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Abstract The singly B and N doped graphene systems are carefully studied. The highly concen-

trated dopants cause a spin polarization effect in the systems. The spin polarization limits are

affirmed in the singly B and N doped graphene systems through periodic hybrid density functional

theory studies. The spin polarization effects must be considered indeed in the B and N doped gra-

phene systems if the dopant concentration is above 3.1% and 1.4%, respectively. The system sym-

metry cooperating with the presence of the spin polarization brings half-metallic properties into the

doping systems. The semiconducting channels in the half-metallic systems are in two different spin

directions due to the different electron configurations of the B and N dopants in graphene.
� 2016 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As one of the most popular topics at the moment, graphene

attracts extensive studies for its unique electronic and mechan-
ical properties [1–5]. It has the same electron configuration as
the graphite. The sp2 hybrid orbitals connect the carbon atoms

with each other. The remaining non-hybrid 2p orbitals are per-
pendicular to the graphene and form a delocalized p-orbital
together. The Dirac cone in the band structure of the graphene
leads to a massless quasiparticle and a zero band gap in the
ordinary state [2]. Hence, it exhibits the excellent electronic
properties, such as the high conductivity [6,7], the quantum

Hall effect in room temperature [8,9], and so on. Moreover,
some external atoms, molecules or clusters can easily be
adsorbed on the graphene [10–14] and carbon nanotubes

[15–18], owing to the free electrons on the delocalized
p-orbital. In some cases, the p-orbital could hybridize with
the d-orbitals of its substrate atoms [19–22].

The unique zero band gap of the graphene could be a pri-
mary obstacle in the way of its practical applications. Thus,
it’s crucial for graphene to induce a band gap [23]. The gap

can be opened in many ways. A narrow graphene ribbon can
bring an energy gap at K and K0 points in the Brillouin-zone
owing to the lateral confinement of the charge carriers [24].
Castro’s experiments and theoretical studies have proved that

an applied electric field can adjust the band gap of the bilayer
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graphene system from zero to the mid-infrared energy region
[25]. The strain within the single layer graphene investigated
by Ni and his co-workers can bring a 300 meV band gap

[26]. With the help of the external electric field, a tunable band
gap for the dual-gate bilayer graphene can be opened in the
range of 0–250 meV [27].

Recently, the graphene is suggested as a basic substance of
the van der Waals heterostructure material by Geim and Grig-
orieva [28]. The atomic-scale ‘‘Lego” expands the application

scope of the two-dimensional materials. Self-assembled gra-
phene via multiple-step processes has been studied a lot for
its novel structures and functionalities [29]. Wang and his co-
workers employed the graphene as a conductive additive in

the self-assembled TiO2–graphene hybrid nanosystem to
enhance the insertion/extraction of the Lithium ion in TiO2

[30]. Xiao et al. have demonstrated a self-assembly method

to construct the multilayered film containing the well-defined
Quantum Dots/Graphene Nanosheets [31].

In practical cases, the graphene always contains kinds of

defects, such as vacancies and impurities. Moreover, introduc-
ing the artificially defects is a way to open the band gap of
graphene. It could also be a new pretreatment method for

the self-assembled hybrid graphene systems. The defects within
the graphene layers can interact with each other, so as to affect
the assembly process. Therefore, the researches about the
defect graphene systems are meaningful and indispensable.

The boron (B), nitrogen (N), oxygen (O), sulfur (S), fluoride
(F) and phosphorus (P) atoms are the common dopants in gra-
phene, which have the similar van der Waals radius compared

with the carbon (C) atom.
The heteroatoms can also change the other electrical prop-

erties of graphene. For example, graphene becomes p- or

n-type semiconductor by doping with B- or N-atom, respectively
[32–34]. Using arc discharge method, the B- and N-doped gra-
phene can be directly synthesized with B2H6 and NH3 or pyr-

idine as the boron and nitrogen sources, respectively [35]. Wu
et al. have studied the magnetic behaviors of graphene with
adsorbed N-, O- and F-atoms [11]. In their work, a 0.84 lB
magnetic moment has been detected in the graphene system

with N adsorption, while the adsorbed O- and F-atoms cannot
induce any magnetic moment. The geometries, electronic struc-
tures and magnetic properties of the light non-metallic atoms

doped graphene have also been studied in their subsequent
work [36]. They claimed that the dopants like N-, O-, B- and
F-atoms could induce a band gap near the Dirac point. Fur-

thermore, only F-atom can induce a 0.71 lB magnetic moment
in graphene. Whereas, the graphene systems doped by the
other three dopants present no magnetic nature. Zhou et al.
[37] have introduced a general 3N rule to describe the size

dependence of the electronic properties of the doped graphene.
In short, a zero gap appears at Dirac point if the size of the
primitive cell of the doped graphene is 3N times of the perfect

graphene unit cell. Otherwise, there is a gap. Almost at the
same time, Muhich et al. [38] revealed the nature of the non-
spin polarized N and B dopant structures in graphene and

explained the origins of their n- and p-type semiconduction,
respectively. Zeng et al. [39] used B2C graphene to modify
the electron distribution in graphene. Thereby, the Li-atom

can be localized on the graphene surface as potential hydrogen
storage medium.

However, there are few researches talking about the spin
polarization properties of the doped graphene systems. In this
work, we want to discuss the spin polarization of the singly B
and N doping in the graphene systems. The dopant concentra-
tions are the key point of the appearing spin polarization in

doped graphene. Therefore, different concentrations of the
B- and N-dopants in graphene are studied carefully in order
to find the spin polarization limits. This work is organized as

follows: In Section 2, the simulation methods and models are
introduced; In Section 3, the calculation results will be pre-
sented and discussed; In Section 4, a short conclusion will be

given out.
2. Computational methods and details

The calculations, in this work, are carried out using the hybrid
Becke-type three-parameter exchange functional [40] com-
bined with the gradient-corrected Lee–Young–Parr correlation

functional [41], namely B3LYP, which is fully implemented in
the computer code CRYSTAL14 [42]. The basis sets are cho-
sen at Triple-Zeta Valence with Polarization (TZVP) level
for all related species (i.e., the B, N and C atoms), which are

introduced by Peintinger and coworkers [43]. A 500 Å vacuum,
which is automatically inserted into the 2D system by CRYS-
TAL14, ensures the spatial independence of the single layer

graphene sheet. To investigate the spin polarization effects of
the doped monolayer graphene, the size of the in-plane super-
cell increases from 2 � 2 to 8 � 8, gradually. Experimentally,

an 8.9% N-doping on graphene has been synthesized by chem-
ical vapor deposition [33]. Therefore, the doping sizes in this
work are reasonable. A sketch for a 3 � 3 substituted graphene
is illustrated in Fig. 1(a) as an example. To hold the in-plane

homogeneity, the systems are two dimensional periodic. Den-
ser substitution, e.g., 1 � 1 system, is not considered in this
work because of its thermodynamic instability according to

the research by Shi [44]. The sampling in the two-
dimensional Brillouin zone of the supercell for the reciprocal
space integrations is performed with the help of an 8 � 8

Pack–Monkhorst net. With the aid of such relatively sparse
net, the Dirac cone can already be reflected in the band struc-
ture map for the pristine graphene using CRYSTAL14 (shown

in Fig. S1 in the Supporting Information file). Moreover, some
dense nets are also tested1, e.g., 16 � 16, 32 � 32, 64 � 64 and
128 � 128 Pack–Monkhorst nets for perfect monolayer gra-
phene. The deviations among them are less than 0.8 meV.

Thus, we believe that the 8 � 8 Pack–Monkhorst net is good
enough to provide reliable results with relatively low time con-
sumption in our research. Both of the spin and non-spin polar-

ized cases are taken into account, in order to identify the stable
electronic structures of the doped graphene systems. The
thresholds N (i.e., the calculation of integrals with an accuracy

of 10�N) for the Coulomb overlap, Coulomb penetration,
exchange overlap, the first- and second-exchange pseudo-
overlaps are set to 7, 7, 7, 7 and 14.

The pristine structures of the graphite and monolayer gra-

phene are full optimized. It is well known, that a proper disper-
sion correction is necessary for the description of the interlayer
structure in graphite. The pure DFT functionals cannot pro-

vide the expected long range r�6 type of the London dispersion
interaction. Although the focus of the present work is only on
the graphene systems, the B3LYP-D2 method is still employed

to retain the calculation consistency with the starting point,
i.e., the graphite. The dispersion correction parameters for



Figure 1 (a) Sketch map for periodic singly atom doping on

graphene. The gray balls represent the C atoms, and the blue balls

are the B or N dopants. The example system, shown here, is a

3 � 3 periodic doped monolayer graphene. The system can

therefore retain to be in-plane homogeneous; (b) and (c) electron

density maps of the spin polarized B and N doping on a

monolayer graphene calculated in a 3 � 3 supercell, respectively.

The contours are set between 0 and 1.0 e/bohr3 with a linear

spacing of 0.04 e/bohr3; (d) and (e) spin density maps of the spin

polarized B and N doping in monolayer graphene calculated in a

3 � 3 supercell. The spin density contours are varied from �0.004

to 0.004 e/bohr3 with a linear spacing of 0.0002 e/bohr3.
Table 1 The total effective charges and charge differences on

the dopants, and the energy differences between the spin and

non-spin polarized systems at relative dopant concentrations.

na+b = na + nb and n denote the total effective charges located

on the B or N dopants, where na and nb are the effective charges

with different spin directions. Similarly, the charge difference is

defined as na�b = na�nb. DE represents the energy difference

between the spin and non-spin polarized systems calculated

from Eq. (1).

Concentration

[%]

Spin Non-spin DE [meV]

na+b[e] na�b[e] n[e]

B doping 0.7 0.642 0.082 0.637 35.9

1.0 0.643 0.101 0.639 7.1

1.4 0.648 0.136 0.638 7.8

2.0 0.646 0.113 0.639 3.7

3.1 0.649 0.144 0.641 �35.9

5.6 0.656 0.178 0.639 �126.9

12.5 0.658 0.156 0.642 �204.9

N doping 0.7 �0.601 0.074 �0.590 103.7

1.0 �0.605 0.094 �0.592 135.6

1.4 �0.613 0.134 �0.593 �102.5

2.0 �0.609 0.110 �0.600 �66.7

3.1 �0.617 0.144 �0.600 98.3

5.6 �0.626 0.177 �0.602 �201.5

12.5 �0.620 0.160 �0.602 �226.9

Certain doping concentrations caused half-metallic graphene 113
D2 method are based on the suggestions in the original work
by Grimme [45]. In particular, the dispersion coefficients C6

are set to the suggested values in Grimme’s work [46]. The
van der Waals Radii R0 are adjusted as 2.21 Å, 1.92 Å and
1.55 Å for C-, B- and N-atoms, respectively. After the full

geometry optimization for graphite, a 3.24 Å interlayer dis-
tance is obtained, which has a deviation around 3% from
the experimental value 3.35 Å [47]. Our calculated bond length
between the in-plane C-atoms is 1.41 Å, while the experimental

value is 1.42 Å. The deviation between them is barely 0.7%.
For the other atoms involved in our study, the hexagonal
boron nitride (h-BN) has also been simulated. Using the corre-

sponding correction parameters, a 3.33 Å interlayer distance in
h-BN is obtained. Apparently, the method used in this study is
valid and reliable. Note that the modeling systems are fully

optimized during the simulations. For the doped graphene,
the dispersion correction term is not necessary. However, this
term is retained in the simulations as a precaution to keep the

consistency in the whole research.
The effective charges and overlap populations between the

nearest neighbors are obtained using the standard Mulliken
analysis.
3. Results and discussion

In order to compare the stabilities of the spin and non-spin
polarized structures, the energy difference between the corre-

sponding doped systems is defined as follows:

DEðm : XÞ ¼ Espinðm : XÞ � Enon-spinðm : XÞ; ð1Þ
where m denotes the m � m supercell and X refers to the B- or

N-atom dopants. The negative DE indicates that the corre-
sponding system is spin polarized. Otherwise, the system
should be non-spin polarized.

3.1. Boron doping

A single B-atom as dopant replaces a C-atom in the supercell

which is varied from 2 � 2 to 8 � 8 in this research. Therefore,
the concentration of the B-impurity in graphene decreases
from 12.5% to 0.7%. The energy differences between the spin

and non-spin polarized systems for the B doped graphene are
listed in Table 1. Because a free B-atom lacks one electron than
the C-atom, the doped graphene system with an isolated B
dopant would have an unpaired electron. However, when the

concentration of the B-dopant is under 3.1%, the energy dif-
ferences demonstrate that the system is non-spin polarized,
though the differences display only a few meV. On the con-

trary, if the dopant concentration reaches 3.1% or even higher,
the system turns to spin polarized. The effective charges of the
B-dopants in spin and non-spin polarized systems are exhibited

in Table 1. The B-atoms as impurities in the systems lose
around 650 me charges, compared with the free B-atoms.
The lost charges are distributed almost averagely on the first

three C-neighbors around the impurity centers. For the second
and other far neighbors, their total effective charges can be



Figure 2 Band structures for the spin polarized B doped

graphene systems with high dopant concentrations at 12.5%,

5.6% and 3.1%, i.e., the supercell sizes are 2 � 2, 3 � 3 and 4 � 4,

respectively. The dashed lines in the maps point out the Fermi-

levels. Note that all of the Fermi-levels are shifted to zero. The

high symmetry points in the first Brillouin-zone are set as follows:

C = (0,0,0), K = (⅓,⅓, 0), M= (0,½, 0). Also note that the

‘‘ALPHA” and ‘‘BETA” over every panel indicates the different

spin directions of the band maps, respectively.
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regarded as the same as before in the perfect graphene. The
charge transfer stems from the higher electron affinity of
C-atom. The short range charge transfer indicates that the

electrons on B are distributed mostly through three B–C sp2

r-bonds. The effective charge on the B-atom keeps increasing
with the cutting down of the dopant concentration. The elec-

tron and spin density maps of the spin polarized B-dopant in
the 3 � 3 periodic system are illustrated in Fig. 1(b) and (d).
And the electron density maps for the B doping systems with

other B concentrations can also be found in Fig. S2 in the Sup-
porting Information file. Now, the electron deficiency is visual-
ized in the plot of the electron density map in Fig. 1(b). One
can also find the spin density map for spin polarized B doped

3 � 3 periodic system, which showing the performance of the
spin density in the doping region is notably different from
the perfect part. Other spin density maps are illustrated as

Fig. S3 in the Supporting Information. The electron differ-
ences between two spin directions on B are between 140 and
180 me in 2 � 2, 3 � 3 and 4 � 4 periodic doping systems.

The electron overlap population (EOP) between the nearest
C-atoms in undoped graphene is calculated to be 451 me in
current work. The contours between B and C shown in the

density maps are sparser than them between the C-atoms. It
also indicates that the EOPs between B- and its first order
C-atoms in all of the doped systems, no matter whether it is
spin polarized or non-spin polarized, are slightly less than this

value. However, the decrease of B concentration leads to an
increasing EOP. In the systems with low B impurity concentra-
tions, the EOPs are almost identical with the pristine C–C

value. This changing trend implies that the interaction between
B and its first neighbor is strengthened, and the B dopant is
more and more similar to the substituted C-atom in a low con-

centrated system. Therefore, in the relative low concentration
system, the B doped graphene shows non-spin polarized. The
details of EOP values between B and C in the spin and

non-spin polarized B doping systems are listed in Table S1.
Owing to the charge re-distribution, the bond length

between the B- and C-atoms changes as well. Due to the elec-
tron transfer from B to C, the r-bond orbitals between them

distort toward the C-atoms. Therefore, the B–C bond lengths
are around 5% longer than the distance between the nearest
C-atoms in perfect graphene. The B–C bond length decreases

monotonically with the decreasing B concentration and con-
verges to 1.48 Å. A local distortion in graphene, for example,
the Stone–Wales defects, causes the re-manipulation of the

band structure [37,47]. This re-manipulation appears in our
investigated hybrid systems, too. Our calculated band struc-
tures for the non-spin polarized B doped graphene systems
(shown in Fig. 3) represent the so-called 3N rule from 2 � 2

to 8 � 8 as mentioned in Zhou’s work [37]. However, based
on the information obtained from the energy differences
between the spin and non-spin polarized calculations, the spin

polarization should be taken into account for the B doped gra-
phene from 2 � 2 to 4 � 4. The spin polarized band structures
of the B doped systems are presented in Fig. 2. The other non-

spin polarized band maps are illustrated in Fig. 3. The Fermi
levels are dropped into the valance bands for both spin and
non-spin polarized cases, so that the B doped graphene acts

as a p-type semiconductor. In spin polarized 2 � 2 and 4 � 4
hybrid systems, a- and b-maps show obvious difference from
each other in the vicinity of the band gaps. Note that we use
a and b to distinguish two different spin directions of the
electron, namely spin up and down, or with other words, the
majority and minority spin channels. In b direction, the band

gaps at high symmetric point K are far narrower than that in a
direction. More importantly, there is no gap in b band map for
3 � 3 doped graphene system, but a clear direct gap (i.e.,

Egap(a) = 650 meV as shown in Fig. 2) exists at C point in a
map. It means that the B doped 3 � 3 graphene is a half-
metallic material, not exactly like the conclusion in a previous

research [37]. Considering that, the spin polarization becomes
particularly important in this situation. The calculated band
gaps are listed in the first part of Table 2 for both spin and
non-spin polarized cases.

3.2. Nitrogen doping

Similar to the B doping, the simulated primitive cells are also

varied from 2 � 2 to 8 � 8. The effective charges of the N
dopants and energy differences between the spin and non-
spin calculations for different N doping concentrations are

listed in Table 1, too. From the perspective of the energy,
the spin polarized N doping on graphene is more stable than
the non-spin polarized one, when the doping concentration is

higher than 1.0%. One exception is the system with the con-
centration 3.1%. Its energy difference presents a stable non-
spin polarized N doped system. As same as the free B atom,



Figure 3 Band structures for the non-spin polarized B doped

graphene systems with relative low dopant concentrations at

2.0%, 1.4%, 1.0%, and 0.7%, i.e., the supercell sizes are chosen

from 5 � 5 to 8 � 8, respectively. The dashed lines in the maps

point out the Fermi-levels. Note that all of the Fermi-levels are

shifted to zero. The high symmetry points in the first Brillouin-

zone are set as follows: C = (0,0,0), K = (⅓,⅓, 0), M = (0,½, 0).
Also note that the ‘‘ALPHA” and ‘‘BETA” over every panel

indicates the different spin directions of the band maps,

respectively.

Table 2 The direct band gaps at high symmetry point in the

first Brillouin-zone of the B and N doped graphene systems.

The columns denoted by a and b list the values of the band gaps

in the band structure maps with two spin directions. The non-

spin polarized band gaps are named directly as ‘‘non-spin”.

Concentration

[%]

B doping [meV] N doping [meV]

a b Non-spin a b Non-spin

0.7 205.8 67.0 127.4 69.8 175.1 107.7

1.0 264.0 75.1 149.4 82.5 223.8 132.2

1.4 240.6 0 0 0 237.4 0

2.0 344.6 252.7 252.9 103.7 418.1 228.1

3.1 638.3 144.6 331.2 145.4 597.7 304.1

5.6 650.6 0 0 0 642.2 0

12.5 1794.2 324.6 920.8 401.3 1678.9 926.3

Figure 4 Band structures for the spin polarized N doped

graphene systems with high dopant concentrations at 12.5%,

5.6%, 2.0% and 1.4%, i.e., the supercell sizes are chosen as 2 � 2,

3 � 3, 5 � 5 and 6 � 6, respectively. The dashed lines in the maps

point out the Fermi-levels. Note that all of the Fermi-levels are

shifted to zero. The high symmetry points in the first Brillouin-

zone are set as follows: C = (0,0,0), K= (⅓,⅓, 0), M= (0,½, 0).
Also note that the ‘‘ALPHA” and ‘‘BETA” over every panel

indicates the different spin directions of the bandmaps, respectively.
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the free N atom has also an unpaired electron. However, the N
atom has an extra electron with respect to C. In this regard, the
N and B doping on graphene should show great differences of
the electronic properties. Different with B doping, N acts as an

electron ‘‘acceptor” in the doped systems, while B acts as a
‘‘donor”. The substituting N atom gains around 610 me
charges from its first neighboring C-atoms through the sp2

r-bonds. Taking the electron density distribution of the
3 � 3 doped system shown in Fig. 1(c) as an example, the con-
tours surrounding the N-dopant are much denser than that in

other regions because of the electron acceptance. The accepted
charges decrease generally with the decreasing N concentration
in system. However, the 3 � 3 and 6 � 6 systems show two

local minima, exactly corresponding to the 3N rule. The spin
density map in Fig. 1(e) shows that the spin difference is
mainly located in a concentrated area centering on N, not like
the B doping, in which spin difference contours near by the
B-dopant are widely dispersed. The spin difference values are

also listed in Table 1. The generally decreasing spin difference
with the reduction of the dopant concentration indicates that
the N doped graphene system should be non-spin polarized

at a low dopant concentration. The other electron and spin
density maps are illustrated in the Supporting Information file
as Figs. S4 and S5.

Due to the charge re-distribution, the EOP and bond length
between N and its first neighbors are changed similarly as in
aforementioned B doped graphene. The EOPs between N
and its first neighbors are about 13% to 17% less than

451 me, which are the EOPs between C-atoms in pristine gra-
phene. The relative sparse electron density contours in Fig. 1(c)
confirm the EOP lost between N and C. Moreover, they are

around 60 me weaker than that in the corresponding B doped
graphene systems. The increasing trend is retained with the
decreasing dopants concentration as it is in the B doped gra-

phene systems. It implies that the N–C covalent bonds are
weaker than the B–C bonds. Surprisingly, the N–C bonds
are much shorter than B–C bonds, and very close to the pris-
tine C–C bond length. In the low concentration systems, the

N–C bonds are even slightly shorter than the pristine C–C
bond, according to our non-spin polarized simulations. More
details can be found in the Table S2 in the Supporting Infor-

mation. However, the r-bond orbitals lean toward the N
dopants. Consequently, the N–C bond becomes shorter than
that between B and C. The shifts of the r-bond orbitals

between N and C can also be observed via the electron density
contour map in Fig. 1(c).

Similarly to the B doping, the non-spin polarized band

structures of the N doped graphene systems obey the 3N rule.
The calculated band gaps in the spin and non-spin polarized N
doped graphene systems are listed in Table 2. The spin and
non-spin polarized band structures are presented in Figs. 4



Figure 5 Band structures for the non-spin polarized N doping in

graphene systems with relative low dopant concentrations at

3.1%, 1.0% and 0.7%, i.e., the supercell sizes are set to 4 � 4,

7 � 7 and 8 � 8, respectively. The dashed lines in the maps point

out the Fermi-levels. Note that all of the Fermi-levels are shifted to

zero. The high symmetry points in the first Brillouin-zone are set

as follows: C = (0,0,0), K = (⅓,⅓, 0), M= (0,½, 0). Also note

that the ‘‘ALPHA” and ‘‘BETA” over every panel indicates the

different spin directions of the band maps, respectively.
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and 5, respectively. The N doped graphene systems act as an n-

type semiconductor, whose Fermi-levels are shifted up into the
conduction bands, in contrast to the B doping. Due to the fea-
ture of the energy stability, the singly N doping on graphene

should be considered to be spin polarized when the dopant
concentration is higher than 1.0% as mentioned above. For
the spin polarized cases, the a- and b-maps show great differ-
ences near the Fermi-levels, as before. The most obvious differ-

ence is that the band gaps in a direction are far narrower than
the b-gaps, which is just the opposite of the B doping cases.
The a-maps still obey the 3N rule. There is no gap showing

in the high symmetric point C in the a-maps if the primitive
size of the supercell is 3N � 3N. In the meantime, a clear
gap always shows in b-map. It means that the singly N doped

graphene systems at these concentrations are not semiconduc-
tors or metals, but half-metallic materials. Based on the infor-
mation obtained all above, taking the spin polarization into

account becomes significantly important in these situations.
The gaps show a general decreasing trend with the cutting
down of the dopant concentration, just like the B doping.

4. Conclusion

The spin polarization effects of the singly B and N doped
graphene systems were studied using the B3LYP method.
Unlike the metallic pristine graphene, the spin effects in a semi-
conducting system should be taken into account, because the
linear relationship between the energy and momentum no

longer exists, and the electron mobility could be greatly chan-
ged. The spin polarization must be tested before studying the
electronic properties of the singly substitution structures of

graphene, if the dopant concentration is higher than 1.4%.
Most recently, the experimental results about the N and B
superdoping of graphene are reported by Liu and his

co-workers [48]. They claimed that the N superdoping of
graphene can induce ferromagnetism and the doping concen-
tration is an important factor. These results could strongly
support our research. The 3N � 3N doping systems with high

dopant concentrations show the half-metallic properties
instead of metallic. This detailed understanding of the spin
polarization effects could be very important for the further

developments of the electronic devices with graphene. The
half-metallic graphene has a high technological potential in
the field of the spintronics, for example, the electron-spin filter.
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