics of plastic foams as E;, Pl and k. ;" , »; do not
depend on whether the model cell has or has not a knot.

Experimental data [11,32,52] available to the author are depicted in
Fig.5.6 for relationship

EJIE" = EyIEy =f(A)
But in conformity with Eq.(2.5) we have

E3-IE|- = E)‘IEZ- = lf]|-/l'23-
Depicting the theoretical curve

v imy =f(A4)

together with the experimental data a good agreement can be
observed. Then the mathematical models described in Chapters 3,
4 and 5 characterize the transversal deformations (Poisson's
coefficients »,” v, ) of monotropic plastic foams adequately

The theoretical results of Poisson’s coefficients concerned are equal
both for tension and compression .
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M, DN= 4, A=1,; M, 2)N= 4, A=1;
a, &
20000 20000
10000 . 10000
- m L . m
0 123 456789%1010

0 123 4567289%10

aynia = 0.9609%10* m; Cmiz = 0.9870x10* m;
iy, = 0.1018%10? m; Crax = 0.1046 %107 m;
d,y = 0.1004x10° m. & = 0.1002x%107 m.
M, 3)N= 4, A=3; M, 4)N= 4, A=3;
a, c
20000
20000
S 10000
L m
o 1234567 8910 o

0 123 4567 8910

Bimin = 0.1000 x 103 m,
Qe = 0.1018x 107 m; ¢ =¢ =3.0x10%m;
du = 0 ].OO] X 103 m.

Fig.5.4 Histograms of variational senes of selection al,, c,

Initial calculation data: N = 4, k = 0.1, a, = 0.99¢, (1% compression),
A, scheme, A8, = Ag,= Ay, = 10°, Aa, =107 xa,.
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1.0 15 20 25 3.0 35

Fig.5.5 Dependence of Poisson’s coefficients »,,", »,;” on the
extension degree A of model cell. Rigid plastic foams.

Theoretical results: Eperimental data:

1 A, scheme, w,, 0 vy, [18);
k=01 k=0.5; O,a #,", vy, tension,

2 Ag, - scheme, v, ¥y, Table 3.6, [32,34].
k=0.1;

3 A, - scheme, vy
k=01,k=05.

Hypothesis of great
monotropy assumed:
*4 Ag, - scheme, »,,", & = 0.1;
*5 Ag, - scheme, »,y, k = 0.1.

Initial calculation data: N = 4, a, = 1.01q; (1% tension),
Ab; = Ap,= 10°, Aa, =10"xa,.
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¥
E* /E*  E* /Ez

»

1.0 18 2.0

Fig.5.6 Dependence of relations E,/E,” = E;/E,” = vy, /v,, on the extension
degree A of model cell. Rigid and elastic plastic foams,

Theoretical results: Experimental data:
2 -, scheme; O,W tension 1, compression 4,
5 Ap, scheme. [52];
3 - (8]

O,@® - tension,compression, [11];
4a,a - lension,compression,
[32,34];
o [18].
Initial calculation data: Pl = 0.075, N = 4, a, = 0.99q,
(1% compression), ¥ = 0.1, Af; =Ap= 10°, Aa, =10"xa,.



6 Shear in the Plane Perpendicular
to the Plane of Isotropy

6.1 Mathematical Model

6.1.1 Effective Shear Modulus

If the strain €,; in the plane 13 is applied to the local model cell
of monotropic plastic foams:

€y = 172 Y s
effective shear modulus G,,” can be expressed as
Gy = <o,> 1(26,),

where v is a shear angle and <e¢,> is the following

riv ¥
<g> # 1 ‘[‘[ 03(0c.0p¥,)sind db dody, 6.1)

Stress  0,y(8c. 0, ¥s) in every microsituation is defined for the local model
cell of a continuous medium (Section 2.2). In pure shear ¢, the volume
does not change, so the volume of model cell before and after deformation
is the same:

V.=V _ =43% ¢, a} = const.

If the shear deformation energy accumulated in the unit volume of a
continuous medium is the following [49,51}):

Wy = l/ZGUE,J =172 (013613 + GMEM) = dpiEy Ihel‘l :
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W(O,.05 o)

W Covedd —ipy

(6.2)

where W(8,,yr. V) is the shear deformation energy accumulated in the whole
model cell in every microsituation 6g,¢c, V5.

W0 0¥ = WiV = 43xcal’ontn.

6.1.2 Deformation Energy (), - Calculation Scheme)

Previously, in calculation of Young's moduli and Poisson's
coefficients both deformation energy calculation schemes, Ap, and ), , were
used. When isotropic plastic foams are considered, the constants calculated
are equal in both cases and are in good conformity with experimental data.
When monotropic plastic foams are considered, the Ap, - calculation scheme
has been found to be inadequate (Table 6.1). The theoretical results obtained
by using the Ag, - scheme are in poor conformity with experimental data.
Therefore, only A, calculation scheme is used for calculation of shear
modulus G,y and dependent constants in Chapter 7.

A numerical value of the deformation energy in every microsituation
may be determined from the local structure model. Then a post-deformation
form of the model cell should be known. Deformation of the model cells
surface is determined by transformation T, , Eq.(3.3). For pure shear [38]:

N=Mh=1 N = lcosy

Then :

=
— o=

(6.3)

_='-]

!
(=N =
QoD
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s——

Fig.6.1 Deformation of model cell in the plane 013, when the post-
deformation form of model cells surface is determined by
transformation T; , Eq.(6.3).

At first, a knotless model cell is considered: D = 0. A relative
length change A,; of the n-th strut can be calculated (with neglecting the
bending of struts axial line due to deformation) as follows [38]:

Mg =000 = (Tp Tny' & Ej)m =

172

cosf,’

2
sin’d," + [ ] + 2 fgy cosep, sinf,’ cosd’'

cosy

where £, and ¢, are projections of the unity vector directed along the n-th
strut, prior to deformation:

£, = cosg,sind,’ &, = sing,sinf,’ £, = cosf,’

Due to shear deformation the model cell comprising N struts accumulates
energy, which can be found similar to that in Paragraph 3.1.2;
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N
W(esa’PEs\bs) = E W.(Gg,wg.%);

1 EF [ Q.(05a¢9¢'5) - 9,0(0540,_-) ]I

W 0¥ = — o e {0 .9c)
i TECTE

(6.4)

Then energy W in every microsituation is expressed in the following way

N
WO 0s) = —EF Y [ MilBorets) ~ 1] eullep). (6.5

a»l

According to Eq.(6.4), the deformation energy depends on all the three
Fuler’s angles. In the result, no simplification can be made in the calculation
expression (6.1) of <o, >

When the model cell of local structure with a knot is considered, a
relative length change of the n-th strat A, can be calculated using the
coordinate method, Eq.(3.15), Fig.3.2 (for a greater clearness the oxyz frame
of reference is considered in Paragraph 6.1.2.). Using Fig.3.2 it can be
proved that

x, Xo(1 1B)
Yo Yol 1B
z.ul zufJ(] * ]lﬁn)

where (3, = D/(20.)
Since in pure shear the following relationships can be writien for every
surface point of the deformed model cell:

Xy = Xu(x,)
Y, = X, = const.
7, = 2, = const.

and xg + Vo + 2o = (D2, then:
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(X, 7%,0) Yua L (1 +1/8) -1 +21(1 +1/B,)-11?
xRl (1+1/8 ) -1 sy 5l (1 +1/8,)-1 P20 (1+1/8,)-1T°

= Q2D [ B, 6 — 20" + Yo' + 2’ ]
Besides, considering radius vecters 7, and r,, , it can be written that
Ty = Nl = (X7 + ¥ + 2.0 where
\,r is derived from Eq.(3.13) and 7, from Eq.(3.11). Then:
X2 = [Nrrg — O’ + 2,0 17

Using Fig.3.2, it can be proved that
X, = Df2cosgp, sinf,’
Yo = DI/2sing, sing’
Z,, = D/2cos8’

After several transformations, we obtain:

A = [ Vool xg — D2 cose,sind,’ )2 +
+ sin’p,sin’d,’ + cos’,’ 1'?

X = [N — By + Drg — D12 X
X ( sin’p,sin’f,” + cos? 6,)]"?

where ¢, = 1 — D/2 If there is no knot then:
D=0 f§,=0and), = A,

The deformation energy W in every microsituation can be expressed as:

EF

W6 v PEs \(’E) >

N
> O =170, D) 66

The stress <o,;,> 1is calculated using Eqs.(6.1}, (6.2), (6.5) or (6.6).



Table 6.1 Agreement of theoretical results of independent constanis with experimental data in terms of the
deformation energy calculation scheme (monotropic plastic foams).
The deformation Independent Agreement of
Material energy calculation constants theoretical results with

Monotropic
plastic foams

scheme

4p , - scheme

Semiaxis hypoth.
(Chapter 3)

experimental data

ES, v/
e Volume deform. Poor
hypoth.(Chapter 4)
Vo oy (Chapter 5) Poor

A, - scheme

(Chapter 6)

Semiaxis hypoth.
(Chapter 3)

2t Volume deform.
bypoth.(Chapter 4)
.VZI-, Vz]‘ (Chaptcr 5)
G, (Chapter 6)

Good

Calculation schemes' evaluation (poor, good} criterions:
Agreement with experimental results of:
1)Functional dependence mode between physical quantities considered,
2)0rder of calculated numerical values of physical quantities considered.

Sl
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6.2 Numerical Calculations

The boundary deformations of linear proportionality of isotropic
plastic foams determined experimentally in shear are the following [20,52]:

a) rigid PUR plastic foams ¥
b) rigid PVC plastic foams vy =004,
c) elastic PUR plastic foams vy=0

Therefore, for the versatility sake of mathematical model the
numerical value of deformation &£;; applied to the model cell has been
restricted:

v <002 g, =12y < 0.0l

Calculations are carried out according to the programmes depicted in
Figs.3.4 and 6.2. In conformity with control calculations, numerical
integration steps A8y = Ap,= Ay¥y = 10° provide a satisfactorial accuracy
of results. Analysis of variational series has been carried out for selection
03 N 1,2,...,NN of stress ¢,;. Since no minimization of energy
function is made in shear modulus G, calculations , errors of results are
caused only by the numerical integration.

6.3 Analysis of Results and Conclusions

a) Variational analysis

The histograms of variational series for stress &,, of sclection
O N 1, 2,... NN are depicted in Fig.6.3. Since in various
microsituations stresses o,,, differ mutually by several orders, it can be
stated that the averaging (6.1) of stress o, is physically substantial when
N < 10 Elements of the selection a,; are not subjected to a normal
distribution: AS = 0, EX # 0.
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O, ¢ ¥

Calculation of deformation energy W
(X, - scheme).

¥ =2e,

Calculation of <¢,>.

Ye

Ve

<ogp>

Fig.6.2 Calculation blocks corresponding to deformation ¢, in the
programme "Constants”, Fig.3.4.
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b} Elastic Constants, Isotropic Plastic Foams

Shear modulus G = G'(Pl) increases, when the space filling
coefficient Pl grows (Figs.6.4 and 6.5). When PUR foams are considered,
the best agreement of theoretical results with experimental data can be
observed for the knot parameter kK = 0.1 There are no experimental data
available to the author for shear modulus G° of PVC plastic foams. A good
compatibility (Paragraph 3.1.5) can be observed between mathematical
models of uniaxial compression/tension (Chapters 3 and 4) and shear
deformation (Chapter 6): the values of modulus G calculated according to
these models are practically equal (Fig.6.4, curves 1,2 and 4,5).

Dependence of shear modulus G° on the knot parameter k is
depicted in Fig.6.6. The modulus G~ reaches its greatest values when a half
of the knot surface is covered with struts: k& = 0.5, The same theoretical
results was obtained in [15]. No experimental data are available to the author
for relationship G = G'(k).

¢) Elastic Constants, Monotropic Plastic Foams

Relationship G,;” = G,;(P1) depicted in Figs.6.7 and 6.8 is given
together with shear moduli Gy, and G,;” calculated in Chapter 7 Assuming
k=01;A=105forPURand Xk = 0.5; A = 1.50 for PVC plastic foams
a good agreement of theoretical resulis and experimental data [20,52] can be
observed. For both values of degree of monotropy A (4 = 1.05 and
A 1.50) modulus G,y differs very slightly from modulus G of isotropic
foams. It can be concluded that

GIZ. = GB- > Glz- When A=1

Relationship G, = G4 (4) for PUR plastic foams depicted in
Fig.6.9 is given together with moduli G,; and G;,” calculated in
Chapter 7 After a slight maximum at A 1.5 G,; decreases. No
experimental data are known to the author for these relationships.
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Conclusions

1.  Conclusions about the effect of strut systems state on calculation
results are similar 10 those described im Paragraph 3.3.2. No
singular orientations are observed in the model cell under shear
deformation &,, , because the post-deformation form of model cell
is defined uniquely by transformation T, , Eq.(6.3).

2. Mathematical models of uniaxial compression/tension and shear
deformation are mutually compatible.

3.  Since the theoretical results concerning the shear moduli G,y agree
satisfactorily with available expenimental data, it can be concluded
that the mathematical model proposed describes the shear
deformation ¢&,, adequately.
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M, I)N= 4, A=1; M, 1)N= 4, A=3;
O3 Oy
20000 20000
10000 . 10000
A m e
0 123 45678910 0 123456718910
[ame = 8231 N/m?; e = 33000 N/m?;
Otama = 330000 N/m?; O1ame = 240000 N/m?;
o = 342242 N/m. G = 210977 N/m?.

Fig.6.3 Histograms of variational series of selection o,

Initial calculation data: N = 4, k = 0.1, ¥ = 0.02, X, - scheme,
Abe = Ape= Ay = 10°

Fig.6.4 Dependence of shear modulus G~ on the space filling coefficient P1.
Isotropic, rigid PUR plastic foams (see the next page for graph).

Theoretical results: Experimental data:

1 k=0.5; ® [52).
2 -k = 0.5, 1.0, semiaxes hypothesis assumed,

3 no knot model cell;

4-k=0.1;

5 - k = 0.1, sermaxes hypothesis assumed.

Initial calculation data: G, = 870MPA, N =4, A =1,y = 0.02,
N\, scheme, Af, = Ap,= Ay = 10°.
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G*/G, G*, MPa

0.057 50 '
0.046 40 |-
0034 30
0.023 20
0.011 10 -
Pl
0 0.05 0.10 0.15 0.20

Fig.6.4 Dependence of shear modulus G~ on the space filling coefficient P1.

Isotropic, rigid PUR plastic foams (see the previous page for initial
calculation data).
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G*1G, G*, MPa

00528 60
00440 50 | A
00352 40 |
0.0264 —
00176 20 -
00088 10
L R T
0 0.05 0.10 015 020

Fig.6.5 Dependence of shear modulus G* on the space filling
coefficient P1. Isotropic, rigid PVC plastic foams.

Theoretical results.

Initial calculation data: G, = 1136MPa, N =4, k=05, A4 =1,
y = 0.02, \, - scheme, Ay = Agp= Afy = 10°.



G"‘,IG‘l G*, MPa
0023 20 .

0.017 15
0.011 10
0.006 5

7

" i
0 ‘__ _

Fig.6.6 Dependence of shear modulus G~ on the knot parameter k

rigid PUR plastic foams.
Theoretical results:
P1 = 0.075;

P1 = 0.025;

PSR P Iy SR

no knot model cell, P1 = 0.075;

no knot model cell, P1 = 0.025.
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Isotropic,

Initial calculation data: G, = 870MPa, 4 = |, N =4, y = 0.02,

X, - scheme, A8, = Ap.= A, = 10°.
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G, G*, G* , MPa

A 4 |
0 0.05 0.10 0.15 0.20

Fig.6.7 Dependence of shear moduli G,;", G;y” and G, on the space filling
coefficient P1. Monotropic, rigid PUR plastic foams.

Theoretical results: Experimental data:
] G[j-. sz.: . G. [52].
2 - G (isotropic foams);
3 Gy

Initial calculation data: G, = 870MPa, N =4,k = 0.1, 4 = 1.05,
v = 0.02, A, - schemes, A6, = Ap= 10°,
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G* G*, G* ,MPa

13 23 12

—— by ) Pl

0 0.05 0.10 0.15 0.20

Fig.6.8 Dependence of shear moduli G,,’, G»™ and G, on the space filling
coefficient P1. Monotropic, rigid PVC plastic foams.

Theoretical results: Experimental data:
1 Gy, Gy, N Gu.- G, [52].
2 - G (isotropic foams);
3 Gy

Imitial calculation data: G, = 1136MPa, N =4,k =05, 4 = 1.5,
v = 0.02, \, schemes, Af; = Ag,= 10°.
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4
RN S —

0 Y S D,

1.0 1.5 20 2.5 30

Fig.6.9 Dependence of shear moduli G,,’, G and G,,’ on the extension
degree A Monotropic, rigid PUR plastic foams.

Theoretical results:

I G, Gy, k=
2-Gy, Gy, k
3.6, k=1.0;
4-G, . k=0.1.

=5

-

il
[

Initial calculation data: G, = 870 MPa, P1 = 0.075, N = 4, v = 0.02,
X, - schemes, A8, = Ap.= Ay, = 10°.



7 Calculation of Dependent Elastic Constants,
Analysis of the Results and Conclusions

In Section 2.1 it has been proved that seven dependent effective
elastic constants can be derived from Eq.(2.5) using the five independent
ones calculated previously:

vy = 'u- "13- = "n- "n. = "31.
- - p- -
E’'=E = Z E (1.1
Py
. . . ¥n .
Gn = Gy Gy = — ~—  E

Zvy(1 + »y)

For derivation of dependent constants (7.1) only those previous
theoretical results are used, which have been abtained by the A, - scheme.
The following conclusions can be made about the dependent constants
calculated.

According to conclusions made in Paragraph 3.3.3 about »,;, »,,’
and »y,", the Poisson’s coefficients vy, , »,,” and »,” are independent of such
model cell characteristics as E; and P1. Dependence on the strut number N
and the knot parameter k is very slight. For all extension degrees A of the
modeil cell

b = ¥y = vy

A sufficient agreement between theoretical results and experimental data was
observed (Paragraph 3.3.3).

Relationship E,” = E;” = f{P1) for PUR and PVC plastic foams
depicted in Figs.3.21 and 3.22 is given together with Young’s modulus
ES = fiPl).

E" = E, < E;° for all Pl considered and 4 > 1

When Pl increases, E,” and E, grow, t0o. The theoretical results agree
wel! with experimental data (Paragraph 3.3.3).
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Dependence of E,” and E;” on the extension degree A of model cell
for PUR plastic foams depicted in Fig.3.23 is given together with modulus
E;” = Ey(A) calculated in Chapter 3. When A increases, moduli E,” and E;
decrease. Direct experimental data of dependence E,” = E;,” = f{A) are not
available to the author. However, E” and E,;” can be calculated from
Eq.(7.1) E = E; = wp/vy, E; Therefore the comparison with
experimental data is made separately for modulus E,” = fld)

(Paragraph 3.3.3) and relation »,y fv;,” = f{4) (Section 5.3). In both cases the
agreement has been proved to be well. Therefore, E,” and E;,” should be in
a good agreement, too.

Dependence of G,;” and G, on the space filling coefficient P1 of
model cell for PUR and PVC plastic foams depicted in Figs.6.7 and 6.8 is
presented together with modulus G,;” calculated in Chapter 6. When Pl
increases, G, and G,,;” pgrow, too. A sufficient agreement was observed
between theoretical results and experimental data for PVC plastic foams.
Only the experimental data characterizing the isotropic materials shear
modulus are known 1o the author, when PUR plastic foams are considered.
It can be seen that the theoretical results of slightly anisotropic
{ A = 1.05) PUR plastic foams are almost equal with the experimental data
for isotropic PUR plastic foams.

Relationship G, , G;7 = fld) for PUR plastic foams depicted in
Fig.6.9 is given in Chapter 6 together with shear modulus G, When the
extension degree A of model cell increases, Gy~ enlarges and G,;” decreases.
It can be concluded that:

Gy =Gy = G, forall A = 1.

No experimental data are available to the author for this relationship.

Conclusions

Since the theoretical results concerning the dependent elastic
constants agree well with available experimental data, it can be
concluded that the mathematical model proposed describes the seven
dependent constants (7.1) adequately.



8 Main Conclusions

I A mathematical model of deformative properties and structure of
light-weight, monotropic (or isotropic in the boundary case) plastic foams
with a pronounced strut-like structure has been elaborated in the linear
deformation theory. All the twelve elastic constants have been determined
when treating monotropic plastic foams in the axes of elastic symmetry. To
achieve integral characterization of the deformative properties of plastic
foams as micro-nonhomogencous composite materials, the elastic constants
have been introduced as effective ones.

II In order to describe the plastic foams structure a local model
consisting of two parts has been proposed, i.e., a model of continuous
medium for calculation of stresses and a local structure model. Both models
are chosen shaped as rotational ellipsoids. When calculating stresses due to
the lack of a precise solution for an ellipsoid the possibility to replace the
latter by a cylinder has been shown. As the result of minimization of the aim
function composed in a definite way, configurations of spatially uniformly
distributed N struts have been found. Assuming that the nonuniform
distribution of struts in monotropic plastic foams develops gradually from the
uniform distribution, the way of introducing monotropy into the model cell
has been proposed.

M Using methods of onentative averaging the possibility to avoid
artificial regulanzation of plastic foams structure has been shown.
Accordingly, tuming the uniform struts configurations as one whole
throughout all the spatial orientations defined by three Euler’s angles, a
cluster or an ensemble of plastic foams structure microsituations has been
found. Thus, the infinitely numerous spatial orientations of struts as well as
the essential polydispersity of plastic foams structure have been taken into
account. In order to calculate the effective elastic constants connecting
average stresses and strains the ergodic hypothesis has been assumed to take
place. Hence, the possibility to replace the hard-to-realize averaging
throughout the volume by an averaging throughout a set of one-type situations
has been shown.

IV Basing on capabilities to elaborate the corresponding calculation
models, the selection of five independent constants has been described. The
usage of variational analysis of model cells post-deformation form and the
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minimization of deformation potential energy as a criterion for determination
of this form have been verified in mathematical models of uniaxial
compression/tension. The necessity to connect the semiaxes to be calculated
by some tie condition has been stated during numerical control calculations.
Thus the mutual interaction of neighboring model cells has been taken into
account. The tie condition has been proposed in two formulations. Similarly,
the insufficiency of considering only the axial deformation of struts even in
the region of small deformations has been shown with the help of control
calculations. It is necessary to evaluate also the reorientation of struts during
deformation. The mutual compatibility of mathematical models of uniaxial
compression/tension has been proved by analysis of numerical results. The
theoretical results of Young’s modulus and Poisson's coefficients concerned
are found to be equal both for tension and compression.

V Subjecting surface points of the model cell to a definite spatial
transformation the possibility of adequate modelling of the plastic foams shear
deformation has been proved. Control calculations have shown the
independence of the shear modulus sought on the struts reorientation in the
process of deformation. The mutual compatibility (realization of the isotropy
relationship) of the mathematical models of shear and uniaxial deformation
has been proved by comparing the numerical results.

VI In order to perform numerical calculations a complex of
programmes has been developed.The numernical values of five + seven =
twelve elastic constants have been determined using the Simpson's method for
calculation of the triple integral and step-type unconditional minimization of
one-argument function. The parameters of numerical calculation process
providing the acceptable accuracy of results have been evaluated. The
necessity to perform an orientative averaging to obtain the desired quantitics
has been verified with the help of variational series analysis.

VII The dependence of calculated elastic constants on the main
charactenstics of plastic foams structure (the space filling coefficient, the
degree of anisotropy, the number of struts, the knot parameter) has been
investigated. A satisfactorial agreement has been found 10 exist between the
theoretical results and the experimental data of plastic foams of various
rigidity. Hence, the mathematical model proposed can be used to project
plasiic foams with a preassigned set of properties.
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