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ABSTRACT 

The optimization of analytical parameters for screening and quantification of pharmaceutical residues in 

the environment. Pērkons I., supervisors Dr. Chem., Assoc. Prof. Bartkevičs V. and Dr. Chem. Pugajeva I. 

Doctoral thesis in analytical chemistry, 150 pages, 28 figures, 19 tables, 265 literature references, 12 annexes. In 

English.  

The thesis presents an overview on the occurrence, fate and behaviour of pharmaceutically active 

compounds (PhACs) in the environment and highlights the current trends in analytical strategies for the 

determination of these elusive emerging pollutants, primarily focusing on issues and challenges concerning mass 

spectrometry (MS) based applications. Four MS-based methods have been developed for PhAC analysis in 

environmental matrices. In particular, two high-resolution MS (HRMS) multi-class methods based on Orbitrap-

MS and Fourier-transform ion cyclotron resonance MS (FT-ICR-MS), one time-of-flight MS (TOF-MS) method 

for the determination of aminoglycoside antibiotics and one tandem MS (MS/MS) method for the analysis of 

nonsteroidal anti-inflammatory drugs. Applicability of several unconventional techniques (e.g. QuEChERS, 

multiwalled carbon nanotubes, mixed-mode zwitterionic-type liquid chromatography, etc.) have been explored to 

improve all stages of the analysis. Furthermore, a standard free suspect screening methodology was developed as 

a part of this thesis and used for qualitative screening of more than 500 PhACs and their transformation products 

in wastewater samples. Finally, the developed methods were applied to study the occurrence of PhACs in 

environmental samples and to investigate the fate of PhACs during advanced wastewater treatment processes 

(bioaugmentation and irradiation with ionizing radiation).  

PHARMACEUTICAL RESIDUES, ENVIRONMENTAL POLLUTION, HIGH-RESOLUTION MASS 

SPECTROMETRY, TANDEM MASS SPECTROMETRY, LIQUID CHROMATOGRAPHY, 

AMINOGLYCOSIDE ANTIBIOTICS, NONSTEROIDAL ANTI-INFLAMMATORY DRUGS, 

WASTEWATER TREATMENT 
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ANOTĀCIJA 

Analītisko parametru optimizācija farmaceitisko savienojumu noteikšanai apkārtējās vides paraugos. 

Pērkons I., zinātniskie vadītāji Dr. ķīm., asoc. prof. Bartkevičs V. un Dr. ķīm. Pugajeva I. Promocijas darbs, 150 

lappuses, 28 attēli, 19 tabulas, 265 literatūras avoti, 12 pielikumi. Angļu valodā. 

Promocijas darba literatūras apskatā apkopota patreizēji aktuālā informācija, kas skar aktīvo farmaceitiski 

vielu (AFV) klātbūtni apkārtējā vidē un analītiskās ķīmijas tendences šajā nozarē, īpaši akcentējot šo savienojumu 

noteikšanas metodoloģiju ar šķidruma hromatogrāfiju (LC) un masspektrometriju (MS). AFV noteikšanai 

apkārtējās vides paraugos, izstrādātas četras dažādas MS metodes. Attiecīgi, divas multi-metodes izstrādātas, 

izmantojot augstas izšķirtspējas MS sistēmas (HRMS) - orbitālā slazda MS (Orbitrap-MS) un Furjē 

transformācijas jonu ciklotrona rezonanses MS (FT-ICR-MS). Savukārt aminoglikozīdu klases antibiotiku un 

nesteroīdo pretiekaisuma līdzekļu noteikšanai izstrādātas metodes, kas balstās uz nolidojuma laika MS (TOF-MS) 

un tandēma masspektrometriju (MS/MS). Lai uzlabotu analītisko protokolu veiktspēju, darbā pārbaudīta dažādu 

inovatīvu tehniku pielietojamība AFV analīzē (piem. QuEChERS, oglekļa nano-caurulītes, jaukta tipa cviterjonu 

bāzes LC u.c.). Paralēli tradicionālajai mērķētā tipa analīzei, ar FT-ICR-MS sistēmu izstrādāta augstas veiktspējas 

kandidātu skrīninga metode, kas ļauj realizēt vairāk nekā 500 AFV un to transformācijas produktu analīzi 

notekūdeņu paraugos. Visbeidzot, visas izstrādātās metodes ir atbilstoši validētas un pielietotas praktiskas ievirzes 

pētījumos, lai noteiktu AFV piesārņojumu apkārtējās vides paraugos un izvērtētu šo savienojumu uzvedību 

notekūdeņu attīrīšanas procesos, kas balstās uz dažādiem papildapstrādes paņēmieniem, piem., bioaugmentācija 

un apstrāde ar jonizējošo starojumu. 

FARMACEITISKIE SAVIENOJUMI, APKĀRTĒJĀS VIDES PIESĀRŅOJUMS, AUGSTAS 

IZŠĶIRTSPĒJAS MASSPEKTROMETRIJA, TANDĒMA MASSPEKTROMETRIJA, ŠĶIDRUMA 

HROMATOGRĀFIJA, AMINOGLIKOZĪDI, NESTEROĪDIE PRETIEKAISUMA LĪDZEKĻI, 

NOTEKŪDEŅU ATTĪRĪŠANA 
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INTRODUCTION 

The presence of pharmaceutical residues in the environment has become a global environmental concern. 

Pharmaceutical products may enter the environment by several different pathways (e.g. manufacture, use and 

disposal) and cause potential ecotoxicological effects to both terrestrial and aquatic ecosystems [1,2]. Besides, 

parent compounds can undergo biotic and abiotic transformations that may lead to the formation of new 

substances with increased toxicity and/or mobility [3–5]. Yet, the consequences of this chronic exposure are 

largely unknown. Nevertheless, several prominent examples indicate that the presence of individual substances 

may have particularly devastating effects on some biological systems. For instance, a well-documented case is 

that steroidal oestrogens act as endocrine disrupting chemicals adversely affecting reproductive behaviour in fish. 

It should come as no surprise that pharmaceuticals can induce adverse effects on non-target organisms at 

environmentally relevant concentrations because they are designed to achieve optimal therapeutic function at low 

concentrations [6–8]. 

Although this topic has been studied for several decades, it remains a challenging problem that requires 

effective and reliable analytic procedures with sufficient sensitivity. Recent advances in mass spectrometry, 

especially high-resolution mass spectrometry, have accelerated this research field and provided scientists with 

tools that can overcome previous analytical limitations. Among them, multi-class methods are clearly in the 

spotlight as they provide an opportunity to analyze a wide range of pharmaceutical substances in one 

chromatographic run [9]. Moreover, an increasing number of methods are starting to investigate the presence of 

pharmaceutical residues by applying non-target and suspect screening principles that utilize compound-specific 

features (e.g. accurate mass, fragmentation pattern, isotopic pattern, etc.) [10,11]. Nevertheless, single-class 

methods are still highly relevant, because the trace level analysis of pharmaceuticals in less contaminated matrixes 

(e.g. groundwater, biota and surface water) requires a sensitivity that cannot be easily achieved by multi-class 

screening methods. Regardless of the analytical strategy used, a tailor-made approach for the development and 

optimization of methods is crucial to select the most suitable experimental conditions that can improve all stages 

of the analysis (e.g. sample preparation, chromatographic separation and mass spectrometric detection).  

The practical relevance of the problem. Only a small fraction of pharmaceuticals has been extensively 

investigated in terms of their environmental occurrence and fate. Therefore, there is a need for reliable and 

sensitive methods for determining a wide range of pharmaceutically active substances in various environmental 

media. Sydney Brenner, 2002 Nobel laureate in medicine, once stated that “Progress in science depends on new 

techniques, new discoveries, and new ideas, probably in that order.” It accurately reflects the concept that novel 

analytical strategies pave the way for a better understanding of these emerging pollutants and their behaviour in 

the environment. This way, environmental analytical chemistry can provide other research fields and policy-

makers with valuable information to improve prioritization, risk assessment and risk management actions. Despite 

the efforts made in the last two decades, there is a substantial gap between experimental evidence and policy. For 

instance, pharmaceutically active substances are not covered by the priority substance list established by the 

Directive 2013/39/EU [12], while only a dozen of them are included in the European watch list for substances of 

emerging concern [13]. Thus, the development of innovative methods is critical to better understand the problems 

associated with pharmaceutical residues in the environment. This is a key to the successful implementation of 



11 

 

mitigation measures and evidence-based decision making that will determine the status of the environment in the 

future and, hopefully, minimize the environmental impact of these elusive pollutants. 

The aim of the work. Several aims were proposed during this work:  

i. Developing novel mass spectrometry-based methods using different mass analysers for trace level 

determination of multi-class and single-class pharmaceutical residues in environmental matrices; 

ii. Exploring the applicability of novel detection, sample introduction and sample preparation strategies to 

increase the analytical performance of developed methods; 

iii. Applying the proposed methods to study the occurrence of pharmaceutical residues in the environment 

and to investigate advanced treatment processes for the removal of pharmaceuticals from municipal wastewater. 

The approach used. The following objectives have been set to fulfil the aims of the thesis:  

i. Developing four distinct analytical methods for determination pharmaceuticals in environmental matrices 

that rely on high-resolution mass analysers (Orbitrap-MS, FT-ICR-MS and TOF-MS) and tandem mass 

spectrometry. 

ii. Exploring the applicability of multiwalled carbon nanotubes as an alternative dSPE sorbents for the 

extraction of NSAID class drugs from aqueous environmental samples. 

iii. Exploring the potential to use QuEChERS approach for the extraction of multi-class pharmaceuticals 

from wastewater samples. 

iv. Investigating the selectivity of mixed-mode zwitterionic-type liquid chromatography for the separation 

of polar pharmaceuticals. 

v. Developing a high-resolution mass spectrometry-based method for standard free screening (i.e. suspect 

screening) of multi-class pharmaceuticals in wastewater. 

vi. Applying the developed Orbitrap-MS method to study the removal of multi-class pharmaceuticals from 

wastewater through ionising radiation and bioaugmentation.  

Scientific novelty.  

i. Four modern analytical protocols were developed to show the versatility of different mass analysers and 

how each of them can provide specific benefits for the determination of multi- and single-class pharmaceuticals 

in environmental matrices.  

ii. It was found that enhanced sensitivity can be obtained for the analysis of aminoglycoside antibiotics 

when high-temperature electrospray source is applied. Furthermore, three mobile phase system (water, acetonitrile 

and 1% formic acid in acetonitrile) can ensure satisfactory chromatographic separation of aminoglycosides 

without the use of ion pairing agents or other modifiers that can induce ion suppression and deteriorate 

instrumental sensitivity. 

iii. A novel sample preparation strategy was developed for the determination of multi-class pharmaceuticals 

in wastewater samples that relied on freeze-drying and modified QuEChERS followed by dSPE clean-up. The 

method was found to produce lower matrix suppression (compared to conventional SPE approach), showed 

satisfactory performance and covered a wide range of analytes that can be simultaneously extracted from the 

sample.  

iv. Several previously unreported pharmaceuticals (e.g. telmisartan, bisoprolol and amisulpride) were 

frequently found in wastewater samples in Latvia using the newly developed standard-free suspect screening 
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strategy. Moreover, this screening method was able to identify samples that displayed unique contamination 

patterns in terms of pharmaceutical residues, thus pointing out those WWTPs that may pose greater risks to the 

environment. 

v. An efficient extraction method was developed for enrichment of NSAIDs using multiwalled carbon 

nanotubes. The results showed that high recoveries can be obtained for 11 out of 12 studied compounds (except 

meloxicam). Hence, indicating that this sample procedure technique can be used as a suitable substitute for 

conventional SPE and dSPE methodologies when analysing pharmaceuticals that can be captured via electrostatic 

attraction or/and van der Waals forces. 

iv. Compared to other pharmaceuticals that were investigated during bioaugmentation experiments, 

diclofenac and ibuprofen were identified as more persistent and required longer incubation times to achieve 

sufficient removal efficiency during the treatment with activated sludge and activated sludge-derived 

bacteria/fungi. Meanwhile, macrolide antibiotics showed slower degradation rates when ionizing radiation was 

used as an advanced wastewater treatment strategy. 

Practical application of the work. The suspect screening method can be modified and adapted to study 

other polar micro-pollutants, while targeted methods could be used to continuously monitor the environmental 

fate of pharmaceuticals in Latvia. The developed TOF-MS method is currently used for routine analysis of 

aminoglycoside antibiotics in various matrices in the Institute of Food Safety, Animal Health and Environment 

"BIOR". Meanwhile, information obtained from studying advanced treatment processes can prove useful for the 

improvement of current tertiary wastewater treatment practices.  
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1. LITERATURE REVIEW 

1.1. Setting the scene: background, brief history and current state 

All organisms modify their environment, and humans are no exception. As the human population has 

grown and the power of technology has expanded, the scope and nature of this modification have changed 

drastically [14]. We have mastered the art of science in order to pursue effective improvements in our daily lives. 

Healthcare is no exception. Our life conditions, wellbeing and life expectancy have improved substantially, while 

a significant decrease in disease mortality has been achieved over the past centuries. A large fraction of this can 

be attributed to the pharmaceutical industry. 

Undoubtedly, the benefits they provide are immeasurable in the context of public health and the quality 

of life, but, alas, every rose has its thorn. In this case, there has been increasing awareness of the unintentional 

presence of pharmaceuticals in various compartments of the aquatic and terrestrial environment at concentrations 

capable of causing adverse effects to the surrounding flora, fauna and consequently to mankind. This has become 

an emerging concern because such compounds are extensively and increasingly used in human and veterinary 

medicine, resulting in their continuous release to the environment [1]. In 1999, Christian G. Daughton and Thomas 

A. Ternes published a milestone article, which established the collective term for pharmaceuticals and personal 

care products – “PPCP” [15]. To this day, it has accumulated over four thousand citations and remains as one of 

the most monumental articles in this scientific domain. In short, PPCPs is a broad term, which includes 

prescription and non-prescription human drugs, illegal drugs, and veterinary drugs, as well as their subsequent 

metabolites and conjugates, including antibiotics, hormones, anticonvulsants, antidepressants, lipid regulators, 

nonsteroidal anti-inflammatory drugs (NSAIDs) and other drug classes which exhibit specific therapeutic 

functions [2]. In addition, some disinfectants, insect repellents, preservatives, and sunscreen UV filters have also 

been classified as PPCPs [16]. 

 At this moment the total amount of pharmaceutically active compounds (PhACs) which can be classified 

as “small molecules” and have been registered exceeds two thousand [17]. For most of them, an in-depth 

knowledge regarding their biochemical interactions and mechanisms of action is still decades away. Even 

ibuprofen, an over-the-counter painkiller, which can be found in almost every household, still draws scientific 

attention in this context. It is hard to comprehend how much is still “in the dark” when we look at biochemical 

processes which regulate interactions between drugs and human organism. Even less is known about their 

environmental impact and interactions with other species. Pharmacokinetic studies have long shown that many 

compounds, which can be classified as PhACs, display poor bioavailability. In other words, a considerable fraction 

of the administered dose is excreted unchanged. Taking into account this notion, one might ask, “What is the 

environmental fate of PhACs?” Several thousand research studies have already been conducted to provide an 

answer to this puzzling question. Many more will come. Yet, it was not until the late 1970s that the first research 

articles confirmed the presence of PhACs in the environment [18]. Superficially, a statement like this might give 

a false impression that the scientific community reacted sluggishly to this issue, but that is not true. The major 

part of this delay can be attributed to analytical procedures, namely, insufficient instrumental sensitivity and 

selectivity which was further amplified by laborious sample preparation protocols. 50 years ago, gas 

chromatography (GC) was far more superior over liquid chromatography in terms of sensitivity and separation 
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power. As a consequence, analyte selection was largely dependent upon their volatility or the ability to 

successfully derivatize them into more volatile compounds. For instance, multi-component analysis of volatile 

and semi-volatile organochlorine pesticides (e.g. DDT, aldrin, toxaphene, etc.) is well documented since the early 

1960s [19]. However, the majority of PhACs could not be analyzed by conventional GC based techniques. In 

most cases, they exhibit non-volatile and relatively polar properties, which created a serious obstacle for analytical 

chemists at that time, because instrumental separation prior detection is crucial for successful trace level analysis. 

However, various research groups from environmental authorities of the United States, United Kingdom and 

Germany were able to overcome some of these limitations and forged the first pioneering work in this field [20–

22]. This is largely attributed to advances in field desorption (FB) mass spectrometry, fast atom bombardment 

(FAB) mass spectrometry and, most notably, liquid chromatography. Altogether with other key instrumental 

discoveries, these advancements paved the way for accurate identification and quantification of many PhACs in 

environmental matrices [23,24]. Hence, opening the doors to future research. Several decades have passed since 

that moment. Research methodology has changed almost beyond recognition, but many questions remain 

unanswered. 

As of now, the emerging issue of pharmaceuticals and their residues in the environment is widely 

acknowledged. During the past two decades, the European Commission (EC) has funded almost twenty EU-wide 

projects on this topic. The results of these projects have created an increasing amount of open scientific literature, 

expanded public awareness and allowed a gradual transformation of several solutions into real regulatory 

frameworks [25]. Yet, according to Directive 2013/39/EU, specific environmental quality standards (EQS) remain 

unimplemented for PhACs under the European Water Framework Directive [12]. Most recently, in July 2018 EC 

published the final report called “Options for a strategic approach to pharmaceuticals in the environment”, which 

carefully documents both public and stakeholder views to further strengthen the EU strategic approach to tackle 

PhACs in the environment. These actions are important among other things to help the EU achieve the United 

Nations Sustainable Development Goals, in particular goal No. 6 - "Clean Water and Sanitation" [13]. In the 

meantime, new studies are published nearly every day and our knowledge regarding PPCPs and PhACs 

significantly improves. Their ubiquitous presence and fate in the aquatic environment throughout the world have 

been studied extensively and our knowledge has become much more advanced. At the same time “horizon” of 

such pollution is rapidly expanding and new issues arise. For instance, an in-depth assessment of their metabolites 

and transformation products, evaluation of their persistence, bioaccumulation potential and toxicity. In the light 

of the above considerations, I truly hope that this dissertation will make a small contribution to the collective 

knowledge base, which allows us to ensure a better future for both the world and ourselves. 

1.2. A brief introduction of pharmaceutically active compounds (PhACs) 

The available literature still lacks a uniform classification system that can clearly define what compounds 

are considered as PPCPs. In this context, the majority of scientific articles devoted to PPCPs mainly focus on 

pharmaceutically active compounds (PhACs) and their transformation products, because they appear to pose the 

greatest risk. However, PPCP classification is not limited to medicinal products. In a broad sense, there is an 

enormous number of potential candidates that could be included. A large variety of small organic compounds (up 

to approximately 1000 Da) can be found in consumer goods which are designed to improve our quality of life and 

wellbeing. Such products are, for example, UV filters, disinfectants, cosmetics (soaps, moisturizers, lipsticks, 
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etc.), nutritional supplements and insect repellents. All this is just the tip of the iceberg and I do not intend to 

downplay the importance of other micro-pollutants. Yet, the “antagonists” of the present dissertation are medicinal 

products. Hence, the term “PhACs” will be used throughout this thesis to refer mainly to medical drugs and their 

metabolites.  

In general, PhACs are an extremely diverse array of organic compounds. The main PhAC classes are 

antibiotics, hormones, anti-inflammatory drugs (NSAIDs), blood lipid regulators, β-blockers (beta-blockers), 

contrast media, antidepressants and antiepileptic drugs [16]. The following paragraphs (Section 1.2.1.-1.2.6.) are 

aimed to provide a condensed summary of each drug class which will be discussed in the continuous chapters of 

the dissertation.  

1.2.1. Antibiotics 

Overall, antibiotics can be considered the hot topic of PhACs. Their unintentional, yet ubiquitous presence 

in the environment can have a direct impact on human health through the spread of antimicrobial resistance [26]. 

They act against gram-positive and gram-negative bacteria through various mechanisms. In clinical applications, 

their classification is mostly based upon the acting mechanism, e.g. cell wall synthesis inhibitors, protein synthesis 

inhibitors, folic acid synthesis inhibitors, etc., however, in environmental chemistry and residue analysis it is much 

more convenient to categorize them by structural characteristics. The most commonly applied antibiotic classes 

are β-lactam antibiotics (penicillins and cephalosporins), fluoroquinolones, aminoglycosides, and macrolides [27]. 

Taking into account consumption rates, biodegradability potential and potential adverse effects, EC has updated 

Water Framework Directive’s (WFD) surface water “Watch List” with the following antibiotics: ciprofloxacin, 

amoxicillin and macrolide antibiotics (erythromycin, clarithromycin, azithromycin).  

1.2.2. NSAIDs 

The NSAIDs constitute a heterogeneous group of drugs with analgesic, antipyretic and anti-inflammatory 

properties. From a chemical viewpoint, most of them consist of an acidic moiety attached to a planar, aromatic 

functionality [28]. Often colloquially referred to as “pain-killers”, they are one of the most frequently used 

therapeutic groups, especially, aspirin, ibuprofen, paracetamol and diclofenac. In comparison to opioid analgesics, 

NSAIDs do not exhibit serious side effects on humans and do not induce severe addiction. Hence, many of them 

are available over-the-counter in many countries, including Latvia, which drastically boosts their emission rates 

and overall environmental footprint [29]. Although NSAIDs have been considered relatively safe, the case of 

diclofenac reminds us that it can be difficult to predict the eco-toxicological impact on non-mammalian 

vertebrates, for example, birds, fishes and amphibians [30]. Considering the contamination level of NSAIDs in 

aquatic compartments, aspirin, ibuprofen, ketoprofen, naproxen, paracetamol and diclofenac can be considered as 

the most significant ones [28]. Until recently, the latter was a part WFD’s “Watch List”. It was removed from the 

list in 2018 since sufficiently abundant data have been gathered throughout the latest monitoring survey.  

1.2.3. Hormones 

Another alarming class of PhACs in this context is hormones. Among the huge family of PhACs, steroid 

estrogens, both natural and synthetic, have attracted particular attention due to their endocrine-disrupting 

properties [31]. They regulate a wide range of biological functions in animals and humans. In particular, estrone 

(E1), 17beta-estradiol (E2) and estriol (E3) are produced naturally by all vertebrates, including our species. 
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Among natural estrogens, E2 is considered as the most potent compound when compared to others and is largely 

responsible for the development of the female reproductive system. On the other hand, 17a-ethinyl estradiol (EE2) 

is a synthetic estrogen which is commonly used as a contraceptive medication and displays several fold higher 

potency then, for example, E2 [32]. E1, E2 and EE2 are a part of WFD’s “Watch List”.  

1.2.4. Beta-blockers and lipid regulating agents 

Current statistics show a trend towards a gradual increase in the average age in Europe (population aging), 

while cardiovascular diseases remain the leading cause of death globally [33]. Both of these tendencies contribute 

significantly to the overall emissions of PhACs which are applied for the treatment of cardiovascular diseases. 

Yet, from an environmental perspective, these substances are frequently overlooked. In brief, there are two 

prominent drug classes that must be highlighted - beta-blockers and lipid regulating agents. Beta-blockers are 

extensively used for the treatment of high blood pressure, heart rhythm disturbances and ischaemic heart diseases. 

Some of them, for example, metoprolol, propranolol and nadolol, are frequently reported in biota and 

environmental samples. Besides, propranolol exhibits hydrophobic properties, thus it tends to bioaccumulate in 

marine organisms [34,35]. The second compound class is lipid regulating agents, namely, statins and fibrates. The 

latter, derived from fibric acid, are widely used to reduce plasma triglycerides and raise the level of high-density 

lipoprotein cholesterol [36]. Examples of such PhACs are clofibric acid, bezafibrate and gemfibrozil. As most of 

them are excreted unmodified, their fate and potential ecotoxicological risks have been studied extensively 

throughout the last decade. Although statins (cholesterol-reducing agents) are less frequently studied in 

environmental matrixes, they are one of the best-selling lipid-lowering agents and their consumption rates are on 

the rise [37]. Therefore, rosuvastatin and atorvastatin have attracted increased attention in recent years, because 

some metabolites of atorvastatin are readily hydrolysed into their original acid forms, while rosuvastatin, on the 

other hand, is mostly excreted unchanged [38]. 

1.2.5. Antidepressants 

According to the Latvian State Agency of Medicines, the use of antidepressants has increased by more than 

40% between 2014 and 2018 [39]. A similar trend has been observed worldwide, especially in developed 

countries. The selective serotonin reuptake inhibitors (SSRIs, fluoxetine, paroxetine and citalopram) are the most 

common class of PhACs, which can be categorized as antidepressants. Nevertheless, the serotonin-noradrenergic 

reuptake inhibitors, for example, venlafaxine, and the noradrenergic-dopaminergic reuptake inhibitors, such as 

bupropion, are also widely used in the treatment of mental disorders [4]. Recent literature has reported solid 

evidence that antidepressants, especially, SSRIs, can adversely impact aquatic flora and fauna. Yet, to this day, 

none of these compounds are a part of WFD’s “Watch List”. 

1.2.6. Other PhACs 

While these five classes of PhACs, that were discussed above, are recognized as the most relevant pollutants 

in aquatic compartments, there are also other troublesome compounds, which must be mentioned. For instance, 

the antiepileptic drug carbamazepine has been frequently detected in almost every study which investigates the 

occurrence of PPCPs in the environment. Why? The removal efficiency of carbamazepine during wastewater 

treatment processes is often negligible and it is reluctant to photo-degradation processes in surface waters. 

Moreover, it may bioaccumulate through the aquatic food web and has shown toxicity towards many aquatic 
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species including algae [40]. Also, some highly specific therapeutic classes such as iodinated X-ray contrast media 

and cytostatics (used in chemotherapy) can contribute to the overall pollution. Residues of these compounds are 

almost exclusively related to hospitals and healthcare facilities and therefore the effluents of these facilities may 

contain high levels of these substances. Some other notable examples are tranquilizer diazepam, the antidiabetic 

drug glibenclamide and proton-pump inhibitor omeprazole [41]. This list could go on for a long time. 

Pharmaceutical industry remains a very fast-growing sector. Year after year, new compounds emerge, that could 

potentially alleviate the symptoms of a certain disease or, at best, cure it. There is no doubt that human health is 

a priority, but as the number of PhACs increases, so do the associated risks they pose to the environment. For this 

reason, future research should not only focus on well-known priority PhACs but simultaneously investigate 

emerging substances because early assessment of potential risks is essential for proper pollution management and 

control. 

1.3. Consumption of PhACs in Latvia 

In 2018, according to the annual consumption statistics of medicinal products in Latvia (Latvian State 

Agency of Medicines, SAM), two best-selling medicines were acetylsalicylic acid (aspirin) and ibuprofen [39]. 

Such a tendency is not surprising, because the latter is the most popular over-the-counter painkiller, while aspirin 

is used extensively as a preventive agent to reduce risks of heart attacks and blood clots. Both of these compounds 

are categorized as relatively safe and are easily metabolized and degraded in the environment. Unfortunately, the 

same statement can be made only for a limited number of PhACs.  

To investigate the consumption of most significant PhACs in Latvia, SAM data of annual consumption 

were used. The statistical data on consumption from 2014 to 2018 are expressed as defined daily doses (DDD) 

per 1000 inhabitants in Latvia per day (DID). Such a normalized expression is handy to observe trends in the 

pharmaceutical sector, but it does not provide enough information regarding absolute amounts, because each 

PhAC has a different dose. Therefore, absolute annual consumption for selected pharmaceuticals was calculated 

in accordance with the current ATC/DDD classification [42]. A scenario of oral administration was selected for 

each defined daily dose. Demographic data were acquired from Central Statistical Bureau of Latvia [43]. A 

summary of the estimated annual consumption of selected PhACs and main PhAC classes/subclasses (from 2014 

to 2018) is presented in Table 1 and 2, respectively. In any case, national drug consumption database may not 

completely reflect real-life use of PhACs, because (i) the actual prescribed dose may vary between practitioners, 

(ii) only oral administration dosage is taken into account in calculations and (iii) not all drugs that are 

sold/prescribed reach the patient’s organism. Nevertheless, this information can reveal the overall consumption 

trends and estimate the total sold quantities (maximum scenario). 

In the context of antibiotics, the current data from 2014 to 2018 shows a slight increase in total consumption 

(Figure 1). An almost 40% increase is observed for macrolides, lincosamides and streptogramins. On the other 

hand, the use aminoglycoside antibiotics is on the decline. Altogether, a slight decrease can be observed from 

2017 to 2018 for almost all antimicrobials. This is most likely due to increased concerns towards antimicrobial 

resistanc in the European Union. Nevertheless, the overall consumption of antibiotics is higher than, for example, 

in 2014.  
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Figure 1. Consumption trends of antibiotics in Latvia (2014 to 2018, relative to 2014) 

A similar analysis is provided in Figure 2, where annual consumption statistics for selected PhAC classes 

are summarized (2014-2018). Several trends can be observed. For instance, the use of hormonal medication has 

decreased by almost 30% since 2014. However, the data about EE2 were not available in the public database. 

Thus, the actual situation may differ. On the contrary, the use of antidepressants, lipid modifying agents and 

proton pump inhibitors is on the rise. For some compounds, such as venlafaxine (antidepressant) and rosuvastatin 

(lipid modifying agent), the numbers have nearly doubled since 2014. Meanwhile, the consumption of NSAIDs 

remains stable throughout the last five years, but it is still relatively high. Approximately 20 tons of ibuprofen and 

1.5 tons of carbamazepine were consumed in 2018. This may not seem particularly noteworthy, but if we calculate 

the worst-case scenario that all carbamazepine equally contaminates all surface water available on Latvia (35000 

million m3 of water per year), we get a value of around 50 ng/L. Of course, this is a greatly exaggerated example, 

because only a limited fraction of the initial carbamazepine dose reaches the environment, yet it illustrates how 

crucial it is to have an effective wastewater treatment system. If we calculate the same hypothetical value for 

ibuprofen, which fortunately is well metabolized and efficiently removed during wastewater treatment, we get 

around 500 ng/L. Nevertheless, some PhACs are incredibly potent at very low doses (e.g. hormones, 

antidepressants). Hence, even seemingly low levels can exceed the predicted no-effect concentration and 

adversely impact the surrounding environment.  
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Figure 2. Consumption trends of selected PhAC classes in Latvia (2014 to 2018, relative to 2014) 

 

Table 1. Estimated annual consumption of some PhACs in Latvia from 2014 to 2018 

Class PhAC (Oral dose) 
Estimated annual consumption, kg 

2014 2015 2016 2017 2018 

Antibiotics 

doxycycline (100 mg) 172 168 169 166 160 

amoxicillin (1500 mg) 3168 3328 3178 3323 2957 

clarithromycin (500 mg) 457 565 600 648 679 

azithromycin (300 mg) 108 117 110 125 133 

ciprofloxacin (1000 mg) 655 665 659 666 643 

NSAIDs 

acetylsalicylic acid (3000 

mg) 146758 145076 141299 143116 134592 

paracetamol (3000 mg) 3835 4392 4417 4429 4632 

diclofenac (100 mg) 1692 1635 1581 1509 1369 

meloxicam (15 mg) 38.4 34.8 33.2 33.3 29.8 

ibuprofen (1200 mg) 19287 20065 20368 20039 20057 

naproxen (500 mg) 471 592 624 629 593 

ketoprofen (150 mg) 28.2 27.6 29.9 30.4 27.0 

Hormones 
estradiol (2 mg) 4.3 4.3 3.6 3.8 2.9 

estriol (2 mg) 0.3 0.3 0.3 0.3 0.3 

Lipid modifying 

agents 

atorvastatin (20 mg) 537 569 605 676 695 

rosuvastatin (10 mg) 131 157 173 215 228 

fenofibrate (200 mg) 113 123 132 144 151 

Beta blocking agents 

propranolol (150 mg) 38.4 37.8 35.5 35.2 32.5 

metoprolol (150 mg) 1478 1432 1378 1318 1206 

bisoprolol (10 mg) 135 135 137 139 136 

nebivolol (5 mg) 37.0 42.3 46.1 50.9 52.7 
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Table 1. continued 

Class PhAC (Oral dose) 
Estimated annual consumption, kg 

2014 2015 2016 2017 2018 

Antidepressants 

paroxetine (20 mg) 34.3 35.5 37.3 40.4 42.3 

escitalopram (10 mg) 21.8 24.9 25.5 30.4 32.4 

amitriptyline (75 mg) 66.8 67.6 65.9 65.4 61.6 

mirtazapine (30 mg) 15.9 17.4 20.0 22.6 23.9 

venlafaxine (100 mg) 42.5 48.2 57.3 64.1 71.0 

Angiotensin II 

receptor blockers 

losartan (50 mg) 78.6 72.6 74.4 76.0 73.4 

valsartan (80 mg) 15.0 17.9 20.6 22.4 23.9 

Antiepileptics carbamazepine (1000 mg) 1344 1351 1385 1538 1466 

Opioids tramadol (300 mg) 363 363 348 350 314 

Proton pump 

inhibitors omeprazole (20 mg) 321 368 384 390 398 

 

Table 2. Annual DDD/1000 inhabitants/day of some PhACs in Latvia from 2014 to 2018 

Class Subclass 
Annual DDD/1000 inhabitants/day 

2014 2015 2016 2017 2018 

Antibiotics (total) 12.1 12.8 12.9 13.5 13.2 

Tetracyclines 2.3 2.3 2.3 2.3 2.3 

Beta-lactam antibacterials and penicillins 4.4 4.7 4.6 5.0 4.9 

First, second and third-generation cephalosporins 1.1 1.2 1.2 1.3 1.2 

Macrolides, lincosamides and streptogramins 2.0 2.3 2.4 2.6 2.8 

Aminoglycoside antibacterials 0.1 0.1 0.1 0.1 0.1 

Quinolone antibacterials 1.3 1.3 1.2 1.2 1.1 

Other antibacterials 0.9 0.9 1.0 0.9 0.9 

NSAIDs (total) 128 129 128 129 125 

Hormones (total) 3.2 3.2 2.7 2.9 2.3 

Lipid modifying agents (total) 56.3 62.5 67.8 79.4 83.4 

Beta blocking agents (total) 46.4 48.1 49.7 52.0 51.9 

Antidepressants (total) 11.1 12.3 13.3 15.0 15.8 

Selective serotonin reuptake inhibitors 7.2 7.9 8.3 9.5 10.3 

Other antidepressants 2.31 2.77 3.41 3.81 3.95 

Angiotensin II receptor blockers (total) 11.0 11.8 11.8 12.5 12.3 

Antiepileptics (total) 8.0 8.2 8.6 9.6 9.7 

Opioids (total) 2.6 2.7 2.8 2.9 2.7 

Proton pump inhibitors (total) 31 35 38 40 42 

 

1.4. Emission sources of PhACs 

The content of PhACs in the environment is related to human activities because almost all of them are 

synthetic products that do not occur naturally. An exception is caffeine, which is produced by several plant species. 

Despite this, the main source of caffeine emissions is anthropogenic and therefore it is frequently used as a 

chemical marker to detect domestic wastewater discharge sites. Generally, there are two types of emission sources. 

Point-source pollution originates from specific and discrete locations. The spatial extent of pollution is therefore 
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more constrained [44]. Such point-sources are municipal sewage treatment plants, waste disposal sites (e.g. 

landfills) [45], septic tanks (small-scale sewage treatment systems commonly observed in rural areas) and also 

industrial effluents (e.g. manufacturing plants, hospitals, food processing plants) [46,47]. Diffuse pollution, in 

contrast, is not constrained within a particular spatial point and occurs over a broad area [44]. Examples of diffuse 

PhAC pollution include runoff from agricultural sites, leakage from recycled sludge or bio-solids and urban 

runoffs [48,49]. These sources cover larger geographical scales, but, at the same time, are less intense and have 

lower environmental impact compared to point- source pollution. The main emission sources and environmental 

pathways of PhACs are summarized in Figure 3. 

 

Figure 3. Potential sources and pathways for environmental pollution by PhACs 

Domestic wastewater is considered the major source of PhACs in the aquatic environment. Typically, each 

household contains various emission points, which are linked to the main sewer system. Human PhACs can enter 

the sewer system via different routes e.g. after direct excretion from the body, when washed off (topical and 

transdermal administration of PhACs) and by improper disposal of medicinal products. Nevertheless, industrial 

effluents (e.g. effluents from healthcare facilities and pharmaceutical manufacturing sites) are of major concern, 

since they may discharge high concentrations of PhACs [50]. In most cases, industrial wastewater is treated on 

the spot by the responsible party (e.g. manufacturer or healthcare institution) before discharge into waterways or 

municipal sewage system, where it is mixed with domestic wastewater and consequently treated at the main 

wastewater treatment plant (WWTPs) [51]. In some cases, leakage from underground sewage infrastructure can 

be a pathway by which PhACs can bypass WWTPs and directly enter the environment. Yet, this is considered a 

minor pathway. Although WWTPs are well suited for removing solids and reducing the biological oxygen 

demand, their removal efficiency towards PhACs is limited. In some specific examples, inactive metabolites can 

be converted back to its initial active form during WWTP processes. Given the aforementioned reasons, WWTPs 

are recognized as the most serious emission source of PhACs. Nonetheless, PhAC removal rates vary significantly 
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depending on multiple factors, such as the physicochemical properties of individual compounds, influent load, 

wastewater composition, surrounding climate and, most importantly, WWTP design [52].  

As mentioned before, most PhACs (antibiotics, NSAIDs, cardiovascular drugs, hormones, etc.) exhibit poor 

bioavailability and are not completely metabolized in human organisms. Therefore, a portion of the administered 

dose is excreted via urine and feces either as parent compounds or metabolites. The same applies to animals. 

PhACs are routinely detected in manure and manure-amended agricultural sites due to a release from livestock 

waste. Besides, soils irrigated with wastewater or biosolids from WWTPs can also contain PhACs and hence 

might reach groundwater and surface water systems. The leakage of PhACs from contaminated soils is alarming 

not only from the perspective of aquatic pollution but also poses risks to plant-based agricultural sectors, since 

the uptake of some PhACs by crop plants has been verified by several studies, indicating that contamination may 

migrate back to consumers [53]. 

Another noteworthy source of pollution is aquaculture. Marine and in-land aquaculture has been a rapidly 

growing sector and has become an important pillar of food production. Most livestock farming practices depend 

on veterinary drugs and aquaculture is no exception. They are widely used to reduce risks caused by bacteria, 

viruses, residual feed, and to control infectious disease outbreaks. As a consequence, veterinary drug residues can 

easily migrate to the surrounding environment. The situation in aquaculture is relatively unique when compared 

to other framing practices because the medication cannot be administered directly to each animal. It is either 

dissolved into the surrounding medium (water) or introduced through feed, which again rapidly dissolves in water. 

Hence the overall administration efficiency remains considerably low and several migration pathways of PhACs 

can emerge. Nevertheless, aquaculture is still considered a minor emission source of PhACs in comparison to 

other sources [54,55]. 

Lastly, agriculture is a frequently overlooked and non-conventional emission source of PhACs. For some 

it might come as a surprise, but PhACs, especially antibiotics, are applied in several plant-based agricultural fields 

and beekeeping. They are used to control bacterial diseases of plants (e.g. fire blight of pears and apples) and bees 

(e.g. honey bee diseases like American Foulbrood and European Foulbrood) [56,57]. Such practices are not 

authorized in all countries. Yet there are indications that the use of PhACs in this sector is still an issue. For 

instance, data provided in the Rapid Alert System for Food and Feed portal database of the European Commission 

on “honey and royal jelly” during 2016–2020 showed that veterinary residues have been detected in honey on 

five occasions. Besides, in many third world countries application of antimicrobials is still authorized for the 

treatment of honey bees. These considerations underlay the implication that these two sectors can contribute to 

the release of PhACs in the environment and pose food safety related risks.  

1.5. Occurrence and environmental fate of PhACs 

Pharmaceuticals are frequently detected in WWTP influents, effluents and sewage sludge. In reality, the 

word "frequently" would be an understatement, since PhACs and their transformation products can be found in 

virtually any wastewater sample of domestic origin. Moreover, they can be found at trace levels (ppt and ppb) in 

surface water, groundwater, sediments, soils, biota and plants [58]. As WWTPs play the most crucial role in the 

life cycle of PhACs and their transformation products, the opening paragraph of this section will be attributed to 

examine the occurrence data of PhACs in wastewater samples.  
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As mentioned in Section 1.4, the main transport pathway of PhACs into the environment is via WWTPs, 

as they cannot fully eliminate these pollutants from wastewater influents. The overall treatment process is complex 

and is affected by countless factors. Hence, the efficiency of different WWTPs can vary greatly. Also, the physico-

chemical nature of each pollutant plays a crucial role in this process. In general, wastewater can contain up to 

several-fold higher PhAC concentrations compared to environmental samples. The longer the path each pollutant 

has to “travel” from the initial source, the higher dilution can be achieved and the expected contamination level 

gradually decreases. Typically, PhACs can be found in wastewater samples in concentrations up to several µg per 

liter. According to Kosma et al. (2010), where 11 PhACs were monitored in a WWTP in Greece for a period of 

one year, individual PhAC concentrations in WWTP influents and effluents ranged between 0.3 and 164.4 μg/L 

and 0.5 and 13.9 μg/L, respectively [59]. In a similar study by Martin et al. (2012) sixteen PhACs were evaluated 

in wastewater and sewage sludge samples from several WWTPs in Spain. The authors found twelve PhACs in 

raw wastewater with mean concentrations from 0.1 to 32 μg/L. The same compounds were also found in sewage 

sludge (except diclofenac). Mean concentrations in sludge ranged from 8.1 to 2206 μg/kg (dry matter) [60]. In 

2012, a research group from the University of Ferrara (Italy) published an incredibly comprehensive review 

article, where the occurrence of more than a hundred PhACs was summarized using data from almost 264 

municipal WWTPs from various locations, mostly in Europe. The main findings of this study are summarized in 

Table 3. In short, the authors found that there is a high spatial variability within concentrations of individual 

substances. To exemplify, ibuprofen, one of the most common NSAIDs, had an average concentration of 37 μg/L 

in untreated wastewater samples, while almost ten times lower levels (3.6 μg/L) were detected in secondary 

effluent. Overall, a common trend could be observed - most WWTPs allowed an efficient removal of ibuprofen 

(almost 90% compared to the initial amount). Conversely, data for carbamazepine were extremely scattered, 

making it difficult to interpret the results. Estimated removal efficiencies between studies (N=25) varied from -

122% to +97%. A similar situation was also reported for other PhACs, for example, antibiotics - trimethoprim 

and erythromycin [61]. The main conclusion that can be drawn from this review is that there are many problematic 

PhACs whose removal from influents remains an issue. Besides, the exact concentrations and removal efficiencies 

of individual substances fluctuate greatly between different locations. Hence, a substantial amount of PhACs is 

discharged into surface water bodies from WWTPs and may pose a risk to aquatic life [62]. 
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Table 3. Summary on PhACs found in influents and effluents from 264 WWTPs 

PhAC class 

Untreated wastewater (influent) Treated wastewater (secondary biological 

effluent) 

Concentration 

range, µg/L 

PhACs of concern Concentration 

range, µg/L 

PhACs of concern 

NSAIDs 
Min:0.0016 

Max:373 

IbuprofenAB, diclofenacA, 

naproxenA, ketoprofenA, 

AcetaminophenB, 

tramadolB 

Min:0.001 

Max:57 

IbuprofenAB, diclofenacA, 

naproxenA, ketoprofenA, 

acetaminophenA, tramadolB, 

dipyroneB 

Antibiotics 
Min:0.001 

Max:32 

trimethoprimA, 

sulfamethoxazoleA, 

erythromycinA, 

ciprofloxacinA, 

ofloxacinB, sulfadiazineB, 

sulfapyridineB, 

cefaleximB 

Min:0.001 

Max:6.7 

trimethoprimA, 

sulfamethoxazoleA, 

erythromycinA, 

ciprofloxacinA, norfloxacinA, 

ciprofloxacinB, 

erythromycinB, 

roxithromycinB, ofloxacinB 

Beta-

blockers 

Min:0.006 Max: 

25 

atenololAB, metoprololA, 

propranololA 

Min:0.005 

Max:73 

atenololAB, metoprololA, 

propranololA 

Lipid 

regulators 

Min:0.001 

Max:30 

bezafibrateAB, 

gemfibrozilA, 

clofibric acidA 

Min:0.0015 

Max:80 

gemfibrozilA, bezafibrateA, 

clofibric acidA, fenofibric 

acidB 

Psychiatric 

drugs 

Min:0.0025 

Max:25 

carbamazepineA, 

fluoxetineA, diazepamB, 

gabapentinB, 

amitriptylineB 

Min:0.001 

Max:20 

carbamazepineA, diazepam 

carbamazepineB, gabapentinB 

Hormones 
Min:0.002 

Max:3 

estradiolAB, estroneA, 

ethinylestradiolA, 

cimetidineA 

Min:0.002 

Max:0.11 

cimetidineAB, estroneA, 

estradiolA, ethinylestradiolA 

 

Diuretics 
Min:0.004 

Max:1.8 

HydrochlorothiazideAB, 

furosemideAB 

Min:0.0025 

Max:11 

HydrochlorothiazideAB, 

furosemideAB 

PhACA – PhACs which are most frequently found in wastewater samples; 

PhACB – PhACs with the highest average concentration in wastewater samples. 

 

In a study by Vulliet et al. (2011), the occurrence of 52 substances was investigated in surface and 

groundwater samples from France. Reported results indicate that residues of PhACs were found in all samples, 

regardless of the sample origin or sampling season. The most frequently detected compounds were salicylic acid, 

acetaminophen and carbamazepine. High detection frequency of the first two PhACs can be attributed to their 

high consumption. Alternatively, carbamazepine consumption rates are at least a fold lower, but has been 

frequently found everywhere due to its persistence. Nonetheless, the presented data suggest that PhACs are less 

prevalent in in groundwater as compared to surface water [63]. But again, groundwater contamination can achieve 

high levels in highly urbanized areas. To give an example, a study carried out by López-Serna et al. (2013) 

investigated 95 PhACs and various PhAC transformation products in urban groundwater underlying the 

metropolis of Barcelona (Spain). The PhAC concentrations reported in groundwater occasionally exceeded the 

ones observed in nearby surface waters. One of the most alarming findings of this study was that antibiotics were 

found in high frequency (reaching sub µg/L levels), while transformation products of corresponding parent 
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compounds were found in lower concentrations [64]. Such observation is not a coincidence, because results agree 

with the findings of other studies that antibiotics account for a significant fraction of total contamination [65].  

It should not be forgotten that the marine environment can be affected by PPCPs, especially PhACs. In 

many occasions, WWTPs are geographically located close to seas and oceans. The Baltic Sea ecosystem is 

particularly sensitive to PhACs, because of its relatively low biodiversity and slow water exchange rates. Thus, 

many pollutants, especially the persistent ones, can remain in Baltic Sea for a considerably longer period 

compared to other marine waters. In 2017, United Nations Educational, Scientific and Cultural Organization 

(UNESCO) and the Baltic Marine Environment Protection Commission (HELCOM) published a status report on 

pharmaceuticals in the Baltic Sea region, which is the most comprehensive data source regarding Baltic Sea 

region. The report includes data on 167 PhACs from several thousand environmental samples throughout the 

region. Data were reported by Denmark, Estonia, Finland, Germany, Poland, Russia and Sweden. Unfortunately, 

Latvia did not participate in this project and no information is available regarding the Gulf of Riga. The reported 

information shows that the most frequently detected substances in the Baltic Sea belong to the therapeutic groups 

of NSAIDs, cardiovascular agents, and central nervous system agents. The presence of NSAIDs was found in all 

compartments of the Baltic Sea environment and, without much surprise, the most commonly detected NSAIDs 

were diclofenac, ibuprofen and paracetamol. In the context of antibiotics, sulfamethoxazole was detected most 

often (9% from all surface water samples), having a median concentration of about 16 ng/L. A higher detection 

frequency was observed for cardiovascular agents. Namely, metoprolol and bisoprolol were found in 16% and 

23% of water samples, respectively. While carbamazepine, which has already earned a bad reputation, was 

detected in more than 60% of the reported water samples, with levels up to 73 ng/L. The reported data clearly 

shows that there is an emerging problem in Baltic Sea region regarding the undesirable presence of PhACs in the 

aquatic environment [66]. Besides, this is just the tip of an iceberg. The authors of the HELCOM report warn that 

caution must be applied as these findings may underestimate the true extent of PhAC pollution as some of the 

analytical protocols used to obtain the data may have had inadequate sensitivity [64]. 

 PhACs used in livestock treatment may enter the environment from manure when it is applied to farmlands. 

Hence, veterinary drug residues can reach the upper soil layer and migrate to groundwater. Martínez-Carballo et 

al. (2007) investigated several classes of antibiotics (tetracyclines, sulfonamides, trimethoprim, and 

fluoroquinolones) in manure samples and soils fertilized with manure. Results revealed that manure can contain 

high levels of selected compounds, e.g. chlortetracycline and tetracycline was detected in swine manure at 

concentrations up to 46000 ng/g and 23000 ng/g (dry weight), respectively. Nevertheless, only chlortetracycline 

was frequently found in soil samples. Despite the high initial residue content in manure, these results indicate that 

abiotic (hydrolysis, oxidation, photo-degradation, etc.) and biotic degradation processes occur during the transport 

of PhACs from manure to soil and also in the soil itself [67]. Other studies have likewise demonstrated that PhACs 

are extensively transformed by soil chemical and microbiological processes. For instance, Solliec et al. (2017) 

examined the fate of tetracycline antibiotics in soils, drainage waters and swine manure. A gradual decrease of 

concentration between these three sample types was found. Namely, the observed concentration in drainage waters 

was found to be almost 3-fold lower than in manure, while the concentration in soil barely exceeded several ng/g. 

That said, transformation products of tetracycline antibiotics were found in concentrations higher than the parent 

compound. However, the transformation pathway of PhACs is complex and could result in other bioactive 
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compounds, which can exhibit potentially higher toxicity than their parent [68]. Generally, migration of PhACs 

to the surrounding environment due to application of animal manure and sewage sludge to farmlands is much 

slower than, for example, direct WWTP effluent discharge into surface waters. Direct contact with aquatic and 

terrestrial species, in this case, is more limited and, therefore, the potential ecotoxicological risks have a lower 

magnitude. 

The final destination of PhACs is biota. Although most of these compounds are not persistent, PhACs can 

be classified as “pseudo-persistent” because they continuously enter the aquatic environment. As a result, aquatic 

organisms are constantly exposed to a large variety of PPCPs and PhACs. Their ubiquitous presence causes 

chronic exposure and promotes bioaccumulation [6]. The most commonly studied biota samples are bivalves [69] 

and fish [70,71]. For instance, in some studies, mussels are even used as biological “samplers” for monitoring 

water quality. They are sedentary filter-feeders and can be exposed to contamination that is either dissolved in 

water or bound to particulates in the water column. Unluckily for mussels, in 1986 The U.S. National Oceanic 

and Atmospheric Administration (NOAA) lunched a specific monitoring program called “Mussel Watch 

Program”. It was aimed to monitor contaminants of concern in bivalves (mussels and oysters) [72]. Samples from 

this program were used in a study by Dodder et al. (2014), where the occurrence of PPCPs, alkylphenols, 

polybrominated diphenyl ethers, pesticides and perfluorinated compounds was investigated. Results revealed that 

PPCPs, including PhACs, were the most dominant contaminant class in terms of absolute concentrations. While 

the usual suspects (diclofenac and carbamazepine) were not analyzed in this study, antibiotics (enrofloxacin, 

sulfamethazine and lomefloxacin) were frequently found in mussel tissue regardless of sampling location [73]. 

Wille et al. (2011) analyzed blue mussels (Mytilus edulis) caged at different stations in the Belgian coastal zone. 

The authors reported results for 11 PhACs. Five compounds were detected above the limit of quantification: 

ofloxacin, propranolol, salicylic acid, paracetamol and carbamazepine. The latter was found from 1 to 11 ng/g 

(dry weight) [74]. However, it impossible to determine the bioaccumulation potential of PhACs from occurrence 

data alone. To study the behaviour of these compounds, de Solla et al. (2016) conducted an in-depth study where 

bioaccumulation of 145 different PPCPs was investigated in wild and caged mussels (Lasmigona costata) near 

WWTP discharge site. It was concluded that bioaccumulation in the mussels correlated well with log KOC (soil 

adsorption coefficient) and log KOW (n-octanol/water partition coefficient). The highest bioaccumulation factors 

were found for non-polar antidepressants - amitriptyline and sertraline. Both of them were detected with high 

frequency and their concentrations varied in a range from around 5 to 80 ng/g (wet weight). As expected, highly 

polar PhACs like naproxen and metformin did not show any signs of persistence [75]. These results are broadly 

consistent with Valdes et al. (2016), where 20 PhACs, including carbamazepine and diclofenac, were analyzed in 

two fish species (Gambusia affinis and Jenynsia multidentata).A noticeable difference in the accumulation 

patterns was observed between both fish species. This observation suggests that different bioaccumulation 

pathways exist. Contrary to expectations, this study did not find traces of diclofenac in the analyzed samples. 

However, an opposite situation was noted for carbamazepine. The parent compound and two of its metabolites 

were monitored in gills, intestine, liver, brain and muscle of fish. Note: metabolites were not artificially added, 

nor detected in the exposure media during this study. Interestingly, carbamazepine and its epoxide were found in 

all analyzed organs, whilst hydroxylated metabolite was found only in muscle tissue and gills. In comparison to 

traditional persistent organic pollutants (log KOW > 3), bioconcentration factors for carbamazepine are low. 
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Theoretically it is considered a non-bioaccumulating substance. However, the authors argue that this factor should 

not be used as a sole predictor of bioaccumulation potential [76]. Overall, many studies have shown that uptake 

of PhACs in biota is not a minor problem that can simply be swept under the rug. The majority of PhACs that 

enter marine and freshwater bodies can indeed be found in aquatic species. Meanwhile, there is still a large demand 

for research studies that could fully characterize the accumulation and metabolic processes in aquatic ecosystems 

continuously exposed to PhACs. 

Taking everything into consideration, there is a common misconception that PhAC residues in the 

environment have no implications for human health. But it is not entirely true because such pollution can reach 

us through drinking water or by consumption of contaminated products (e.g. fish, molluscs, seaweeds, etc.). 

Therefore, high occurrence rates of PhACs in environmental compartments should not be considered a trivial 

issue created by environmental activists and scientific community, but it can soon enough negatively affect such 

sectors as healthcare (spread of antimicrobial resistance), food safety and limit the access to safe drinking water. 

1.6. Ecotoxicological effects of PhACs the aquatic environment 

Even though this dissertation is primarily focused on three specific topics related to PhACs, namely, their 

occurrence, analytical detection capabilities and removal, ecotoxicological aspects of these compounds should 

not be overlooked. It is the main reason why this topic is relevant at all. Based on reported environmental 

concentrations of PhACs in aquatic compartments, acute toxicity and short term adverse effects are rarely 

recorded for these substances. Yet, their ability to disrupt ecological processes in marine and, especially, 

freshwater ecosystems is not negligible [77]. The synthetic estrogen used in birth-control pills,17 alpha-

ethynylestradiol (EE2), can be regarded as a prominent example. In 2007, a team of researchers from Department 

of Fisheries and Oceans (Canada) conducted a long-term study in an enclosed lake, where low concentration of 

EE2 (5-6 ng/L) was maintained throughout a period of seven years. Until the publication of this study, no 

conclusive evidence was found that EE2 is directly responsible for the induced abnormalities in certain fish 

populations in Asia. However, reported results indisputably showed that chronic exposure of fathead minnow 

(Pimephales promelas) to EE2 led to feminization of males. This phenomenon gradually decreased the 

reproductive success of fish, which eventually caused almost complete extinction of this species in the lake [78]. 

These devastating consequences were kicked off by only one specific compound. Even more alarming is the fact 

that the concentration level at which EE2 was present in water is incredibly low. Because it is below the limit of 

detection for most instrumental techniques, many multi-residue methods cannot detect it.,  

In this context, another disastrous example must be mentioned. Although it is not directly related to the 

aquatic environment, it demonstrates how residues of PhACs can also alter terrestrial ecosystems. Since the 1990s 

vulture populations (Gyps bengalensis, Gyps indicus, Gyps tenuirostris) across the Indian subcontinent have been 

nearly wiped out. The current evidence indicates that the rapid decline of vultures in Southeast Asia is caused by 

toxic effects of diclofenac, which is used widely to treat inflammation in cattle. In several studies, it was confirmed 

that these scavenging birds die within a short time due to renal failure (kidney failure) after feeding on carcasses 

of livestock animals who have received a normal veterinary dose of diclofenac [79,80]. This finding once again 

reminds how fragile ecosystems are. A simple molecule, which is extensively used as a human and veterinary 

drug, can accidentally annihilate an entire population. 
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It must be noted that diclofenac and EE2 are extreme cases. In general, direct adverse effects of PhACs are 

not observed for marine and freshwater vertebrates at current exposure levels. However, behavioural distortions 

caused by PhACs can create a massive “domino-effect” reducing the survival potential of exposed species. For 

instance, Brodin et al. (2013) published a research article in Science, where behavioural abnormalities were 

investigated in wild European perch (Perca fluviatilis). In this study fish were subjected to moderate 

concentrations (1.8 µg/L) of oxazepam, a benzodiazepine anxiolytic drug wildly used to treat anxiety and 

insomnia. Although 1.8 µg/L might seem relatively high compared to expected environmental concentrations, the 

authors state that such conditions were selected to mimic oxazepam exposure levels nearby WWTP discharge 

sites. The exposed individuals displayed increased activity, reduced sociality and higher feeding rate. In the long 

term, these abnormalities can result in an accelerated depletion of food resources and negatively affect the spatial 

biodiversity of the exposed location [81]. The same drug has also been able to induce a similar effect in wild roach 

(Rutilus rutilus) at environmentally relevant concentrations below 1 µg/L [82]. Likewise, Martin et al. (2016) 

reported that another antidepressant (flouextine, 25 and 226 ng/L) alters antipredator behaviour in Eastern 

mosquitofish (Gambusia holbrooki). In other words, exposed individuals were more “careless”. They entered the 

predator ‘strike zone’ more rapidly and did not utilize the usual strategy for predator avoidance as often as the 

control group [83]. One might argue that sub-lethal behavioural effects are trivial compared to acute toxicity or 

reproductive failure. Yet, such abnormalities can induce cascading indirect effects at all trophic levels within the 

habitat. To give a brief example, the previously described situation in India where diclofenac induced mass 

extinction of vulture communities has allowed feral dogs to scavenge on carcasses more frequently. As a 

consequence, the rate of human rabies infections from dog bites has increased in the past decade [84]. 

Numerous reports reveal that individual PhACs can have a serious ecological impact and may induce 

biological response in non-target organisms even at low exposure level. Besides, vertebrates (fish, mammals, 

birds, amphibians, etc.) are not the only ones that can be affected by these compounds. Aquatic plants, algae, 

microorganisms, crustaceans and microscopic animals such as nematodes and rotifers can also display negative 

side effects when exposed to PhACs [7]. The ecological effects of individual PhACs can be magnified when 

multiple PhACs (or other substances) are simultaneously present and create the so-called “cocktail effect”. These 

effects are incredibly difficult to investigate and further research is needed to understand how complex mixtures 

of PPCPs affect the environment. Moreover, there is still a limited amount of data regarding long-term exposure, 

since it cannot be assessed via conventional short-term toxicity assessments [49,77].  

1.7. Removal of PhACs during wastewater treatment processes 

In recent decades, various technologies, including biological, physical and chemical processes have been 

extensively investigated for the removal of PhACs from domestic and industrial wastewater. WWTPs are the main 

units responsible for the efficient removal of pollution from incoming sewage. In most cases, the treatment of raw 

wastewater is performed in two stages. Primary treatment is designed to separate solids by the physical processes, 

e.g. flotation and sedimentation. Larger objects are retained by specific grids. Medium and small-sized solids are 

withdrawn in grit chambers and then directed to sedimentation tanks, where the elimination of solids continues. 

The parametric value of biochemical oxygen demand (BODs) and total suspended solids is usually halved during 

the primary treatment. Some pollutants which are bound to solids can be removed during this type of treatment, 

but colloidal and dissolved fraction stays largely unaffected. To remove the latter, secondary treatment is applied. 
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It utilizes different types of microorganisms in a controlled environment to remove pollutants employing 

biotransformation, air stripping, sorption and photo-transformation principles. To this day numerous secondary 

treatment technologies exist, e.g. application of activated sludge, membrane bioreactors (MBR), moving bed 

biofilm reactors (MBBR) and others. After the biological treatment the effluent can be either directed to secondary 

sedimentation tanks and discharged into the environment or subjected to more sophisticated pollutant removal 

technologies, namely, tertiary and quaternary treatment. The latter two are considered the best option for complete 

removal of PhACs and will be discussed later [85,86]. 

Although municipal WWTPs are effective and robust in many ways, they can achieve only partial removal 

of PhACs. The removal efficiency varies greatly depending on multiple factors. It is influenced by physico-

chemical properties of individual compounds, environmental conditions, applied technologies and operational 

parameters (solids retention time and hydraulic retention time). Radjenović et al. (2009) compared the removal 

efficiency of 31 PhACs in a full-scale conventional WWTP (WWTP Terrassa, Spain) which utilizes activated 

sludge and two pilot-scale MBRs. Removal efficiencies for the full-scale unit ranged from 15.0% to 99.9%. The 

most problematic PhACs were diclofenac (NSAID), sotalol (beta-blocker) and fluoxetine (antidepressant). On the 

contrary, polar NSAIDs like ibuprofen and paracetamol were removed almost completely regardless of the type 

of treatment applied. The overall results suggested that MBR outperforms activated sludge treatment. The authors 

conclude that out of three dominant processes that occur simultaneously (biodegradation, sorption and abiotic 

degradation) removal of PhACs by sorption to sludge is a minor removal pathway. However, this process is not 

negligible because PhACs can still interact with suspended sludge through hydrophobic and electrostatic 

interactions and, in some cases, even chemically bind to bacterial proteins and nucleic acids [87]. In this context, 

the most important process is biodegradation. The predominant group of bacteria in sludge is heterotrophs. They 

mainly feed on organic molecules. While the inorganic matter is transformed by autotrophs, such as ammonia 

oxidizing bacteria. Removal of PhACs in WWTPs occurs by two biological pathways, i.e., co-metabolism, in 

which compounds are degraded by enzymes produced by microbial communities present in the sewage sludge or 

by substrate degradation in which microorganisms use organic compounds solely as a source of carbon and 

energy. Co-metabolism is considered to be the main biological pathway [88]. But then again, sorption processes 

and biotic removal of PhACs is highly dependent on the individual target compound. Salgado et al. (2012) showed 

that even compounds within one therapeutic group and similar physiochemical properties can exhibit very 

different removal rates. For instance, within the group of NSAIDs, diclofenac displayed low biological removal 

rate. Meanwhile, ibuprofen and ketoprofen were almost completely eliminated from the effluent [89]. This is not 

a random coincidence. Diclofenac has been identified as a highly problematic member of the PhACs. For that 

reason, it will be used in the next paragraph as a “case study” to briefly describe some of the most significant 

aspects of PhAC removal. 

Diclofenac is slightly soluble in water and has a moderately low octanol–water coefficient. At neutral pH 

the carboxylic group of diclofenac has a negative charge. Thus, it repels the negatively charged sludge if 

conditions of the surrounding medium are not sufficiently acidic. According to Vieno et al. (2014), pH value is 

slightly lower during the primary treatment compared to secondary treatment with sludge [90]. This implies that 

diclofenac interacts with the sludge via adsorption only when pH is favourable. Unless such conditions are met, 

its adsorption to sludge is negligible. This phenomenon was confirmed by Urase et al. (2005), where removal of 
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diclofenac by sorption on activated sludge increased by more than 20 times when the medium was acidified to pH 

4.4 [91]. The approach works well for a laboratory-scale experiment, but it cannot be practically applied on a full-

scale WWTP. At least, not without major consequences that will negatively affect other removal processes. Hence, 

the estimated removal of diclofenac via solids rarely reaches 10% from the initial environmental load [90]. 

Efficient biodegradation requires that the substrate can reach the surface of the activated sludge. Numerous studies 

have shown that conventional application of activated sludge cannot biodegrade diclofenac, especially in 

anaerobic conditions. Under some circumstances, even higher concentrations of diclofenac can be observed in 

secondary effluent compared to untreated wastewater. According to Lee et al. (2012), this phenomenon prevails 

due to the deconjugation of glucuronide or sulphate conjugates of diclofenac [3].  

Diclofenac is not the only compound that displays poor removal in conventional wastewater treatment 

practices. Other prominent examples that can be added to this list are, for example, carbamazepine, diazepam and 

clarithromycin [92]. In past decades, advancements of secondary treatment technologies like MBR and MBBR 

have greatly improved our capabilities to remove micropollutants from wastewater. MBR relies on membrane 

processes (e.g. microfiltration or ultrafiltration) which allows more control over activated sludge accelerating 

removal [93]. MBBRs rely on biofilms that are grown on small carriers. These carriers are suspended and mixed 

in a reactor during secondary treatment and can greatly increase the surface area for microbial communities [94]. 

Nonetheless, some WWTP utilize even more sophisticated techniques. The most promising solutions for the 

removal of PhACs have been summarized by Wang et al. (2016) and Cecconet et al. (2017). Examples of some 

tertiary and quaternary treatment methods along with a brief description are presented in Table 4 [95,96]. 

Table 4. Advanced treatment techniques for removal PhACs from wastewater effluent 

Name 

 Description 

+ Main benefits 

- Main disadvantages 

Activated carbon, 

graphene, graphene 

oxide and carbon 

nanotubes 

 
Removes PhACs on basis of π- π interactions (Van der Waals forces), hydrogen bonding 

and electrostatic interactions. 

+ High surface area and adsorption capacity for small molecules. 

- Low adsorption capacity towards macromolecular substances 

- Relatively high cost and difficult to recycle/regenerate 

Ozonation 

 Applies non-selective oxidizing activity of hydroxyl radicals to eliminate pollutants. 

+ 
Widely used oxidation method in post-treatment, that can remove most PhACs with the 

removal efficiency more than 90%. 

- Treatment can form toxic by-products. 

Fenton oxidation, 

electro-Fenton and 

photo-Fenton oxidation 

 
Uses metal-based catalysts (or iron salts) in combination with hydrogen peroxide to 

generate hydroxyl radicals and remove pollutants.  

+ Effective for large diapason of compounds, including macromolecules. 

- Treatment can form toxic byproducts. 

- High cost and complicated recycling process. 
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Table 4. continued 

Name 

 Description 

+ Main benefits 

- Main disadvantages 

UV treatment 

 Dismantle chemical bonds of pollutants employing photolysis. 

+ Frequently applied when reclaimed water from WWTP is directly reused. 

- Direct UV photolysis is not always effective for the removal of PhACs. 

- 
A combination of UV and hydrogen peroxide can enhance the removal, but 

simultaneously produce toxic transformation products. 

Ionizing irradiation 

(e.g. gamma 

irradiation, electron 

beams) 

 Creates reactive species through water radiolysis that react further with pollutants.  

+ Additional chemicals are not needed. 

+ Even the most persistent compounds can be degraded by this technique. 

- Relatively expensive and gamma irradiation requires the use of radioisotopes. 

Bioelectrochemical 

systems (microbial fuel 

cells and microbial 

electrolysis cells) 

 

Microorganisms catalyse the red-ox reactions of organic and inorganic electron 

donors/acceptors, at their anodic and cathodic electrodes, which are separated by an ionic 

exchange membrane. 

+ A promising technique for the removal of PhACs.  

+ Is considered more sustainable in terms of energy demand. 

- An emerging technology that lacks data for successful application in full-scale WWTPs. 

  

All things considered, combined WWTP treatment techniques have demonstrated promising results in 

comparison to conventional secondary treatment. Advanced abiotic processes are slowly getting momentum and 

more frequently integrated into full-scale WWTPs to remove contaminants from secondary effluent. At the same 

time, novel biotechnologies can be incorporated to boost the efficiency of activated sludge, i.e. hybridized 

biomasses, tailor-made membranes, specific biofilm carriers and others. While many of these techniques have a 

bright future ahead, various implications still require focal attention in upcoming years, for example, possible 

toxicity of transformation products, sustainability and successful scale-up for full-scale applicability [96].  

1.8. Analytical strategies for the determination of PhACs in environmental matrixes 

Previous sections have provided some insight into the question of why PhACs are relevant from an 

environmental perspective. This section, in turn, is intended to give an overview of current methodologies for the 

determination of PhACs in environmental matrixes.  

The analytical procedures to determine PhACs in environmental matrixes (e.g. surface water, wastewater, 

groundwater, sediments, biota, etc.) involve three critical steps - sample treatment, instrumental separation and 

detection. In modern applications, separation is mostly performed via gas chromatography (GC) or liquid 

chromatography (LC). The latter is considered the most popular option because the majority of PhACs are non-

volatile and relatively polar. Although there are alternatives in terms of detection, almost all multi-residue methods 

rely solely on mass spectrometry (MS). All three aforementioned steps are equally important. A slight issue in 

one of them can completely disrupt the performance of the overall analytical method. In the next subsections, 

each analytical stage will be placed under the magnifying glass. 

1.8.1. Sample treatment 

Sample treatment, which usually involves homogenization, extraction and clean-up, is still a critical step 

despite the surge in advancements in the detection and separation technologies. The main goals for sample 

treatment are as follows: (i) efficiently extract the target analytes, (ii) remove interferences and (iii) obtain extracts 
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that are suitable for instrumental analysis. In general, environmental samples can be classified in three domains, 

i.e. water (groundwater, surface water), complex samples which do not originate from plants or animals 

(wastewater, sediments, soil, sludge, etc.) and so-called “biota” - animal or plant origin matrixes (fish, bivalve 

molluscs, aquatic plants, etc.). Each one of them requires a slightly different approach. For instance, surface water 

samples already contain small amount of interferences and therefore tedious sample preparation is not required. 

In contrast, samples of biological origin require more laborious treatment to remove interfering compounds and 

achieve sensitivity necessary for trace analysis [97].  

The initial step in sample treatment for solid matrixes is homogenization and, in some cases, elimination of 

excess water. The latter is usually achieved by drying salts, e.g. Na2SO4 and MgSO4, or by lyophilization. In 

addition to homogenization, enzymatic, alkaline and acidic digestion can also be a feasible option. Yet, digestion 

is scarcely applied for multi-residue methods, because some PhACs can readily decompose under digestive 

conditions [98]. Liquid matrixes do not require such pretreatment. In most situations, only filtration or 

centrifugation is necessary to remove suspended solids prior the extraction of target analytes.  

After the pre-treatment, extraction of PhACs and selective sample clean-up must be carried out. Both of 

these steps are usually integrated into one procedure when analysing liquid samples. Hence, it is more convenient 

to discuss both extraction and clean-up together. In case of surface water, wastewater and groundwater, the most 

frequently applied techniques are as follows, solid phase extraction (SPE), dispersive liquid-liquid 

microextraction (DLLME), solid phase micro-extraction (SPME), stir bar sorptive extraction (SBSE) and liquid-

liquid extraction (LLE) (see Table 5). The latter will not be discussed in detail since modern analytical methods 

(in the context of PhACs) scarcely use LLE, with exception of trace analysis of non-polar PhACs, e.g. 

determination of hormones via GC-MS.  

Meanwhile, the extraction stage of solid samples is usually separated from clean-up. Commonly applied 

techniques involve conventional solid-liquid extraction (SLE), pressurized liquid extract (PLE), accelerated 

solvent extraction (ASE), Soxhlet extraction, microwave-assisted extraction (MAE) and ultrasound-assisted 

extraction (UAE). PLE, ASE and Soxhlet extraction are carried out at elevated temperature and/or pressure. MAE 

utilizes high frequency non-ionizing radiation (microwave energy) to irradiate the extraction mixture while UAE 

employs microwave energy for the same purpose. Either way, the goal is to promote the transfer of analytes from 

the sample matrix into the extraction solvent. All of these techniques are considered suitable for the extraction of 

PhACs from solid environmental matrixes. Nonetheless, the amount of co-extracted interferences and analyte 

recoveries may vary greatly between different methods even when the same extraction protocol is employed [99]. 

The techniques mentioned in the previous paragraph (Table 5.) can also be used for the treatment of extracts that 

are obtained from solid environmental samples. All of them are considered applicable, but SPE is the most popular 

approach among others.  
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Table 5. Extraction and clean-up methods for determination of PhACs in aqueous environmental 

samples 

Name Description Ref. 

SPE 

In brief, SPE is a method used for the isolation and enrichment of selected 

analytes dissolved in a liquid phase. The sample is passed through a 

cartridge containing a specific stationary phase that retains analytes. SPE is 

the most extensively used sample preparation technique for PhAC analysis 

in aqueous matrixes. The advantages of SPE include simplicity, high 

enrichment factors and robustness. Besides, a large variety of stationary 

phases exists and enrichment of analytes can be achieved through different 

principles (e.g. normal phase, reversed phase, molecularly imprinted 

polymers (MIPs), ion exchange, etc.). 

[100] 

DLLME 

DLLME is based on a ternary solvent system. It consists of an aqueous 

sample, dispersive solvent (e.g. methanol or acetonitrile) and extraction 

solvent (e.g. chloroform or dichloromethane). The dispersive solvent must 

be miscible with the organic extraction solvent. The extraction occurs when 

a mixture of both solvents is rapidly added to the aqueous sample. A cloudy 

state consisting of fine droplets is immediately formed and analytes are 

extracted into the extraction solvent, which is then separated via 

centrifugation. 

[101] 

DSPE 

DSPE is categorized as an SPE technique. The main principles of this 

approach are similar to SPE. However, the stationary phase is not embedded 

in a specific cartridge but instead dispersed within the liquid sample. It can 

be applied for analyte enrichment or selective removal of interferences if 

target analytes do not exhibit affinity towards the stationary phase. In most 

cases, DSPE is used for matrixes that require relatively small volumes, e.g. 

wastewater, plasma and urine. Furthermore, materials like magnetic 

nanoparticles can be incorporated into the DSPE to increase surface area and 

ease the collection of dispersed material. 

[102] 

SPME 

As the name suggests, SPME is closely related to SPE. It involves a tailor-

made fiber that is coated with a stationary phase. The fiber is inserted into 

the sample and agitated for a brief period until extraction reaches its 

equilibrium. After that SPME device is transferred to an injection port where 

analytes are released into the instrumental system (e.g. GC-MS and LC-MS). 

In some situations, analytes are not directly desorbed from SPME but instead 

subjected to a further clean-up. This technique is usually applied for small 

sample volumes or pre-concentrated extracts. 

[103] 

SBSE 

This technique employs a magnetic stir bar whose surface is coated with a 

specific stationary phase (e.g. polydimethylsiloxane). The bar is directly 

introduced into liquid sample media and stirred. The analytes are retained on 

its surface during stirring. After sorption, SBSE device is removed and the 

compounds can be desorbed. This technique can be applied for both small 

and large sample volumes. Furthermore, the surface of the bar can be 

functionalized according to method requirements. 

[104] 
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Figure 4. SPE stationary phases of Oasis HLB and Strata-X PRP cartridges 

The most frequently applied SPE columns for multi-residue methods are Oasis HLB and Strata-X-PRP. 

The first consists of lipophilic divinylbenzene-vinylpyrrolidone and hydrophilic N-vinylpyrrolidone, while the 

latter is made of polydivinylbenzene resin containing piperidone groups (Figure 4). The hydrophilic moieties offer 

good wettability and high mass transfer rates from aqueous media, while the lipophilic ones provide retention of 

analytes via reversed phase principles. These properties allow the simultaneous isolation of compounds with 

various physico-chemical properties. Nonetheless, there are several alternatives available if target analytes are 

less versatile. For instance, MIPs are frequently applied for the analysis of hormones because almost all of these 

compounds share the same condensed ring system as they are mostly derived cholesterol. Therefore, structure-

specific cavities can be incorporated in the sorbent to retain steroidal estrogens. Another example is acidic 

NSAIDs and aminoglycosides. The first group of substances contain a carboxylic group, while the latter are amino 

sugars. Thus, anion-exchange SPE can be used for NSAIDs while cation-exchange SPE for aminoglycosides. 

Also, SPE techniques can be easily automated and applied both offline and online [97,105]. While most of these 

extractions are performed in laboratories, SPE technology can also be used for field sampling. Several devices 

have been already designed for passive sampling of PhACs from surface waters, for instance, Chemcatcher®. 

These devices are submerged in water to retain pollutants from territories where otherwise large sample volumes 

would be required. Nevertheless, this sampling type is still semi-quantitative, because surrounding conditions 

significantly affect the performance of each passive sampler [106]. 

Another noteworthy method that can be used for the extraction of PhACs is QuEChERS. The abbreviation 

stands for “Quick, Easy, Cheap, Effective, Rugged and Safe”. It was developed in the early 2000s by Michelangelo 

Anastassiades during his post-doctoral visit at the Agricultural Research Service (a scientific in-house research 

agency of the US Department of Agriculture). This approach has revolutionized the field of pesticide residue 

analysis and suits as a great example of how simplicity can sometimes be the key to success [107]. In brief, 

QuEChERS method is based on the extraction with acetonitrile. The organic solvent is then separated by adding 

a mixture of salts (MgSO4, NaCl, e.g.). Afterwards, the freeze-out step can be incorporated to remove low 

solubility interferences (e.g. lipids and carbohydrates) or, alternatively, the crude extract can be additionally 

cleaned-up via DSPE procedure. Although QuEChERS is not considered highly selective, it is very useful for 
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multi-residue analysis and a growing number of studies have now begun to acknowledge this method as a good 

alternative to conventional SPE [108]. 

Additional clean-up can be required (e.g. silica gel or florisil based preparative chromatography, gel 

permeation chromatography, etc.) when analysing complicated sample matrixes. However, each additional clean-

up step complicates the sample treatment procedure and makes the method more selective towards some analytes. 

Selectivity is mostly considered an advantage, but it can also become a drawback when different classes of PhACs 

are analysed within the same procedure because some of them may be lost due to an extensive clean-up. Foremost, 

several novel approaches have emerged, for instance, applications of ionic liquids, nanomaterial-based extraction, 

supramolecular solvents, etc. Yet, most of them are (i) still under development, (ii) prone to poor reproducibility 

and (iii) too complicated or costly to be used for routine analysis [98]. 

1.8.2. Chromatographic separation 

Given the complexity of environmental samples, chromatographic separation is an essential part of PhAC 

analysis. As mentioned before, most of these substances are categorized as relatively polar, non-volatile and prone 

to thermal decomposition, thus separation is frequently achieved through LC rather than GC. Some of these 

limitations can be overcome by derivatization and, in a few instances, GC provides superior sensitivity which 

renders it more suitable for the determination of specific PhAC classes (e.g. steroidal estrogens and NSAIDs). 

Nonetheless, due to recent advances in UPLC based separation techniques, LC has become the primary choice 

for multi-residue methods. In general, contemporary applications depend on columns packed with sub-2 μm 

particles. This enables better chromatographic resolution and increased peak capacity. Meanwhile, older 

generation HPLC equipment continuously remains relevant because the availability of columns packed with core-

shell particles. This technology allows maintaining high separation efficiency at relatively low back-pressures. 

Aside from the analytical benefits, the aforementioned techniques are also more environmentally friendly due to 

reduced solvent consumption and shorter analysis time. This aspect is often neglected and thus creates a paradox: 

researchers undertake studies to explore the realm of environmental pollutants but use methods that do not comply 

with the principles of green chemistry. Some practices that may be categorized as sustainable and have been 

adopted for the analysis of PhACs are: micro-flow and nano-flow LC applications [109], high-temperature LC, 

supercritical fluid chromatography with carbon dioxide [110] and substitution of LC with direct injection. The 

same principle also applies to reagents and materials, thus numerous promising alternatives have emerged, such 

as environmentally friendly mobile phases (e.g. acetone, ethanol and pure water) and reusable phase additives 

(e.g. ionic liquids) [111]. Altogether, these advances have made it possible to improve current analytical 

procedures with respect to their their environmental footprint. 

Current trends in the analysis of PhACs indicate the growing importance of multi-residue methods. Taking 

into account the physico-chemical nature of target analytes, C8 and C18 bonded stationary phases are considered 

the first choice as they enable simultaneous separation of PhACs belonging to different therapeutic classes [112]. 

Although expanding the overall scope of the method is viewed as a benefit, it can also be considered a limitation 

in terms of selectivity. If alkyl bonded stationary phase cannot provide sufficient separation, other alternatives 

may be explored. For example, an enhanced selectivity can be achieved utilizing hydrophobic forces such as π-π 

interactions available through in π-conjugated systems. Surface functionalization of silica bond stationary phases 

is achieved by substituting octadecyl groups with phenyl moieties enabling superior retention of substances that 
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exhibit π-π interactions. It is an effective strategy that is suitable for various PhACs, such as NSAIDs, tetracycline 

antibiotics and benzodiazepines [113]. There is, of course, substances that cannot be retained by conventional 

reversed phase chromatography and require other approaches. For instance, aminoglycoside antibiotics are highly 

cationic, thus hydrophilic interaction chromatography (HILIC) must be used instead [114]. Furthermore, many 

PhACs are chiral, existing in the environment as a racemic mixture or a single enantiomer. Enantiospecific 

behaviour of chiral drugs is a fundamental aspect of their nature. Specific molecular recognition processes affect 

their fate in the environment and regulate the biological activity against living organisms. Despite these 

considerations, chirality remains largely neglected in the field of environmental analytical chemistry as the 

analysis of individual enantiomers requires enantiospecific separation [115]. Chiral stationary phases can resolve 

this issue and, as highlighted by Vazquez-Roig et al. (2014), provide new insights into enantiomer enrichment 

and stereoselective degradation that occurs in the environment and during wastewater treatment processes [116]. 

Moreover, a state-of-art analysis of PhACs may be carried out using two-dimensional (2D) LC techniques 

performed in either “heart-cut” or comprehensive modes. Hence, different stationary phases can be simultaneously 

utilized enabling unprecedented chromatographic separation [117]. 2D-LC is seldom used in this field due to 

demanding instrumental requirements and high complexity, but, nevertheless, it will have a bright future if these 

disputes can be resolved. Overall, the chromatographic tools discussed in this paragraph display several 

advantages, but their applicability is often limited to single residue (or single class) methods rather than multi-

analyte methods. 

Without a doubt, there is an extensive list of factors other than stationary phase that influence the overall 

performance of LC-based methods (e.g. injection and mobile phase constitution, mobile phase flow rate, injection 

volume, column temperature, mobile phase additives, gradient program etc.). Finding optimal chromatographic 

conditions is challenging. While there are some general “rules-of-thumb”, empirical data are necessary to find the 

most suitable parametric values since each instrumental setup and target compound list is unique in its own right. 

Therefore, a more detailed discussion regarding these factors is presented in the results section. 

1.8.3. Mass spectrometric detection 

As the title suggests, this chapter of the thesis will be dedicated to MS as it is the most versatile analytical 

tool for monitoring organic pollutants in complex matrixes. Nevertheless, the detection of PhACs is not restricted 

to one particular methodology as numerous other techniques are available. Year after year, novel and inspiring 

methods emerge from the scientific literature promising to improve many aspects of environmental studies. 

However, only a small fraction of them withstand the test of time. A widely publicized example of fraudulent 

practice in analytical and bioanalytical chemistry occurred in 2015-2018, when a billion-dollar start-up 

“Theranos” was charged for alleged fraud. The company declared it can run over 200 tests on a few drops of blood 

using miniature testing devices that were, of course, undisclosed. Such unbelievably high testing capacity could 

easily fit in a plot from a science fiction novel. Luckily, these claims were found to be completely false and 

resulted in a massive scandal [118]. This case illustrates that the scientific community should remain sceptical 

when it comes to ludicrous claims and methods that are somewhat "too good to be true". Yet, there are plenty of 

positive examples that have proved to be reliable, accurate and applicable in this field. Some notable cases are: 

(i) enzyme-linked immunosorbent assays (e.g. steroid hormones in surface water) [119], (ii) biosensors based on 

microfluidic flow cells (diclofenac in WW) [120], (iii) capillary electrophoresis coupled with a diode array 
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detector (antibiotics in WW effluents from livestock farms) [121], (iv) HPLC coupled with a fluorescence detector 

(anti-cancer drugs in hospital effluents) [122] and (v) sensors based on molecularly-imprinted polymers doped 

with silver/gold nanoparticles that are analyzed using surface-enhanced Raman scattering (caffeine in WW) [123]. 

Nevertheless, the aforementioned methods are still in the early stages of development and so far, have not been 

able to demonstrate superior performance over their MS-based counterparts. 

As mentioned before, most studies utilize LC-MS to resolve the analytical challenges presented by PhACs. 

To observe any m/z signals, analytes must first be ionized. Therefore, before we start discussing MS detection in 

more detail, this critical element has to be addressed. Electrospray ionization (ESI) source is considered the golden 

standard for polar pollutants and can cover a wide range of analytes in both polarities. However, over the last two 

decades, other options have emerged. For instance, Loffler et al. (2003) determined several acidic pharmaceuticals 

in sediments using atmospheric pressure chemical ionization (APCI) coupled with tandem mass spectrometry 

(MS/MS) [124]. A different study by Yamamoto et al. (2006) successfully obtained steroid hormone profiles in 

surface water samples using LC-MS/MS equipped with atmospheric pressure photoionization (APPI) source 

[125]. Their applicability is more specific, but both of these techniques are good candidates when conventional 

ESI cannot yield sufficient sensitivity, which is often the case in studies that focus on moderately non-polar drugs 

(e.g. fibrates, steroidal estrogens and carbamazepine). Besides, with slight modifications APCI can be easily 

coupled with GC or laser diode thermal desorption techniques, thus providing more versatility [126]. Meanwhile, 

ESI technology has been constantly upgraded to meet the changes in demand. Commercial availability of novel 

solutions, such as nano-ESI, high temperature ESI and hybrid ESI sources, have propelled this technique to the 

forefront of analytical chemistry. The main advantage of new generation ESI sources is that they provide greater 

room for customizability. In this way, the scope of the analysis can be extended, because the method becomes 

less restricted by the physico-chemical properties of the analyzed compounds. Another ionization approach that 

has recently gained considerable momentum is ambient mass spectrometry. This technique mostly applied in the 

field of bioanalytical chemistry, because a large number of samples can be analyzed without extensive 

pretreatment enabling rapid and automated MS-based imaging. In general, two ambient ionization types are used 

the most - direct analysis in real time (DART) and desorption electrospray ionization (DESI), where ionization is 

achieved by gas and aerosol, respectively. DESI has been used for direct analysis of carbamazepine in WW 

samples. The reported method allowed to achieve detection levels at low ng/L range, which is sufficient for PhAC 

analysis at environmentally relevant concentrations [127]. A more recent study applied DART technology to 

investigate testosterone traces in WW samples [128]. Despite their potential, these techniques are rarely applied 

in this field. However, we can expect ambient MS will gain greater appreciation in the following years, because 

miniaturized sampling devices are increasingly more accessible allowing to capture and preconcentrate pollutants 

on a specific surface or liquid medium, that can later be analyzed under ambient conditions. Besides, rapid 

screening of suspect contaminants is as relevant as ever, because the list of emerging pollutants is evolving rapidly 

[9]. 

Apart from the limitations imposed by the inertness of certain compounds that cause poor or non-existent 

ionization, matrix induced disturbances can be considered the central issue regarding ionization. In case of ESI, 

there are several hypotheses why matrix effects happen. The most widely accepted theory is that target compounds 

and co-eluting substances compete for available charge and the access to the surface of droplets formed from the 
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nebulizer tip. Thus, a higher amount of matrix components usually suppresses the analyte signal. Nevertheless, 

the opposite effect can also be observed in some instances (matrix enhancement effect) [129]. In comparison to 

ESI, APCI and APPI are less susceptible to ion suppression due to differences in ionization mechanisms. In APCI, 

gas phase ionization occurs in the region around the corona discharge needle, thus ionizable molecules compete 

only for the charge, but not for the surface of droplets as in the case of ESI. Meanwhile, APPI is mostly suitable 

only for nonpolar analytes that display poor ionization efficiency under ESI conditions. This leads to a fewer 

number of co-eluting compounds that can undergo ionization in APPI source and, consequently, matrix effect is 

less pronounced [130]. However, APCI and APPI have limited applicability. Hence, despite the underlying 

susceptibility to matrix effect, ESI remains the first-choice technique to study the environmental occurrence and 

behaviour of polar organic micropollutants such as PhACs.  

Realistically speaking, complete elimination of matrix effect during ESI process cannot be achieved. In 

fact, co-eluting matrix components can cause several other issues, apart from suppression, e.g. negatively affect 

mass accuracy and reduce the quality of fragment spectra in MS/MS mode. Several solutions can be used to 

partially mitigate the impact of the matrix effect. These solutions can be categorized into two groups with respect 

to the expected outcome: those aimed to reduce the amount of co-eluting matrix components and those used to 

compensate for negative effects that influence the analytical response. In general, reduction of the matrix can be 

achieved in selective or non-selective manner. The latter usually means that the final extract is either diluted or 

smaller sample aliquots are used prior to extraction or clean-up. Whereas more selective removal of matrix 

interferences involves sophisticated clean-up protocols, use of mobile phase additives (e.g. buffer salts and mobile 

phase modifiers) and precise optimization of instrumental parameters (e.g. LC separation and ionization 

conditions) [131]. These measures are most successful when the analytical procedure is focused on a limited 

number of target analytes that, preferably, share similar physicochemical properties. In case of multi-residue 

methods, selective removal of matrix components is an ambiguous task and ultimately involves a compromise 

between the performance of the method (e.g. analyte recovery, sensitivity and scope) and matrix effect 

elimination. Thus, dilution and other non-selective ways are more frequently applied for the analysis of multi-

class PhACs. If matrix effects cannot be eliminated by one of the above approaches appropriate calibration 

techniques must be applied. Such techniques are used to compensate for both matrix effects and analyte losses 

during sample preparation in quantitative LC-MS analyses. The best way is to use isotopically labelled surrogates 

or structurally similar unlabelled compounds for internal standardization. When internal standards are either not 

commercially available or too expensive, external calibration can be used. For this purpose, a blank sample matrix 

is spiked with known concentrations of target analytes, analyzed according to the sample preparation protocol and 

the obtained analytical responses are used to construct a calibration curve. This might seem like a universal 

solution for all methods, but there are several limitations. Firstly, the analyzed matrix should not contain target 

compounds. This, however, is rarely the case in environmental analysis, because many pollutants are known to 

occur ubiquitously in the environment. In situations where the selected matrix still contains the compounds of 

interest, blank subtraction can be used. Yet, an accurate quantification at trace levels is practically impossible 

when the blank sample contains high concentrations of target substances. To illustrate this, consider a situation 

when a WW sample that contains 500 ng/L of diclofenac is selected as a blank matrix for matrix-matched 

calibration. The lowest calibration level is 25 ng/L and the relative standard deviation (RSD) of the hypothetical 
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method is 10%. If we measure the blank sample and the first calibration point, the obtained analytical response 

falls within a range of 450-550 ng/L and 473-578 ng/L, respectively. Thus, blank subtraction at low concentration 

levels can produce extreme uncertainty and lead to erroneous interpretation of the results. Furthermore, the 

selected blank matrix must resemble the analyzed samples as closely as possible, while the samples themselves 

have to remain fairly constant in terms of composition. Apart from these approaches, the so-called “echo-peak 

technique” can also be considered a promising option in this context. The sample extract and a standard solution 

are injected sequentially one after another in the same chromatographic run. The standard peak elutes in close 

proximity with the sample peak, thus co-eluting matrix components affect both peaks in the same way. Hence, 

ion suppression or enhancement effects can be evaluated based on corresponding echo-peaks [132]. From this 

discussion, it is apparent that there is no universal solution to overcome the matrix effect in LC-MS applications. 

Nevertheless, its assessment is essential when analysing PhACs in complex environmental matrixes. Besides, no 

matter which technique is applied, it must be optimized to fit the requirements of the method and, most 

importantly, verified during the validation study. 

Concerning MS techniques, different MS platforms are used in this field of study. To examine the current 

instrumental trends, a comprehensive literature survey was conducted summarizing twenty research articles 

(published between 2018 and 2019) that investigate the environmental occurrence of multi-class PhACs in 

environmental samples (e.g. WW, sludge, surface water, groundwater and biota). These methods are summarized 

in Table 6.  

Table 6. Procedures for determination of multi-class PhACs in environmental samples 

Instrumental setup Sample 

treatment/clean-up 

LC column 

(dimensions) 

Matrix Na LOQ or MDL 

range 

Ref. 

UPLC-ESI-MS/MS (QqQ) Filtration followed by 

"dilute-and-shoot" analysis 

approach 

Zorbax Eclipse Plus-

C18 (3.0 x 100 mm, 1.8 

μm) 

WWTP 

influents/effluents 

33 LOQ: 2 - 37 ng/L [133] 

UPLC-ESI-Q-Orbitrap-HRMS Filtration, addition of 

EDTA, alkalization and SPE 

clean-up (Oasis HLB) 

Hypersil Gold C18 

(2.1 × 50 mm, 1.9 μm) 

WWTP 

influents/effluents 

and surface water 

26 MDL: WWTP influents: 

0.4 - 419 ng/L, WWTP 

effluents: 0.2 - 173 ng/L 
and surface water: 0.3 - 

373 ng/L 

[134] 

HPLC-ESI-Q-Orbitrap-HRMS Vacuum-assisted 
evaporative concentration 

Atlantis T3 C18 
(3.0 × 150 mm, 3.0 μm) 

WWTP 
influents/effluents 

and surface water 

265 MDL: WWTP influents: 
0.9 - 5600 ng/L, WWTP 

effluents: 0.4 - 1400 

ng/L and surface water: 
0.3 - 900 ng/L 

[135] 

UPLC-ESI-MS/MS (QqQ) Filtration addition of EDTA 

and SPE clean-up (Oasis 

HLB and Chromabonds HR-
X SPE) 

Zorbax Eclipse C18 (2.1 

x 50 mm, 1.8 μm) 

Groundwater and 

surface water 

93 LOQ: 0.03 - 153 ng/L [136] 

UPLC-ESI-Q-TOF-HRMS Filtration and SPE clean-up 

(Oasis HLB and Bond-Elut 
ENV) 

BEH C18 

(2.1 × 100 mm, 1.7 μm) 

Surface water and 

drinking water 

40 MDL: <0.1 - 86 ng/L [137] 

HPLC-ESI-MS/MS (QqQ) Filtration and SPE clean-up 

(Oasis HLB and SPEC C18) 

CORTECS C18 (2.1 x 

75 mm, 2.7 µm) 

WWTP 

influents/effluents 

9 LOQ: 0.02 - 97 ng/L [138] 

UPLC-ESI-MS/MS (QqLIT) Filtration followed by 
"dilute-and-shoot" approach 

or SPE clean-up (Oasis 

HLB) 

Zorbax Eclipse C18 (2.1 
x 50 mm, 1.8 μm) 

WWTP 
influents/effluents 

13 LOQ: 0.5 - 50 ng/L [139] 

UPLC-ESI-Q-TOF-HRMS Filtration and SPE clean-up 
(Strata-X-PRP) 

BEH Phenyl (2.1 × 50 
mm, 1.7 μm) 

WWTP effluents 
and surface water 

88 MDL: 0.01 - 1 ng/L [140] 

UPLC-ESI-MS/MS (QqQ) Filtration and SPE clean-up 

(Oasis HLB) 

Intensity Solo C18 (2.1 

x 100 mm, 2.0 μm) 

WWTP 

influents/effluents 
and surface water 

78 LOQ: 0.01 - 5 ng/L [141] 
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Table 6. continued 

Instrumental setup Sample 

treatment/clean-up 

LC column 

(dimensions) 

Matrix Na LOQ or MDL 

range 

Ref. 

HPLC-ESI-MS/MS (QqQ) Filtration, acidification, 
addition of EDTA followed 

by SPE clean-up (Oasis 

HLB, according to US EPA 
Method 1694) 

Waters Xtera C18 (2.1 x 
100 mm, 3.5 μm) 

Groundwater and 
surface water 

118b  MDL: 0.1 - 340 ng/L [142] 

UPLC-ESI-Q-Orbitrap-HRMS Filtration, acidification, 

addition of EDTA and 

Online-SPE clean-up (C18) 

CORTECS C18 (2.1 x 

50 mm, 1.6 µm) 

Groundwater and 

surface water 

33 LOQ: 1 - 5.5 ng/L [143] 

UPLC-ESI-MS/MS (QqQ) Filtration and SPE clean-up 

(Oasis HLB) 

Unspecified C18 

column (2.1 x 100 mm, 

2.0 μm) 

WWTP 

influents/effluents 

78 MDL: 0.01 - 1.5 ng/L [144] 

UPLC-ESI-MS/MS (QqQ) Extraction with pressurized 
hot water, dilution, filtration 

and SPE clean-up (Oasis 

HLB) 

Unspecified C18 
column (2.1 x 100 mm, 

2.0 μm) 

Wastewater 
irrigated soils 

45 MDL: 0.01 - 0.83 ng/g 
(dry weight) 

[144] 

UPLC-ESI-MS/MS (QqQ) Acidification, dilution and 

SPE clean-up (Oasis HLB) 

Poroshell 120 SB-AQ 

(2.1 x 100 mm, 2.7 μm) 

Fish and osprey 

plasma 

21 MDL: 0.03 - 14 ng/mL [145] 

HPLC-ESI-MS/MS (QqLIT) Filtration and SPE clean-up 
(Oasis HLB) 

Purospher Star RP-18 
(2.0 x 125 mm, 5.0 μm) 

WWTP 
influents/effluents 

and surface water 

35 LOQ: WWTP influents: 
1 - 262 ng/L, WWTP 

effluents: 0.8 - 172 ng/L 

and surface water: 0.5 - 
31 ng/L 

[146] 

UPLC-ESI-Q-Orbitrap-HRMS Filtration, acidification, 

addition of EDTA and SPE 

clean-up (Oasis HLB and 
Speedisk SPE) 

Hypersil Gold C18 

(2.1 × 50 mm, 1.9 μm) 

Surface water 52 MDL: <0.03 - 74 ng/L [147] 

UPLC-ESI-Q-Orbitrap-HRMS Extraction with acetonitrile 

and ethyl acetate, 
evaporation and 

reconstruction in injection 

phase 

Accucore RP C18 (2.1 × 

100 mm, 2.6 μm ) 

Aquatic biota 

samples (fish, 
shrimps, crabs and 

mussels) 

182 MDL: 1 - >50 ng/g (dry 

weight) 

[148] 

UPLC-ESI-Q-TOF-HRMS Ultrasound assisted 
extraction followed by 

QuEChERS clean-up 

protocol 

Kinetex EVO C18 (2.1 
x 50 mm, 2.6 µm) 

Fish muscle 
(salmon and chub) 

27 LOQ: 0.8 - 85 ng/g (dry 
weight) 

[149] 

UPLC-ESI-MS/MS (QqQ) Filtration and SPE clean-up 

(Oasis WAX) 

Waters Acquity HSS T3 

C18 (2.1 × 50 mm, 

1.8 μm) 

WWTP 

influents/effluents 

9 LOQ: 2 - 160 ng/L [5] 

UPLC-ESI-MS/MS (QqQ) Extraction with methanol, 
dilution, filtration and SPE 

clean-up (Oasis WAX) 

Waters Acquity HSS T3 
C18 (2.1 × 50 mm, 

1.8 μm) 

Suspended solids 9 LOQ: 4 - 86 ng/g (dry 
weight) 

[5] 

HPLC-ESI-Q-Orbitrap-HRMS Extraction with acetonitrile 
and SPE clean-up (Oasis 

HLB) 

Ascentis Express C18 
(2.1 x 75 mm, 2.7 μm) 

Fish muscle (tilapia, 
salmon and eel) and 

shrimps 

25 MDL: 1 - 100 ng/g (dry 
weight) 

[150] 

HPLC-ESI-MS/MS (QqQ) Filtration, acidification, 
addition of EDTA and SPE 

clean-up (Oasis HLB) 

InfinityLab Poroshell 
120 EC-C18 (3.0 × 50 

mm, 2.7 μm) 

WWTP 
influents/effluents 

37 LOQ: 0.14–11 ng/L [151] 

HPLC-ESI-MS/MS (QqQ) Extraction with acetonitrile, 

dilution, filtration, 
acidification, addition of 

EDTA and SPE clean-up 

(Oasis HLB) 

InfinityLab Poroshell 

120 EC-C18 (3.0 × 50 
mm, 2.7 μm) 

Sludge 37 LOQ: 0.65–17 ng/g (dry 

weight) 

[151] 

a The number of PhACs analyzed in the study. 
b The study relied on several MS/MS acquisition methods. 

 As seen from Table 6, the most frequently applied MS platforms are triple quadrupole MS/MS 

instruments and high-resolution MS (HRMS) systems. Both provide different benefits and, in some instances, are 

even used together offering increased versatility and adaptability for the determination of PhACs [152]. By 

contrast, simpler mass analysers (i.e., low-resolution single quadrupole MS devices) are currently seldom used in 

this field, because of their inability to resolve target signals from interferences which is a critical aspect for trace 

level analysis of pollutants in complex matrixes. As mentioned above, both MS/MS and HRMS systems have 

different advantages, thus the purpose of the study is the primary factor for determining which analyser must be 

used to carry out instrumental detection. In general, the key performance parameters of each analyser include m/z 
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measurement accuracy, sensitivity, linear range, m/z range and scanning speed. MS/MS platforms are most 

suitable for trace level quantification studies since they provide increased sensitivity, wide linear range and speed. 

Two types of instrumental setups are commonly used: conventional triple quadrupole (QqQ) systems and hybrid 

linear ion traps (QqLIT), where the third quadrupole is substituted with linear ion trap (LIT) allowing additional 

fragmentation or accumulation of ions prior MS detection. Alongside hybrid LITs, there are also simpler LIT 

systems that can be considered a viable option for MS/MS measurements when ultra-high sensitivity is not 

required. Regardless of which MS/MS platform is used, several drawbacks should be addressed. Firstly, the 

analytical capability of MS/MS is constrained by the number of analytes that can be put in the acquisition method, 

because each MS/MS transition occupies a definite time interval. Therefore, only a limited number of transitions 

can be simultaneously measured in one chromatographic run. Data from Table 6 are in accordance with this 

notion, because the maximum number of different PhACs that were investigated by each study was higher for 

applications that used HRMS (Nmax = 265 compounds) compared to those that applied MS/MS (Nmax = 93 

compounds). Measurements in full-MS mode can help to overcome this restriction, but, from an analytical 

standpoint, the obtained low-resolution full-MS data are deemed impractical for trace level analysis. Therefore, 

data acquisition is performed in single, multiple or parallel reaction monitoring modes to unlock the full potential 

of MS/MS. Additional pitfalls can arise from isobaric species that co-elute with target compounds and produce 

interfering product ions. Luckily, this problem can usually be resolved by optimizing the chromatographic 

separation method and sample preparation protocol or by selecting more characteristic ion transitions. 

Furthermore, screening of unknowns via MS/MS is inconvenient since data from low-resolution MS detectors 

cannot provide sufficient information for compound identification and high confidence structural elucidation 

[153].  

HRMS is the most suitable technology to extend the scope of the analysis allowing to carry out more 

comprehensive quantitative and qualitative screening of PhACs. Typical HRMS instruments are hybrids which 

consist of a quadrupole (in some cases LIT), a collision cell and an analyser that provides high-resolving power, 

such as Orbitrap-MS, time-of-flight (TOF) and Fourier transform ion cyclotron resonance HRMS (FT-ICR-MS). 

These configurations are fundamental for obtaining more informative experimental data because they significantly 

extend the functionality of HRMS systems by allowing measurements in MS/MS and multistage fragmentation 

(MSn) modes. Apart from the classical fragmentation of precursors via collision induced dissociation (CID) in the 

collision cell or ion trap, modern instruments can also be equipped with various complementary techniques that 

can dissociate molecules (e.g. in-source CID, in-cell CID, electron capture dissociation, sustained off-resonance 

irradiation, photodissociation and others). Moreover, modern HRMS instruments enable simultaneous acquisition 

of Full-MS data and all theoretical fragment-ion spectra (so called “SWATH” approach). Hence, targeted, un-

targeted and retrospective screening can be incorporated in one chromatographic run as MS/MS spectra are 

recorded for all eluting analytes in a sample. For example, this technique was applied by Peña-Herrera et al. (2019) 

to analyze PhACs in fish muscle via HPLC-Q-TOF-HRMS, and over the past few years has gained increased 

attention among researchers [149]. Nevertheless, the main advantage of these platforms is high resolving power, 

because full-MS data and fragment features can be acquired with low-ppm mass accuracy over a wide m/z range. 

Thus, HRMS based analysis provides a vast amount of data that can be used to perform a variety of tasks: 

quantitative target analysis, non-target analysis, suspect screening, discovery of PhAC transformation products or 
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metabolites and retrospective analysis. Compared to low-resolution MS and MS/MS applications, HRMS can 

significantly extend the scope of analysis in terms of detectable analytes revealing formerly unnoticed PhAC 

related environmental issues. For instance, a recent study by Lee et al. (2020) reported an HPLC-Q-TOF-HRMS 

method in which simultaneous identification and semi-quantification was carried out for 484 micropollutants, 

including PhACs. Among the analyzed compounds, researchers found several PhACs with high occurrence rates, 

which have been previously overlooked due to instrumental limitations [154]. While HRMS instruments share 

many similarities, there are key differences among these analysers. In general, TOF systems demonstrate lower 

resolving power compared to their counterparts. The average resolving power ranges from 10,000 to 30,000 units, 

measured at full width at half maximum (FWHM) of the spectral peak. Even though some vendors manufacture 

high-end TOF instruments allowing enhanced performance (up to 80,000 units), they are mostly intended for 

bioanalytical research laboratories and used in combination with matrix-assisted laser desorption ionization 

technique. Meanwhile, Orbitrap and FT-ICR analysers are considered the top choice when it comes to state-of-

the-art HRMS measurements. The latter is more suitable for the characterization of complex mixtures (e.g. 

dissolved organic matter and disinfection by-products) rather than single compounds. Furthermore, despite the 

remarkable resolving power (over 1,000,000), FT-ICR has not gained much attention in studies, which explore 

the presence of PhACs in environmental compartments. The reason for this is that extremely detailed MS data is 

not always necessary for the analysis of individual compounds [155]. The same cannot be said Orbitrap 

technology. Starting from 2005, when the first systems were made commercially available, their analytical 

capabilities have improved considerably and Orbitrap platforms have become an integral part of contemporary 

LC-MS laboratories [156]. Typical resolving power for these instruments range from 17,500 to 140,000 units and 

can be set by the user depending on the analytical requirements. Yet, higher resolving power requires longer 

acquisition times. Hence, scanning frequency is considerably lower (1.5 Hz) when the system is operated at its 

limits. At the same time, TOF instruments can resolve MS peaks with the same capacity regardless of the scanning 

speed [157]. Moreover, resolving power of Orbitrap and FT-ICR analysers decays when ions with higher m/z 

values are measured. Namely, resolving power of Orbitrap systems diminishes as the square root of m/z, while 

for FT-ICR this association is even more pronounced. The true nature of this phenomenon is complex but it can 

be simplified by looking at the way MS data are acquired. In both cases, measurements are based on frequency 

values of ion packets that undergo harmonic oscillations in the mass analyser. Both charge and mass of the ionized 

species have a direct impact on their trajectories and oscillatory behaviour in the analyser cell. This, of course, 

affects the frequency of each ion. Higher frequency allows ions to perform a full oscillation in a shorter time. 

Taking into account that MS measurements take place in a constant time interval, higher frequencies (lower m/z) 

can be measured with increased precision (i.e. better resolution) since they yield more data points [158]. 

Meanwhile, TOF analysers rely on a different principle to record spectra. In particular, accurate mass 

measurements are derived from time that is needed for equally accelerated ions to travel the distance of the flight 

tube and reach the detector. The velocity of each ion depends on m/z, but ion trajectories remain largely constant 

over the dynamic range. This process is significantly faster compared to the previously discussed frequency 

measurements. Hence, one scan is long enough to record data for the whole m/z diapason and the loss of resolution 

is no longer as pronounced at higher m/z values as it was in the previous case [157,159]. A comparison between 

all four MS platforms concerning resolving power is depicted in Figure 5. Deprotonated diclofenac (m/z 294.0094, 
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[M-H]-) is used as a model substance to illustrate the benefits of HRMS. As can be seen, low resolution MS cannot 

provide sufficient separation to distinguish low abundance signals (Figure 5, A). TOF analyser can resolve the 

analyte signals, but isotopic fine structure remains unresolved (Figure 5, B). Only Orbitrap and FT-ICR systems 

can uncover the smallest details of low abundance isotopologues (Figure 5, C and D). Although these small MS 

features are mostly irrelevant for quantification studies, they are perceived as fundamental when it comes to 

successful molecular formula assignments in qualitative studies.  

 

Figure 5. Mass resolving capability of four MS analysers (MS/MS, TOF, Orbitrap and FT-ICR) 
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Regardless of the analyser type, all HRMS experiments must be carried out with high mass accuracy. 

Typically values under 5 ppm are considered acceptable, but for Orbitrap and FT-ICR platforms sub-ppm 

accuracy is recommended to achieve the maximum performance and increased data quality. For this purpose, 

mass calibration is applied [160]. This usually involves measuring a set of reference masses (e.g. sodium formate 

clusters, Ultramark 1621 mixture and sodium trifluoroacetate clusters) that yield equally scattered analytical 

signals across the selected m/z range. Meanwhile, internal calibration and lock mass approaches are used to 

compensate for drift of mass accuracy that may occur during longer measurement series. The latter is 

accomplished by a continuous post-column addition of a known reference substance into the ionization source. 

This way m/z shifts can be adjusted for each of the acquired spectra. The internal calibration approach is similar, 

except that the calibrant is introduced into the source for a limited time at the beginning of MS acquisition method. 

Apart from mass calibration, careful attention must be paid to avoid oversaturation of the analyser cell. An 

excessive amount of ionic species can severely hurt detection capability through various detrimental effects (e.g. 

collisions between particles and space-charge effect). Samples have to be adequately diluted and ion accumulation 

time must be optimized to reduce these risks. To counter these issues, some vendors have incorporated specific 

control tools that regulate the ion transfer, preventing oversaturation of detector. For example, Orbitrap 

instruments rely on automatic gain control functionality which selectively accumulates ions based on the set 

threshold. However, it must be applied with great care, because co-eluting matrix components can drastically 

shorten accumulation times and negatively affect quantification [161–163].  

Considering that PhACs are usually found at sub-μg/L concentrations in the environment, quantitative 

performance of the method is critical. Thus far, a number of studies have compared MS/MS and HRMS analysers 

with respect to sensitivity. Practically all of them revolve around Orbitrap systems since they are the only HRMS 

platforms that can achieve a similar sensitivity to that obtained by conventional QqQ and QqLIT MS/MS 

instruments [164,165]. For instance, Fedorova et al. (2013) investigated differences between LTQ-Orbitrap-

HRMS and QqQ MS/MS for the analysis of 35 illicit drugs in WW samples. To improve the extent of the study, 

authors operated the HRMS system in full-MS and parallel reaction monitoring modes with a resolving power (at 

FWHM) of 70,000 and 17,500 units, respectively. The results of the study revealed that the HRMS method which 

was carried out in parallel reaction monitoring mode outperformed MS/MS. At the same time, a decrease of 

sensitivity was observed when operating the HRMS system under full-MS settings [166]. A note of caution is due 

here since parallel reaction monitoring mode can be applied to a certain extent in multi-residue methods. Similar 

to conventional QqQ MS/MS applications, only a limited number of transitions can be monitored simultaneously 

using this MS/MS technique as each overlapping MS/MS transition decreases the scanning frequency. Hence, 

when the number of analytes becomes too high, the obtained LC-MS chromatograms are not accurately reflected 

due to missing data points. This causes distorted chromatographic peaks and subsequently impairs the quantitative 

aspects of the method. Besides, non-target analysis or suspect screening cannot be accomplished using parallel 

reaction monitoring as this mode is not intended for the collection of full-MS data. A similar study was conducted 

by Herrero et al. (2014), where both QqQ MS/MS and Orbitrap-HRMS were used for the determination of 

veterinary drugs in WWTP effluents and influents. Instead of using parallel reaction monitoring mode, this study 

relied on a more wide-scope approach in which samples were analyzed using two alternating modes (full-MS and 

all ion fragmentation SWATH mode). This technique can be considered more suitable for HRMS applications 
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because it enables the full potential of HRMS capabilities. Furthermore, despite using a less sensitive approach, 

the results of the study show that Orbitrap (operated in full-MS/SWATH mode) was equally sensitive when 

compared with MS/MS method [167]. 

In order to verify the findings of these comparative studies, an additional investigation was performed in 

which the quantification limits reported by studies from Table 6 were evaluated. Methods were classified 

according to analyser type, and data for 16 PhACs was used to evaluate method sensitivity. As can be seen from 

Figure 6, MS/MS systems demonstrate slightly better performance in terms of sensitivity. This was especially 

noticeable for NSAIDs (ibuprofen and naproxen) and clarithromycin. Nevertheless, the difference is not 

overwhelming and can be greatly affected by numerous factors (e.g. sample preparation protocol, instrumental 

parameters, the condition of each instrument and the way quantitation limits are calculated). In general, this 

observation supports the evidence from other studies that modern HRMS platforms are suitable for conducting 

trace level quantification of PhACs in environmental samples [164–167].  

 

Figure 6. Reported quantification limits from the literature for the analysis of PhACs in aquatic 

samples 

 Overall, the topics discussed in this section offer a useful insight into some of the key aspects of LC-

MS based analysis of PhACs. A detailed knowledge and understanding of the properties of confirmatory MS 

techniques are essential for choosing the most suitable approach as each MS analyser provides a distinct set of 

features (see Table 7). Yet, there are numerous other factors that should be considered during the method 

development phase. Thus, a more detailed commentary regarding the specifics of each technique will be discussed 

in the results section.  
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Table 7. Comparison of typical MS systems (and FT-ICR) used for analysis of PhACs in 

environmental matrixes 

Parameter 
MS analyser type 

MS/MS TOF Orbitrap FT-ICR 

Resolving power ◇◇◇ ◆◇◇ ◆◆◇ ◆◆◆ 

Sensitivity ◆◆◆ ◆◇◇ ◆◆◇ ◆◇◇ 

Scanning speed ◆◆◇ ◆◆◆ ◆◆◇ ◆◇◇ 

Scope of the analysis (number of compounds per one 

chromatographic run) 
◆◇◇ ◆◆◇ ◆◆◆ ◆◆◆ 

Cost ◆◇◇ ◆◇◇ ◆◆◇ ◆◆◆ 

Robustness ◆◆◆ ◆◆◇ ◆◆◇ ◆◇◇ 

Dynamic Range ◆◆◆ ◆◇◇ ◆◆◇ ◆◇◇ 

Mass accuracy ✘ ◆◇◇ ◆◆◇ ◆◆◆ 

Non-target analysis ✘ ✓ ✓ ✓ 

Quantitative analysis ✓ ✓ ✓ ✓ 

Very high - ◆◆◆, High - ◆◆◇, Medium - ◆◇◇, Low - ◇◇◇ 

Applicable - ✓, Not applicable - ✘ 

 

1.8.4. Untargeted and suspect screening strategies of PhACs in environmental samples 

Recent advancements in HRMS have allowed researchers to implement novel analytical strategies that 

involve non-target and suspect screening techniques. Typically, methods which are applied in this field rely on 

previously described TOF, Orbitrap and FT-ICR analysers as these HRMS technologies fulfil the following 

requirements for the analysis of unknowns: high resolving power, reasonable scanning frequency and ability to 

simultaneously acquire MS/MS and even MSn spectra. Altogether, this significantly boosts the reliability of MS 

measurements and provides a solid ground for many analytical methods [168]. For instance, Singer et al. (2016) 

applied LC-Orbitrap-HRMS with incorporated data-dependent MS/MS acquisition to investigate more than 800 

PhACs in WWTP effluents [169], whereas a more recent study reported an LC-Q-TOF-MS application that can 

perform suspect screening of more than 1000 PhACs and 250 metabolites in hospital sewage samples [170].  

Methods that do not rely on reference standards (i.e. target methods) can be classified into two groups: (i) 

standard free suspect screening of known compounds and (ii) non-target screening of unknowns. The first method 

can be used for qualitative assessment of PhACs in a fashion that is similar to that utilized by targeted screening, 

whereas non-target screening is done without any a priori information and, thus, may be used for identification of 

complete unknowns, for example, previously unreported metabolites or transformation products of PhACs. From 

the perspective of data acquisition, both approaches require full-MS data and MS/MS information. The former is 

typically achieved through SWATH technique (all incoming ions are fragmented altogether) or data-dependent 

MS/MS acquisition in which a built-in algorithm automatically isolates and fragments the most abundant 

precursors that do not originate from background noise. At the same time, data processing steps are intrinsically 

different between non-target and suspect screening techniques (see Figure 7). 

In case of suspect screening, a database of substances is constructed prior to instrumental analysis. It 

contains compound-specific information on each suspect (e.g. molecular formula, structure, exact m/z values of 

the expected precursor ions, isotopic pattern, possible MS/MS product ions, predicted retention time, etc.). These 

features can then be effectively used to confirm the presence of these substances in the analyzed samples. A typical 
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suspect screening workflow begins from full-MS data analysis, where extracted ion chromatograms are created 

for compounds of interest. If a chromatographic peak is found, then corresponding full-MS spectra is investigated 

in more detail. The measured accurate mass information and isotopic patterns are matched against reference data, 

while additional confirmation is achieved by comparing similarities between the measured MS/MS spectra and 

experimental library spectra (or in-silico generated MS/MS data). A suspect is considered putatively identified if 

the difference between expected and measured features meets the specified criteria [171]. 

On the contrary, the screening of unknowns is less straightforward and calls for in-depth analysis. The 

preliminary stage comprises data cleaning (e.g. filtering, smoothing and blank subtraction) and peak picking. This 

is achieved using peak-picking algorithms that automatically generate ion chromatograms for all MS traces. These 

peaks are then evaluated and filtered based on different constraints, such as S/N ratio, intensity threshold, peak 

symmetry and peak width. After the removal of non-compliant entries, peaks are investigated individually. The 

first step for tentative identification of unknowns is to obtain a correct elemental composition. It is done by 

heuristic filtering approach which relies on so-called “seven golden rules”. This way, accurate mass data and 

corresponding isotopic patterns are examined in a trial-and-error manner to obtain the most fitting elemental 

composition [172]. For each molecular formula assignment, a list of candidate structures is retrieved from a 

database (e.g. EPA’s CompTox, ChemSpider, PubChem, ChEBI and KEGG or an in-house compound list). At 

this stage, MS/MS data come into play. However, before any library search can take place, a set of reference 

spectra are required. MS/MS data can be obtained either from public MS data repositories (e.g. METLIN, MoNA 

and mzCloud) or generated for each structure using in-silico fragmentation tools. Finally, the measured product 

ions are matched against the reference fragmentation patterns of candidate structures and ranked according to an 

arbitrary similarity score. At this point, there is sufficient body of information that makes it possible to tentatively 

identify the unknown compound. The best-case scenario is when the assignment goes to the candidate that displays 

the highest scores in all instances (fragmentation features, accurate mass information and isotopic pattern). Yet, 

such circumstances are rarely encountered and manual examination of data is often required to establish the correct 

assignment [173].  
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Figure 7. Schematic depiction of non-target and suspect screening worflows 

Although this field is rapidly developing, many critical challenges remain. According to conclusions 

derived from the first collaborative non-target screening trial (run by the NORMAN Association), which 

investigated the presence of organic micropollutants such as pesticides, personal care products and PhACs, 

analytical methods applied in this field are already reasonably well harmonized. Meanwhile, data processing 

strategies show great disparity, which is especially pronounced in non-target methods [10]. To investigate the 

coherence between different software solutions, a recent study by Hohrenk et al. (2020) applied various data 

handling strategies for qualitative determination of PhACs and pesticides in WW samples. The study found out 
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that the overlap of features between four programs (MZmine2, enviMass, Compound Discoverer and XCMS 

online) in non-target mode was only around 10%. Besides, 40% and 55% of features did not match with any other 

program. Not surprisingly, more repeatable results were achieved using suspect screening strategy, where the 

average success rate between programs was higher, varying from 64% to 88% [174]. However, deficient 

extraction of MS features is not the only issue that needs consideration. The absence of reference data can be 

another obstacle increasing the rate of false positive matches in both approaches. Experimental MS/MS spectra 

are often not available, thus in-silico fragmentation tools have emerged as a suitable alternative to predict the 

fragmentation behaviour of candidate molecules. Some prominent examples that are frequently used in this field 

are: SIRIUS 4 [175], MetFrag [176] and CFM-ID [177]. Thus far several studies have explored whether in-silico 

fragmentation can produce reliable results for qualitative screening of PhACs and other small organic molecules 

in complex matrixes. In this context, Blaženović et al. (2017) compared four different in-silico fragmentation 

algorithms (MetFrag, CFM-ID, MAGMa+ and MS-FINDER) on a dataset used in 2016 CASMI (Critical 

Assessment of Small Molecule Identification) challenge. According to this study, the workflow that relied solely 

on experimental spectra yielded 60% correct hits. Meanwhile, a workflow that was additionally equipped with in-

silico generated spectra (along with experimental) was able to achieve the overall success rate of 87% [178]. Apart 

from MS information, retention time is another component that is crucial for the elucidation of compounds. For 

targeted methods, a mismatch between the measured and expected retention times is considered an instant red 

flag. The same principle partially applies to non-target methods. Yet, it must be taken into account that even direct 

transfer of LC methods from laboratory to laboratory yields significant variance in retention times due to 

numerous reasons (e.g. deteriorated performance of the column, excess dead volume, variation of mobile phase 

composition, condition of LC hardware, etc.). Nevertheless, the retention order of analytes stays practically 

constant. Therefore, measuring the retention time of selected model compounds using the developed LC method 

can help to predict the behaviour of analytes that lack empirical data. Retention time prediction models have 

proved to be a useful technique for reference standard free analysis and, as highlighted by several studies, have 

shown solid performance in terms of prediction accuracy. For instance, McEachran et al. (2018) tested three 

prediction models: EPI Suite™ which is based solely on logP values and two more advanced models 

(ACD/ChromGenius and OPERA-RT). According to this study, an acceptable prediction accuracy (±15% 

chromatographic time window) was achieved for 95% of investigated compounds when using both of the 

advanced prediction models [179]. The above findings indicate that experimental and predicted characteristics 

complement each other and increase the overall success rates of qualitative methodologies. 

HRMS based non-target and suspect screening strategies are attracting increased attention. During the last 

few years, these strategies have finally transitioned from the development stage to routine applications. Thus, it 

seems that qualitative HRMS-based methods are here to stay. In 2019, these state-of-the-art methods have already 

been used in numerous environmental monitoring studies, such as for short-term temporal monitoring of PhACs 

in surface waters [180], for determination of spatial patterns of new psychoactive substances [181] and for 

predicting the toxicity of previously unreported PhACs in sewage samples [182]. These are just a few examples 

of how reference standard free analysis can provide benefits that are difficult to achieve by targeted 

methodologies. Nevertheless, there is still a lot of work ahead, especially concerning effective LC-MS data 

handling practices and harmonized identification strategies. 
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1.9. Current trends and future perspectives  

The literature review of this thesis sought to answer a number of relevant questions: Why should we be 

concerned about the presence of PhACs in the environment? Which analytical strategies may be used to enhance 

the current understanding of these elusive micropollutants? What are the pitfalls and limitations of current 

diagnostic tools? Which technique should be used to obtain the best results under given circumstances? With this 

in mind, there are many directions for future research that may prove useful.  

Regardless of the detection method, sampling and sample preparation protocols have a significant impact 

on the results. An increasing amount of studies have demonstrated that passive sampling techniques can cover a 

broader range of analytes and provide enrichment of low abundance PhACs from aqueous matrixes that earlier 

remained mostly undetected because conventional grab-sampling is limited in terms of sample volume and can 

easily miss pollutants with temporal discharge patterns [183]. Moreover, passive sampling provides opportunities 

for citizen science and community-based environmental monitoring programs. For example, Newton et al. (2018) 

used point-of-use water filtration devices (Brita® filters) collected from individual households to investigate 

emerging organic pollutants in drinking water. The results of the study revealed the presence of several PhACs 

(e.g. simvastatin, a lipid-lowering medication, and norethisterone, a birth-control drug). Thus, suggesting that 

activated carbon filters obtained from commercial drinking water purification systems can be used for monitoring 

purposes [184]. Besides, future developments of miniature sensors can someday allow analysis of PhACs outside 

routine and research laboratories. For instance, a recent review article by Lu et al. (2020) which summarizes the 

latest advances in biosensors for the detection of estrogens reported that modern photoelectrochemical and 

electrochemical biosensors are capable of detecting 17b-estradiol in surface water samples at sub-ng/L levels, 

which is sufficient for environmental trace level analysis [179]. Yet, most of these miniaturized diagnostic tools 

are still under development and far from commercial availability. Meanwhile, the performance of sample 

preparation strategies, which are employed for MS-based detection methods, is continuously improved. Lipid rich 

matrixes (e.g. samples from fish and marine mammals) remain a challenge when analysing PhACs with high 

octanol-water partition coefficients. Hence, advanced techniques of sample extraction and clean-up are still 

needed to isolate non-polar PhACs from lipids [185,186]. 

A noteworthy MS technology that has not been covered in this thesis, but should be mentioned, is ion-

mobility-MS which offers multi-dimensional separation of isomers and increased S/N. This technique is 

particularly suitable for the identification of PhAC transformation products and metabolites. For instance, 

Emhofer et al. (2019) used drift-tube ion-mobility Q-TOF-MS to characterize metabolites from three lipid-

lowering drugs in plants after uptake from water. The proposed method was able to detect and tentatively identify 

45 drug related compounds including numerous isomeric substances [187]. This is one of many examples 

demonstrating the effectiveness of ion-mobility-MS based applications and indicating that it can provide a 

platform for studying novel pollutants derived from PhACs. Besides, other complementary techniques (e.g. 

infrared multiple photon dissociation spectrometry and two-dimensional MS) are expected to be incorporated 

more frequently into MS‐based multi-residue methods to expand analytical horizons. 

As previously stated, reference standard free analytical methods are gaining momentum. The latest non-

target and suspect screening developments are focused on improving the reliability of identification and peak 

picking workflows which ultimately reduces the rate of false positives and false negatives. Thus, novel prediction 
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models are being constantly developed to generate data that more closely matches experimental observations. 

Most prediction algorithms rely on machine-learning principles and require an enormous amount of experimental 

information to train the model. Therefore, availability of public MS/MS and MSn data repositories is as relevant 

as ever. It is important to note that each model needs to be verified before it can be directly applied to the analysis 

of real samples. Several collaborative trials have already been conducted to assess the performance of different 

non-target and suspect screening workflows (mostly coordinated by NORMAN network laboratories in EU and 

Environmental Protection Agency in USA). Yet, given the growing popularity of such screening workflows, the 

number of ongoing collaborative trials is expected to increase to ensure the quality of results [10,188]. Meanwhile, 

the availability of certified reference materials for environmental non-target screening applications would allow 

direct in-house validation of these analytical procedures. 

Another future challenge is to gain quantitative information from HRMS data without the use of reference 

standards [11]. Several attempts have been made to develop semi-quantitate methods that can predict compound-

specific ionization efficiencies to estimate the concentration range of analyzed compounds. Although this 

approach has not been applied to investigate PhACs in environmental matrixes, a recent study successfully proved 

that standard free semi-quantification is possible for the screening of pesticides in food samples [189]. Therefore, 

it is foreseeable that this technique will likely gain popularity in this field.  

As the number of studies that utilize HRMS continues to rise, the amount of data available to researchers 

is increasing. In the vast majority of cases, these studies focus on a specific group of compounds, but the data 

collected may also be useful for investigating other micropollutants. The first steps in this direction have been 

done by NORMAN Network who developed a platform (Digital Sample Freezing Platform) for archiving LC-

HRMS data for the retrospective suspect screening of thousands of environmental pollutants including PhACs 

[190]. This platform can be used for storing, viewing and screening of substances in a much wider analytical 

window. Hence, data can be used for retrospective analysis to support regulatory environmental monitoring and 

influence policymaking processes for the management of PhACs and other emerging pollutants. While the project 

is still new, the first results are promising. For example, Angles et al. (2020) used this platform to reveal traces of 

previously ignored antibiotics and antifungal compounds in Bangladesh surface waters [191]. Moreover, these 

data can provide useful insights for epidemiological studies, because the presence of PhACs and their 

transformation products in environmental samples, especially raw WW, reflects many population-specific 

characteristics. Even though wastewater-based epidemiology is an emerging research field, it has already been 

effectively applied to study (i) drug consumption patterns, (ii) illicit drug use and (iii) prevalence of new 

psychoactive substances and designer drugs [192]. These are just a few examples of how MS-based mining of the 

chemical information contained in raw WW can assist researchers to better understand and evaluate complex 

factors of population health and behaviour.  

In conclusion, the use of MS-based detection methods is expected to grow rapidly. The gap of sensitivity 

between MS/MS and HRMS systems will continue to narrow. This situation inevitably leads to the question: Is 

HRMS considered the new “gold-standard” for multi-analyte methods applied in environmental analytical 

chemistry? It seems that the paradigm shift is clearly under way and laboratories are gradually replacing QqQ 

MS/MS systems with TOF and Orbitrap analysers [193]. This might give the impression that the targeted low-

resolution MS/MS methods are on the brink of extinction. The future will tell whether these two MS technologies 
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are going to co-exist. Meanwhile, my personal belief is that HRMS and MS/MS techniques will continue to be 

complementary rather than competing. Moreover, wide-scope screening workflows can be used effectively to 

identify knowledge gaps and prioritize PhACs of potential environmental concern. This information can then 

serve as a foundation for future monitoring programs and lead to better policy decisions. Besides, environmental 

pollution is a collective problem that affects the whole world. Evidence-based solutions are needed in all countries, 

regardless of their stage of economic development. Therefore, while science must move forward, budget-class 

MS equipment will remain relevant, especially in routine laboratories where ease of use, robustness and 

affordability are considered prerequisites for cost-efficient implementation of analytical procedures. 
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2. EXPERIMENTAL PART 

2.1. Chemicals and materials 

Analytical standards for the determination of aminoglycoside antibiotics were as follows: streptomycin 

sulfate (STP, 98.0%), neomycin sulfate (NEO, 90.0%), spectinomycin dihydrochloride hydrate (SPC, 98.0%), and 

gentamicin-2,5-sulfate hydrate (GEN, 96.5%) were purchased from Dr. Ehrenstorfer (Augsburg, Germany). While 

kanamycin sulfate (KAN, 99.0%) was obtained from Sigma–Aldrich (St. Louis, MO, USA) and 

dihydrostreptomycin sesquisulfate (DSTP, 98.0%) was supplied by Fluka (Buchs, Switzerland). All analytical 

standards used for multi-residue methods (PhACs by HPLC-Orbitrap-MS and DI-FT-ICR-HRMS) were obtained 

from Sigma-Aldrich (St. Louis, MO, USA) or Fluka (Buchs, Switzerland). Meanwhile, analytical standards of for 

the determination of 12 acidic NSAIDs (carprofen, diclofenac, flufenamic acid, flunixin, ibuprofen, ketoprofen, 

mefenamic acid, meloxicam, naproxen, niflumic acid, tolfenamic acid, and vedaprofen) and internal standards 

(carprofen-d3, diclofenac-13C6, flunixin-d3, ibuprofend3, meloxicam-d3, tolfenamic acid-13C6, vedaprofend3) were 

all of at least 94% purity, and were obtained from Sigma-Aldrich (St. Louis, MO, USA), Dr. Ehrenstorfer 

(Augsburg, Germany), and Witega Laboratorien Berlin-Adlershof GmbH (Berlin, Germany). Standard stock 

solutions of the aforementioned PhACs were individually prepared by dissolving the appropriate amount of the 

analytical standard in methanol or water (only aminoglycosides) to give a final concentration of around 1 mg/mL 

(calculated for base compound). For the reason that aminoglycosides can be easily adsorbed on polar surfaces as 

amber glass, all standard aminoglycoside stock and working solutions were stored at −18 °C in polypropylene 

tubes instead of glass containers. The working standard solutions of 0.1 mg/L were prepared by diluting the 

appropriate volumes of stock solutions in methanol. All the solutions were stored at -18 °C for up to 1 week or 

when the analytical response fell below 90% of the initial value obtained on the day of preparation. 

In all instances, deionized water (18 MΩ cm) was generated by a Milli-Q water purification system 

(Millipore, Bedford, MA, USA). HPLC-grade acetonitrile, HPLC-grade methanol, formic acid (≥98%), 

trichloroacetic acid (≥98%), sodium hydroxide (≥98%), EDTA disodium salt dihydrate (≥98.5%), and ammonium 

formate (≥99%) were obtained from Sigma–Aldrich. SPE experiments were performed on Strata-X PRP cartridges 

(200 mg/3 mL) obtained from Phenomenex (Torrance, CA, USA). Sorbents used for dSPE experiments were 

obtained from Phenomenex (Torrance, CA, USA) and were as follows: Sepra™ C18-E (Bulk Packing, 50 µm, 

65A), Sepra™ PSA (Bulk Packing, 50 µm, 70A) and Strata™-X-A 33 µm Polymeric Strong Anion sorbent. 

Multi-walled carbon nanotube agglomerates sold under the trademark Baytubes® C150P (further referred 

to as CNTs-1) were obtained from Bayer Material Science AG (Leverkusen, Germany). The main parameters of 

CNTs-1 were as follows: ≥ 95% purity, 4 nm internal diameter, 13 nm outer diameter and > 1 μm length. The 

reported specific surface area of CNTs-1 was 210 m2/g [194]. Three other types of MWCNTs—commercially 

known as TNIM4 (referred to as CNTs-2), TNIMH4 (referred to as CNTs-3; with 2.48 wt% content of hydroxyl 

functional groups), and TNIMC4 (referred to as CNTs-4; with 1.55 wt% content of carboxyl functional groups)—

were purchased from Chengdu Organic Chemicals Company (Sichuan Sheng, China). All of these MWCNTs 

were of > 95% purity, 5–10 nm internal diameter, 10–30 nm outer diameter, 10– 30 μm length and >110 m2/g 

specific surface area according to the data provided by the manufacturer. All of the MWCNT materials were used 

without any additional chemical purification.  



56 

 

2.2. Samples 

For determination of PhACs in WWTP influents using Orbitrap-MS a total of 21 samples of untreated WW 

(three samples per day during seven days of one week in April 2016) were collected at the central wastewater 

treatment plant (WWTP) “Daugavgriva” of the Riga city. Samples were collected in glass amber bottles and kept 

at +4ºC during transportation. Once delivered to the laboratory, the samples were filtered through 1.2 µm glass 

microfiber filters (GF/C, Whatman, UK) and extracted within 24 hrs. The same WWTP was used to obtain WW 

samples for studies that involved bioaugmentation and ionising radiation. The sampling time for these samples 

was May and June 2016 and the procedure for collection, transportation and storage was analogous to one 

described above.  

For the determination of NSAIDs in surface water samples from the Daugava River in Riga (Latvia), ten 

samples were collected at different locations. Meanwhile, 14 samples (five surface water and nine tap water 

samples) were collected from different points in Oslo area (Norway). The samples were collected over a 3-month 

period during March–May, 2017 in 500 mL to 1 L pre-rinsed polypropylene bottles and kept at + 4 °C during the 

transportation. Once the samples were received at the laboratory, they were immediately filtered through 1.2 μm 

glass microfiber filters and stored at −18 °C until the day of sample preparation. 

For FT-ICR-MS analysis a total of 72 samples (36 influents, 36 effluents) were collected from different 

WWTPs from Latvia during March and April 2019. Both effluents and influents were collected on the same day. 

Samples were collected in amber glass bottles, kept at +4 °C during transportation and on the day of the delivery 

were filtered through 1.2 μm glass microfiber filters (GF/C, Whatman, UK). After that, a 20 mL aliquot (3 

replicates per sample) was transferred to a 50 mL polypropylene tube and stored at -18 °C in dark till the day of 

analysis. 

For the determination of aminoglycosides, a total of 49 samples of honey were collected from different 

areas of the country of Georgia during the summer of 2016. An aliquot of approximately 25 mL was taken from 

each sample, transferred to a 50 mL polypropylene tube and stored at −18 °C till the day of analysis. Analysis of 

aminoglycoside antibiotics was also carried out for 21 raw WW samples (sample collection and storage is 

described in the 1st paragraph of this section). 

2.3. Biodegradation experiments 

Before incubation, WW samples were filtered and aerated for 15 min. Afterward, a 100 mL aliquot of WW 

was supplemented with microorganisms and/or nutrient composition according to the experiment setup reported 

by Muter et al. (2017) [195]. Incubation experiments were performed in 200 mL columns in triplicate, at 24 °C, 

with periodic agitation (once a day) for a period of 7 days. Sampling was performed after 1 h, 17 h, 48 h, and 

168 h incubation. The nutrient composition consisted of 333 μL 30% sugar beet molasses containing 40% (w/w) 

sucrose (final concentration 0.1%), previously autoclaved for 20 min at 1 bar, and 500 μL cabbage leaf extract, 

prepared according to Muter et al. (2008) and sterilized by filtering through hydrophilic Minisart® Syringe Filter 

(Sartorius, Germany) [196]. Sludge-derived culturable bacteria and fungi were obtained by plating the activated 

sludge on Tryptone Glucose Yeast Extract Agar (TGA, Sifin, Germany) and Rose Bengal Agar with 

Chloramphenicol (Biolife, Italy), respectively. Bacteria and fungi were harvested after 48 h and 72 h, respectively, 

and the prepared suspensions contained 2.9 × 108 CFU/mL and 3.1 × 107 CFU/mL, respectively. 



57 

 

2.4. Irradiation experiments using ionising radiation 

The linear particle accelerator ELU-4 (Thoriy Ltd., Russia) located in Salaspils (Institute of Chemical 

Physics, University of Latvia) was used for the irradiation of WW samples. The thickness of the sample layer in 

the plastic bags during the irradiation tests was approximately 2–3 mm. The samples were irradiated at ambient 

temperature by both electron beam and gamma radiation until the absorbed doses of 0.5, 1, 3, 5, 7, 10, 12, 15, 20, 

and 25 kGy were reached. Two different modes of electron beam treatment (referred to as EB1 and EB2) and two 

gamma-irradiation modes (denoted as G1 and G2) were applied to investigate the impact of ionising radiation on 

the wastewater treatment. 

The electron beam radiation was generated by accelerated 5.0 MeV electron flux with 0.1 and 0.05 µA/cm2 

currents at solenoid current of 44 A and magnetron current of 0.16 A. In the EB1 and EB2 experiments, the samples 

were kept at 82 and 105 cm distances from the electron window for 1.5–75 and 3.0–150 s time periods depending 

on the irradiation dose, respectively and the does rates were 1200 and 600 kGy/h, respectively. The experiments 

were performed in duplicate by applying irradiation from both sides. 

The electron beam radiation was converted into gamma rays by targeting the flux of accelerated electrons 

to water-cooled palladium plate converter (1.0 mm) that was kept at 5 cm distance from the electron window. The 

emitted gamma rays had continuous spectrum with the maximum energy of 5.0 MeV and the mean energy of 

1.5 MeV. Fricke dosimeter was used to control the absorbed gamma ray doses. The conditions of G1 and G2 

treatments were as follows: the samples were kept at 50 and 30 cm distances from the electron window from 80 

up to 4000 s, and from 48 up to 2400 s depending on the absorbed dose, the dose rates were equal to 22.5 and 

37.5 kGy/h, respectively. The temperature of the samples after irradiation was in the range of 18–28 °C. The 

samples were stored at −18 °C until the day of sample analysis. 

2.5. Determination of PhACs by HPLC-Orbitrap-MS 

2.5.1. Sample preparation and clean-up 

Before SPE procedure, 20 µL of 0.5M Na2EDTA solution and 100 µL of acetic acid were added to 200 mL 

of sample. Solid phase extraction was performed on Strata-X-PRP cartridges (200 mg/3 mL). Cartridges were 

conditioned with 3 mL of methanol and 3 mL of deionized water. The samples were loaded on SPE columns with 

a flow rate of 5 mL/min (approximately), the cartridges were dried for 30 min under vacuum and eluted with 6 

mL of methanol. The obtained extracts were then evaporated to dryness under gentle nitrogen stream in water 

bath at 40ºC temperature. Finally, the dry residue was reconstituted in 100 µL of injection phase, which was 

water/methanol solution (80:20, v/v). 

2.5.2. Instrumental analysis  

The chromatographic separation of PhACs was carried out using an Accela 1250 UHPLC system (Thermo 

Fisher Scientific, San Jose, CA, USA) consisting of a degasser, a quaternary pump, a thermostatic autosampler, 

and a column oven. Chromatographic separation was performed using a Kinetex C18 analytical column (100 × 

2.1 mm, 2.6 µm) obtained from Phenomenex (Torrance, CA, USA). The mobile phase consisting of 0.1% formic 

acid in water (A) and methanol (B) was delivered at the flow rate of 0.2 mL/min. The gradient program was as 

follows: 20% of B from 0 to 1.0 min, a gradual increase of B from 20% to 95% (1.0 to 5.0 min), keep B constant 

at 95% from 5.0 to 7.0 min, decrease B back to 20% from 7.0 to 7.1 min and finally re-equilibrate the column 
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with initial conditions at 20% of B from 7.0 to 10 min. The injection volume of sample aliquot was 5 µL. The 

column and autosampler were maintained at 40°C and 4°C, respectively. 

The UHPLC system was coupled to a Q-Orbitrap-MS mass spectrometer (Thermo Fisher Scientific) 

equipped with a heated electrospray ionization probe operated in the positive and negative ionization modes. 

Nitrogen was used for spray stabilization, collision-induced dissociation experiments in the higher energy 

collision dissociation (HCD) cell and as the damping gas in the C-trap. The following ionization parameters were 

applied: heater temperature 300°C, electrospray voltage 2.8 kV, capillary temperature 250°C, sheath gas (N2) 40 

arbitrary units, auxiliary gas (N2) 10 arbitrary units, and S-Lens RF level at 50 arbitrary units. The automatic gain 

control (AGC) was set to 3e6, the maximum injection time was set to 200 ms, and the number of micro-scans to 

be performed was set at 1 scan/s. Full-MS data both were acquired in both positive and negative modes at a mass 

resolving power of 70,000 FWHM. The m/z scan range was from 125 to 800 units. 

For confirmatory purposes, a targeted MS/MS analysis was performed using a mass inclusion list which 

contained information about product ion mass, collision energies and the expected retention times of analytes 

(Table 8). In this acquisition mode, the Orbitrap-MS was operated again in both positive and negative modes at 

17,500 FWHM. The AGC target was set to 2e5, the maximum ion injection time was set to 50 ms and the 

quadrupole isolation window was set to m/z 2. The collision energies (CE) were optimized for each target 

compound by introducing the working standard solution mixture at a concentration of 10 ng/µL via syringe pump 

at flow rate of 5 µL/min. The mass tolerance window was set to 5 ppm. All data processing was carried out using 

Xcalibur 2.2 software (Thermo Fisher Scientific). 

Table 8. Parameters for full-MS/dd-MS/MS analysis using Orbitrap-MS 

Analyte Adduct RT, min Precursor mass, m/z Product mass, m/z Normalised CE 

Acetaminophen [M+H]+ 1.9 152.0706 110.0606 60 

Atenolol [M+H]+ 1.3 267.1703 145.0650 40 

Atorvastatin [M+H]+ 6.8 559.2603 440.2235 20 

Azithromycin [M+H]2+ 4.9 375.2615 158.1177 27 

Caffeine [M+H]+ 3.6 195.0877 138.0666 50 

Carbamazepine [M+H]+ 5.9 237.1022 194.0965 18 

Ciprofloxacin [M+H]+ 3.8 332.1405 288.1512 30 

Clarithromycin [M+H]+ 6.0 748.4842 590.3903 13 

Diclofenac [M-H]- 7.1 294.0094 250.0193 10 

Erythromycin [M+H]+ 5.7 716,4580 558.3629 10 

Fluoxetine [M+H]+ 5.9 310.1413 148.1124 15 

Gemfibrozil [M-H]- 7.6 249.1496 121.0644 10 

Ibuprofen [M-H]- 7.2 205.1234 159.1166 10 

Ketoprofen [M+H]+ 6.5 255.1016 209.0961 20 

Losartan [M+H]+ 6.3 423.1695 207.0915 35 

Metoprolol [M+H]+ 4.4 268.1907 116.1072 14 

Naproxen [M+H]+ 6.6 231.1016 185.0961 20 
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Table 8. continued 

Analyte Adduct RT, min Precursor mass, m/z Product mass, m/z Normalised CE 

Pravastatin [M-H]- 6.2 423.2388 129.0021 20 

Propranolol [M+H]+ 5.2 260.1645 116.1074 40 

Simvastatin [M+H]+ 7.9 419.2792 199.1487 17 

Sulfamethoxazole [M+H]+ 4.2 254.0594 156.0115 30 

Trimethoprim [M+H]+ 2.5 291.1452 123.0669 39 

Valsartan [M+H]+ 6.5 436.2343 291.1491 20 

Xylazine [M+H]+ 4.0 221.1107 164.0530 70 

 

2.6. Determination of NSAIDs by HPLC-MS/MS 

2.6.1. Sample preparation and clean-up 

After the optimisation of sorption and desorption conditions, the final dSPE procedure was applied for the 

extraction of NSAIDs from samples. The pre-concentration procedure was carried out by adding an optimised 

content of CNTs-2 (20 mg) in glass tubes containing 100 mL of pre-filtered water samples. The samples were 

then acidified by adding hydrochloric acid (the obtained pH~2), the tubes containing samples were immediately 

capped, placed in the orbital bench-top shaker and shaken at ambient temperature for a 3-min period at the mixing 

speed of 300 rpm. After that, the samples were filtered through Durapore PVDF filters to remove sorbent particles, 

CNTs were placed in empty SPE tubes, washed with deionised water (3 mL) and dried for 5 min with air and 5 

min with nitrogen. The extraction of NSAIDs was carried out using 10 mL of methanol containing 1% (v/v) of 

ammonium hydroxide. The extracts were evaporated to dryness and reconstituted in 1 mL of acetonitrile/water 

(10/90, v/v) followed by injection into the HPLC-MS/MS instrument. 

2.6.2. Instrumental analysis 

An Acquity HPLC system (Waters, USA) coupled to QqQ-MS/MS system QTrap 5500 (AB Sciex, USA) 

equipped with a Turbo Ion Spray electrospray (ESI) source was used for the sample analysis. Chromatographic 

separation was performed on a Luna C18 analytical column (100 × 4.6 mm, 2.6 μm) purchased from Phenomenex 

(Torrance, CA, USA). The mobile phase consisted of 0.01% acetic acid in water (A) and 100% acetonitrile (B). 

The flow rate was 0.6 mL/min. The gradient program started with 40% of mobile phase B which was held constant 

from 0 to 0.5 min. The percentage of B was gradually raised from 40 to 80% (0.5 to 11 min) and then decreased 

back to 40% and held constant to re-equilibrate the system from 11 to 15 min. A 10 μL aliquot of the sample was 

injected, while the column compartment and autosampler temperatures were set at 30 and 4 °C, respectively. The 

QqQ-MS/MS detector was operated in turbo spray ESI-negative detection mode. The following parameters were 

applied for the analysis: ion spray voltage − 4.00 kV, source temperature - 300 °C, curtain gas nebulizer - 40 psi, 

ion source gas 1 - 50 psi and ion source gas 2 - 80 psi. The control of the instrument and the data processing were 

performed using the Analyst 1.6 software (AB Sciex, USA). 

2.7. Determination of aminoglycosides by HPLC-Q-TOF-MS 

2.7.1. Sample preparation and clean-up 

Each sample of honey (5.00 ± 0.01 g) was weighed into a 50 mL polypropylene tube. The extraction 

solution (20 mL of 1% trichloroacetic acid in deionized water) was added, the mixture was vortexed for 1 min 
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and shaken for 10 min using a mechanical shaker. The pH of the mixture was then adjusted to 5.0 ±1.0 using 1.0 

M NaOH solution. After that, the sample was centrifuged at 3500 rpm for 10 min and the supernatant was treated 

with SPE clean-up procedure using Strata-X-PRP cartridges (200 mg/3 mL). The cartridge was preconditioned 

with 3 mL of methanol and 3 mL of deionized water. After loading a 5 mL sample aliquot, the column was washed 

with 6 mL of water, dried for 5 min under vacuum, and eluted with 3 mL of 5% formic acid in deionised water 

(v/v) into a 15 mL polypropylene tube. Then 50 μL of 1.0 M ammonium formate solution was added to the final 

extract, the container was vortexed for approximately 10 s using orbital bench-top shaker and, finally, 250 μL of 

the final extract was transferred to an HPLC vial. The same procedure was applied for the analysis of WW 

samples. The only difference was that the initial sample volume was 200 mL.  

2.7.2. Instrumental analysis 

Chromatographic separation was achieved using a Dionex UltiMate 3000 rapid separation LC system 

(Thermo Scientific, Sunnyvale, CA, USA) comprising a binary high-pressure gradient pump, an autosampler, and 

a thermostatic column compartment. Chromatographic separation was archived using an Obelisc R (2.1 × 150 

mm, 5 μm) analytical column obtained from SIELC Technologies (Prospect Heights, IL, USA). The mobile phase 

consisted of aqueous 1% formic acid solution v/v (A), acetonitrile (B), and deionised water (C). The flow rate was 

kept at 0.5 mL/min and the injection volume was 15 μL. The column compartment and autosampler temperatures 

were set to 30 and 14 °C, respectively. The following gradient conditions were used: 0–0.5 min, isocratic 0% A, 

90% B, 10% C; 0.5–4.5 min, linear increase from 0 to 95% A, linear decrease from 90 to 5% B, linear decrease 

from 10 to 0% C; 4.5–9.0 min, isocratic 95% A, 5% B, 0% C; 9.0–9.1 min, return to the initial conditions and 

9.1–15.0 min post-run equilibration at the initial conditions. 

Mass spectra were acquired using a Compact Q-TOF mass spectrometer (Bruker Daltonics, Bremen, 

Germany) equipped with an IonBooster (IB) high-temperature ESI source, which also was purchased from Bruker 

Daltonics. The instrument was equipped with a conventional ESI source for comparison during the method 

optimization stage. The mass calibration of the Q-TOF-MS instrument was performed before each sequence by 

direct infusion of aqueous solution of 1 mM sodium formate at the flow rate of 2 μL/min. The mass accuracy (5 

ppm) during the sequence was maintained using the external calibration approach by injecting the aforementioned 

calibrant once every five samples using a 2 min long isocratic LC method that relied on the initial HPLC conditions 

that were used for the main method (0% A, 90% B, 10% C). The instrument was operated in positive ionization 

mode by alternating the acquisition between full-MS at the m/z range of 50–1000 and data-dependent MS/MS 

spectra using the scheduled precursor list (Table 9). All spectra were scanned at the rate of 2 spectra/s, and 3 

MS/MS spectra were acquired for each compound with a cycle time of 2 s. The operating parameters of mass 

spectrometer were optimized as follows: the end plate offset was 500 V, dry gas temperature and flow rate were 

set at 200 °C and 3.0 L/min, respectively. When conventional ESI source was used, the capillary voltage was set 

at 4500 V and the dry gas flow rate was set at 10 L/min, while for IB, the capillary voltage was reduced to 1000 

V and the dry gas flow rate was 3 L/min. The use of IB introduced two additional parameters that were absent for 

the standard ESI source: the charging voltage and vaporizer temperature that were set at 300 V and 350 °C, 

respectively. For instrument control and data acquisition, otofControl 4.0, HyStar 3.2 (Bruker Daltonics), and 

Chromeleon Xpress software (Thermo Scientific) were used, while DataAnalysis 4.3 software (Bruker Daltonics) 

was used for post-run mass calibration and data processing. 
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Table 9. Compound list and optimized full-MS/dd-MS/MS parameters for the determination of 

aminoglycosides via HPLC-Q-TOF-MS 

Compound Precursor RT, 

min 

Theoretical 

mass, m/z 

Isolation 

width, 

m/z 

CE, 

eV 

MS/MS 

fragments – Q1 

and Q2, m/z 

Ratio 

Q2/Q1 

Spectinomycin [M+H]+ 5.45 351.1762 1.50 35 333.16 207.13 0.49±0.12 

Streptomycin [M+H]+ 6.00 582.2729 0.75 45 263.14 246.12 0.45±0.11 

Dihydrostreptomycin [M+H]+ 6.00 584.2886 0.75 45 263.15 246.12 0.27±0.07 

Kanamycin [M+H]+ 6.80 485.2453 1.50 20 163.11 205.12 0.37±0.09 

Gentamicin C1 [M+H]+ 7.40 478.3235 1.50 30 157.13 322.20 0.23±0.06 

Neomycin [M+H]+ 7.60 615.3196 1.50 30 161.09 293.13 0.17±0.05 

 

2.8. Determination of PhACs by DI-FT-ICR-HRMS via QuEChERS method 

2.8.1. Sample preparation and clean-up 

The polypropylene tube containing the frozen 20 mL aliquot of wastewater was uncapped, covered with an 

aluminium foil and freeze-dried using Benchtop “K” Series freeze dryer (VirTis, Gardiner, NY, USA). The freeze-

dry process was paused for a while when the volume reached about 5 mL. Samples were then thawed, vortexed 

for 30 s, frozen and again subjected to freeze-dry procedure. The aforementioned step was included to ensure that 

all dry matter from the sample remains at the bottom of the container. After the drying procedure, 1 mL of 

acetonitrile/water (9:1, v/v) was added to the dry matter, vortexed for 1 min and sonicated for 10 min. The extract 

was then centrifuged for 10 min at 3500 rpm and carefully transferred to a 15 mL polypropylene tube, followed 

by addition of 1 mL of acetonitrile/water (1:9, v/v). Phase separation was induced by adding 500 mg of anhydrous 

magnesium sulphate to the extract. In order to minimize possible decomposition of target analytes due to 

exothermic dissolution of MgSO4, the extract was cooled to +4 °C before the addition. After that, the sample was 

vortexed for 1 min, centrifuged for 5 min at 3500 rpm and an aliquot of 600 µL of the acetonitrile layer was 

transferred to a 2 mL V-shaped glass vial that contained 4 mg of dSPE sorbent (C18-E/Strata-X-A, 3:1, w/w). 

The mixture was immediately vortexed for 30 s and centrifuged for 5 min at 3500 rpm. Finally, a 100 µL aliquot 

was transferred to a fresh 2 mL amber glass vial, diluted with 1100 µL of acetonitrile/water (4:1, v/v), and 

analyzed within 24 h by FT-ICR-MS. 

2.8.2. Instrumental analysis 

The analysis was performed on a 7 T Bruker SolariX FT-ICR-MS system (Bruker Daltonics, Bremen, 

Germany) equipped with an electrospray ionization source (ESI). Samples were introduced into the system by 

direct infusion via syringe pump at a flow rate of 5 µL/min. Spectra was acquired in both positive and negative 

ionization modes using a broadband mode (m/z range 50–1000). Full-MS data was acquired by accumulating 32 

scans, whereas MS/MS spectra was acquired without multiple spectra accumulation. Time domain data size was 

set at 4 M for all modes. The observed resolving power (measured at FWHM) using these settings was around 

490,000 at m/z 250 and 275,000 at m/z 500. Three fragment spectra were acquired per precursor at different 

collision energy (CE) values (5 V, 15V, and 25 V) using an isolation window of ±2.5 m/z. In order to obtain 

higher fragment ion intensities, ion accumulation time was increased to 500 ms, whereas for full-MS experiments 

this parameter was set to 100 ms and 20 ms for positive and negative ionisation modes, respectively. Main source 

parameters were as follows: nebulizer pressure 0.5 bar, dry gas flow rate 6 L/min, dry temperature 200 oC, and 



62 

 

capillary voltage 3.5 kV. The instrument was externally calibrated with sodium formate clusters, while lock mass 

was applied to maintain high mass accuracy. Data acquisition was performed using ftmsControl 2.2.0 (Bruker) 

and raw data processing was done in DataAnalysis 5.0 software (Bruker). 

2.8.3. Suspect list 

The initial list of suspects was derived from a publicly available database developed by German Federal 

Environmental Agency. The database is an outcome from a systematic review of 1,519 publications and comprises 

178,708 data entries which summarize the occurrence data of 771 PhACs and their TPs [197]. In order to select 

compounds that can be investigated by this HRMS-based screening method the following filters were applied: (i) 

monoisotopic mass range from 100 to 1000 Da, (ii) literature source credibility “good”, and (iii) at least one 

MS/MS spectra record available in MassBank of North America (MoNA) repository that has been obtained by 

ESI ionization. Entries that can be classified as salts or mixtures were converted back to their parent molecules. 

After the removal of non-compliant entries, ~600 unique suspects remained on the list. Next, each entry was 

supplemented with molecular information (e.g. molecular formula, SMILES and InChIKey) and full-MS features 

for both ionization modes, such as accurate mass and isotopic pattern. The latter two were calculated for [M+H]+ 

and [M-H]- species using “enviPat” R package [198]. Each compound was matched against MoNA repository to 

obtain an MS/MS fingerprint. In total, more than 8000 experimental records were found for compounds on the 

list, and each spectrum was subsequently reprocessed in MetFrag, an in-silico fragmentation algorithm (mass 

error threshold ±5 ppm, relative abundance >10%). This step was implemented to annotate fragment ions and 

assign correct m/z values, because experimental data, for the most part, lack fragment formula annotations and 

may contain erroneous peaks due to poor mass accuracy or MS interferences. The obtained dataset with 

experimental MS/MS traces was then aggregated based on the corresponding precursor and polarity, and five 

most prevalent fragments were selected as the MS/MS fingerprint. However, it was not possible to obtain five 

features for numerous compounds due to limited data. Hence, a complementary approach was applied, which 

involved predicting MS/MS spectra via Competitive Fragmentation Modeling-ID (CFM-ID) [177]. Finally, 

fragments obtained by this manner were again processed similarly to experimental data and added to the database 

to improve the accuracy of the method, especially for suspects whose fingerprints contained less than five m/z 

values. The steps performed to prepare the suspect list are summarized in a flowchart (Figure 8, left side). The 

suspect database is available on request as a spreadsheet and contains the following information for each entry: 

molecular information (formula, SMILES, and InChIKey), full-MS traces (m/z values, isotopic pattern) and 

MS/MS traces (m/z values and corresponding fragment formulas for both experimental and predicted features). 

An example of one suspect list entry (carbamazepine) is depicted in Table 9.  
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Table 9. An example (carbamazepine) of the information contained in each database record 

Name Carbamazepine 

MolecularFormula C15H12N2O 

Monoisotopic Mass 236.095 

InChI InChI=1S/C15H12N2O/c16-15(18)17-13-7-3-1-5-

11(13)9-10-12-6-2-4-8-14(12)17/h1-10H,(H2,16,18) 

InChIKey1 FFGPTBGBLSHEPO-UHFFFAOYSA-N 

SMILES C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N 

Q1, m/z 237.1022 

Q2, m/z 238.1056 

Ratio Q2/Q1 16.29 

Species [M+H]+ 

MS/MS fragment formulas (experimental) C14H10N, C13H9N, C14H11N, C13H9, C14H9N 

MS/MS fingerprint (experimental), m/z 192.0808, 179.0730, 193.0886, 165.0699, 191.0729 

MS/MS fragment formulas (predicted) C14H12N, C15H11N2, C15H10NO, C13H8N, C8H5 

MS/MS fingerprint (predicted), m/z 194.0964, 219.0917, 220.0757, 178.0651, 101.0386 

Therapeutic group Antiepileptic drugs 

Type of Analyte Parent substance 

 

2.8.4. Target and suspect screening workflow 

Initially, one full-MS spectrum (accumulation of 32 scans) was acquired for each ionization mode. Lock 

mass calibration and blank subtraction (from matrix-free reagent blank) were performed using Data Analysis 5.0. 

software (Bruker) and automated with VBScript (a subset of Microsoft's Visual BASIC). The peak list of all m/z 

values and corresponding intensities within the selected analyte range (100 – 1000 m/z) was exported as comma-

separated values (CSV) and further processed in Rstudio environment (v. 1.1.463) with R (v. 3.5.3). Full-MS 

features were extracted and matched against the suspect list using the following criteria: accurate mass error for 

two most abundant ions (Q1 and Q2) ±1.25 ppm and relative error between theoretical and experimental ion ratios 

(±20% for suspect screening; from ±20% to ±50% for targeted screening). After this, compliant matches were 

further advanced to the next step – MS/MS acquisition. Three MS/MS spectra were acquired per precursor at 

different CE values (5, 15, and 25 V). In order to save time, minimize human error and make data handling easier, 

method files were created automatically via Rstudio environment by modifying a template method. In brief, the 

method consisted of stitched segments, where each segment acquires one scan per precursor using a defined CE 

value. For instance, if full-MS data yields 30 compliant matches from the suspect list in positive mode, an MS/MS 

acquisition method is automatically generated with 90 scan segments and immediately measured by the HRMS 

system. The set of measurements produces only one raw file, which is automatically processed by VBScript in 

DataAnalysis software, sliced into 90 individual scans, exported as separate CSV files, and, finally, evaluated 

using R. The same procedure applies for the negative mode. Next, features obtained from MS/MS data were 

matched against the suspect list database that contained accurate mass information of both experimental and 

predicted fragmentation fingerprints. If at least one fragment showed a match (mass accuracy ±2.5 ppm) then the 

suspect was considered to be tentatively identified.  
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The target analysis was carried out simultaneously with the suspect screening. Quantification was based on 

Q1 ion intensities from full-MS data using a matrix-matched calibration. The total time of the workflow depended 

on the number of matching suspects. In particular, data processing (~5 min) and acquisition of two full-MS spectra 

(2*68 s) required approximately 7 min, while each MS/MS measurement extended the total time of the analysis 

by 4.5 s per precursor. Therefore, the average length of the workflow ranged from 10 to 15 min per sample. The 

outline of the workflow is depicted in a flowchart (Figure 8, right side), while a more detailed step-by-step guide 

is presented in Annex 1, while an example of measured full-MS and MS/MS data is depicted in Annex 2 (example 

compound – carbamazepine). R scripts applied in this study and an example dataset can be accessed online 

(https://github.com/ingusperkons/HRMS-screening-of-pharmaceuticals-in-wastewater). 

 

Figure 8. A schematic overview of the screening workflow and the in-house database 

 

  

https://github.com/ingusperkons/HRMS-screening-of-pharmaceuticals-in-wastewater
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3. RESULTS AND DISCUSSION 

  

3.1. Method optimization 

3.1.1. Sample preparation protocol: determination of PhACs by HPLC-Orbitrap-MS 

As already mentioned in the literature review, the most common technique for the isolation and enrichment 

of PhACs from various environmental matrices is solid phase extraction (SPE). This technique provides multiple 

benefits e.g. it is compatible with a wide range of sorbents and has lower solvent consumption compared to LLE. 

Besides, larger sample volumes can be loaded on the SPE cartridge allowing selective isolation of PhACs at sub-

ng/L levels [199]. An SPE procedure was therefore developed and optimized for the analysis of WW samples. 

Two different SPE sorbents were compared − the Strata-X-PRP and Strata C18 columns from Phenomenex. 

Pre-conditioning of columns, sample loading and analyte elution was performed under the same conditions for 

both column types. SPE cartridges were conditioned with 5 mL of methanol followed by 5 mL of water. The 

samples were loaded at a rate of 5 mL/min. Washing was carried out using 5 mL of water while 9 mL of methanol 

was used for elution of analytes. The obtained results expressed as extraction recoveries of the SPE process are 

presented in Figure 9. Slightly better recoveries were achieved for most of the compounds using the C18 sorbent. 

However, significant losses during the SPE procedure were observed for acetaminophen, azithromycin, 

sulfamethoxazole, and ciprofloxacin. The decrease in recovery that was noted for C18 sorbent could be attributed 

to the lack of the hydrophilic moieties in the sorbent, thus some PhACs, which have a low affinity towards 

hydrophobic C18 groups, are not sufficiently retained. Meanwhile, Strata-X-PRP is based on polydivinylbenzene 

resin that is functionalized with piperidone groups. The combination of hydrophilic and hydrophobic moieties 

offers good wettability and increase the hydrophilic interactions between the solutes and the stationary phase 

while maintaining retention of analytes via reversed phase principles. Therefore, Strata-X-PRP column was 

selected for the final SPE procedure since it gave significantly better recoveries for target PhACs. 

 

Figure 9. Extraction recoveries (%) obtained for PhACs using Strata C18 and Strata-X-PRP SPE 

cartridges 
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Further experiments involved selecting the most appropriate sorbent amount (100, 200 and 500 mg) for the 

SPE procedure. Critical differences in analyte recovery were noted for caffeine, ciprofloxacin, azithromycin and 

fluoxetine, with the highest enrichment yield obtained using 200 mg of sorbent, while significantly better 

acetaminophen recoveries were only achieved when using 500 mg of the sorbent. Although acetaminophen is a 

highly consumed drug in Latvia, the four former PhACs, especially ciprofloxacin and azithromycin, are 

considered more troublesome from the environmental perspective. Thus, based on these “opportunity costs”, 200 

mg of Strata-X-PRP sorbent was advanced for the main method. 

The efficiency of analyte enrichment does not depend solely on the type of sorbent and can be influenced 

by several other factors. For instance, the pH of the sample plays a fundamental role in SPE-based extraction 

methods. This is especially important when extracting PhACs from aquatic matrixes since most of these 

compounds contain functional groups which can be protonated or deprotonated if the pH of the solution increases 

or decreases, respectively. Increased extraction efficiency was found for macrolide antibiotics, lipid regulators, 

and some NSAIDs when the samples were acidified to pH~ 3 prior SPE extraction. As anticipated, acidification 

did not improve the recoveries of all analytes since the PhACs selected within this study have very different 

chemical structures, and therefore it is difficult to develop extraction procedures that would be equally efficient. 

Furthermore, the addition of a chelating agent such as Na2EDTA in water samples before the extraction step is 

recommended when analysing antibiotic residues of macrolide and fluoroquinolone groups in environmental 

samples. These antibiotics have a high tendency to complex with multivalent metal cations that are soluble in 

water, resulting in low extraction recoveries. Hence, the presence of a strong chelating agent is necessary for 

scavenging multivalent metal ions. Based on the results obtained from all optimisation experiments, the final 

protocol for extraction of selected PhACs in WW samples involved addition of Na2EDTA to samples followed 

by acidification with acetic acid to pH 2.5. 

3.1.2. Instrumental analysis: determination of PhACs by HPLC-Orbitrap-MS 

Different mobile phases and mobile phase additives were compared to optimize the chromatographic 

separation and selectivity towards PhACs. Acetonitrile, methanol, and a mixture of both solvents were evaluated 

as organic mobile phases while deionized water without additives, buffered with 0.05 M ammonium formate and 

fortified with 0.1% formic acid were evaluated as aqueous mobile phases. All mobile phase combinations were 

examined for three different columns: Kinetex C18 (100 × 2.1 mm, 2.6 µm), Gemini – NX (150 × 2.0 mm, 3 µm) 

from Phenomenex and Hypersil GOLD (50 × 2.1 mm, 1.9 µm) from Thermo Fisher Scientific. Between all the 

combinations that were explored during the optimisation, the best peak shapes and responses in both positive and 

negative ionization modes were achieved using the Kinetex C18 (2.6 µm) and Hypersil GOLD (1.9 µm) columns 

when acidified water and methanol were used as organic and aquatic mobile phases, respectively. The efficiency 

of both columns was further investigated by analysing a WW sample spiked at 10 ng/L concentration and by 

calculating the plate number (N) and the retention factor (k). An example of the obtained chromatograms is shown 

in Figure 10. The number of theoretical plates characterizes the column efficiency and depends on column length 

and mobile phase flow rate. The values of N were calculated using the following equation: 

𝑁 = (
tR

w
)

2
   (1) 

, where tR is retention time and w is the peak width. 
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The retention factor, which reflects interactions between the stationary phase and the eluent, was calculated 

using the following equation: 

𝑘 = (
tR−t0

t0
)   (2) 

, where tR is the retention time and t0 is the breakthrough time. 

For most of the target analytes, much higher N values were observed on the Kinetex C18 column compared 

to Hypersil GOLD. Likewise, the calculated retention factor values were better for the Kinetex C18 column. 

Namely, the calculated k values for Kinetex C18 were in the range of 4 to 9, while for the Hypersil Gold column 

k values often exceeded 10 units (the preferred values of k are between 1 and 10). Therefore, the Kinetex C18 

column was advanced further for the analysis of WW samples. 

 

Figure 10. Chromatograms of selected PhACs from the spiked wastewater sample using two LC 

columns 
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The sensitivity and selectivity were compared for three scanning modes: full-MS, selected ion monitoring 

(SIM), and parallel reaction monitoring (PRM). Taking into account possible hindrances caused by co-eluting 

matrix components, the experiments were carried out on a spiked WW sample (10 ng/L). Overall, the values of 

S/N and the absolute areas of analyte peaks were superior in the full-MS mode. This observation might seem 

unexpected. Traditionally, PRM and targeted SIM modes are considered more sensitive because the quadrupole 

allows to transfer the ions of interest that fall within the defined m/z isolation window. Since co-eluting 

interferences are filtered out, higher amount of target ions are accumulated and injected in the analyser cell (within 

AGC limits). However, the performance of these modes deteriorates with an increasing number of analytes as 

PRM and SIM measurements are sequential, not simultaneous. When the number of analytes is too large, the 

scanning speed becomes unsuitable for HPLC compatibility and the AGC threshold, resolving power and/or 

accumulation time limits must be lowered, which in turn leads to decreased sensitivity and lower S/N ratio. 

According to the criteria proposed by EU Commission Decision 2002/657/EC for both screening and 

confirmatory analytical methods, an HRMS full-MS mode with one precursor ion is considered suitable for 

screening purposes [200]. Meanwhile, confirmation methods cannot rely on full-MS data alone. Hence, a 

procedure was developed that incorporated MS/MS measurements as a part of dependent acquisition (full-MS/dd-

MS/MS mode). This way product ion spectrum can be automatically obtained in accordance with the inclusion 

list that contains precursor masses.  

 

Figure 11. Relationship between resolving power and scanning frequency on Orbitrap-MS 

Resolving power is one of the most critical parameters in the analysis of difficult matrices by HRMS 

techniques. It allows increasing both the selectivity and the scope of the method. Yet, excessively high resolution 

(such as 140,000 FWHM) would significantly affect the quality of LC-MS data due to the reduced scanning speed 

and fewer data points (Figure 11). Hence, this parameter must be pre-optimized before the method can be applied 

to sample analysis. A series of experiments were performed at four different resolution settings (17,500, 35,000, 
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70,000 and 140,000 FWHM) to explore the relationship between the quality of chromatograms and capability to 

resolve analyte response from interferences. As seen in Figure 11 (B), carbamazepine signal suffers from an 

overlapping interference, that remains unresolved until the resolution reaches 70,000 FWHM. When the resolution 

is set to the maximum value (140,000 FWHM), the separation between both m/z signals becomes even more 

pronounced. However, the number of data points per single LC-MS peak is lower and the quality of the peak 

shape deteriorates. Based on these considerations, the resolving power for full-MS mode was set at 70,000 

FWHM, while 17,500 FWHM was found suitable for dd-MS/MS acquisition mode.  

3.1.3. Sample preparation protocol: determination of aminoglycosides by HPLC-Q-TOF-MS 

Several studies have been conducted to find the most efficient extraction procedure and SPE conditions for 

the determination of AGs in various matrices [201,202], indicating that the most promising sample preparation 

approach includes acidic sample treatment with TCA as protein precipitation agent, followed by an SPE clean-

up. For protein-rich samples 5% TCA solution is most commonly applied. However, in this case the samples were 

treated with 1% solution of TCA, as honey and wastewater contains considerably lower amounts of protein than 

animal tissues or milk. Besides, excessive use of TCA could negatively affect the following SPE procedure 

according to a study by Wang et al. (2016) [202]. No other additives were selected for the proposed clean-up 

protocol, because the extraction yields during preliminary method development stages were not substantially 

affected by frequently used extraction medium enhancers such as EDTA and sodium formate. 

The initial strategy for the proposed SPE procedure relied on a weak cation mixed-mode stationary phase 

(Strata-X-CW from Phenomenex), which is particularly designed for selective retention of strong bases. However, 

a generic elution approach with 1%, 5% and 10% of formic acid in three most common elution phases (methanol, 

water and acetonitrile) was able to yield satisfactory results only for STP, DSTP and SPC, while NEO, GEN, and 

KAN remained irreversibly bound to the weak cation stationary phase and apparently required stronger elution 

conditions that would not be compatible with the developed HPLC method. Alternatively, some authors [203,204] 

have reported different approach involving reversed-phase functionalized polymeric sorbent cartridges (Waters 

Oasis HLB). For that reason, a structurally similar SPE column (Strata-X-PRP from Phenomenex) was selected 

and evaluated for this study. The main difference between both SPE cartridges has been described in Section 1.8.1 

(in the literature review). In brief, the Strata-X-PRP stationary phase contains piperidone moieties, whereas the 

Oasis HLB contains pyrrolidone groups. This slight difference should not significantly affect the general retention 

mechanisms, suggesting that the SPE procedure can be adapted from applications that use Oasis HLB (and vice 

versa). Therefore, 1 mL of aqueous 10% formic acid (v/v) followed by 3 mL of acetonitrile was used for the initial 

elution procedure (adapted from Dasenaki et al. (2016)) [203]. As expected, the results from elution profile 

analysis suggested that the aqueous formic acid alone was directly responsible for the elution of AGs, while the 

subsequent addition of acetonitrile increased the co-elution of matrix components. Taking into account the fact 

that IB source exhibits higher matrix suppression compared to conventional ESI, a decision was made to avoid 

using an additional organic solvent as an elution medium. A series of experiments with different volumes (2 mL, 

3 mL, 4 mL, and 5 mL) of various formic acid mixtures (1%, 2.5%, 5%, and 10%, v/v) were conducted using a 

spiked honey sample (100 ng/g, adjusted to a pH of 7±1 with 1 M NaOH solution) to evaluate the SPE conditions 

in terms of analyte recovery. The highest recoveries were achieved with aqueous 10% formic acid (v/v), although 

only a small difference was observed between 2.5%, 5% and 10% in terms of analyte recovery. A volume of 3 
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mL proved to be sufficient for eluting the compounds of interest. Nevertheless, relatively low recoveries were 

observed for GEN and KAN (<50%). In order to address this issue, an additional series of experiments were 

carried out by extracting a honey sample at different pH values that was fortified with an AGs standard mixture 

(100 ng/g) with the previously selected SPE eluent. Results showed (Figure 12) that the target analytes can be 

separated in two distinct groups, where GEN and NEO exhibit the highest affinity towards the stationary phase at 

low pH range, while the rest of AGs were adsorbed better at neutral or slightly basic conditions. Fairly acceptable 

recoveries (ranging from 65% to 76%) were obtained at pH 5, and these were the conditions selected for the 

optimized method. One reason behind low extraction recoveries might be an oversaturation of SPE cartridge, 

because honey contains high levels of carbohydrates, which are also retained on the SPE cartridge during the 

clean-up procedure, thus occupying active sites and decreasing the absolute analyte recovery.  

 

Figure 12. Recoveries for blank sample spiked at 100 ng/g and extracted at different pH values 

(n=3) 

The matrix effect (ME) was evaluated by analysing identically prepared blank honey samples (n=5) that 

were fortified with known concentrations of AGs at the end of sample preparation procedure. The peak areas 

obtained for the target analytes were compared to ones obtained from the calibration standard at the corresponding 

concentration level. The ME values were calculated by the following formula: 

𝑀𝐸 (%) =
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎𝑓𝑜𝑟𝑡𝑖𝑓𝑖𝑒𝑑 ℎ𝑜𝑛𝑒𝑦 𝑠𝑎𝑚𝑝𝑙𝑒

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
∙ 100%   (3) 

 

Signal enhancement was observed for GEN (110%), KAN (112%) and NEO (107%), while signal 

suppression occurred for STP (82%), DSTP (84%) and SPC (87%). Even though the sample extracts were already 

significantly diluted, ME still prevailed, pointing towards the necessity to apply the MMSCC approach to 

compensate for the loss of analytes and ME. The same approach was applied for WW analysis. 
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3.1.4. Instrumental analysis: determination of aminoglycosides by HPLC-Q-TOF-MS 

Considering the highly polar nature of AGs and, thus, their poor retention on conventional reversed phase 

columns, it was decided to use a zwitterionic-type mixed-mode LC column - Obelisc R from SIELC Technologies. 

It has been previously applied for the analysis of some selected AGs by other authors. The column has shown 

superior separation performance due to the unique stationary phase containing cationic groups attached close to 

the silica surface and anionic groups that are separated by hydrophobic spacer [205,206]. The initial optimization 

experiments were carried out using a binary mobile phase consisting of 1% (v/v) formic acid in water (A) and 1% 

(v/v) formic acid in acetonitrile (B), using gradient conditions previously described by Diez et al. (2015) [205]. 

The elution was performed according to the following program: 0–4 min, 10–95% A; 4–5 min, 95% A; 5–8 min, 

10% A. Although the obtained chromatogram displayed satisfactory peak symmetry for all target analytes, the 

relative separation between AGs was insufficient and all compounds were eluted in a narrow time interval. To 

maximize the differences of relative retention times, various gradient conditions were examined. A higher initial 

portion of acetonitrile and lower gradient slope were shown to produce a slightly better separation, at the same 

time increasing the peak width and enhanced peak tailing, especially for strongly retained compounds such as 

NEO and GEN, thus, impairing peak symmetry. As noted by Alechaga et al. (2014), the predominant separation 

mechanism in this case involved hydrophilic interactions between the stationary phase and AGs, namely, cation 

exchange occurring at the carboxyl sites of the column [207]. Furthermore, the elution order of AGs correlated 

with the number of protonation sites for each compound (including STP and DSTP where each guanidine group 

can add only one proton). This suggested that controlled protonation of the stationary phase might be the key for 

selective separation. For that reason, three mobile phase system consisting of aqueous 1% (v/v) formic acid (A), 

acetonitrile (B), and water (C) was tested in order to gradually change the mobile phase from neutral to acidic. 

This way at the beginning of the gradient program interactions between the basic functional groups of AGs and 

the stationary phase would be favored, while low pH of mobile phase at the end of the program would fully 

protonate the carboxyl sites and diminish the ion exchange interactions. However, peak symmetry problems were 

encountered during the optimization procedure (peak tailing, peak splitting and floating retention times) for early 

eluting compounds, especially for SPC. Based on the findings of Diez et al. (2015) where the author noted that 

ammonium counterions may disrupt the interactions between the charges in the Obelisc R stationary phase, further 

addition of ammonium formate was examined and showed that concentrations above 25 mM in the injection phase 

were sufficient to eliminate most of these disturbances [205]. As shown in Figure 13, this approach led to a 

considerably better relative separation of AGs in comparison to the previously described binary gradient program, 

while generally preserving peak symmetry although slight peak tailing for later eluting compounds (KAN, GEN 

and NEO) could still be observed to some extent.  
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Figure 13. Extracted ion chromatograms of [M+H]+ species of AGs in a spiked honey sample (100 

ng/g) using the fully optimized method 

One of the main goals was to investigate possibilities for enhancing the overall method sensitivity by 

applying the IonBoosterTM (IB) high-temperature ESI source, which contains an additional heated spray zone and 

works under atmospheric pressure conditions. In previous works by Kempf et al. (2014) [208] and Chepyala et 

al. (2017) [209] IB was successfully used for the determination of psychotropic drugs, showing an enhanced 

ionization for most analytes, including polar compounds with high pKa values. This finding suggests that IB may 

have a potential for this particular application. Preliminary optimization revealed that only two parameters (drying 

temperature and vaporizer temperature) significantly affected the ionization efficiency, which was in agreement 

with the findings of other studies [208,209]. In order to evaluate the impact of IB temperature parameters, a series 

of optimization experiments were carried out by analysing a fortified honey sample with a concentration of 100 

ng/g. An increase of drying temperature from 200 to 400°C led to signal enhancement for all target analytes 

(temperatures above 400°C were not tested as they exceeded the manufacturer’s recommendations). Meanwhile, 

increasing the vaporizer temperature resulted in deterioration of the signal, indicating that thermal decomposition 

of analytes takes place within the IB source. The largest signal enhancement compared to conventional ESI source 

was observed for GEN (16-fold increase), followed by SPC, STP, and DSTP (at least 8-fold increase for each). 

Yet, the sensitivity for KAN (3-fold increase) and NEO (5-fold increase) remained almost constant during the 

optimization experiments as both temperature parameters did not have any notable impact on their ionization 

efficiency (Figure 14).  
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Figure 14. The impact of dry temperature (DT) and vaporizer temperature (VT) on the 

aminoglycoside signal enhancement 

To fulfil the identification point criterion specified in Commission Decision 2002/657/EC, that requires 

three points for group B substances in foodstuffs [200], a data-dependent full-MS/dd-MS/MS approach was again 

selected. In this case the number of identification points is higher than for previously described Orbitrap-MS 

method which was applied for the analysis of multi-class PhACs in WW samples. This difference can be attributed 

to the fact that honey is primarily classified as a foodstuff, thus other legislative measures are adopted for this 

type of matrix. Nevertheless, honey can be used for monitoring of environmental pollution. In this context residues 

of AGs are of high interest as these substances can are occasionally applied for the treatment of bacterial infections 

in apiculture and agriculture, particularly for American and European foulbrood disease and fire blight of pome 

fruits. Therefore, traces of AGs could be present in honey and honey-based products. 

To gain more insight into the ionisation behaviour of AGs, a series of infusion experiments were carried 

out. Each compound was measured in full-MS and multiple reaction monitoring (MRM) modes to examine the 

ionization and fragmentation patterns, respectively. Doubly charged ions were observed for all analytes except 

for SPC. Nevertheless, MRM spectra revealed that singly charged species produced higher intensity fragmentation 

spectra and had more distinct fragmentation patterns. The Q-TOF instrument was therefore optimized to acquire 

the highest abundance of [M+H]+ species and the collected data were used to set up a scheduled precursor list for 

the data-dependent full-MS/dd-MS/MS approach. Note: on Bruker instruments inclusion list is referred to as 

scheduled precursor list. The final optimized MS parameters can be found in Section 2.7.2 (in the experimental 

section). During the optimization study, it was noticed that only one parameter – the ion energy, which is the 
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energy difference between hexapole and quadrupole, was primarily responsible for the reduction of doubly 

charged species. A series of experiments were performed to optimize the this parameter by averaging 30-second 

intervals of full-MS spectra with a step of 2 eV and comparing the obtained intensities of [M+H]+ and [M+2H]2+ 

species. The most suitable values were found at 12 eV (for GEN, KAN and NEO) and 24 eV (for STP and DSTP), 

where the abundance of singly charged species exceed 95% and the absolute intensity of [M+H]+ was close to the 

maximum for each compound (Figure 15). The optimized ion energy values were applied on a separate time 

segment, which was aligned with the retention time for each target analyte. 

Three dd-MS/MS spectra were acquired per precursor in data-dependent full-MS/dd-MS/MS mode. To 

avoid faulty precursor selection, smart exclusion mode was enabled, meaning – the full-MS signal response of 

precursors was discriminated between steep and gradual (background noise). This way precursor selection was 

triggered only when its intensity started to form a noticeable LC-MS peak. Additionally, a precursor 

reconsideration algorithm was applied, e.g., if a precursor was already observed and the MS/MS spectrum was 

measured at an earlier retention time, the particular precursor was marked as found. However, if another full-MS 

peak for the same precursor was detected in the scheduled time interval, exclusion of precursor was reconsidered 

and an additional MS/MS analysis was performed. This approach helped preventing an un-triggered dd-MS/MS 

scan in the case of closely eluting isobaric compound. An example of full-MS/dd-MS/MS acquisition for STP 

and DSTP precursors is illustrated in Annex 3. 

 

 

Figure 15. The absolute intensities of singly- and doubly charged species for DSTP, GEN, 

KAN, NEO, and STP, and the relative abundance of [M+H]+ ions (expressed as a proportion of 

the sum of [M+H]+ and [M+2H]2+) at different ion energy values 
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3.1.5. Sample preparation protocol: determination of NSAIDs by HPLC-MS/MS 

The main objective of this work was to develop a convenient and easily applicable method for the pre- 

concentration of NSAIDs from surface and tap water samples by using industrial grade multi-walled CNTs. 

Although analytical grade nanomaterial-based sorbents are available across the industry for more than two 

decades, their applicability in environmental analysis of PhACs has gained a momentum only recently. At the 

same time, industrial grade CNTs are typically less expensive compared to commercially available SPE sorbents 

based on other carbon nanomaterials. 

To find the most suitable CNTs for the enrichment of NSAIDs, four commercially available industrial grade 

multi-walled carbon nanotubes with different characteristics, such as CNT agglomerates (CNTs-1), non-

agglomerated CNTs (CNTs-2) and functionalised versions of CNTs-2 (CNTs-3 with hydroxy groups, and CNTs-

4 with carboxyl groups), were examined. These materials have been widely used in materials science and 

applications for electronics. Nevertheless, the selected CNTs are available in sufficiently high purity and can be 

considered applicable to residue analysis [210,211]. 

While SPE procedure is often seen as the superior way to achieve efficient analyte extraction and clean-up 

from aquatic matrixes, some SPE procedures may be resource consuming and their efficiency strongly depends 

on the volume of the analysed sample, the complexity of analytes and the properties of stationary phase. 

Meanwhile, dSPE procedure can increase the interaction between the target compounds in the water and adsorbent 

layers, leading to enhanced adsorption. Previous studies that examined the applicability of CNTs in the field of 

residue analysis have concluded that pH and the functionalisation of CNTs are two most critical factors for 

successful enrichment of analytes [212]. Yet, a desorption step similar to those used in conventional SPE 

procedures should not be neglected, as it is essential to efficiently elute analytes retained on the CNTs. Taking 

into account the acidic nature of NSAID class drugs (1 < pKa < 5), the influence of pH on the sorption and 

desorption conditions was evaluated. Yet, it should be noted that these substances are aromatic compounds with 

various functionalities. This can lead to numerous interactions with CNTs (e.g. π–π electron- donor-acceptor 

interactions due to the presence of polarised amine groups, hydrophobic interactions with -CF3 and chlorine 

substituents and hydrogen bonding interactions) [212]. For instance, Ma and Agarwal (2016) showed that four 

different adsorption mechanisms are simultaneously present during diclofenac adsorption on pristine multiwalled 

CNTs, such as electrostatic, hydrophobic, hydrogen bonding and Lewis acid-base interactions due to the presence 

of 2-carboxymethylphenyl, chlorine atoms and amino substituents in diclofenac [212]. 
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To evaluate the selected CNTs for their suitability as dSPE sorbents for the enrichment of 12 different 

NSAIDs, a series of experiments were conducted using acidified and non-acidified water samples which were 

fortified with a known amount of NSAIDs (75 ng/mL). The adsorption efficiency and the amount of adsorbed 

target analytes were calculated according to the following equations: 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) = (1 −
𝐶0

𝐶𝑡
) × 100  (4) 

𝑞𝑒 =
(𝐶0−𝐶𝑡)×𝑉

𝑊
      (5) 

, where Co and Ct are the initial concentration (0.075 mg/L) and the concentration determined after the contact 

time, respectively. V is the volume of the solution (L), W is the amount of CNT adsorbent used (g), and qe is the 

adsorption capacity i.e. the amount of each compound (mg/g) adsorbed by CNTs. 

The acidified conditions showed a notable reduction in the concentrations of most NSAIDs in the test 

samples already after a contact time of 5 min. The adsorption efficiency ranged between 94 and 100% for almost 

all compounds except for flunixin and niflumic acid that yielded relatively lower adsorption efficiencies (65 to 

75%). This observation is not unexpected. It is worth bearing in mind that selected NSAIDs were mostly in fully 

protonated form under these conditions (pH = 3). This way hydrogen bonding between the carboxyl groups and 

water is lower compared to deprotonated state which leads to enhanced affinity (via hydrophobic interactions) 

towards CNTs [213]. However, the two pyridine-3-carboxylic acid derivates (flunixin and niflumic acid) behave 

differently since they have lower pKa values compared to others. This is due to the sp2 hybridized nitrogen located 

in the pyridine group that withdraws electrons from the aromatic ring and stabilizes carboxylate ion. An increased 

acidity (lower pKa) can, therefore, be observed. At low pH range, flunixin and niflumic acid exist in a zwitterionic 

state and/or in a fully protonated pyridinium form. The partition behaviour between these microspecies is pH-

dependant. For this reason, an approximate estimation was carried out by calculating the relative distribution 

between species in MarvinSketch 20.4 software. As seen in Annex 4, these two NSAID class drugs exist mainly 

in zwitterionic state when the pH ranges from around 2 to 5. This explains the decrease in adsorption efficiency 

that was noticed during previous experiments in acidic media because zwitterions are less suspectable to 

hydrophobic interactions compared to uncharged molecules. Hence, incomplete adsorption on CNTs was noted.  

The adsorption equilibrium between the analytes and CNTs was reached within an 8-h contact period under 

acidic conditions. To achieve full adsorption of all analytes under neutral conditions the contact period had to be 

increased to 24– 48 h. Furthermore, the effect of the amount of CNTs on the adsorption efficiency was examined 

for acidic conditions. The results showed that most NSAIDs are rapidly adsorbed even when the initial amount of 

CNTs is very low (5 mg). However, the sorbent load of 20 mg was selected as optimal due to the adsorption 

efficiency of flunixin and niflumic acid, which showed a slight dependence on CNTs amount. Interestingly, the 

adsorbed amount of NSAIDs on CNTs-2 increased faster than for CNTs-1, which can be attributed to the partial 

agglomeration of CNTs-1 requiring longer contact time to open active sites on the surface of CNTs-1. 

Under neutral conditions, the interaction of analytes and CNTs (determined after 5 min contact period) 

decreased along with the decreasing CNT loading. An exception was noted in the case of vedaprofen. This 

compound showed good adsorption for both acidic and neutral conditions possibly due to the planar structure of 

the molecule and relatively high molecular surface area that facilitates interactions with CNTs. Compared to its 



77 

 

non-agglomerated counterparts, the CNTs-1 showed notably lower adsorption efficiency in the non-acidified 

solution. Meanwhile, functionalized CNTs (CNT-3 and CNT-4) displayed satisfactory adsorption for majority of 

the NSAIDs. However, some compounds required higher CNT loads for enhanced adsorption efficiency. For 

instance, the experimental averages of three replicate samples showed that only 3 to 42% and 2 to 64% of 

ibuprofen were adsorbed from neutral solutions when the loadings of CNT-3 and CNT-4 were increased from 5 

to 50 mg, respectively. It can be seen that, irrespective of the type of CNT, acidic conditions are favored for the 

adsorption NSAIDs. Moreover, a decrease in pH of the solution may enhance negative charges arising on CNT 

surface, which may also facilitate the interaction between the surface of the sorbent and selected substances 

leading to better adsorption [212]. Based on these considerations, it was decided that acidic conditions are optimal 

for the adsorption of these analytes when using raw CNTs due to better adsorption of ibuprofen, flunixin, and 

niflumic acid. 

The desorption experiments were conducted using all four types of the CNTs under both acidic and neutral 

conditions. The long-term study regarding the content of target analytes after equilibration for 7 days showed 

almost non-detectable levels of NSAIDs in the liquid phase, confirming the complete adsorption of analytes on 

the CNTs. Desorption of analytes was achieved by placing the sorbents in an empty SPE cartridge, washing with 

deionised water to clean the CNTs and drying. A solution consisting of 1% ammonium hydroxide in methanol, 

corresponding approximately to pH = 9, was used as an elution medium for preliminary desorption experiments. 

In brief, a 10 mL aliquot of desorption phase was added to the cartridge, kept for 5 min to wet the CNTs and 

eluted through the cartridges. The flow rate was regulated to around 2 mL per minute. The obtained extracts (after 

evaporation and reconstitution) were analysed by the developed LC-MS/MS method to evaluate the analyte 

recoveries. A significant difference (from 1 to 119%) in the analyte recoveries from CNTs between neutral and 

acidic conditions was found. As expected, the analyte desorption efficiency from neutral solutions confirmed the 

findings of adsorption experiments and the overall recoveries were lower, hence such conditions were not further 

explored. Meanwhile, the recovery of analytes from CNTs in acidic solutions was occasionally greater than 100% 

and elevated recoveries were noted for several analytes (flunixin, ketoprofen, mefenamic acid, niflumic acid, and 

vedaprofen). This could be attributed to the matrix effects and suggests that additional washing step might be 

necessary to remove matrix components. The recovery of all the NSAIDs from CNTs tested under acidic 

conditions followed the order CNTs-2 > CNTs-1 > CNTs-3 > CNTs-4. The recoveries for most of the compounds 

ranged from 40 to 115%. Low desorption efficiency was observed in the case of meloxicam and tolfenamic acid. 

To further optimize the sample preparation method, a series of repeated adsorption/desorption experiments 

was performed for CNTs-2 and CNTs-1. The optimised preconcentration procedure based on the batch experiment 

results was used for acidified water samples (100 mL) followed by a brief adsorption (30 min duration) of analytes 

on 20 mg of CNTs-1 and CNTs-2. The used sample volume was suggested as optimal for the analysis of surface 

waters by Dahane et al. (2013) [214]. This study confirmed the previous results in which sufficient adsorption 

(adsorption efficiency 94 to 100%) of analytes was achieved on CNTs-2 and lower adsorption was only observed 

for flunixin and flufenamic acid on CNTs-1. Apart from 1% ammonium hydroxide solution in methanol, 

additional elution phases were also explored that consisted of pure methanol, acidified methanol and methanol 

with higher proportion of ammonium hydroxide. Elution media with higher pH values was investigated since the 

study by Dahane et al. (2013) reported that 10% ammonium hydroxide in methanol showed superiority over 1% 
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solution [214]. The desorption procedure was performed as described above with the exception that the prolonged 

contact period between the desorption solvent and analytes was excluded to reduce the amount of co-eluting 

matrix components. As anticipated, the desorption efficiency was higher for the CNTs-2 due to the higher free 

volume caused by wider ratio of nanoparticles compared to the denser packing of CNTs-1. The recovery of 

diclofenac and naproxen increased by almost 1.5 to 2 times when CNTs-2 were used, compared to that with CNTs-

1. For other compounds, such as ibuprofen and vedaprofen, the difference between the two CNTs was not as 

pronounced. However, no significant difference was noticed between experiments at 5% and 10% of ammonium 

hydroxide solutions (Figure 16).  

 

Figure 16. Recovery of NSAIDs under different elution conditions 

Therefore, 5% (v/v) ammonium hydroxide in methanol was selected as the final desorption phase. The 

optimised dSPE procedure was applied for the study of real water samples. The sorbent/desorption solution 

combination for the recovery of retained analytes collected from real water samples (100 mL) was as follows: 20 

mg of CNTs-2 and 10 mL of 5% (v/v) NH4OH in methanol. The develop dSPE method allowed to recover between 

70 and 94% of 7 out of 12 analytes including diclofenac (71 ± 1%) and ibuprofen (79 ± 1%). A sufficient but 

lower desorption was observed in the case of KTP, MFA, NPX, and TFA (60– 65%). Regrettably, one substance 

(meloxicam) showed relatively low desorption efficiency (40%). Such finding can be attributed to higher number 

of conjugated heterocycles compared to other NSAIDs which affects the van der Waals surface area of the 

compound and increases its affinity towards carbon nanotubes.  

Finally, the possibility for the repeated use of the CNT sorbent (CNT-2) for the enrichment of analytes 

from water samples was evaluated. The results showed that for the majority of NSAIDs at least five repeated 

desorption cycles are necessary to completely remove any detectable traces of target compounds. Besides, an 

additional washing step should be incorporated to remove matrix components that cannot be eluted by 5% NH4OH 

in methanol.  
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3.1.6. Instrumental analysis: determination of NSAIDs by HPLC-MS/MS 

The LC -MS/MS method was optimised to ensure accurate qualitative/quantitative determination of the 

target analytes. Two MRM transitions were selected for each compound. Standard solutions of individual NSAIDs 

and internal standards were used to optimise the collision energy (CE) and other operational parameters of the ESI 

interface. Ionisation was achieved in negative ESI mode, which was found to be the most suitable due to the 

favorable ionisation of carboxyl groups of acidic NSAIDs [215].  

The most intense transition (referred to as MRM1) was selected for the quantification purposes, whereas the 

second transition (referred to as MRM2) was used for qualitative confirmation. While the ratio of peak areas 

between the two transitions selected for quantification and qualification was calculated and applied as an 

additional parameter to confirm the presence of NSAIDs in surface and tap water samples and reduce the 

likelihood of false positive hits due to co-eluting isobaric substances. 

A sufficient separation of analytes was gained by the optimal conditions including the application of internal 

standards to compensate for matrix effects. The extracted ion chromatograms for all of the 12 NSAID analytes and 

their internal standards are shown in Figure 17. The gradient program was optimized to enable acceptable 

separation for the analytes of highest environmental relevance (diclofenac, ibuprofen). Table 10 shows the 

optimised instrumental conditions including retention time, the two selected MRM transitions (MRM1, MRM2), 

and their transition collision energies (CE1, CE2) for target analytes. Unlike the other methods, an elaborated 

optimisation of instrumental parameters was not conducted for two reasons. Firstly, because analysis of NSAIDs 

via LC-MS/MS is a well-established procedure without much room for improvements. Secondly, the main 

purpose of this study was to develop a novel sample preparation procedure that relies on selective enrichment of 

NSAIDs by MWCNTs (discussed in the previous section). 

Table 10. The optimized MS conditions for analytes and internal standards 

Compound RT, min MRM1, m/z CE1, 

eV 

MRM2, m/z CE2, 

eV 

Internal standard 

CPF 5.91 272→228 20 272→226 37 Carprofen-d3 

DCF 6.47 294→250 20 294→214 31 Diclofenac-13C6 

FCA 7.74 280→236 24 280→176 40 Tolfenamic acid-13C6 

FNX 5.21 295→251 25 295→191 40 Flunixin-d3 

IBP 6.75 205→159 10 205→161 14 Ibuprofen-d3 

KTP 4.48 253→209 11 253→197 13 Flunixin-d3 

MFA 7.81 240→196 20 240→180 35 Tolfenamic acid-13C6 

MXC 4.28 350→146 28 350→286 20 Meloxicam-d3 

NPX 4.59 229→185 15 229→169 20 Carprofen-d3 

NFA 6.13 281→237 20 281→177 45 Ibuprofen-d3 

TFA 8.35 260→216 22 260→214 30 Tolfenamic acid-13C6 

VPF 9.50 281→237 15 281→235 29 Vedaprofen-d3 

Carprofen-d3 5.90 275→231 20 - - - 

Diclofenac-13C6 6.48 300→256 20 - - - 

Flunixin-d3 5.21 298→254 25 - - - 

Ibuprofen-d3 6.75 208→161 12 - - - 

Meloxicam-d3 4.28 353→289 20 - - - 

Tolfenamic acid- 13C6 8.35 266→222 22 - - - 

Vedaprofen-d3 9.48 284→240 15 - - - 
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Figure 17. Extracted ion chromatograms of the 12 NSAID analytes and their internal standards 

3.1.7. Sample preparation protocol: determination of PhACs by DI-FT-ICR-MS 

Initial sample preparation tests were conducted with the conventional SPE technique that has been 

successfully applied in the Orbitrap-MS study, which was discussed in Section 3.1.1 [199]. Even though this 

practice is considered a gold standard and used in countless LC-MS based multi-analyte methods, it produced 

extremely high matrix suppression in the case of DI-HRMS even when high dilution factors were applied. 

Therefore, alternative sample preparation protocols were evaluated. In this context, QuEChERS (quick, easy, 

cheap, effective, rugged, and safe) was recognized as a potential substitute for SPE-based extraction. While this 

methodology is mainly used for pesticide residue analysis, it has recently gained increased attention in several in 

other areas [216]. For instance, QuEChERS protocol has been applied for the determination of 25 PhACs in 

sediment samples with satisfactory results (target compound recoveries between 64% to 101%) [217]. 

Nevertheless, QuEChERS is not considered a practical option when it comes to water samples, because only a 

limited sample volume can be extracted at once that rarely exceeds 10 mL. A way to overcome this limitation is 

freeze-drying. Again, it is not a common practice and precautions must be taken to avoid significant analyte losses. 

Yet, methodologies exist where freeze-drying technique has been applied to WW matrixes to extract compounds 

that show poor enrichment efficiencies via SPE-based extraction methods [218,219]. In addition, water removal 

allows to minimize co-extraction of matrix components, because only a limited fraction of dry matter dissolves 

in the extraction medium (acetonitrile–water). Based on these considerations, freeze‐drying was used as a pre-
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treatment step before the extraction stage and further clean-up using QuEChERS. Besides, the latter was modified 

to meet the needs of the developed FT-ICR-MS method. 

 

Figure 18. The influence of MgSO4 amount on Q1 signal intensities of target PhACs 

Preliminary optimization was carried out without the presence of matrix to evaluate compatibility of 

QuEChERS salts and buffering agents with instrumentation. Two major issues were noted. Firstly, sodium 

chloride (NaCl) is partially transferred to acetonitrile during the phase separation step and consequently causes 

interfering MS signals that correspond to NaCl clusters: [NanCln+1]- and [Nan+1Cln]+. Secondly, citric acid produced 

an extremely intense peak at m/z 191.0197 in negative ionization mode. Neither NaCl nor citrate buffers impair 

analytical performance of LC-MS based applications, yet they can pose serious problems in DI-HRMS analysis 

(e.g. suppress ionization of analytes, oversaturate the ICR cell and promote the formation of additional adducts). 

Attempts were made to remove NaCl and citric acid residues from the final extract by evaporation and subsequent 

solvent exchange. For this purpose, dichloromethane, ethyl acetate, acetone and methyl tert-butyl ether were 

investigated, but, unfortunately, none of these solvents provided satisfactory results. Therefore, the use of NaCl 

and citrate salts was discarded and phase separation/extraction relied solely on MgSO4. Next, the amount of 

anhydrous MgSO4 was optimized. The most favourable conditions with respect to analyte recoveries were found 

when the ratio (mg/µL) between MgSO4 and acetonitrile-water (1:1, v/v) was from 0.225 to 0.275 (Figure 18). 

The draft method was tested on WWTP influent samples and strong matrix suppression still prevailed. In order to 

minimize the co-extraction of matrix components from freeze-dried material, different acetonitrile-water 

compositions were investigated (50-100%). Results revealed that signal suppression decreased with higher 



82 

 

organic phase content, but, at the same time, several PhACs displayed poor extraction efficiency due to their 

relatively polar nature (e.g. caffeine, NSAIDs and macrolide antibiotics). Hence, acetonitrile-water (9:1, v/v) was 

selected as the best option and an additional sonification step was incorporated to assist more efficient analyte 

transfer to the extraction medium.  

However, these efforts were not sufficient to counter the ion suppression, which particularly affected the 

negative ionization mode. While it is nearly impossible to pinpoint which substances cause this unfavourable 

situation, four ubiquitously present signals were noticed at m/z 297.1530, m/z 311.1686, m/z 325.1843 and m/z 

339.1999 that displayed around 10-fold higher intensity than all the other full-MS peaks. A putative identification 

was carried out, suggesting that these interferences are anionic surfactants, in particular, linear alkylbenzene 

sulphonates (CnH2n-1C6H5O3S, n=10-14). Yet, surfactant residues should not be considered the primary underlying 

cause of suppression since dissolved organic matter which can be found in wastewater comprises a complex 

mixture of organic substances with size up to 100 kDa. Therefore, further clean-up using dispersive SPE (dSPE) 

was evaluated. Preliminary dSPE experiments with various types of sorbent materials indicated that traditional 

dSPE sorbents (C18 and PSA) and anion exchange sorbent (Strata-X-A) might be improve the performance of the 

method. A series of experiments were carried out with various amounts of these dSPE sorbents (1, 3 and 5 mg) 

using fortified WWTP influent sample as target matrix. In addition, analogously prepared blank samples were 

also analyzed to assess how dSPE sorbents affect the recovery under conditions where the matrix is absent. In 

matrix-matched experiments C18 sorbent was able to reduce ion suppression for almost all target analytes, 

whereas PSA and Strata-X-A produced somewhat contradicting outcomes. PSA significantly worsened sensitivity 

of NSAIDs and other acidic PhACs. This effect was even more pronounced in spiked procedural blanks, because 

there is a negligible concentration of matrix substances, thus more binding sites are left unoccupied leading to 

even greater affinity towards acidic compounds. Since WWTP effluents contain much less organic matter than 

untreated influents, unintentional loss of analytes may occur and lead to underestimation of results. The same 

amount of Strata-X-A sorbent performed similarly to PSA, but the loss of acidic PhACs was much less 

pronounced. Besides, a Strata-X-A enabled removal of anionic surfactants. These differences between Strata-X-

A and PSA sorbents are related to their structural characteristics. PSA contains two binding sites (primary and 

secondary amine), while Strata-X-A has only one quaternary amine moiety, therefore, the first exhibits higher 

overall ion-exchange capacity. Based on these findings, PSA was excluded, while the amount of C18 and Strata-

X-A used in the final method was optimized to 3 mg and 1 mg, respectively.  

Finally, dilution experiments were conducted to find the most appropriate dilution factor (1, 2, 4, 8, 12, 16 

and 20). Matrix effect (ME) was calculated by dividing the analyte response in matrix-matched extract by the 

response in procedure blank and multiplying with 100% (3. Equation). Samples were fortified using post-

extraction addition approach. A value of 100% indicates no effect meaning that the analytical response stays the 

same and is unaffected by matrix, whereas values below and above 100% indicate ionization suppression and 

ionization enhancement, respectively. Results showed that the final extract must be diluted with injection phase 

at least 12 times before stable ME can be obtained. At these conditions, the mean ME was 80.7 ± 24.5% (Figure 

19). The worst suppression was observed for paracetamol (19%), naproxen (38%) and spiramycin (58%).  
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Figure 19. Dilution factor of the final WWTP influent extract versus the observed matrix effect 

The developed method was further verified by determining the absolute recoveries of PhACs. This 

parameter was calculated by comparing the signal intensities of target analytes between procedural blanks 

(deionised water) that were spiked before and after the procedure. In addition, extracts obtained without dSPE 

clean-up were also evaluated in the same manner. As seen from Figure 20 (A), dSPE treatment still caused a 

significant loss of analytes, especially acidic PhACs. For instance, valsartan recovery decreased from 76% to 24% 

due to the clean-up procedure. Even though the absolute recovery was lower compared to extracts obtained by 

MgSO4-assisted phase separation alone, dSPE clean-up step was able to provide an appropriate reduction of the 

matrix effect (Figure 20, B) and improve mass accuracy (Figure 20, C and D), allowing the extracts to be analyzed 

by direct infusion technique. Furthermore, dSPE procedure was able to supply more information regarding sample 

composition, increasing the total amount of full-MS signals by 11% and 6% for negative and positive ionization 

modes, respectively. Nevertheless, method matrix-matched standard calibration curve (MMSCC) approach had 

to be applied to compensate for analyte losses and improve method precision. 
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Figure 20. Performance of the sample preparation protocol in terms of absolute recoveries (A), 

signal enhancement (B) and mass accuracy (C and D) for targeted PhACs 

 

3.1.8. Instrumental analysis: determination of PhACs by DI-FT-ICR-MS 

The goal for the optimisation of FT-ICR-MS method was to achieve adequate sensitivity, signal stability 

and, most importantly, mass accuracy. Apart from the source parameters, the following instrumental factors were 

recognized as the most influential: flow rate, ion accumulation time, resolving power and injection phase. Special 

attention was paid to the injection phase because its composition plays a crucial role in the mitigation of matrix 

effect and can drastically affect ionization efficiency. First, experiments were conducted on procedural blanks that 
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were spiked with target PhACs after the sample preparation procedure to find the most suitable acetonitrile 

percentage (100%, 95%, 87%, 75%, 50%, 25% and 0%) in the injection phase (Figure 21). After that, most 

promising compositions were tested on matrix-matched samples to observe whether the ionization behaviour 

remains unchanged in the presence of matrix components. The results indicate that sensitivity increased along 

with the concentration of acetonitrile in the injection phase. Meanwhile, two measurements that were conducted 

with higher acetonitrile content (100% and 95%) produced a sudden drop of ionization efficiency (with exception 

to xylazine). This observation is in accordance with the hypothesis that hydrogen bonds play a crucial role in the 

formation of solvent shells that are necessary for solvation in ESI process. Therefore, pure aprotic polar solvents 

display poor results, when the amount of water (or any other proton donor) is insufficient [220]. Interestingly, the 

results from spiked procedure blanks and matrix-matched samples showed an equivalent trend. In both cases, 

acetonitrile concentrations at 87% and 75% displayed maximum sensitivity for almost all compounds, hence the 

injection phase was selected as 80% acetonitrile in water (v/v).  

 

Figure 21. A relation between injection phase composition and the observed Q1 signal intensities 

on a pooled WWTP influent sample matrix 

The flow rate was optimized from 1 to 20 µL/min. As anticipated, lower flow rates produced higher 

sensitivity due to reduced sample dilution. At the same time, poor repeatability noticed when the flow rate was 

below 4 µL/min. The observed instability can be attributed to the instrumental configuration, because the applied 

ESI source is not particularly designed for infusion experiments at ultra-low flow rate, causing irregularities 
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during ionisation. According to specification, the equipped sprayer needle is not recommended for experiments 

involving flow rates below 2 µL/min. These considerations were taken into account and the flow rate for the main 

method was set at 5 µL/min. 

Similar to Orbitrap-MS, prolonged accumulation of ions in the FT-ICR-MS system can cause an 

oversaturation of analyser cell that negatively impacts both sensitivity and mass accuracy. Fine tuning of ion 

accumulation time was done by analysing a fortified WWTP influent sample in triplicate at different parametric 

values (5, 10, 20, 35, 50, 75, 100, 150 and 200 ms). Signal responses followed a linear trend throughout the 

analysed range and an increased mass error was detected only starting from 150 ms in positive ESI mode. 

Meanwhile, negative ESI mode was adversely affected by oversaturation. A linear increase of signal intensities 

was not observed after 50 ms, whilst mass accuracy declined already at 35 ms. Hence, the final accumulation 

times were set at 100 ms and 20 ms for positive and negative ionization modes, respectively. The latter was 

maintained at 20 ms to reduce the impact of anionic surfactants on the full-MS spectra acquisition. Meanwhile, 

for MS/MS experiments, accumulation time was increased to 500 ms per scan, which was sufficient for obtaining 

fragment ion traces at the first calibration level.  

Optimisation of CE values during MS/MS CID experiments were investigated by obtaining fragment 

spectra for target compounds at 5, 15, 25, 35 and 45 V. The obtained fragmentation patterns were matched against 

the database to find the most suitable CE value which yields reasonably characteristic fragmentation for all target 

compounds. Results revealed that, when CE was held at a constant value, the measured MS/MS spectra could not 

provide sufficiently rich information that can be used for library‐based matching of product ion spectra. Therefore, 

an alternative solution was explored. The CE setting was adjusted for each precursor on an individual level using 

a linear function that takes into account the corresponding m/z value because the rule of thumb is that compounds 

with higher m/z values need higher CE for dissociation. While the quality of fragment spectra was slightly better 

compared to the previous experiments, several outliers were noticed that could not be matched with the library. 

Thus, MS/MS acquisition in the final method was carried out using three CE values (5 V, 15 V and 25 V) per 

precursor. Although additional measurements increase the total time of the analysis, this step was fundamental to 

improve the quality of MS/MS data. 

Finally, transient size, which is directly linked to the resolving power, was deliberately kept at 4M. 

Resolving power of the HRMS system was around 490,000 and 275,000 at m/z 250 and m/z 500, respectively. 

The author is well aware that this value is lower than would be expected from this FT-ICR-MS system as the 

maximum transient size is 16M that would result in a much higher resolution. However, the rationale behind this 

decision is to show that the developed method is not necessarily limited to high magnetic field FT-ICR-MS 

systems and could be transferred to other HRMS platforms, most likely Orbitrap-MS. 
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3.2. Quality control, quality assurance and validation studies 

3.2.1. Determination of PhACs by HPLC-Orbitrap-MS 

The performance of the method was evaluated by estimating the linearity, recovery, repeatability (RSDr, 

expressed as relative standard deviation), and selectivity. Experiments were carried out by analysing fortified 

samples at three concentration levels (5, 40 and 80 ng/L) with five replicates during a period of three days. 

Selectivity was tested by verifying the absence of interfering analytical signals at the expected retention time 

range for the analyte. ME were assessed to evaluate the degree of ion suppression or enhancement. The matrix 

effect was calculated by dividing the slopes of calibration curves from a pooled WWTP influent sample (so-called 

MMSCC approach) and the slopes of the procedure-matched calibration curves obtained from ultra-pure water. 

Again, a value of 100% indicates that there is no matrix effect, values >100% indicate enhancement, while values 

<100% indicate ion suppression. 

The calibration curves that were prepared within the concentration range of 1-100 ng/L showed a good 

linearity, and the determination coefficients were higher than 0.992 for all PhACs included in this study. 

Repeatability of the method ranged from 7.0% to 42%, while the recovery ranged from 79% to 133% (Table 11). 

Table 11. Method validation parameters 

Compound RSDr, % Recovery, % LOQ, ng/L ME, % 

Acetaminophen 9.4 98 0.10 64 

Atenolol 12 92 0.50 43 

Atorvastatin 18 102 0.50 62 

Azithromycin 27 126 1.0 104 

Caffeine 42 132 0.10 125 

Carbamazepine 6.4 102 0.01 82 

Ciprofloxacin 35 115 1.0 130 

Clarithromycin 12 87 0.01 77 

Diclofenac 7.0 92 0.10 51 

Erythromycin 33 90 0.10 71 

Fluoxetine 31 86 0.50 44 

Gemfibrozil 13 79 0.10 57 

Ibuprofen 27 95 0.50 56 

Ketoprofen 8.1 94 0.10 48 

Losartan 16 91 0.05 46 

Metoprolol 9.7 113 0.05 112 

Naproxen 13 86 0.10 48 

Pravastatin 6.7 78 0.01 39 

Propranolol 22 109 0.01 82 

Simvastatin 16 103 0.50 68 

Sulfamethoxazole 10 94 0.05 35 

Trimethoprim 8.4 133 0.01 104 

Valsartan 15 97 0.10 74 

Xylazine 11 109 0.010 63 
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The limit of quantification (LOQ) was empirically determined using a series of experiments that were 

spiked at ultra-low concentration levels. The lowest amount of an analyte in the sample for which the S/N ratio 

exceeded 10 was set as LOQ. The LOQ values varied from 0.010 to 1.0 ng/L. The obtained values were either 

equivalent or, in many instances, even lower compared to the LOQs of the same substances reported in other 

analytical methods for the quantification of PhACs in WW samples using LC-MS/MS [221–223] or LC-Q-TOF-

MS [224]. 

The matrix effect of WW samples was evaluated in order to avoid inaccurate quantification since procedure 

matched calibration was conducted on deionised water, not WW. Taking into account the exceptionally high 

sensitivity of Orbitrap-MS, procedure-matched calibration seemed a more reasonable choice than MMSCC 

approach as it would cause a tremendous drop of accuracy at low concentration levels due to high background 

contamination of target analytes (reasons discussed in the fourth paragraph of Section 1.8.3). The results of ME 

study revealed that the majority of PhACs were subjected to ion suppression, except for azithromycin, caffeine, 

ciprofloxacin, metoprolol and trimethoprim, which showed signal enhancement. The ME values presented in 

Table 11 correspond to the WW used for the method validation and this parameter should be evaluated within 

each set of samples analyzed. Therefore, quality control samples (on various WWTP influent samples) were 

analysed within each batch and mean recoveries obtained from each sequence were applied for correcting the 

concentrations found in real samples. 

3.2.2. Determination of aminoglycosides by HPLC-Q-TOF-MS 

Validation was performed according to the guidelines laid down by Commission Decision 2002/657/EC, 

because honey is classified as food. The optimised version of the method was validated for decision limit (CCα), 

detection capability (CCβ), linearity, repeatability (RSDr), within-laboratory reproducibility (RSDwR), and 

recovery using the in-house validation concept. The experimental design of the validation and the necessary 

calculations were performed with InterVAL 3.3.2.4 software (QuoData, Dresden, Germany). Two leading factors 

were chosen for the validation design - the operator and the specific characteristics of sample matrix, as it was 

possible to divide the targeted sample batch into two separate groups based on their specific traits - low viscosity 

dark-toned honey and high viscosity light-toned honey. LOQs were established empirically by analysing a set of 

spiked honey samples with decreasing concentrations of AGs. The lowest observable concentration with the S/N 

ratio ≥10 was established as the LOQ. All intra-day and inter-day validation parameters were evaluated by the 

following experimental procedure: two distinctive honey samples (in random order) were spiked with five 

different concentrations (25, 50, 100, 250 and 500 ng/g) of AGs mixture in five replicates per level by two 

operators within a period of two days. The concentration in samples was calculated using MMSCC approach. In 

contrast to WW samples, selected PhACs are not ubiquitously present in honey, thus this technique does not 

require blank subtraction and can be applied without compromising method performance at low levels. To 

simplify validation experiments, the initial study design was slightly modified so that the assignment of operators 

would not be randomized between the days. Overall, 50 samples including the method matrix-matched calibration 

standards were analysed during the validation study. The results of the validation study are summarized in Table 

12. 
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Table 12. Validation data for the determination of AGs in honey 

Compound LOQ 

(ng/g) 

CCα 

(ng/g) 

CCβ, 

(ng/g) 

Linearity Level, 

(ng/g) 

RSDr 

 (%) 

RSDwR(n=2) 

(%) 

Accuracy 

(%) 

DSTP 10 11.5 14.1 0.998 10 5.0 12.3 85.7 

50 5.3 7.2 98.0 

250 3.8 9.2 97.5 

GEN 10 12.2 16.0 0.997 10 5.8 11.3 92.5 

50 5.6 10.7 97.6 

250 4.9 10.8 100.2 

KAN 10 14.0 20.7 0.996 10 6.7 15.5 107.7 

50 6.7 9.8 96.8 

250 6.9 12.6 102.1 

NEO 25 33.6 47.9 0.995 25 7.3 19.7 111.3 

100 7.1 16.3 88.0 

500 5.1 7.1 96.6 

SPC 10 11.2 13.4 0.998 10 4.4 6.5 105.8 

50 4.3 7.6 103.9 

250 5.0 6.2 98.1 

STP 10 11.3 13.5 0.998 10 5.0 7.3 86.2 

50 5.3 8.2 97.5 

250 5.9 7.8 98.4 

 

As seen in Table 12., the highest LOQ was established for NEO. The sensitivity was poorer due to the 

broadening of chromatographic peaks. Decision limit (CCα8)and detection capability (CCβ9) ranged from 11.2 to 

33.6 ng/g and from 13.4 to 47.9 ng/g, respectively. The method showed satisfactory repeatability that remained 

almost constant for all target analytes throughout the validation study (3.8%≤RSDr≤7.3%), however, the within-

laboratory reproducibility was considerably inferior, especially for NEO (19.7% for the lowest fortification level). 

Nevertheless, acceptable accuracy was achieved (from 86 to 111%), largely because of the MMSCC approach. 

The compound identification criteria, which were based on the MS/MS fragment ratios, were fulfilled for 48 out 

of 50 samples. Both outlier cases involved NEO. In particular, the fragment ion ratio of NEO exceeded the 

permitted range of 0.17±0.05 (Q1/Q2), suggesting that more distinctive fragmentation patterns might be required 

for this analyte. In general, the performance of the method in accordance to Commission Decision 2002/657/EC. 

However, objectively, the developed application might require additional improvements in the future to enhance 

the sensitivity towards NEO. 

Additional validation for WW samples was not conducted. However, the performance of the method was 

verified by analysing a set of fortified WW samples at different concentrations (100, 250 and 500 ng/L). The 

obtained results indicated that the method shows similar performance characteristics for WW samples. The LOQ 

values for raw WW matrix ranged from 75 to 190 ng/L.  

 

 
8 Concentration level at which there is a probability α (in this case 5%) that a blank sample will yield a signal at this level 

or higher i.e. 95% propabilty that the observed signal is not noise. 
9 Concentration level at which there is a probability β (in this case 5%) that the measured concentration will yield an 

anlytical response which is above CCα level i.e. 95% propabilty that the observed signal will not be classified as 

undetected. 
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3.2.3. Determination of NSAIDs by HPLC-MS/MS 

Validation study was carried out by analysing fortified surface water samples at two concentration levels 

(50 and 500 ng/L) with five replicates over a period of two days. ME was evaluated by the same approach as 

described in Section 3.2.1. The validation criteria of linearity, the mean recoveries, repeatability (RSDr, %), and 

instrumental sensitivity (the LOD and LOQ) are provided in Table 13. 

Investigation of ME revealed that all of the analytes except IBP showed a notable ion suppression. The values 

were below − 20% for CPF, FNX, MFA and NFA. The ME values higher than 50% were displayed by four 

NSAIDs: DCF, NPX and VPF. Compared to Orbitrap-MS method, the matrix suppression was more pronounced. 

However, the MS/MS system which was used in this study has previously proved to be more suspectable to matrix 

effects [225]. Nevertheless, it was essential to use the internal standardisation technique to compensate for the 

suppressive effects of co-eluting substances and the analyte losses during adsorption and desorption procedures. 

The linearity of the total method was evaluated using the determination coefficients for the linear regression 

calibration graphs. The R2 values were above 0.99 for all of the analytes in the studied concentration range (from 

1 to 1000 ng/L). The recoveries (abbreviated as “R” in Table 13.) and RSDr for all of the analytes were in the 

range from 65 to 120% and from 2 to 16%, respectively. The LOQ values of the developed LC-MS/MS method 

for most of the compounds were sufficiently low, ranging between 0.04 and 0.59 ng/L, except for NPX and VPF, 

both having the LOQ of 3.9 ng/L. The LOQs for IBP, KTP and DCF were very close to the developed Orbitrap-

MS method, yet NPX showed a slightly lower performance regarding sensitivity.  

Table 13. Performance characteristics of the developed LC-MS/MS method 

Compound R2 50 ng/L 500 ng/L ME, % LOD, ng/L LOQ, 

ng/L R, % RSDr, % R, % RSDr, % 

CPF 0.9986 116 2 120 3 12 0.1 0.3 

DCF 0.9991 106 3 95 4 50 0.1 0.3 

FCA 0.9986 117 14 125 13 37 0.01 0.04 

FNX 0.9973 93 7 94 3 19 0.09 0.3 

IBP 0.9993 113 3 120 3 125 0.3 1.0 

KTP 0.9979 99 3 95 3 30 0.05 0.2 

MFA 0.9978 99 13 104 10 17 0.2 0.5 

MXC 0.9976 99 5 66 4 33 0.2 0.6 

NPX 0.9989 65 8 68 8 57 1.3 3.9 

NFA 0.9980 79 9 82 7 11 0.04 0.1 

TFA 0.9985 106 8 100 3 15 0.06 0.2 

VPF 0.9994 113 10 117 7 75 1.3 3.9 
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3.2.4. Determination of PhACs by DI-FT-ICR-MS 

In order to investigate the capability of the method and assign appropriate concentration levels for the 

validation, initial assessment of sensitivity was carried out by analysing target PhACs at various fortification 

levels via MMSCC approach. Decision limit (CCα) values were calculated based on the obtained calibration curve 

and corresponding signal-to-noise ratios (S/N). During this step, the typical S/N threshold was increased, since 

background noise produced by the FT-ICR-MS instrument is not negligible, especially for direct infusion analysis. 

According to Decision 2002/657/EC, CCα values are calculated at S/N of 3 [12]. However, for FT-ICR-MS 

instrumentation overly low S/N threshold can be a major cause of poor reproducibility [226], hence the S/N limit 

for the peak-picking algorithm was increased to 5. Furthermore, all full-MS data was recorded in profile mode to 

enable estimation of S/N during the post-processing stage. Taking into account that MS/MS spectra was acquired 

only for those compounds for which both ions were detected within the acceptable mass accuracy range (±1.25 

ppm), CCα was therefore defined as the lowest concentration at which the least abundant analyte signal (Q2) can 

be measured at S/N of 5 instead of 3. CCβ was calculated as follows: CCα value plus 1,64 times the standard 

deviation of the within-laboratory reproducibility that was obtained from the measured continent at the lowest 

validation level. Two ranges were used for the maximum permitted tolerance for ion abundance ratios (Q2/Q1). 

To reduce the number of false positives, suspect screening relied on a “strict” range which was set at 20% for all 

compounds. Meanwhile, “wide” range was used only in target screening and its limits were directly adapted from 

Decision 2002/657/EC (≥0.5 - 20%, 0.2 to 0.5 - 25%, 0.1 to 0.2 - 30% and ≤0.1 - 50%). For precursors that 

fulfilled full-MS identification criteria, MS/MS spectra was recorded at three CE levels due to reasons discussed 

in Section 3.1.8. and matched against the experimental and predicted MS/MS fingerprints. If at least one product 

ion feature within mass accuracy threshold (± 2.5 ppm) was detected, the suspect was reported as tentatively 

identified.  

The target approach was validated using an in-house validation approach. A summarized overview for the 

acquired performance parameters is presented in Table 14. A detailed list of all investigated performance criteria 

is given in Annex 5-10. The screening detection limit (SDL) was established as the lowest level for which the 

most abundant ion (Q1) was detected in all parallel measurements. The limit of identification (LOI) was set as the 

lowest level for which a compound fulfilled all identification criteria at “wide” range with a success rate of ≥90% 

[227]. From the perspective of quantitative analysis, the method can be considered sensitive and reliable only for 

limited number of analytes, because the obtained performance criteria were explicitly compound-specific. For 

example, atenolol, metoprolol and propranolol (beta-blockers) showed high sensitivity and satisfactory 

performance was met even at concentrations below 50 ng/L. On the contrary, low molecular weight PhACs such 

as paracetamol and naproxen required 10 times higher concentrations to meet the same criteria. Ion abundance 

ratio was recognized as the most critical factor for the successful identification of PhACs. For example, at the 

lowest fortification level (level A) only 17 out of 26 target compounds were able to meet this criterion with ≥90% 

success rate. Moreover, a slight bias towards negative residual error was observed for experimentally determined 

ratios. This observation hints that low abundance signals are occasionally rejected by the peak-picking algorithm 

since the analytical response fails to achieve the required S/N ratio. Thus, the accumulated full-MS spectrum 

displays systematically distorted isotopic patterns at low concentration levels. At the same time, the measured 

fragmentation features were in a good agreement with both experimental (MoNA) and predicted (CFM-ID 
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algorithm) MS/MS fingerprints. The total number of correct hits was slightly higher for experimental fragment 

features (94%) than for predicted (83%). On average 2.3 and 1.6 fragments were found for each compound in 

experimental and in-silico generated libraries, respectively. Only two substances could not be identified based on 

predicted spectra (clarithromycin and spiramycin). As anticipated, the experimental database showed higher 

success rate, yet in-silico generated fragmentation patterns were shown to be moderately accurate and therefore 

can be used as a complementary tool for the identification. 

Table 14. Main validation criteria and instrumental capabilities in terms of compliance rates that 

correspond to mass accuracy, ion ratio and MS2 fingerprints 

Parameter Conc. 

Level 

Mean 

value 

Median 

value 

Range 

Main validation criteria 

CCα, ng/L - 128.4 65.5 18 - 693 

CCβ, ng/L - 234.2 98.0 27 - 1234 

Coefficient of determination - 0.983 0.98 0.95 - 0.99 

RSDSr, % A 16 16 5-38 

B 13 12 3 - 30 

C 12 10 5 - 29 

RSDSwR, %  A 23 21 8 - 61 

B 24 23 6 - 53 

C 20 17 7 - 51 

Recovery, %  A 105.3 108 73 - 138 

B 101.1 102 75 - 121 

C 95.0 96 75 - 116 

Mass accuracy and ion ratios 

Q1 compliance rate (mass error ±1.25 ppm), %  A 97% 100% 75% - 100% 

B 98% 100% 75% - 100% 

C 100% 100% 92% - 100% 

Q2 compliance rate (mass error ±1.25 ppm), %  A 85% 100% 25% - 100% 

B 96% 100% 67% - 100% 

C 99% 100% 83% - 100% 

Q2/Q1 ratio compliance rate (Q2/Q1 error ±20 %)  A 77% 96% 17% - 100% 

B 90% 100% 33% - 100% 

C 92% 100% 50% - 100% 

MS2 fingerprinting 

Experimental MS2 fingerprint match (≥1 matched 

fragment, MoNA database)  

A 87% 92% 33% - 100% 

B 96% 100% 75% - 100% 

C 100% 100% 100% 

Predicted MS2 fingerprint match (≥1 matched 

fragment, CFM-ID)  

A 73% 92% 0% - 100% 

B 83% 100% 0% - 100% 

C 92% 100% 0% - 100% 

 

Altogether, 73% of cases were successfully identified at a concentration close to CCβ while 89% and 94% 

success rate was observed for the two upper levels (Table 15). Only for 4 PhACs (azithromycin, spiramycin, 

sulfamethoxazole and valsartan) LOI could not be established due to insufficient success rate.  

To verify the target screening method, one quality control sample (QC) was analyzed for each sample batch 

(10 samples per batch). The QC samples were obtained by fortifying WWTP influent and effluent aliquots at a 
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concentration that corresponded to the second validation level. Regrettably, the QC results were only partially 

consistent with the validation data and indicated that the method suffers from interferences more than previously 

thought. In particular, the maximum recovery during the validation study almost invariably stayed below 150%. 

Meanwhile, QC data displayed elevated recovery values in multiple occasions (14 from the total of 208 QC data 

points, Annex 11). This observation suggests that robustness was not properly assessed during the validation 

study, because all experiments (including MMSCC) were carried out on pooled WWTP influent and effluent 

matrixes, thus the inconsistency of matrix effects among diverse samples was not truly taken into account. The 

failure to accurately quantify some PhACs was thought to occur due to three major factors: unresolved 

interferences, poor performance of blank subtraction when high background levels of target PhACs was present 

in the selected QC sample matrixes and matrix induced enhancement/suppression of the ionization efficiency. 

Since QC samples were obtained from different WWTP influents and effluents, MMSCC calibration curves could 

not completely compensate the samples-specific matrix effects, causing potential errors in the quantification. 

Considering that it would be too laborious to prepare a calibration curve for each individual sample that fully 

compensates for these adverse effects, the developed method can only be considered semi-quantitative.  

Table 15. Successful identification rates of target PhACs using “strict” and “wide” identification 

thresholds 

Validation 

level 

Q1 

detection 

rate (± 1.25 

ppm) 

Overall 

ID rate 

(strict) 

Overall 

ID rate 

(wide) 

≥75% 

ID 

rate 

(wide) 

≥90% 

ID 

rate 

(wide) 

100% 

ID 

rate 

(wide) 

Compounds that failed to meet 

the specified identification 

criteria (success rate ≤90%, 

wide range) 

Level A 97.1% 70.8% 73.4% 15/26 14/26 11/26 Azithromycin, caffeine, fluoxetine, 

gemfibrozil, ibuprofen, ketoprofen, 

meloxicam, naproxen, paracetamol, 

pravastatin, spiramycin, 

sulfamethoxazole and valsartan 

Level B 98.4% 87.2% 88.5% 22/26 17/26 16/26 Azithromycin, gemfibrozil, 

meloxicam, paracetamol, pravastatin, 

spiramycin, sulfamethoxazole and 

valsartan 

Level C 99.7% 91.7% 94.2% 25/26 22/26 18/26 Azithromycin, spiramycin, 

sulfamethoxazole and valsartan 

 

Even highly selective HRMS applications, which involve chromatographic separation prior to MS 

detection, suffer from false positives on a regular basis. Therefore, careful attention must be paid to eliminate 

these risks, especially when the interpretation of results depends solely on MS data. First, procedure blanks (on 

deionised water) were used for blank subtraction to remove background peaks, originating from materials and 

reagents used in sample preparation. Next, ten different matrixes were analysed (e.g. fruits, vegetables, non-

contaminated soil samples, and commodities of animal origin), which presumably should not contain detectable 

amounts of PhACs or their TPs. The samples were processed according to the workflow and suspect list entries 

that displayed a false positive match were flagged as non-compliant. A total of 39 suspects, including one target 

compound – gemfibrozil (C15H22O3), were flagged by this approach and excluded from the sample data analysis. 

74% of false positive hits belonged to suspects containing only C, H and O while additional 23% constituted of 
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C, H, O, and N. These findings are in accordance with the general observation that the absence of heteroatoms 

other than nitrogen and oxygen renders far more false positive hits in HRMS-based screening methods [228]. 

Furthermore, five WW samples that contained the highest number of suspect PhACs, were additionally 

investigated by HPLC-HRMS using the same sample preparation protocol (without the final dilution). The HPLC 

method was adapted from the previously developed HPLC-Orbitrap-MS method, while simultaneous acquisition 

of full-MS and fragment spectra was achieved by broadband collision-induced dissociation (bbCID) technique on 

the same FT-ICR-MS instrument in both polarities (transient size – 1M). Ion chromatograms were constructed 

using m/z values Q1 ions and suspects that produced multiple chromatographic peaks were registered, indicating 

the presence of an interference. It must be noted that the HPLC analysis was not able to detect all expected suspect 

features. On average, 27% of the features that were found by direct infusion analysis remained undetected by the 

HPLC approach, indicating that accurate estimation of the actual rate of false positive hits may be problematic. 

 Finally, a possible source of interfering ion species was more closely examined for suspects, which were 

detected at least twice in the WW samples. Two public databases (Human Metabolome Database (HMDB) and 

Chemical Entities of Biological Interest (ChEBI)) were surveyed to extract information about molecular formula 

isomers, whereas isobaric species (mass accuracy range: ±2.5 ppm; elemental composition: C, H, N, and O; 

electron configuration: even; H/C ratio range: 0 to 3) were calculated using MolWeightToFormula (v. 3.1., 

Bruker) software. The obtained data were evaluated and compounds with a high likelihood of an interference, 

were dismissed from further analysis or classified as moderately susceptible to false-positive. The latter 

classification was introduced to ease the interpretation of results and highlight method limitations. 

If the database search yielded a potential interference with the same molecular formula which could occur 

in WW samples due to anthropogenic or natural causes (e.g. simple peptides, human excretion 

products/metabolites, food and cosmetic ingredients, etc.), then moderate confidence level was assigned to the 

suspect. Meanwhile, compounds that yielded only one chromatographic peak in LC-MS analysis with MS/MS 

features that could not be matched against the reference fragmentation pattern, were discarded. If multiple peaks 

were detected and at least one of them was compatible in terms of MS/MS spectra then the suspect was not 

excluded. Moderate confidence level was also assigned to compounds which yielded ≥2 isobaric substances in 

MolWeightToFormula software within the set criteria. From 72 suspects that were detected at least twice in the 

samples, 24 were excluded due to concerns regarding high risk of false positive results, whereas 28 compounds 

were classified as moderately susceptible to false-positive (moderate confidence level).  

A similar examination was carried out for all target analytes. Moderate confidence level was given to 15 

target PhACs, while one compound was discarded from the targeted method. Specifically, a suspiciously large 

peak was found in the extracted ion chromatograms of gemfibrozil in 4 out of 5 samples. The corresponding 

MS/MS spectra had an uncharacteristic pattern, even though one fragment feature matched the database. 

Therefore, fortified QC sample was analysed by HPLC-FT-ICR-MS to obtain the actual retention time of this 

compound. A mismatch between retention times was observed, indicating that high detection frequency of 

gemfibrozil is possibly due to an isomeric interference. Moreover, the results of database query showed that 

gemfibrozil shares the same molecular formula of C15H22O3 with octyl salicylate, a frequent ingredient of 

sunscreens and cosmetics. The measured MS/MS spectra was compared with several fragmentation patterns of 

octyl salicylate from MoNA database and significantly higher resemblance was found for salicylate than for the 
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target compound. These results are in accordance with conclusions derived from the analysis of non-wastewater 

samples, where several false positive matches were found for gemfibrozil. 

Overall, a coherent relationship was observed that higher content of heteroatoms in the parent molecule, 

especially halogens, renders it less prone to interferences and at the same time results in a more distinguishable 

isotopic pattern. Thus, more reliable detection via DI-HRMS can be achieved.  

3.3. Applicability of the developed methods 

3.3.1. Application of HPLC-Orbitrap-MS for determination of PhACs in wastewater influents in 

WWTP “Daugavgriva” 

The developed method was applied to the analysis of WWTP influent samples collected at the WW 

treatment plant “Daugavgriva” in April 2016. A total of 19 out of the selected 24 pharmaceuticals were detected 

in all of the samples. Traces of pravastatin were detected in 14 samples. No residues of fluoxetine, propranolol, 

gemfibrozil, and simvastatin were revealed (see Table 16).  

Table 16. The concentration of selected PhACs in wastewater samples from the WWTP 

“Daugavgriva” 

Analyte Drug type Concentration range, ng/L 

Acetaminophen Analgesic 1800-4200 

Fluoxetine Antidepressant ND 

Carbamazepine Anti-epileptic 18-50 

Xylazine Veterinary sedative 2-180 

Losartan Anti-hypertensive 2-5 

Valsartan Anti-hypertensive 30-80 

Caffeine CNS stimulant 7000-12000 

Ciprofloxacin Fluoroquinolone antibiotic 250-400 

Gemfibrozil Lipid regulator ND 

Atorvastatin Lipid regulator 3-10 

Simvastatin Lipid regulator ND 

Pravastatin Lipid regulator 0.2-0.8 

Azithromycin Macrolide antibiotic 70-150 

Erythromycin Macrolide antibiotic 1-5 

Clarithromycin Macrolide antibiotic 1-21 

Ketoprofen NSAID 8-16 

Naproxen NSAID 9-20 

Ibuprofen NSAID 100-325 

Diclofenac NSAID 4-12 

Sulfamethoxazole Sulfanilamide antibiotic 50-120 

Trimethoprim Sulfanilamide antibiotic 15-43 

Atenolol β-blocker 50-150 

Metoprolol β-blocker 50-125 

Propranolol β-blocker ND 
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The concentration range for most of the PhACs varied between 10 and 200 ng/L, while the concentrations 

for caffeine and acetaminophen were in low μg/L level, falling within a range of 7 – 12 μg/L and 1.8 – 4.2 μg/L, 

respectively. Due to their high abundance, caffeine and acetaminophen are recognised as chemical markers for 

water pollution by domestic wastewaters. The concentration of caffeine was almost constant for each day and 

slightly increased in samples collected in the evening. Taking into account the time that is necessary for WW to 

reach the WWTP, this trend could be attributed to higher consumption of caffeinated products in the morning. 

Acetaminophen levels in the samples typically were the highest at mid-day. Other studies have shown similar 

levels of caffeine and acetaminophen ranging from 5 to 192 μg/L and 1 to 52 μg/L, respectively [59,229–231]. 

Ciprofloxacin, which is the most consumed substance among fluoroquinolone class antibiotics in Latvia, 

was found at high levels within a range of 250 to 400 ng/L. High levels of ciprofloxacin have been previously 

reported in WW samples from a few ng/L in Asia up to >1 μg/L levels in UK [232]. 

Xylazine, a veterinary sedative used mostly for horses, was found at surprisingly high concentrations (50 – 

150 ng/L) in 6 out of 7 days of sampling with an exception of the first day when the average concentration was 

2.9 ng/L for three samples. Are there many horse pastures in Riga? No. In this case, the most likely reason for 

high levels of xylazine in WW is that a globally significant manufacturer of this compound is JSC Grindeks, 

located in Riga. Even though JSC Grindeks operates a state-of-the-art biological WWTP, xylazine is a small and 

relatively stable molecule that may partially escape bacterial degradation and enter the main sewage system. 

Previously it has been found in surface water samples at around 10 ng/L in Spain [233]. 

For NSAID class substances were determined during this study: ketoprofen, naproxen, ibuprofen and 

diclofenac. The highest concentrations were detected for ibuprofen at 326 ng/L, which is considerably lower 

compared to literature data where the levels of the parent compound (excluding its metabolites ibu-OH and ibu-

CX) can be found in at levels equal to several µg/L [234]. Meanwhile, the concentration of other NSAIDs, 

including diclofenac, varied over a range of 4–20 ng/L, which is extremely low considering that these PhACs 

have high consumption rates, especially diclofenac [39].  

A significant class of medicinal compounds is lipid regulators. Atorvastatin, a statin medication belonging 

to the class of lipid regulators, has a DDD value of 49, which makes it one of the most prescribed drugs in Latvia 

according to the statistics on the consumption of PhACs [39]. It was found in samples at the low concentration 

range of 3–10 ng/L. This can be attributed to rapid metabolism since it is efficiently metabolized to hydroxylated 

derivatives or beta-oxidation products and less than 2% of the active compound is excreted in urine [235]. 

As for the class of beta-blockers, atenolol and metoprolol were found at the range of 50–150 ng/L. The 

former is one of the most prescribed and used pharmaceuticals in Latvia with DDD index of 11. Atenolol and 

metoprolol have been reported to show inconsistently low removal rates by conventional WWTP and are usually 

removed via sorption processes [92]. Previous reports show that concentrations of β-blockers can vary from a few 

ng/L in WW samples from Spain up to levels that exceed several μg/L (e.g. 11 μg/L for atenolol in Korea) [230]. 

In general, the concentrations observed in samples are lower than anticipated, especially for NSAIDs. No 

indications of inaccurate quantification were found during the analysis of QC samples. Apart from quantification, 

these results can be attributed to several other causes: (i) grab sampling can miss high emission fluxes of PhACs, 

(ii) the consumption of PhACs is seasonal, thus the abundance of some PhACs is lower during the off-season and 
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(iii) the sampling process was not supervised by laboratory personnel, thus an unidentified error during the 

sampling or transportation could affect the final quality of results [59,61,236]. 

3.3.2. Application of HPLC-Orbitrap-MS for estimating removal of PhACs from municipal 

wastewaters using activated sludge and biostimulation 

Biodegradation experiments were carried out using a pooled WWTP influent sample. Analysis of PhACs 

by previously described HPLC-Orbitrap-MS revealed the presence of 21 compounds with concentrations ranging 

from 13.2 ng/L to 52 µg/L (Figure 22). The highest concentration was observed for caffeine, which exceeded 

those of other pharmaceuticals by at least one order of magnitude. Other PhACs, that had a concentration above 

1 µg/L, were: acetaminophen, naproxen, ibuprofen, xylazine, diclofenac, ciprofloxacin and valsartan (Figure 22). 

The majority of these compounds belong to the group of NSAIDs, except for the veterinary alpha-adrenergic 

agonist xylazine, the antibiotic ciprofloxacin and the angiotensin-receptor blocker valsartan. The concentrations 

in the pooled sample were significantly higher than detected in the previous section. However, it must be 

acknowledged that the sampling of the WW was performed at a different time period from WWTP “Daugavgriva”. 

Besides, this time sampling and transportation were performed by laboratory personnel to ensure that samples are 

taken from the main receiver.  

 

Figure 22. PhAC concentrations in pooled wastewater sample 

In order to examine the biodegradation of PhACs, several treatment types were explored: no treatment (a 

nonaugmented control sample incubated for the same duration), treatment with activated sludge, treatment with 

sludge-derived culturable bacteria and treatment with sludge-derived culturable fungi. As expected, 

biodegradation was found to be compound-specific. Results from the control samples that were incubated for 17 
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hours showed that under nonaugmented conditions six compounds had poor removal efficiencies (below 20%). 

As seen from Figure 23, this effect was especially pronounced for diclofenac, ibuprofen and sulfamethoxazole 

which remained practically unchanged. Meanwhile, caffeine was removed effectively despite having extremely 

high initial concentration. Its removal efficiency ranged from 70% to 80% regardless of the treatment. 

Nevertheless, the obtained removal efficiency is slightly lower than anticipated, because caffeine is often 

characterized as an easily degradable compound which can be readily removed with 90% efficiency during 

conventional WWTP processes [237]. However, it must be noted that these experiments were performed under 

controlled conditions that do not completely simulate non-biological degradation processes (e.g. photolytic and 

oxidative degradation) that occur simultaneously in full-scale WWTPs.  

Bioaugmentation with activated sludge stimulated the biodegradation process for 14 compounds. The 

activated sludge was especially efficient for trimethoprim and acetaminophen. Conversely, the addition of 

activated sludge to WW did not stimulate the removal of ciprofloxacin and sulfamethoxazole, while the addition 

of sludge-derived bacteria or fungi reduced the remaining concentration compared to control samples during the 

first 17 h from 65% to 30% and from 98% to 40%, respectively (Figure 23). 

 

Figure 23. The concentration of PhACs remaining in wastewater after incubation for 17 hours 

Carbamazepine, which has been recognized as problematic with regard to its elusive behaviour during WW 

treatment, showed somewhat satisfactory removal rates. After 17 hours carbamazepine concentration decreased 

by 30% in nonaugmented control sample, whereas around 70% removal was observed for all bioaugmented 

experiments. However, it is not clear if this result can be directly attributed to biotransformation processes since 

carbamazepine is relatively hydrophobic (2 < Log Dow < 3) and considered to be a poorly biodegradable 
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compound (< 40%) [238]. Thus, the concentration of carbamazepine in samples could decrease due to its 

adsorption on suspended solids, followed by further removal from water by sedimentation [92].  

Aside from these experiments, parallel biodegradation tests were carried out with extra nutrients to explore 

whether or not they have a stimulating effect on the removal of PhACs from WW. The nutrient solution comprised 

30% sugar beet molasses containing 40% (w/w) sucrose. It was added to WW prior incubation. The final 

concentration of the added nutrient solution in WW was 0.1% (v/v). The addition of nutrients to WW changed the 

dynamics of the removal of PhACs. The most pronounced positive effect on the removal of nutrients was found 

for erythromycin. The degradation of sulfamethoxazole was also accelerated by the added nutrients, but this effect 

was detected only at the beginning of incubation, i.e. after 17 h. Most of the other PhACs detected in WW also 

were more rapidly removed in the presence of added nutrients. The residual concentration of PhACs in the non-

stimulated WW was from 1.1 to 3.0 times higher than the concentration in the nutrient-stimulated WW. Another 

problem that emerged from the data was that some PCs were affected by the addition of nutrients in the opposite 

way. In particular, the removal of clarithromycin and atorvastatin was hindered in the presence of nutrients at the 

beginning of incubation, while for atenolol, xylazine, and carbamazepine this effect was observed after 48 h and 

168 h. 

Particular attention was paid to the biodegradation dynamics of PhACs having antimicrobial properties. Six 

compounds of those represented in the tested WW were selected for this analysis, i.e., azithromycin, ciprofloxacin, 

clarithromycin, erythromycin, sulfamethoxazole and trimethoprim. A gradual decrease of the concentration of all 

mentioned PhACs with exception to sulfamethoxazole was already observed during the first 17 h. As shown in 

Figure 23, sulfamethoxazole and trimethoprim after incubation for 17 h were comparatively more resistant to 

degradation, especially in the control samples as compared to the other four antimicrobials. Further incubation 

resulted in a gradual degradation of the remaining six antimicrobials, although a removal activity was dependent 

on the treatment type. For example, the remaining concentrations of trimethoprim after 17 h incubation without 

bioaugmentation and with activated sludge were 76.5 ± 25.5% and 5.4 ± 2.9%, respectively. The observed results 

are in accordance with the literature. For instance, a study by Petrović et al. (2005) reported that the mean 

degradation of sulfamethoxazole and trimethoprim in conventional WWTP was 35% and 75%, respectively [239]. 

Regardless of the treatment type, the removal of erythromycin was highly influenced by the presence of 

nutrients. Unlike most compounds, erythromycin showed rapid degradation during the first 17 hours, but its 

concentration stayed almost unchanged in experiments that were incubated for longer periods (Figure 24).  
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Figure 24. The biodegradation of diclofenac, ibuprofen and erythromycin 

Ciprofloxacin was detected in WW samples at the concentration of 1265 ng/L, which was the highest level 

among all six antimicrobials. Previous studies have shown that this antibiotic has a high prevalence in sludge. For 

example, in a study about the removal of antibiotics from WWs in China, 19 antibiotics were detected in the 

untreated and treated WWs, with clarithromycin (6524 ng/L) and ofloxacin (5411 ng/L) being the most abundant 

[240]. 

The results of bioaugmentation show that biodegradation of ciprofloxacin was stimulated by nutrients, as 

well as sludge-derived bacteria and fungi. Surprisingly, the addition of intact activated sludge did not influence 

the removal of ciprofloxacin and the remaining concentration after 168 h incubation was the highest among the 

tested variants, i.e., 36.3% of the original concentration. Additional experiments using agar diffusion test revealed 

the abundance of ciprofloxacin-resistant bacteria in the activated sludge that was used for bioaugmented treatment. 

However, it is not clear whether this fact is attributable to the biodegradation dynamics or not. Besides, sorption 

of ciprofloxacin on sludge particles is considered to be the principal removal pathway, and its desorption from 

sludge might cause a variation of its concentration during the WWTP process [60,87,91]. 

As mentioned before, the comparison of different PhACs in WW by their biodegradability under the test 

conditions provided some unexpected results that must be discussed in greater detail. The worst removal rates 

were observed for diclofenac and ibuprofen. For instance, during the first 17 h of incubation, no degradation of 

these two compounds was observed in the control test and only a slight decrease (up to 20–30%) was detected in 

the bioaugmented WW samples (Figure 24). Nevertheless, further incubation resulted in gradual removal of these 

PhACs. After incubation for 168 h, the lowest remaining concentrations of ibuprofen among the tested types of 
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treatment were found to be in WW with activated sludge and nutrients (19%), WW with sludge-derived culturable 

bacteria and nutrients (13%), and WW with sludge-derived culturable fungi and nutrients (12%). As expected, the 

removal of diclofenac was slower, as compared to ibuprofen, and varied in the range from 29% to 53%, 

irrespectively of the type of treatment (Figure 24). The stimulating effect of nutrients on biodegradation was more 

pronounced for ibuprofen. Particularly, the ratio of the remaining ibuprofen in the non-stimulated vs. the nutrient-

stimulated types of treatment gradually increased from [0.9 ÷ 1.5] to [1.4 ÷ 1.8] and [1.8 ÷ 2.5] after 17 h to 48 h 

and 168 h, respectively. Such a tendency was also observed for diclofenac, but to a lesser extent. Even though 

both compounds are aryl derivatives of propionic acid and classified as NSAIDs, they also have some 

dissimilarities. Namely, diclofenac has lower bioavailability, as compared to ibuprofen, because of the presence 

of chlorine substituents and two aromatic rings [90]. Hence, diclofenac exhibits lower susceptibility to 

biodegradation. Numerous studies have reported that diclofenac and ibuprofen cannot be completely removed 

during conventional treatment processes. According to the review article by Zhang et al. (2014), the removal 

efficiency of ibuprofen and diclofenac from the studies with aquatic plant-based systems was indicated as high 

(60%–80%) and moderate (40%–60%), respectively [238].  

3.3.3. Application of HPLC-Orbitrap-MS for estimating removal of PhACs from municipal 

wastewaters using ionising radiation 

The HPLC-Orbitrap-MS method was also used to study ionizing radiation induced degradation of PhACs 

in WW. Two different modes of electron beam treatment (denoted as EB1 and EB2) and two γ-irradiation modes 

(abbreviated as G1 and G2) were applied to better explore the impact of radiation on the WW treatment. The dose 

rate of electron flux applied for EB 1 and EB 2 treatment conditions differed by two times, whereas for G 1 and G 

2, the difference was 1.7 times. Dependence of the absorbed dose on the irradiation source (accelerated electrons 

or gamma rays) was found in most cases. The dose rate increased in the order of G 1 < G 2 < EB 1 < EB 2, and the 

irradiation time was changed in the opposite direction. For example, to reach the absorbed dose of 5 kGy by the 

treatment of G 1, G 2, EB 1 and EB 2, the irradiation lasted 805, 480, 30, and 15 s, respectively. Thus, the irradiation 

by electron beam allowed to reduce the time of irradiation at maximum by more than 50 times compared to gamma 

radiation. However, the irradiation time and the absorbed dose showed a proportional effect on the degradation 

of most PhACs, when comparing the degradation induced by gamma radiation or accelerated electrons. 

The monitoring of the PhAC concentrations after treatment with different radiation doses indicated that the 

degradation for most of the pharmaceuticals started rapidly at low irradiation doses of 0.5–3 kGy and reached the 

maximum extent of 84–100% after up to 5–7 kGy of radiation was absorbed by the solution (maximum extents 

of PhAC decomposition rates are compared in Table 17).  
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Figure 25. Decomposition of PhACs under different electron beam and gamma radiation doses 

As seen in Figure 25, lower decomposition rates were observed for losartan, valsartan, ketoprofen, three 

macrolides and one fluoroquinolone - ciprofloxacin. The results for ciprofloxacin after the EB treatment at up to 

5 kGy indicated the maximum decomposition yields of 91–93%, where the extent of decomposition increased up 

to 98% after gamma irradiation at the same absorbed dose. The decomposition efficiency of ciprofloxacin 

obtained in these experiments was lower than reported by Sayed et al. (2016), who achieved almost complete 

degradation of 4.6 mg/L ciprofloxacin solution at an absorbed dose of 0.87 kGy. However, that study was 

performed with ultrapure water, not WW [241]. 

The results revealed that three analysed macrolides remained at comparably high levels after the irradiation 

with up to 5 kGy absorbed doses, having the lowest degradation rates at the lowest applied irradiation dose of 0.5 

kGy (see Figure 25). It may be predicted that the overall contamination of the analysed WW samples caused the 

low degradation yields and required an increase in the absorbed dose above 5 kGy to achieve effective 

decomposition of selected PhACs. 

Among the four applied irradiation conditions, the gamma radiation treatment at dose rate of 22.5 kGy/h 

(G1) provided the most prominent PhAC decomposition at the lowest applied irradiation dose (0.5 kGy), compared 

to the other applied irradiation conditions. The PhAC concentration levels after the proposed gamma irradiation 

at 0.5 kGy dose indicated >95% decomposition for twelve compounds (63% of the total PhAC contamination), 
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95% decomposition of three compounds (losartan, ibuprofen, and ketoprofen), <90% decomposition was 

determined in the case of the four macrolide antibiotics (71, 80, 83, and 89% for clarithromycin, erythromycin, 

azithromycin, and ciprofloxacin, respectively). The results indicated that the degradation extent of macrolides 

increased with the irradiation time. That was also the case with the degradation of NSAIDs and other PhACs, 

especially when comparing both EB treatment conditions. In the case of macrolides, this finding may be attributed 

to a complex decomposition mechanism involving attack by hydroxyl radicals at the glycosidic bonds of 

carbohydrate moieties, followed by lactone ring opening, as noted by Liu et al. (2014) [242]. 

Despite having high initial concentrations, caffeine and acetaminophen showed rapid degradation 

regardless of electron beam treatment type. These data are in accordance with earlier studies. For instance, Torun 

et al. (2014) reported degradation studies of highly concentrated (50 mg/L) aqueous solutions of caffeine, where 

caffeine was completely degraded by irradiation with 60Co gamma radiation at up to 3 kGy doses, at the dose rate 

of 0.0156 Gy/s [243]. Whereas in 2015, Torun et al. (2015) reported similar observations of acetaminophen 

degradation by irradiation of aqueous solutions at up to 5 kGy absorbed doses of 60Co gamma radiation [244]. In 

this study, caffeine was successfully degraded at similar irradiation doses. The concentration of caffeine decreased 

by 99.8 to 100% at EB dose of 5 kGy. Meanwhile, the degradation was complete already at 3 kGy irradiation 

under both gamma irradiation conditions. The same results were observed for acetaminophen, for which the 

degradation efficiencies during EB treatment at 5 kGy were already close to 99%, while almost complete 

degradation (99.9%) was achieved from gamma irradiation. 

Table 17. Maximum extent of PhAC decomposition (%) and the corresponding EB and gamma 

radiation doses 
Compound EB radiation Gamma radiation 

Acetaminophen 99%; 3–5 kGy 100%; 5 kGy 

Atenolol 99%; 3–5 kGy 99%; 3 kGy 

Atorvastatin 100%; 1–5 kGy 100%; 1 kGy 

Azithromycin 90–94; 5–15 kGy 91–94%; 3–5 kGy 

Caffeine 99–100%; 3–5 kGy 100; 3 kGy 

Carbamazepine 100%; 5 kGy 100%; 3 kGy 

Ciprofloxacin 94%; 5–7 kGy 97%; 3–5 kGy 

Clarithromycin 84–87%; 5–12 kGy 84–87; 3–5 kGy 

Diclofenac 99%; 5 kGy 99%; 3 kGy 

Erythromycin 81–97%; 3–5 kGy 99%; 3–7 kGy 

Ibuprofen 99%; 5 kGy 99%; 5 kGy 

Ketoprofen 99%; 5–7 kGy 89–98%; 1 kGy 

Losartan 99–100%; 5 kGy 100%; 3 kGy 

Metoprolol 100%; 5 kGy 100%; 3 kGy 

Naproxen 98–99%; 5 kGy 100%; 3–5 kGy 

Sulphamethoxazole 100%; 3–5 kGy 100%; 1–3 kGy 

Trimethoprim 99%; 3–5 kGy 100%; 3–5 kGy 

Valsartan 99–100%; 3–5 kGy 100%; 3–5 kGy 

Xylazine 99%; 5 kGy 100%; 3 kGy 

 

In order to determine the quantitative yields of PP degradation, the G values of decomposition were 

evaluated as functions of the irradiation conditions for two EB and two gamma ray treatments using the following 

equation: 

𝐺 =  ∆𝐶 × 𝑁𝐴/𝐾 × 𝐷   (6) 



104 

 

, where ΔC is the concentration of decomposed PhAC (mol/L), NA is the Avogadro’s number 6.02 × 1023 

(molecules mol−1), K (6.24 × 1019) is the conversion factor from kGy to 100 eV/L, D is the absorbed dose (kGy) 

and G is the decomposition yield of PhACs (μmol/J), considering that one molecule formed or decomposed per 

100 eV of absorbed energy equals to 0.10364 μmol/J. The molar mass of each PhAC was used to calculate the 

molar concentrations in the samples. 

The determined G values ranged from 10−2 to 10−10 µmol/J and showed a decrease with the absorbed dose 

due to effective degradation of most PhACs at 0.5–3 kGy doses of both by EB and gamma irradiation. As 

mentioned before, rather low decomposition yields for macrolides at 0.5–5 kGy absorbed doses were found.  

3.3.4. Application of HPLC-Q-TOF-MS for determination of aminoglycosides 

The developed method was applied for the determination of AGs in honey samples. All samples were 

analyzed in accordance with the previously described procedure. Quantification was performed using the 

MMSCC approach. MMSCC were prepared on the same day as the unknown samples using the same conditions. 

A total of 49 samples from various regions of Georgia and having different compositions were analyzed during 

the study. Residues of STP were detected in two samples (117 ng/g and 35 ng/g) and one sample contained GEN 

at the level of 32 ng/g. These results indicate that the presence of antimicrobial residues in honey remains an issue 

of food safety and environmental management. The same method was adapted for the analysis of WW samples. 

No traces of investigated AGs were found in these samples. This negative result can be attributed to the fact that 

only a minor fraction of administered AG dose is excreted in the parent form. Besides, the annual human 

consumption of AGs in Latvia is almost negligible (DDD per 1000 inhabitants per day < 0.1), suggesting that AG 

residues are unlikely to be detected in domestic WW samples. 

3.3.5. Application of LC-MS/MS method for determination of NSAIDs in water samples 

The elaborated dSPE protocol along with the developed LC-MS/MS method was applied for the analysis 

of 24 surface and tap water samples collected in Latvia and Norway. Only two NSAIDs (diclofenac and ibuprofen) 

were detected above LOQ limits in 14 of the analyzed samples. As seen in Table 17, diclofenac was found in two 

surface water samples – one from Norway (1.7 ng/L) and one from Latvia (8.4 ng/L). Meanwhile, the detection 

frequency of ibuprofen was much higher, especially in samples from Norway. Three surface water samples from 

the river Daugava contained traces of this NSAID (from 3.9 to 17 ng/L). All three samples were acquired from 

areas with high population density. Therefore, this finding supports the assumption that the concentration of 

human PhACs in surface water samples is directly linked to population density around the watercourse. For 

instance, Marsik et al. (2017) studied the occurrence of NSAIDs in the watercourses of Elbe basin in Czech 

Republic, showing that the higher levels of ibuprofen were detected near urban riverbank [245]. Nonetheless, the 

levels of both detected NSAIDs were lower than those reported for other European surface aquifers [1].  

Another important finding was that 7 out of 9 tap water samples from Norway contained ibuprofen residues 

(from 1.2 to 9.2 ng/L). Those data are in accordance with the recent report by Cai et al. (2015), who determined 

ibuprofen concentrations in the range from < LOD to 17 ng/L at different stages of drinking water treatment plant 

[246]. While the detected concentration levels are well below therapeutic doses and predicted no-effect 

concentrations reported in the literature, the presence of NSAIDs (or any other PhAC) in drinking water is a 

concerning issue since effects of long-term exposure are largely unknown [247]. 



105 

 

Table 17. The concentrations of diclofenac and ibuprofen (ng/L) in the surface waters and tap 

water 

Country Sampling region Sample type Diclofenac, 

ng/L 

Ibuprofen, 

ng/L 

Latvia Ikskile Surface water n.d. n.d. 

Latvia Saulkalne Surface water n.d. n.d. 

Latvia Salaspils Surface water n.d. 11 

Latvia Darzini Surface water 8.4 n.d. 

Latvia Kengarags Surface water n.d. 3.9 

Latvia Lucavsala Surface water n.d. n.d. 

Latvia Kipsala Surface water n.d. 17 

Latvia Voleri-1 Surface water n.d. n.d. 

Latvia Voleri-2 Surface water n.d. n.d. 

Latvia Daugavgriva Surface water n.d. n.d. 

Norway Svartkulp to Sognsvann Surface water n.d. 1.6 

Norway Sognsvannsbekken Surface water n.d. n.d. 

Norway Akerselva Frysja Surface water n.d. 1.0 

Norway Akerselva Kuba Surface water n.d. n.d. 

Norway Østensjø Surface water 1.7 5.1 

Norway Tomter—Østold Tap water n.d. n.d. 

Norway Vehus Tap water n.d. n.d. 

Norway Ski Tap water n.d. 1.7 

Norway Bærum Tap water n.d. 2.6 

Norway Geilo Tap water n.d. 1.6 

Norway Oslo Tap water n.d. 2.1 

Norway Hemsedal Tap water n.d. 9.2 

Norway Oslo Tap water n.d. 1.2 

Norway Beito Tap water n.d. 4.9 

 

3.3.6. Targeted screening of PhACs via DI-FT-ICR-MS in WWTP effluents and influents 

The developed FT-ICR-MS method was applied for the analysis of 72 WW samples from 36 WWTPs in 

Latvia (see Annex 12). Out of 25 target PhACs, 20 and 24 different compounds were detected at least once in 

WWTP effluents and influents, respectively. Most frequently detected compounds in untreated WWTP influents 

were diclofenac (NSAID, 86%), metoprolol (beta-blocker, 78%), clarithromycin (macrolide antibiotic, 53%) and 

ibuprofen (NSAID, 47%). A similar pattern was observed for WWTP effluents. However, compounds that exhibit 

higher removal efficiency during municipal WW treatment processes were detected less frequently in the effluent 

samples [248]. For instance, considerably high levels (446 – 2183 ng/L) of paracetamol were detected in six 

influent samples, whereas this compound remained undetected in effluents. Similarly, ibuprofen, salbutamol and 

losartan showed lower detection frequencies in effluents. Meanwhile, some PhACs (e.g. diclofenac, erythromycin, 

clarithromycin, trimethoprim and carbamazepine) did not follow this trend. Erythromycin was the only compound 

that was detected more frequently in treated WW samples. This observation is not particularly surprising, because 

poor removal of erythromycin has been repeatedly reported in the literature [87]. Another key observation was 

the high prevalence of diclofenac in all sample types. This finding must be interpreted with caution as it may be 

associated with the detection method, because diclofenac is a particularly suitable analyte for HRMS-based 

applications as it bears two chlorines. Thus, a definite and abundant isotopic pattern can be obtained which enables 

higher sensitivity towards low abundance isotopologue signals. Nevertheless, frequent occurrence of diclofenac 

is not unusual, because it exhibits highly variable removal efficiencies in conventional WW treatment processes 
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and is considered as a contaminant of emerging concern [85]. A different explanation could be related to the 

sample origin. Almost all WWTPs in this study receive sewage from rural villages and small towns. The average 

age in these locations is relatively high with about 38 % of the population being over 55 years old [249]. Taking 

into account that diclofenac is administered not only for pain and inflammatory symptoms but also used for the 

treatment of arthrosis, which is a common condition among in older populations, higher detection rates of this 

NSAID can be anticipated [250]. This explanation also supports the high prevalence of beta-blockers in WW 

samples.  

Table 18. Occurrence and detection frequencies of target PhACs in WWTP influent and effluent 

samples 

Name WWTP Effluents WWTP Influents 

Detection 

frequency, % 

Mean, 

ng/L 

Median, 

ng/L 

Range (min 

- max), 

ng/L 

Detection 

frequency, % 

Mean, 

ng/L 

Median, 

ng/L 

Range (min - 

max), ng/L 

Atenolol 36% 224 154 23 - 812 47% 250 59 16 - 1479 

Atorvastatin 0% n.d. n.d. n.d. 19% 146 159 39 - 284 

Azithromycin 17% 57 50 26 - 108 25% 117 127 24 - 231 

Caffeine 11% 355 368 165 - 520 28% 6835 2034 152 - 43922 

Carbamazepine 22% 694 193 49 - 2171 28% 1599 262 111 - 8305 

Ciprofloxacin 3% 108 108 108 - 108 3% 424 424 424 - 424 

Clarithromycin 44% 379 269 64 - 1353 53% 453 152 17 - 2833 

Diclofenac 78% 217 198 23 - 570 86% 570 253 27 - 3163 

Erythromycin 19% 85 97 31 - 124 14% 98 68 51 - 196 

Fluoxetine 6% 14 14 12 - 16 22% 12 12 9 - 16 

Ibuprofen 17% 371 244 152 - 1066 47% 3317 658 108 - 28478 

Ketoprofen 8% 1587 521 511 - 3728 22% 1731 733 377 - 9089 

Losartan 6% 56 56 34 - 79 22% 242 89 46 - 1169 

Meloxicam 3% 153 153 153 - 153 25% 107 24 13 - 658 

Metoprolol 61% 168 96 5 - 735 78% 470 231 10 - 5523 

Naproxen 14% 611 570 306 - 961 19% 1980 775 350 - 4283 

Paracetamol 0% n.d. n.d. n.d. 17% 1194 1276 446 - 2183 

Pravastatin 19% 188 176 119 - 274 33% 335 360 41 - 535 

Propranolol 31% 10 8 5 - 23 44% 13 8 4 - 46 

Salbutamol 3% 31 31 31 - 31 22% 39 35 17 - 84 

Spiramycin 0% n.d. n.d. n.d. 0% n.d. n.d. n.d. 

Sulfamethoxazole 19% 214 119 60 - 676 25% 1499 321 88 - 11192 

Trimethoprim 25% 52 49 12 - 95 28% 248 59 21 - 1650 

Valsartan 0% n.d. n.d. n.d. 22% 299 233 133 - 660 

Xylazine 0% n.d. n.d. n.d. 11% 13 13 7 - 20 

 

As shown in Table 18, the concentration range of detected PhACs varied significantly. Some of this 

variability can be attributed to the instrumental capability, because sensitivity towards some analytes was 

insufficient (e.g. caffeine, valsartan, paracetamol and ciprofloxacin). Hence, lower detection rates along with 

elevated mean concentrations were obtained. For example, caffeine is nearly ubiquitously present in domestic 

WWs due to the high consumption of caffeinated beverages such as coffee, tea and soluble dietary supplements. 

It can even be used as an anthropogenic marker for environmental pollution [251]. However, caffeine was detected 
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at quantitative levels only in 28% and 11% of the WWTP influent and effluent samples, respectively. In general, 

these results do not show many atypical features and are in accordance with those reported in other European 

countries [252–255].  

 

Figure 26. Detection frequency of selected PhACs in WWTP influent samples (A) and the ratio 

between sulfamethoxazole and trimethoprim concentrations that were found in the analyzed 

WWTP influents and effluents 

To further verify the findings of this study, an assessment of the relationship between the obtained detection 

frequencies and national consumption of the individual PhACs was conducted. Consumption data were obtained 

from the annual report (data from 2018) by the State Agency of Medicines of Latvia and expressed as defined 

daily dose (DDD) per 1000 inhabitants per day [39]. For six target analytes information was not presented in the 

annual report. Figure 26 (A) reveals that, in most cases, PhACs which are consumed more frequently show higher 

detection rates in WWTP influents. Nevertheless, a disproportionately high occurrence can be seen for two beta-

blockers (atenolol and propranolol), whilst atorvastatin, which had the highest DDD per 1000 inhabitants per day, 

was detected only in 19% of WWTP influent samples. The latter can be attributed to the fact that atorvastatin 

undergoes rapid metabolism and thus only a minor fraction of the administered dose is excreted in unchanged 

form [256]. Furthermore, an assessment of sulfamethoxazole/trimethoprim ratio was performed for samples that 
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contained both PhACs. There is evidence that the concentration ratio between these two compounds can be used 

as a marker to determine the main origin of WW, since there is a difference between human and veterinary dosage 

forms. In case of humans, the ratio between both antibiotics in the formulation is 5:1, while the typical ratio in 

WW samples ranges from 1.1 to 3.3 [257]. In this study, a consistent relationship was detected only in WWTP 

influents where the mean ratio was 3.92 (Figure 26, B). Meanwhile, WWTP effluents showed highly scattered 

ratios possibly due to different removal efficiencies of both antibiotics. Considering that all analyzed samples 

were from municipal WWTPs, these findings are in line with those of previous studies. Therefore, despite the 

semi-quantitative nature of the method, the presented results offer evidence that DI-HRMS can be applied for a 

rapid screening of PhACs in WW samples. 

3.3.7. Suspect screening of PhACs via DI-FT-ICR-MS in WWTP effluents and influents 

In total, 79 compounds from the suspect list were detected in the analyzed WW samples. 54 PhACs and 18 

transformation products (TPs) were found in WWTP influent samples, while 38 PhACs and 16 TPs were detected 

in WWTP effluents. 15.1% (79/524) from total recall rate from the suspect list was Out of all compliant signals 

that were obtained from full-MS data, only 26% were discarded due to mismatch between the measured and 

theoretical MS/MS fingerprints, indicating that full-MS data provided by HRMS platforms may be rather reliable 

even without complementarity MS/MS analysis. However, fragment spectra matching provided an additional 

degree of safety, especially for compounds that are more suspectable to interferences. Experimental MS/MS 

features that were obtained from MoNA database once again displayed better accuracy, yielding a higher number 

of matched fragments in comparison to in-silico generated MS/MS features.  

The relatively low prevalence of TPs in WW samples can be attributed to the composition of the suspect 

list, as it contained only 71 different TPs. Hence, it is not surprising that these substances were detected less 

frequently. Overall, the number of detected compounds varied to a great extent among the samples and was largely 

influenced by the load and WW origin. As shown in Figure 27 (B), the highest number of suspects was observed 

in samples that corresponded to a WWTP which receives sewage from urbanized areas and health care institutions. 

On the contrary, a lower prevalence of PhACs was found in WW samples from sparsely populated areas.  

In order to assess temporal variability among PhACs, individual compounds were aggregated based on their 

therapeutic group and summarized according to their occurrence in WWTP influents. The classification was 

adapted from Beek et al. (2016) [197]. Temporal trends were assessed for 8 therapeutic classes, which showed 

the highest dominance in the analysed samples. The most frequently occurring therapeutic groups were: analgesics 

(mostly NSAIDs) > beta-blockers > antibiotics. From the data illustrated in Figure 27 (A), it is apparent that 

domestic WW from more populated areas and health care institutions contains higher diversity of PhAC residues. 

For instance, WW discharged from neuropsychology clinic (sample “N”) showed a considerably higher 

prevalence of antidepressants, anticonvulsants and psychiatric medication. Meanwhile, samples of non-specific 

origin yielded a higher incidence of most analgesics, antibiotics and beta-blockers. Taken together, these results 

suggest that the elaborated method can produce reliable results that are in accordance with the expected WW 

composition, hinting applicability in the field of wastewater-based epidemiology. 
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Figure 27. Measured PhAC profiles from WWTP influent samples (A) and the overall prevalence 

PhACs among WWTP influents and effluents (sum of all compounds obtained from the suspect 

screening and targeted approach) 

Out of all suspect PhACs, telmisartan had the highest detection rate. It was found in 83% and 92% of the 

WWTP influent and effluent samples, respectively. This result may be explained by three reasons: (i) it is the 

most prescribed member among angiotensin II receptor blockers in Latvia, (ii) telmisartan is excreted almost 

entirely as an unchanged drug and (iii) it has a relatively long elimination half-life [258]. No interfering peaks 

were found for telmisartan signal in LC-HRMS analysis and the obtained spectra from bbCID fragmentation 

experiments also concurred with the experimental library spectra. Besides, other studies have also identified 

telmisartan as a problematic compound that exhibits poor removal efficiencies and high prevalence in both sewage 

and surface water samples in other European countries (e.g. Poland and Spain) [259,260]. Other PhACs which 

were repeatedly detected in WW samples are listed in Table 19.  
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Table 19. A summary of PhACs and TPs from the suspect list that were detected most frequently 

in WWTP influents and effluents 

PhACs 

Name Molecular 

formula 

Detection frequency a, % MS2 

features b 

Conf. 
c 

Possible 

interferences 

DID d 

Influent Effluent 

Telmisartan C33H30N4O2 83 (47) 92 (56) 1.7 (1.5) H 
 

5.5 

Bisoprolol C18H31NO4 53 (36) 28 (22) 1.1 (1.0) M Nitrooctadecadienoic 

acids 
19.2 

Tramadol C16H25NO2 36 (36) 39 (36) 1.4 (1.4) M N/O-

Desmethylvenlafaxine 
1.5 

Amisulpride C17H27N3O4S 28 (28) 17 (17) 3.2 (3.2) H 
 

0.4 

Oxcarbazepine C15H12N2O2 28 (19) 14 (8) 2.3 (2.9) M Carbamazepine 

metabolites 
0.4 

Citalopram / 

Escitalopram 
C20H21FN2O 25 (3) 11 (0) 1.2 (1.0) H 

 
0.8 / 4.6 

Sulpiride C15H23N3O4S 25 (25) 25 (25) 1.9 (2.9) H 
 

0.2 

Metformin C4H11N5 25 (25) 6 (6) 2.5 (1.5) H 
 

16.5 

Rosuvastatin C22H28FN3O6S 19 (14) 3 (3) 1.4 (1.6) M Isobaric substance 

C33H23NO3 
32.4 

Sitagliptin C16H15F6N5O 19 (22) 17 (19) 2.2 (1.5) H 
 

0.7 

Lamotrigine C9H7Cl2N5 17 (33) 19 (33) 2.1 (1.5) H 
 

0.8 

Propafenone C21H27NO3 17 (17) 11 (8) 2.1 (1.1) H 
 

1.1 

Transformation products of PhACs 

Name Molecular 

formula 

Detection frequency a, % MS2 

features b 

Conf. 
c 

Possible 

interferences 

Parent compound 

(corresponding 

DID d) 
Influent Effluent 

Dextrorphan C17H23NO 42 (0) 28 (0) 3.3 (0) H  Dextromethorphan 

(0.1) 
Hydroxydiclofenac C14H11Cl2NO3 42 (39) 33 (28) 1.7 (1.7) H 

 
Diclofenac (18.1) 

Carboxyibuprofen C13H16O4 36 (25) 28 (28) 1.1 (1.2) M Ethyl vanillin 

isobutyrate 
Ibuprofen (23.7) 

N,N-

Didesmethylvenlafaxine 
C15H23NO2 36 (31) 39 (33) 1.1 (1.3) M O-desmethyltramadol Venlafaxine (1.0) 

N,O-

Didesmethylvenlafaxine 
C15H23NO2 36 (31) 42 (36) 1.3 (1.1) M O-desmethyltramadol Venlafaxine (1.0) 

O-desmethyltramadol C15H23NO2 36 (31) 39 (36) 1.2 (1) M Didesmethylvenlafaxine Tramadol (1.5) 

O-desmethylvenlafaxine C16H25NO2 36 (39) 36 (33) 2 (1.3) M Tramadol Venlafaxine (1.0) 

N-Desmethylvenlafaxine C16H25NO2 33 (33) 39 (36) 1.2 (1.3) M Tramadol Venlafaxine (1.0) 

Acetoaminoantipyrine C13H15N3O2 31 (31) 8 (3) 2.4 (1.5) H 
 

Metamizole (0.6) 

Carbamazepine-2OH C15H12N2O2 25 (22) 14 (8) 3.4 (3.3) M Oxcarbazepine Carbamazepine 

(2.1) 
Carbamazepine-10,11-

epoxide 
C15H12N2O2 22 (19) 8 (8) 2.8 (2.3) M Oxcarbazepine Carbamazepine 

(2.1) 
a Detection frequency obtained from the identification using experimental and predicted (in parentheses) MS/MS features 
b Mean number of fragment signals matched per precursor using experimental and predicted (in parentheses) MS/MS features 
c Identification confidence level (“H”- high and “M” - moderate) 
d DDD per 1000 inhabitants per day (2018, Latvia) 

 

Among them, several PhACs with high consumption volumes (bisoprolol, metformin and rosuvastatin) and 

substances that are predominantly excreted as parent compound (e.g. amisulpride, sulpiride and citalopram) were 

repeatedly detected. In fact, these two members of antipsychotic class PhACs, amisulpride and sulpiride, have 

been identified as pseudo-persistent pollutants. Meanwhile, lamotrigine (anticonvulsant) has shown to have higher 

concentrations in treated WW samples compared to raw influents, because of the deconjugation of the main human 

metabolite - lamotrigine-N2-glucuronide [261]. The data supported this phenomenon and higher Q1 signal 

intensities were indeed found in WWTP effluents (Figure 28, A). High detection rates of tramadol and 
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oxcarbazepine have to be interpreted with caution. Although both PhACs are frequently reported by other studies, 

they are not well suited for our methodology. Oxcarbazepine signal can overlap with two major carbamazepine 

metabolites (carbamazepine-10,11-epoxide and 2-hydroxycarbamazepine) that share the same molecular formula 

and due to high consumption of the parent compound are co-occurring in WW samples. The same goes for 

tramadol which can suffer from interfering signals that are caused by venlafaxine metabolites (N- and O-

desmethylvenlafaxine). Nevertheless, we did not discard those analytes, because LC-HRMS analysis revealed 

that parent PhACs and interfering TPs are present in WW samples. 

 Another bizarre finding was that dextrorphan, an active metabolite of dextromethorphan, was detected 

suspiciously often (42% of the WWTP influent samples). Even though the parent compound is marketed as a 

cough suppressant, it is also recognized as a recreational drug due to its side-effects. To avoid misuse of 

dextromethorphan it has been classified as a prescription drug in Latvia since 2009 and, as a consequence, its 

annual consumption has declined substantially and thus lower prevalence should be anticipated. These results 

may indicate that the actual use dextromethorphan containing medical products is higher than reflected by the 

official consumption statistics and, despite legislative measures, it is still available for users. Previous studies have 

also documented the presence of dextromethorphan metabolites in the environment [262,263]. Other exemplary 

TPs that were detected in our study were hydroxydiclofenac, carboxyibuprofen, didesmethylvenlafaxine, 

desmethyltramadol and carbamazepine metabolites. Among these compounds, only for hydroxydiclofenac “high” 

identification confidence was assigned. When compared to the parent molecule, traces of hydroxydiclofenac were 

found less often and in most cases with much lower Q1 signal intensities. It has been shown that the ratio between 

the parent drug and hydroxylated metabolites is dependent on the route of administration. Topical applications 

yield significantly higher levels of the parent substance than hydroxylated metabolites [264]. Our results seem to 

be in accordance with this hypothesis, because topical diclofenac formulations (e.g. patches, creams and gels) are 

available over the counter in Latvia, while almost all oral dosage forms can be purchased only by prescription. 

As mentioned in the previous section, 49 DDD of atorvastatin are consumed per 1000 inhabitants per day 

in Latvia. It is the most widely used PhAC among all prescription drugs. Yet, atorvastatin is extensively 

metabolised and only a small fraction is excreted unchanged (it was detected only in 19% of the WWTP influent 

samples via targeted approach). Therefore, a retrospective analysis was conducted by investigating the presence 

of main atorvastatin metabolites (e.g. atorvastatin lactone, hydroxyatorvastatin, hydroxyatorvastatin lactone and 

hydroxyatorvastatin glucuronide), which were not a part of the suspect database. Full-MS data were treated using 

identic isolation criteria as for the main method and the most abundant Q1 ion of deprotonated and protonated 

species was used for comparison of signal intensities at negative and positive ionisation modes, respectively. 

Hydroxyatorvastatin was the only metabolite detected in WW samples. As seen in Figure 28 (B), the analytical 

response was higher for the metabolite compared to the parent drug. These data are in agreement with the findings 

of Langford and Thomas (2011), which showed that para- and ortho-hydroxyatorvastatin were detected at higher 

levels than atorvastatin in Norwegian aquatic environment [265]. However, a comparison of signal intensities 

should be interpreted with caution, since ionisation of each compound can vary, giving a misleading impression 

about the actual occurrence of compounds.  

A similar retrospective analysis was carried out for carbamazepine and its metabolites (see Figure 28, C). 

The observed metabolite patterns showed a coherent trend. The analytical response of metabolites increased along 
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with increasing carbamazepine concentration. Besides, the most intense signals were found for samples AE, M 

and N, that received sewage from healthcare facilities (AE and M - rehabilitation centre, N - hospital).  

 

Figure 28. Full-MS based retrospective analysis of selected PhACs and their TPs in WWTP 

influents and effluents: lamotrigine (A), atorvastatin (B) and carbamazepine (C)  

 In general, lower detection rates were observed during reference standard-free screening of PhACs, 

because the majority of suspect signals were dismissed due to non-compliant Q2/Q1 ratios. As mentioned before, 

target analytes were qualified using “wide” ratio tolerance that ranged from 20% to 50%, whereas a strict tolerance 

limit (20%) was maintained for the qualification of suspects. This way reliability of the method may be increased, 

but only at the expense of sensitivity, which consequently caused lower detection frequencies and presumably 

narrowed the scope of the method. Nevertheless, the acquired results are comparable with LC-HRMS based 

screening methodologies, showing that high-throughput screening of WW samples via DI-HRMS is possible and 

can yield valuable information regarding the presence of PhACs and their TPs. 
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CONCLUSIONS 

1. The developed analytical method based on SPE followed by LC-Q-Orbitrap-MS detection allowed to 

quantitively evaluate the presence of 24 emerging PhACs in wastewater samples. The method demonstrated high 

selectivity and sensitivity, providing limits of quantification for selected compounds from 0.01 to 1.0 ng/L and 

analyte recovery from 77 to 133%. Besides, optimization of resolving power showed that sufficient detection 

frequency can be obtained during data-dependent acquisition of full-MS and MS/MS spectra at resolving power 

of 70,000 and 17,500, respectively. 

2. The LC-Q-Orbitrap-MS method was applied for the quantification of PhACs in wastewater samples 

collected in Riga, Latvia. The results revealed the presence of 20 selected pharmaceuticals. The highest 

concentration was found for caffeine and acetaminophen (paracetamol) with average concentrations exceeding 

several μg/L. With respect to antibiotics, the highest levels were found for ciprofloxacin, azithromycin and 

sulfamethoxazole.  

3. A novel LC-Q-TOF-MS method was developed for a comprehensive residue analysis of six 

aminoglycoside antibiotics. Although TOF analysers are considered less sensitive, the obtained sensitivity (LOQ 

ranged from 50 to 125 pg per injection) was comparable with the conventional QqQ MS/MS approach. In addition, 

a unique three mobile phase system that involved a gradual decrease of pH was found to be the most suitable for 

separation of target aminoglycosides using a zwitterionic-type mixed-mode LC column. Meanwhile, the 

application of high-temperature ESI source enhanced ionization efficiency of target analytes compared to 

conventional ESI source. Moreover, this approach was able to eliminate [M+Na]+, [M+NH4]+, and [M+K]+ 

adducts and reduced the amount of doubly charged species which are recognized as a significant issue during ESI-

assisted ionization of aminoglycosides. 

4. A unique sample preparation procedure based on a modified QuEChERs approach was developed for 

the extraction of multi-class PhACs from raw and treated wastewater samples. Freeze-drying was found to be an 

efficient sample pre-treatment approach that allowed to minimize sample volume prior to the extraction without 

significant loss of analytes. Several dSPE clean-up strategies were explored during the development stage and the 

best performance was found when C18 and strong anion exchange sorbents were applied simultaneously. This 

approach allowed to minimize the extent of matrix induced ion suppression and enabled comprehensive screening 

of PhACs via DI-ESI-FT-ICR-HRMS method. 

5. An innovative suspect and target screening methodology using direct infusion FT-ICR-HRMS was 

developed for semi-quantitative analysis of 26 compounds and qualitative screening of more than 500 PhACs and 

their transformation products using a custom-made suspect database. Overall, a total of 79 suspects and 24 target 

compounds were detected in 72 wastewater samples from Latvia. The results indicate that the applied resolving 

power (490,000 at m/z 250 and 275,000 at m/z 500) is sufficient for screening purposes and thus the method is 

not limited to ICR-HRMS systems, but can also be adapted to new generation Orbitrap mass analysers. The main 

advantages of the method are as follows: it is rapid, it can be easily automated and it practically does not require 

laborious post-processing steps which are an essential part for most LC-HRMS screening methods (e.g. peak 

picking and integration, linking full-MS data with MS/MS traces, manual identification of suspects etc.). 

Furthermore, a potentially wider scope of PhACs can be covered as both hydrophobic and hydrophilic PhACs can 
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be analyzed simultaneously, because limitations set by conventional reversed‐phase chromatography are non-

existent. The results indicate that the method is suitable for screening of PhACs that contain at least two different 

heteroatoms. Even higher selectivity can be achieved towards halogenated PhACs that can produce a distinct 

isotopic pattern, such as diclofenac and losartan.  

6. The developed LC-MS/MS method was used to explore the applicability of carbon nanotubes as an 

alternative dSPE sorbent for the extraction of 12 acidic NSAIDs from aquatic samples. Results showed that 

adsorption of NSAIDs occurs most readily when target compounds are in the protonated state, thus samples 

required acidification prior the extraction. A contact period of 30 min was sufficient to achieve almost complete 

adsorption for all investigated NSAIDs (95 to 100%). Meanwhile, only a partial release of target analytes was 

achieved and required a highly alkaline elution medium (5% of ammonium hydroxide in methanol, v/v). The final 

recoveries for the developed dSPE method ranged from 60 to 94% for 11 out of 12 target analytes. Only 

meloxicam showed unsatisfactory desorption efficiency (40%) due to a higher number of conjugated heterocycles 

compared to other NSAIDs which affects the van der Waals surface area of the compound and increases its affinity 

towards carbon nanotubes.  

7. The developed LC-Q-Orbitrap-MS method was used to assess removal of PhACs from wastewater by 

biological processes (activated sludge, sludge-derived bacteria and fungi). Results revealed that treatment with 

activated sludge for 17 hours reduced the initial concentrations below 40% for all except four PhACs (two 

antibiotics and two NSAIDs). The highest removal efficiency (>95%) was observed for trimethoprim and 

acetaminophen. Meanwhile, sulfamethoxazole and ciprofloxacin underwent biodegradation only when additional 

bioaugmentation was performed with sludge-derived bacteria and fungi. An important issue that emerged from 

the data was that two NSAID class PhACs showed exceptionally poor removal potential compared to other 

PhACs. Overall, the results show that bioaugmentation can be used to enhance PhAC degradation. Yet, removal 

efficiency strongly depends upon the incubation time and compound specific physico-chemical characteristics 

that promote/hinder biotransformations, oxidative processes and sorption.  

8. The developed LC-Q-Orbitrap-MS method was used to assess the effectiveness of ionizing radiation as 

a way to remove PhAC residues from WWTP influents. Experiments with real sludge samples exposed to gamma 

and electron beam radiation revealed that the majority of PhAC can be degraded with >90% efficiency at 0.5–

3 kGy absorbed radiation doses. Only macrolide antibiotics and one fluoroquinolone (ciprofloxacin) showed 

higher stability. Nevertheless, exposure to higher doses (≥5 kGy) caused almost complete elimination of these 

compounds. In general, both irradiation approaches yielded satisfactory results. However, the electron beam 

technique was able to achieve the same extent of degradation 50 times faster compared to gamma radiation.  
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ANNEXES 

Annex 1 

A schematic step-by-step workflow of the developed screening procedure on FT-ICR-MS 

 

  



140 

 

Annex 2 

An example of tentative carbamazepine identification using the developed FT-ICR-MS method 
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Annex 3 

An example of full-MS/dd-MS/MS spectra for a fortified honey sample taken from the validation 

study (100 ng/g of STP and DSTP). Extracted ion chromatograms are shown for [M+H]+ species of STP 

and DSTP with the corresponding total ion chromatograms for each of the dd-MS/MS traces. The 

averaged full-MS spectra for both precursors and the fragment dd-MS/MS spectra are illustrated below. 
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Annex 4 

Microspecies distribution of niflumic acid and flunixin under different pH values (generated by 

MarvinSketch 20.4. software) 
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Annex 5 

Main validation parameters (sensitivity and detection capabilities) of the developed FT-ICR-MS method 

Name CCα, 

ng/L 

CCβ, 

ng/L 

SDL, 

ng/L 

LOI, 

ng/L 

Coefficient of 

determination 

Range, ng/L Validation 

levels A/B/C, 

ng/L 

Atenolol 28 35 50 50 0.99 50-1000 50/250/500 

Atorvastatin 94 120 100 100 0.99 100-2000 100/500/1000 

Azithromycin 66 97 100 >1000 0.98 100-2000 100/500/1000 

Caffeine 544 904 500 500 0.99 500-10000 500/2500/5000 

Carbamazepine 76 99 100 100 0.99 100-2000 100/500/1000 

Ciprofloxacin 220 310 250 250 0.98 250-5000 250/1000/2000 

Clarithromycin 37 60 50 50 0.97 50-1000 50/250/500 

Diclofenac 20 38 50 50 0.99 50-1000 50/250/500 

Erythromycin 28 59 100 100 0.98 100-2000 100/500/1000 

Fluoxetine 28 35 50 250 0.99 50-1000 50/250/500 

Gemfibrozil 74 115 100 1000 0.98 100-2000 100/500/1000 

Ibuprofen 122 274 1000 1000 0.98 250-5000 250/1000/2000 

Ketoprofen 171 290 250 1000 0.99 250-5000 250/1000/2000 

Losartan 33 46 50 50 0.98 50-1000 50/250/500 

Meloxicam 49 168 250 2000 0.99 250-5000 250/1000/2000 

Metoprolol 23 32 50 50 0.99 50-1000 50/250/500 

Naproxen 266 602 500 5000 0.98 500-10000 500/2500/5000 

Paracetamol 693 1234 1000 5000 0.98 1000-10000 1000/2500/5000 

Pravastatin 65 81 100 1000 0.98 100-2000 100/500/1000 

Propranolol 19 27 50 50 0.99 50-1000 50/250/500 

Salbutamol 26 37 50 50 0.99 50-1000 50/250/500 

Spiramycin 120 260 >2000 >2000 0.95 250-5000 250/1000/2000 

Sulfamethoxazole 222 304 250 >2000 0.98 250-5000 250/1000/2000 

Trimethoprim 18 54 100 100 0.98 100-2000 100/500/1000 

Valsartan 274 775 500 >5000 0.97 500-10000 500/2500/5000 

Xylazine 22 32 50 50 0.99 50-1000 50/250/500 
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Annex 6 

Recovery, repeatability (RSDr) and between-day reproducibility (RSDwR) of target PhACs obtained by 

FT-ICR-MS method 

Name Level A Level B Level C 

RSDr, % RSDwR, 

% 

Recovery, 

% 

RSDr, % RSDwR, 

% 

Recovery, 

% 

RSDr, 

% 

RSDwR, % Recovery, 

% 

Atenolol 7 9 118 3 8 101 6 7 96 

Atorvastatin 15 16 120 6 13 120 10 16 98 

Azithromycin 13 19 135 13 17 93 17 21 101 

Caffeine 32 44 78 18 35 89 17 30 84 

Carbamazepine 13 14 118 11 13 89 16 27 95 

Ciprofloxacin 18 22 74 23 53 88 21 24 75 

Clarithromycin 17 28 138 16 23 104 9 12 111 

Diclofenac 19 22 118 10 10 105 8 14 84 

Erythromycin 18 19 73 22 31 95 13 25 87 

Fluoxetine 6 8 126 5 15 101 7 15 87 

Gemfibrozil 10 25 131 4 11 110 8 10 103 

Ibuprofen 17 37 83 13 37 108 8 18 104 

Ketoprofen 23 29 106 30 50 121 16 29 112 

Losartan 12 16 80 11 22 112 7 8 89 

Meloxicam 26 29 78 14 32 102 11 23 97 

Metoprolol 9 11 115 4 6 105 5 9 96 

Naproxen 27 41 129 19 39 111 12 27 94 

Paracetamol 23 33 121 18 24 117 16 33 91 

Pravastatin 6 10 107 11 25 97 8 17 116 

Propranolol 5 10 95 5 6 89 9 12 94 

Salbutamol 9 13 87 8 23 118 5 9 102 

Spiramycin 22 34 86 18 29 75 16 28 83 

Sulfamethoxazole 15 20 121 22 31 112 15 16 98 

Trimethoprim 18 22 109 11 15 94 6 7 87 

Valsartan 38 61 106 23 46 91 29 51 85 

Xylazine 9 12 87 6 12 81 10 21 101 
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Annex 7 

Mass accuracy: Q1 performance characteristics from the FT-ICR-MS method’s validation dataset 

Name Level A Level B Level C 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Atenolol 0.13 0.02 100% 0.12 0.00 100% 0.13 0.02 100% 

Atorvastatin -0.03 0.37 100% 0.05 0.33 100% 0.08 0.32 100% 

Azithromycin -0.19 0.78 83% -0.11 0.30 83% -0.16 0.19 100% 

Caffeine -0.04 0.03 100% -0.01 0.02 100% 0.01 0.02 100% 

Carbamazepine 0.11 0.02 100% 0.12 0.02 100% 0.12 0.02 100% 

Ciprofloxacin 0.07 0.02 100% 0.07 0.01 100% 0.07 0.01 100% 

Clarithromycin -0.07 0.04 100% -0.08 0.03 100% -0.08 0.02 100% 

Diclofenac -0.60 0.24 100% -0.40 0.24 100% -0.25 0.23 100% 

Erythromycin 0.47 0.08 100% 0.39 0.05 100% 0.37 0.02 100% 

Fluoxetine 0.10 0.02 100% 0.11 0.01 100% 0.10 0.02 100% 

Gemfibrozil 0.34 0.49 100% 0.29 0.46 100% 0.14 0.51 100% 

Ibuprofen -0.26 0.49 75% 0.00 0.32 100% -0.01 0.29 100% 

Ketoprofen 0.32 0.54 100% 0.29 0.51 100% 0.30 0.50 100% 

Losartan -0.27 0.10 100% -0.25 0.06 100% -0.22 0.04 100% 

Meloxicam -0.34 0.17 100% -0.25 0.10 100% -0.25 0.09 100% 

Metoprolol 0.11 0.01 100% 0.13 0.02 100% 0.13 0.02 100% 

Naproxen -0.46 0.66 83% 0.21 0.42 100% 0.21 0.42 100% 

Paracetamol -0.03 0.18 100% -0.05 0.15 100% -0.05 0.17 100% 

Pravastatin -0.24 0.09 100% -0.21 0.06 100% -0.16 0.05 100% 

Propranolol 0.01 0.01 100% 0.01 0.01 100% 0.01 0.01 100% 

Salbutamol -0.05 0.02 100% -0.03 0.02 100% 0.00 0.02 100% 

Spiramycin -0.57 0.37 83% -1.05 0.10 75% -1.04 0.19 92% 

Sulfamethoxazole 0.32 0.53 100% 0.30 0.50 100% 0.33 0.52 100% 

Trimethoprim -0.05 0.03 100% -0.03 0.01 100% -0.02 0.01 100% 

Valsartan -0.15 0.14 100% -0.13 0.15 100% -0.13 0.11 100% 

Xylazine 0.00 0.02 100% 0.02 0.01 100% 0.02 0.00 100% 
a Compliance rate. 
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Annex 8 

Mass accuracy: Q2 performance characteristics from the FT-ICR-MS method’s validation dataset 

Name Level A Level B Level C 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Mean 

error, 

ppm 

SD, 

ppm 

Comp. 

ratea, 

% 

Atenolol 0.00 0.03 100% 0.03 0.02 100% 0.05 0.02 100% 

Atorvastatin 0.17 0.33 100% 0.09 0.32 100% 0.13 0.33 100% 

Azithromycin 0.34 0.58 50% -1.08 0.12 67% -0.32 0.34 100% 

Caffeine -0.03 0.04 100% 0.01 0.04 100% 0.02 0.03 100% 

Carbamazepine 0.01 0.05 100% 0.03 0.03 100% 0.05 0.02 100% 

Ciprofloxacin 0.05 0.03 100% 0.04 0.03 100% 0.06 0.03 100% 

Clarithromycin -0.10 0.09 100% -0.12 0.06 100% -0.12 0.03 100% 

Diclofenac -0.36 0.41 100% -0.29 0.23 100% -0.18 0.18 100% 

Erythromycin 0.41 0.11 100% 0.28 0.04 100% 0.25 0.04 100% 

Fluoxetine 0.09 0.04 100% 0.10 0.03 100% 0.10 0.02 100% 

Gemfibrozil -0.25 0.66 92% -0.02 0.61 100% 0.12 0.56 100% 

Ibuprofen -0.03 0.32 42% 0.10 0.34 100% 0.11 0.35 100% 

Ketoprofen -0.84 0.31 50% 0.02 0.59 100% -0.11 0.63 100% 

Losartan -0.37 0.20 100% -0.30 0.09 100% -0.26 0.06 100% 

Meloxicam -0.23 0.31 100% -0.32 0.11 100% -0.30 0.12 100% 

Metoprolol -0.08 0.03 100% -0.07 0.02 100% -0.05 0.02 100% 

Naproxen 0.45 0.39 25% 0.09 0.50 100% 0.07 0.50 100% 

Paracetamol 0.45 0.17 25% -0.52 0.55 67% 0.08 0.13 100% 

Pravastatin -0.29 0.14 100% -0.27 0.07 100% -0.24 0.06 100% 

Propranolol 0.11 0.02 100% 0.12 0.02 100% 0.10 0.02 100% 

Salbutamol 0.02 0.03 100% 0.03 0.03 100% 0.05 0.02 100% 

Spiramycin -0.30 0.78 42% -0.25 0.47 75% -0.32 0.46 83% 

Sulfamethoxazole -0.61 0.61 92% -0.72 0.51 92% -0.29 0.70 100% 

Trimethoprim 0.09 0.02 100% 0.09 0.02 100% 0.10 0.02 100% 

Valsartan -0.07 0.26 83% -0.09 0.19 100% -0.03 0.27 100% 

Xylazine 0.00 0.03 100% 0.02 0.02 100% 0.03 0.02 100% 
a Compliance rate. 
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Annex 9 

Ion ratio: Q2/Q1 performance characteristics from the FT-ICR-MS method’s validation dataset 

Name Level A Level B Level C 

Mean 

ratio 

Mean 

error, 

% 

Comp. 

rate 

(wide)a, 

% 

Mean 

ratio 

Mean 

error, 

% 

Comp. 

rate 

(wide) a, 

% 

Mean 

ratio 

Mean 

error, 

% 

Comp. 

rate 

(wide) a, 

% 

Atenolol 15.2 -0.5 100% 14.9 -2.8 100% 14.9 -2.4 100% 

Atorvastatin 37.0 1.8 83% 

(100%) 

33.9 -6.8 100% 34.4 -5.3 100% 

Azithromycin 40.9 6.8 25% 42.3 -2.1 83% 40.6 -6.0 58% 

(75%) 

Caffeine 9.2 6.2 92% 8.6 -0.6 100% 8.3 -5.0 100% 

Carbamazepine 16.3 -0.1 100% 16.4 0.5 100% 16.2 -0.3 100% 

Ciprofloxacin 18.1 -2.4 100% 18.1 -2.4 100% 18.7 0.9 100% 

Clarithromycin 40.9 -4.5 100% 40.7 -5.0 100% 40.5 -5.4 100% 

Diclofenac 61.7 -4.2 100% 59.8 -7.1 100% 56.0 -13.0 92% 

Erythromycin 40.1 -3.9 100% 39.4 -5.6 100% 38.7 -7.3 100% 

Fluoxetine 17.8 -3.4 100% 18.3 -1.0 100% 18.0 -2.6 100% 

Gemfibrozil 15.7 -4.1 75% 16.0 -2.2 83% 15.8 -3.5 83% 

(92%) 

Ibuprofen 15.6 10.2 25% 

(42%) 

13.8 -2.1 100% 13.3 -5.8 100% 

Ketoprofen 17.5 0.3 25% 17.2 -1.8 92% 17.1 -2.2 83% 

(100%) 

Losartan 32.1 -0.1 100% 32.4 0.6 100% 32.0 -0.5 100% 

Meloxicam 16.1 4.8 92% 15.3 -0.2 100% 14.9 -2.7 100% 

Metoprolol 16.0 -2.7 100% 15.7 -4.2 100% 15.3 -6.6 100% 

Naproxen 14.6 -4.8 25% 15.2 -0.7 83% 15.5 1.2 92% 

Paracetamol 8.6 -1.6 17% 

(25%)  

9.3 6.6 42% 

(67%)  

8.6 -1.1 75% 

(92%) 

Pravastatin 26.3 4.2 92% 24.4 -3.6 100% 23.7 -6.2 100% 

Propranolol 17.2 -1.1 100% 16.5 -5.2 100% 16.1 -7.4 100% 

Salbutamol 14.0 -1.8 100% 13.8 -2.8 100% 13.4 -5.7 100% 

Spiramycin 44.3 -8.9 33% 40.4 -17.1 33% 43.2 -11.4 50% 

Sulfamethoxazole 11.3 3.2 58% 

(67%) 

11.7 6.5 50% 11.0 0.4 75% 

Trimethoprim 15.0 -2.2 100% 14.2 -7.2 100% 13.7 -10.7 100% 

Valsartan 25.6 -1.7 50% 

(75%) 

27.7 6.2 83% 

(92%) 

26.3 0.9 75% 

(83%) 

Xylazine 12.7 -2.6 100% 12.2 -6.4 100% 11.8 -9.3 100% 

a Compliance rate using “strict” and “wide” ratio limits. The latter is given in parenthesis. If the 

compliance rates between “strict” and “wide” limits are equal, only one value is given.  
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Annex 10 

MS/MS fingerprinting: experimental (MoNA database) and predicted (CFM-ID) MS/MS spectra 

performance characteristics from the FT-ICR-MS method’s validation dataset 

Name Level A Level B Level C 

MoNA 

(experimental 

fingerprint) 

CFM-ID 

(predicted 

fingerprint) 

MoNA 

(experimental 

fingerprint) 

CFM-ID 

(predicted 

fingerprint) 

MoNA 

(experimental 

fingerprint) 

CFM-ID 

(predicted 

fingerprint) 

Range (max 

N)b 

Comp. 

ratea, % 

Range (max 

N)b 

Comp. 

ratea, 

% 

Range 

(max N) b 

Comp. 

ratea, % 

Range 

(max N)b 

Comp. 

ratea, % 

Range 

(max N)b 

Comp. 

ratea, % 

Range 

(max N)b 

Comp. 

ratea, % 

Atenolol 2 (5) 100% 1 (5) 100% 2 (5) 100% 1-2 (5) 100% 2-3 (5) 100% 2-3 (5) 100% 

Atorvastatin 2 (2) 92% 1 (5) 92% 2 (2) 100% 1 (5) 100% 2 (2) 100% 1 (5) 100% 

Azithromycin 3 (5) 83% 1 (5) 75% 3-4 (5) 100% 1-2 (5) 100% 4 (5) 100% 2-3 (5) 100% 

Caffeine 1-2 (4) 75% 1-2 (5) 92% 2-3 (4) 100% 2 (5) 100% 2 (4) 100% 2 (5) 100% 

Carbamazepine 2-3 (5) 100% 1 (5) 100% 5 (5) 100% 1-2 (5) 100% 5 (5) 100% 2 (5) 100% 

Ciprofloxacin 1-2 (5) 92% 1-2 (5) 92% 1 (5) 92% 1 (5) 100% 1 (5) 100% 1 (5) 100% 

Clarithromycin 3 (5) 100% 0 (5) 0% 3 (5) 100% 0 (5) 0% 3 (5) 100% 0 (5) 0% 

Diclofenac 2 (3) 100% 2 (5) 100% 2 (3) 100% 2 (5) 100% 2 (3) 100% 2 (5) 100% 

Erythromycin 2-3 (5) 100% 1 (5) 100% 3 (5) 100% 2 (5) 100% 3 (5) 100% 2 (5) 100% 

Fluoxetine 1 (5) 33% 1 (5) 33% 1 (5) 100% 1 (5) 100% 1 (5) 100% 1 (5) 100% 

Gemfibrozil 1 (1) 92% 2 (5) 92% 1 (1) 100% 2 (5) 100% 1 (1) 100% 2 (5) 100% 

Ibuprofen 1 (1) 100% 1 (5) 100% 1 (1) 100% 1 (5) 92% 1 (1) 100% 2 (5) 100% 

Ketoprofen 2 (2) 83% 1 (5) 92% 2 (2) 100% 1 (5) 100% 2 (2) 100% 1 (5) 100% 

Losartan 2-3 (3) 100% 1-3 (5) 100% 3 (3) 100% 3 (5) 100% 3 (3) 100% 3 (5) 100% 

Meloxicam 3 (3) 58% 2-3 (5) 58% 3 (3) 75% 2-3 (5) 67% 3 (3) 100% 2-3 (5) 100% 

Metoprolol 4 (5) 100% 1 (5) 100% 4 (5) 100% 1-2 (5) 100% 4 (5) 100% 2 (5) 100% 

Naproxen 1 (1) 92% 2-3 (5) 92% 1 (1) 100% 2 (5) 92% 1 (1) 100% 3 (5) 100% 

Paracetamol 1 (1) 83% 0 (5) 0% 1 (1) 100% 1 (5) 75% 1 (1) 100% 1 (5) 100% 

Pravastatin 3 (5) 67% 1 (5) 67% 3 (5) 75% 0 (5) 25% 3 (5) 100% 1 (5) 100% 

Propranolol 3 (5) 100% 0 (5) 17% 3 (5) 100% 1 (5) 100% 3 (5) 100% 1-2 (5) 100% 

Salbutamol 2 (3) 100% 3 (5) 100% 2 (3) 100% 4 (5) 100% 2 (3) 100% 4 (5) 100% 

Spiramycin 1-2 (5) 75% 0 (5) 0% 2 (5) 100% 0 (5) 0% 2 (5) 100% 0 (5) 0% 

Sulfamethoxazole 1-2 (2) 67% 1-2 (5) 67% 2 (2) 75% 0 (5) 42% 2 (2) 100% 1 (5) 100% 

Trimethoprim 4 (5) 100% 2 (5) 100% 4 (5) 100% 2-3 (5) 100% 4 (5) 100% 3 (5) 100% 

Valsartan 1 (2) 58% 1-2 (5) 58% 1 (2) 75% 0 (5) 67% 1 (2) 100% 1-2 (5) 100% 

Xylazine 2-3 (3) 100% 1 (5) 67% 3 (3) 100% 1 (5) 100% 3 (3) 100% 1 (5) 100% 

a Compliance rate. 

b The range of detected MS/MS fragments that matched the MS/MS features in the suspect list. The 

maximum number MS/MS traces that were available for matching are given in parenthesis. 
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Annex 11 

Overview of the recovery values obtained from QC samples that were measured in-between batches 

during FT-ICR-MS measurements 
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Annex 12 

Sampling locations of WWTPs that were used to study the occurance of PhACs in WWTP influents and 

effluents via FT-ICR-MS  

 

 


