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ABSTRACT

Metformin is an antidiabetic agent widely used as a first-line treatment for
type 2 diabetes (T2D). It has various advantages as well as variable therapeutic effects,
contraindications, and side effects. The pharmacodynamic effects of metformin have been
widely studied, interaction with gut microbiome or epigenetic regulation of the host along with
other therapeutic target sites have been highlighted, yet details of these mechanisms remain
obscure. Moreover, metformin’s pleiotropic effects have shown significant results in the
treatment of many other diseases outside T2D. The high subject-specific variance and dynamic
nature of both the gut microbiome and DNA methylation profile makes them a significant target

for precision medicine biomarker discovery.

The aim of this study was to identify taxonomic and functional gut microbiome biomarkers as
well as epigenetic signatures of the host for metformin pharmacodynamics, therapy efficacy
and tolerance. Using massive parallel sequencing based approaches for gut microbiome
profiling we observed significant and immediate reduction of inner diversity in the healthy
cohort and changes in the taxonomic profile caused by metformin therapy in both newly
diagnosed T2D patients and healthy individuals. Employing shotgun metagenomics, we
presented the possibility to use baseline sample composition as a prediction tool for metformin
therapy efficacy and tolerance. In addition, our study on global DNA methylation profile and
its changes during metformin use presented the first and currently the only study evaluating
longitudinal effects in peripheral blood cells of healthy human individuals. The results depicted
that the genes representing the top-ranked differentially methylated probes corresponded to the
main functional groups associated with previously described targets of metformin therapy:
regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and
neurodegeneration. These results altogether bring novel data that could be used in future studies
and in development of microbiome modulation approaches as well as precision medicine based

treatment algorithms.



KOPSAVILKUMS

Metformins ir plasi izmantots pirmas izvéles antidiab&tiskais medikaments 2. tipa cukura
diabéta (T2D) arstéSanai. Tam ir vairakas priekSrocibas, tomér raksturiga arl mainiga
terapeitiska iedarbiba, kontrindikacijas un blakusparadibas. Metformina farmakodinamiska
iedarbiba ir plasi pétita, tick uzsvérta ta mijiedarbiba ar zarnu mikrobiomu, ka ari
saimniekorganisma epigenétisko regulaciju un citiem terapeitiskajiem mérkiem, tomeér
informacija par Siem mehanismiem joprojam ir neskaidra. Papildus tam metformina plejotropa
iedarbiba ir paradijusi butiskus rezultatus daudzu citu slimibu arsté$ana arpus T2D. Gan zarnu
mikrobiomam, gan DNS metilacijas profilam raksturigas individ-specifiskas iezimes un

dinamika padara tos par nozimigu mérki precizijas medicinas biomarkieru atklasanai.

ST pétijuma mérkis bija identificét taksonomiskos un funkcionalos zarnu mikrobioma
biomarkierus, ka arT saimnickorganisma epigenétiskas iezimes metformina farmakodinamikai,
terapijas efektivitatei un tolerancei. Izmantojot lielapjoma paralélas sekven&Sanas pieejas zarnu
mikrobioma profilésanai, més novérojam metformina terapijas izraisitu butisku un talitéju
ieksejas daudzveidibas samazinasanos veselo individu kohorta, ka ar1 taksonomiska profila
izmainas gan jaundiagnosticétiem T2D pacientiem, gan veseliem individiem. Izmantojot visa
metagenoma sekveng€$anu, mes prezentéjam iespe&ju izmantot pirms terapijas uzsakSanas iegiita
mikrobioma parauga taksonomisko sastavu ka riku metformina terapijas efektivitates un
tolerances prognozesanai. Papildus tam miisu publikacija par globalo DNS metiléSanas profilu
periférajas asins $tinas un ta izmainam metformina lietoSanas laika paradija pirmo un paslaik
vienigo pétfjumu, kura tika analizéta ietekme longitudinala griezuma uz veseliem individiem.
Rezultati paradija to, ka géni, kas atbilst top diferencéti metilétajam zondém, reprezente
galvenas funkcionalas grupas, kas saistitas ar iepriek§ aprakstitajiem metformina terapijas
mérkiem: energijas homeostazi regul§josie procesi, iekaisuma reakcijas, tumorigenéze un
neirodegeneracija. Sie rezultati kopuma sniedz jaunas zina$anas, kurus kalpos par pamato
turpmakiem pétjjumiem un mikrobiomu modulacijas pieeju, ka arT precizijas medicina balstitu

arstéSanas algoritmu izstrade.
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INTRODUCTION

Diabetes mellitus is one of the most prevalent diseases worldwide, with T2D constituting more
than 90% of cases. It has been recognized as a global burden for healthcare and economics.
Therefore, timely identification of individuals at risk, improved detection and monitoring of
T2D patients, effective treatment with reduced incidence of comorbidities, and improved
awareness are the key elements for decreasing the future burden of this disease. Metformin is a
first-line antidiabetic agent widely used for treatment of T2D. It has various advantages as well
as variable therapeutic effects, contraindications, and side effects. The pharmacodynamic
effects of metformin have been widely studied, interaction with gut microbiome or epigenetic
regulation of the host along with other therapeutic target sites have been highlighted, yet details

of these mechanisms remain obscure.

Importance of this work: Early prediction of efficacy and tolerance for antidiabetic therapy is
a significant way to develop precision medicine based approaches, therefore, improving quality
of life for the patients. New knowledge about metformin pharmacodynamics is important to the
development of efficient treatment algorithms for T2D patients and creation of new treatment

strategies for metformin therapeutic targets outside T2D.

Aims of the study: To identify taxonomic and functional gut microbiome biomarkers as well
as epigenetic signatures of the host for metformin pharmacodynamics, therapy efficacy and

tolerance.
Tasks to reach the aims:

1) Analyse the metformin effects on taxonomic profile of healthy human gut microbiome.

2) Investigate the short-term metformin effects on peripheral blood DNA methylation
profile in healthy individuals.

3) Evaluate the similarities and population specific features of metformin induced
taxonomic and functional changes in gut microbiome both in healthy and in newly
diagnosed T2D patients.

4) Determine possible biomarkers for metformin therapy efficacy and tolerance



1. LITERATURE REVIEW

1.1.  Human microbiome

1.1.1. Characterization and development

The human microbiome is defined as the collection of microorganisms (bacteria, archaea,
viruses, eukaryotes) in a specific body site — habitat — together with their genomes and the
surrounding environmental conditions, e.g. biochemical products (Marchesi and Ravel 2015).
Moreover, the most recent discussions and amendments put additional emphasis on the
temporal and spatial dynamics of the microbiome, as well as the integration, interaction, and
coevolution with the host as part of the microbiome definition (Berg et al. 2020). The main
human microbiome niches are skin, oral, respiratory, urogenital, and intestinal microbiomes,
with most of them having several smaller subpopulations, dependent on physiological and
environmental differences within the human body. Microbiome composition and functional
capacity have been strongly proven to be associated with maintaining the health of the host as
well as with the pathogenesis of various diseases (Figure 1). Unfavourable shifts in the human
microbiome are defined as dysbiosis and have been studied and characterized in the context of
inflammatory bowel disease, obesity, type 1 and type 2 diabetes, allergies, multiple sclerosis,
autism, cancer, and several other diseases (Lloyd-Price et al. 2016, Paun and Danska 2016,
Vivarelli et al. 2019, Chandra et al. 2020).

Currently, it is mostly acknowledged that the colonization with the first microbial communities
starts during birth, however, in recent years some studies have highlighted the possibility of
microbiome subpopulations in the placenta, amniotic fluid, and meconium, therefore supporting
in utero colonization hypothesis (Perez-Munoz et al. 2017). Nevertheless, the health of the
mother and her microbiome, mode of delivery, feeding type (breastfeeding versus formula),
early antibiotic use, and even pet keeping in the household have been established as the most
important factors affecting the microbiome of an infant, its development in the first years of
life, and effects on health in adulthood (Tanaka and Nakayama 2017, Kim et al. 2019, Moore
and Townsend 2019).

During life, the human microbiome is still highly dynamic, however, mostly maintaining its
person-specific features. There has been characterized a wide range of factors impacting the
microbiome throughout life, such as host genetics, diet, age, lifestyle (sleep, exercise, stress
levels, smoking), hormonal shifts, use of antibiotics and other medications, infections,

traveling, and other interactions with the environment (Rojo et al. 2017).
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Figure 1. Taxonomic composition of various human microbiome subpopulations characterizing
a healthy individual, as defined by data from previous large-scale human microbiome projects,
and examples of various diseases associated with dysbiosis of their subpopulations. Adapted

from (Belizario and Napolitano 2015).

The definition of a healthy human microbiome is still unclear as there are several factors
continuously affecting the microbiome and high inter-individual and intra-individual variety
exists. At the moment determination of core microbiome or sets of specific features common
to healthy microbiomes, such as prevalent organisms or molecular pathways, as well as
dynamic modelling of compositional and functional fluctuations throughout life have been used
to distinguish healthy or dysbiotic microbiomes (Lloyd-Price et al. 2016, Aguirre de Carcer
2018).

1.1.2. Gut microbiome

The most diverse and most studied human microbiome subpopulation is specifically the human
gut microbiome. It has been characterized as one of the most densely populated microbial
populations on Earth, composed of more than 1000 species (Rinninella et al. 2019), with the
dominant phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and

Verrucomicrobia, where the first two composes approximately 90% of the gut microbiota (Qin



et al. 2010). Gut microbiome continuously interacts with the host and other microbiome

subpopulations, therefore, ensuring a number of evolutionary developed vital functions:

(1) Extraction, absorption, and synthesis of various metabolites and nutrients, such as
short-chain fatty acids (SCFAs), bile acids, and vitamins, therefore, enhancing the
metabolic capacity and interacting with metabolic regulation of the host (Brestoff and
Aurtis 2013, Kho and Lal 2018);

(2) Protection from infections induced by opportunistic pathogens (colonization
resistance), mostly through competition processes - antimicrobial peptide secretions, pH
modification, nutrient metabolism, and effects on cell signalling pathways (Kim et al.
2017, Ducarmon et al. 2019);

(3) Strengthening the integrity of the gut and shaping the intestinal epithelium, thus,
ensuring a mechanic barrier (Natividad and Verdu 2013);

(4) Regulation of development, homeostasis, and function of both innate and adaptive

immune systems of the host (Maynard et al. 2012).

In addition to these functions, studies have shown the gut microbiome as a key player in the
regulation of several physiological processes and systems of the host. Gut-brain axis, gut-liver
axis, gut-muscle axis, and gut-skin axis are some of the most studied examples of these systemic
interactions mediated by the gut microbial communities (O'Neill et al. 2016, Tripathi et al.
2018, Osadchiy et al. 2019, Przewlocka et al. 2020).

The gut microbiome is highly variable in the context of biogeography throughout the
gastrointestinal (GI) tract. Host physiology, nutrient availability, competition, pH, and oxygen
levels are only some of the factors behind this variability (Mark Welch et al. 2017). In addition,
it is important to note that a vast majority of the studies are analysing specifically the faecal
microbiome, which is significantly different from various subpopulations associated with the
Gl tissue. However, the data obtained from faecal microbiome can serve as non-invasive
biomarkers often depicting similar shifts in microbial communities compared to biopsy samples
(Tang et al. 2015, Engevik and Versalovic 2019).

1.1.3. Microbiome analysis
For many years, microbiome studies were done using culture-dependent methods, which still
have significant limitations when it comes to studying the human gut microbiome, and even
now, it is estimated that approximately half of the prokaryotic diversity found in the mammalian
gut microbiome cannot be grown in any known culture (Lagkouvardos et al. 2017).
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During the previous decade, the development of high-throughput sequencing (HTS) approaches
has fostered a rapid advancement in microbiome studies. HTS methods can be classified into
three categories: microbiome, DNA, and mRNA level analyses. (1) Culturome, in nowadays
comprehension, is a recent method where HTS and other molecular methods have been
combined with innovative culture techniques, therefore, renewing the interest in applying the
culture-based approaches for microbiome studies (Lagier et al. 2018, Zou et al. 2019).
(2) Amplicon based approach is estimated to be the most used HTS method for microbiome
studies. Amplicon studies comprise various types of marker genes used for taxonomical profile
determination of microbiome: 16S ribosomal RNA (16S rRNA) gene for prokaryotes; 18S
ribosomal RNA (18S rRNA) gene for eukaryotes; internal transcribed spacers (ITS) for fungi
(Woese and Fox 1977, Schoch et al. 2012). (3) The shotgun metagenome approach includes
sequencing and analysis of all present DNA, therefore offering insight into the microbiome’s
functional potential as well (Sharpton 2014). (4) Metatranscriptomic approach profile the
MRNA levels of the microbial community, characterizing the current functional activity
(Bashiardes et al. 2016). However, the new approaches have brought new challenges, therefore,
independently of the methods used their advantages and limitations should be taken into

account (Figure 2).
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Figure 2. Advantages and limitations of current high-throughput sequencing-based approaches

used in microbiome research. Adapted from (Liu et al. 2020).
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Factors, such as sample type, amount of biomass, and the scientific question are used for the
selection of the most suitable approaches. Most importantly, it is advisable to integrate different
methods, therefore obtaining insight into both the taxonomic and functional profiles of the
analysed microbiome. Such an approach is defined as multi-omics and includes not only HTS
based methods but proteomics and metabolomics analyses, as well as it may include integration
with data from the host (Wang et al. 2019, Liu et al. 2020).

1.2. Epigenetic regulation

1.2.1. Main mechanisms of the epigenetic regulation

The term “epigenetics” was introduced in 1942 by Conrad Waddington, thereby stating — “an
epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without
alterations in the DNA sequence” (Waddington 1942). Based on our current understanding,
epigenetic mechanisms are defined as processes that regulate gene expression through the
alteration of chromatin structure without changing the nucleotide base sequences. These
epigenetic influences can be further inherited both in transgenerational and in a mitotic way.
The three most characterized mechanisms of epigenetic regulation are histone modifications,
DNA methylation, and non-coding RNAs (ncRNAS). Importantly, most of the epigenetic
modifications are reversible, therefore, this field offers a considerable promise for new targeted
and precision medicine-based therapies (Allis and Jenuwein 2016, Kronfol et al. 2017, Cavalli
and Heard 2019).

The DNA in each eukaryotic cell is organized in tightly regulated structures — approximately
145-147 base pairs (bp) of DNA are wrapped around an octameric and globular protein
complex, thus, forming the “nucleosomal core particle”. Each octamer is formed by two dimers
containing H2A and H2B core histones, and one tetramer containing two H3 and two H4 core
histones. Also, the linker histone H1 is needed to form a full nucleosome and stabilise
higher-order chromatin structures (Allan et al. 1980, Luger et al. 1997). In addition to the
physical regulation of DNA accessibility determined by the nucleosomes, histones may carry
various posttranslational modifications, which as well have a significant impact on chromatin
accessibility and therefore the gene activity. The most studied histone modifications include
acetylation, methylation, phosphorylation, sumoylation, ubiquitinylation, ADP ribosylation,
and deamination (Kouzarides 2007). More recently, some new types of modifications have been
characterized, such as propionylation and butyrylation (Kebede et al. 2015). Most of the

best-studied histone modifications are located on the N-terminal tail regions, nevertheless, other
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regions of histones can be modified, such as the central globular domains. All these
modifications establish the “histone code” and function through disrupting chromatin contacts
or by affecting the recruitment of other non-histone proteins to chromatin. Interestingly, histone
modifications can affect each other, as well as they can interact with DNA methylation
(Rothbart and Strahl 2014).

DNA methylation is a common epigenetic modification of DNA in mammals. It is a mechanism
involving a covalent transfer of a methyl group (CHsz) from the universal donor
S-adenosyl-L-methionine (SAM) to the C-5 position of the cytosine ring by DNA
methyltransferases (DNMTs) (Borchiellini et al. 2019). In mammals, DNA methylation can
occur at cytosines in any context in the genome, however, more than 98% of this modification
occurs specifically on cytosines that precede guanine — CpG sites (Lister et al. 2009). CpG-rich
genome regions are called CpG islands (CGl), usually located in the proximity of transcription
start sites (TSSs) of the ~70% of human protein-coding genes (Saxonov et al. 2006). The
addition of the CHs group mediates conformational changes in the major groove of DNA, in
that way altering the DNA-protein binding and further the gene expression (Liebl and Zacharias
2019). Previously, the majority of studies have been focused on the methylation effects within
CGls located in the promoter or close to TSSs of protein-coding genes. However, more recently
the significance of methylation in other genomic regions have been acknowledged, such as CG
shores (up to 2 kb from CGI), shelves (2-4 kb from CGI), and open sea (the rest of the genome)
(Visone et al. 2019). The effect of DNA methylation is proved to be mostly dependent on the
genomic localization. For example, methylation of TSS-associated CGls negatively correlates
with gene expression, whereas, methylation in gene-body has shown a positive correlation with

gene expression (Teissandier and Bourc'his 2017).

Non-coding RNAs are defined as functional molecules that do not have the protein-coding
ability. Currently, all ncRNAs can be classified as housekeeping ncRNAs and regulatory
ncRNAs. The latter are further arbitrarily divided into two groups based on their
size — small/ short-chain (<200 nt) and long (>200 nt) —, and there are several subtypes within
both of these groups. Most often, the following three subtypes of short ncRNAs are
studied — short interfering or silencing RNA (siRNA), micro RNA (miRNA), and
Piwi-interacting RNA (piRNA). Long non-coding RNAs (IncRNAs) as well can be divided into
subclasses, but often these classes are not specified. It has been described that ncRNAS can
interact with genes, therefore, up- or down-regulating their expression, interact with chromatin
organizing proteins, guide methylation, etc. (Peschansky and Wahlestedt 2014). More recently,
diverse chemical modifications of cellular RNAs have been described and termed as “RNA

13



epigenetics” or “epitranscriptome”, covering more than 100 known types of post-transcriptional

modifications RNA epigenetics (Liu and Pan 2015).

A significant characteristic of epigenetic regulation is that it is dynamic, can be modified, and
is strongly affected by various environmental and behavioural factors throughout life. Such
factors as environmental pollutants, physical activity levels, sleep pattern, stress levels, diet,
medication use, smoking, and gut microbiome profile fluctuations have a significant effect on
epigenetic patterns and their dynamics (Alegria-Torres et al. 2011). As most of the
aforementioned factors are controllable, new lifestyle-based primary care, and preventive
medicine recommendations and approaches have been developed and are definitely an
emerging field at the moment (Lee et al. 2020). In addition, it is important to emphasize that
the mechanisms of epigenetic regulation altogether cannot be viewed only individually, but as

a complex regulatory system with various levels of interaction.

1.2.2. Interaction between epigenetic regulation and human gut microbiome

The current understanding of various molecular mechanisms how regulatory interactions
between the host and its microbiome are implemented mostly remains elusive (Carbonero
2017). Nevertheless, studies have shown that changes in taxonomic and functional profiles of
the gut microbiome correlate with epigenetic changes, moreover, various metabolites produced
by microbiota, such as SCFAs, biotin, folates, and trimethylamine-N-oxide (TMAO), can
regulate the epigenetic modifications of the host (Nicholson et al. 2012, Devaux and Raoult
2018). In mice, microbiota modulates the expression of numerous InNcCRNAS in various
metabolic and other organs (Dempsey et al. 2018), as well as its modulated changes of miR-181
expression levels in adipose tissue have been demonstrated (Virtue et al. 2019). In regards of
DNA methylation, the action of DNMTs can be affected by metabolic activities of the
microbiome, especially those involving the synthesis of metabolites participating in one-carbon
metabolism, as these metabolites can further serve as methyl group donors for SAM (Mischke
and Plosch 2013). In addition, communities in the gut can metabolize choline into various
metabolites, including trimethylamine, which further can be metabolized into TMAO — known
to be responsible for reduced methylation levels amongst other effects (Romano et al. 2015,
Sun et al. 2016, Romano et al. 2017). As another mechanism, SCFAs, for example, butyrate,
induce phosphorylation of ERK (extracellular signal-regulated kinase), which results in
downregulation of DNMT1 and further demethylation of specific genes (Sarkar et al. 2011).
The gut-derived SCFAs can also regulate the action of histone acetyltransferases and histone
deacetylases, therefore, contributing to the regulation of histone modifications and chromatin
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remodelling (Krautkramer et al. 2016, Yuille et al. 2018). As the epigenetic modifications are
central mechanisms taking part in directing the transcriptional response to the environmental
cues, they have been proposed to be a potential interface for the microbiota to implement

dynamic interaction with the host genome and metabolism (Woo and Alenghat 2017).

In addition to the described systemic interactions, more insights of microbiome effects on host
epigenetics have been gained in the context of colon epithelial cells (Allen and Sears 2019) and
this specific case can be used as an example characterizing the complexity and significance of

microbiome-epigenome interactions (Figure 3).
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Figure 3. Effect of the gut microbiome on the colon epithelial cell (CEC) genome and
epigenome. A. Enterotoxigenic Bacteroides fragilis (ETBF) and pks + Escherichia coli cause
DNA damage in CECs that is mediated by B. fragilistoxin (BFT) and colibactin,
respectively. Enterococcus faecalis, through the impact on macrophages, induces chromosomal
instability and tumor-inducing DNA mutations in cancer driver genes. B. Antibiotics, germ-
free mice, and specific microbes induce both the hypermethylation and the hypomethylation of
genes belonging to pathways that are dysregulated in colorectal cancer (CRC). C. Studies with
antibiotics and germ-free mice have shown — gut microbes do not generally affect global
chromatin structure in CECs, but do cause changes in the accessibility of transcription factor
binding sites, in histone modifications, and in the location of those modified histones.

D. Antibiotics, germ-free mice, and specific microbes have been used to show that gut microbes
15



alter the expression of onco-miRNAs and anti-onco-miRNAs in CECs. They also alter the
expression of long non-coding RNAs (IncRNAs) that are involved in G protein-coupled
receptor (GPCR) and transforming growth factor (TGF) signalling. Abbreviations: ETS e26
transformation-specific, IRF interferon regulatory factor, miRNA microRNA, ROS reactive
oxygen species, STAT signal transducer, and activator of transcription. Adapted from (Allen
and Sears 2019).

1.3.  Type 2 diabetes mellitus

1.3.1. Characterization and pathogenesis mechanisms

Diabetes Mellitus is a heterogeneous and complex group of metabolic disorders characterized
by elevated blood glucose levels secondary to defects in insulin secretion, insulin action, or
both. Currently, more than 460 million adults (age 20-79) worldwide have diabetes, and the
prevalence of diabetes is estimated to continue to rise rapidly, as it will likely reach up to
700 million by 2045 (Kharroubi and Darwish 2015, International Diabetes Federation 2019).
Approximately 5% of all cases are type 1 diabetes (T1D) — induced by autoimmune destruction
of B cells of the pancreas. T1D usually develops in childhood or the teenage years (Saberzadeh-
Ardestani et al. 2018). Also, other diabetes types of diabetes have been characterized, such as
gestational diabetes (hyperglycaemia during pregnancy) (Plows et al. 2018) and the monogenic
maturity onset diabetes of the young (MODY) (Hoffman and Jialal 2020). However, more than
90% is specifically type 2 diabetes (T2D), characterized by the presence of insulin resistance
(inability of insulin-sensitive tissues to respond to insulin) with an inadequate compensatory
increase in insulin secretion. The onset of T2D is usually later in life, however, the increasing
obesity in adolescents has led to an increase of T2D in younger populations (Zheng et al. 2018).
Most importantly, it is estimated that a large portion of T2D patients are still undiagnosed or
the length of diagnosis is different than the true duration from the onset of T2D (International
Diabetes Federation 2019).

Currently, it is known that T2D risk factors and pathogenesis mechanisms include a complex
combination of genetic, metabolic, and environmental factors. Previous genome-wide
association studies have shown the polygenic nature of T2D, with the discovered loci predicted
to impact intermediate mechanisms of T2D pathophysiology: insulin resistance, lowering
insulin secretion with normal fasting glycemia, reducing insulin secretion with fasting
hyperglycemia, altering insulin processing (Dimas et al. 2014). A sedentary lifestyle, the

energy-dense Western-style diet, and consequential obesity are the major modifiable risk
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factors associated with increased insulin resistance, inflammation, and development of T2D
(Bao et al. 2014, Bellou et al. 2018).

Moreover, the chronic hyperglycaemia of diabetes is associated with long-term damage and
even failure of various organ systems, therefore, various diabetes complications are common to
both T1D and T2D patients. Diabetes complications are mostly divided into two main
groups — microvascular and macrovascular. Microvascular complications are the most common
and include nephropathy, neuropathy, and retinopathy. Macrovascular complications contain
cardiovascular disease, stroke, and peripheral artery disease. Other complications that cannot
be classified into these two groups are occurring as well — reduced resistance to infections,

dental disease, impaired wound healing, etc. (Papatheodorou et al. 2018).

1.3.2. T2D and gut microbiome

The human gut microbiome has been associated with the pathophysiology of most chronic
diseases, including T2D. As a modifiable factor and a key element in T2D development, the
gut microbiota has received significant attention in a high number of studies focusing on early
T2D prediction, management, and treatment. Because of the high inter-individual and regional
variability characteristic to the microbiome, as well the effects of various treatment strategies,
it has been challenging to obtain consistent results across different study cohorts analysing
associations between specific taxa and T2D, like many other diseases (Forslund et al. 2015, He
et al. 2018). However, a recent review summarized 42 previous human microbiome studies to
highlight common associations at the genus level, as a result, Bifidobacterium, Bacteroides,
Faecalibacterium, Akkermansia, and Roseburia were shown to be negatively associated with
T2D, while Ruminococcus, Fusobacterium, and Blautia were described to be positively
associated with T2D. Interestingly, the widely wused diversity indexes or the
Bacteroidetes/Firmicutes ratio did not show consistent results in relation to T2D (Gurung et al.
2020). As the methods for gut microbiome detection have developed rapidly and costs have
been reduced, the increased number of studies employing shotgun metagenomics has

highlighted the need to focus on species and even strain-specific effects (Yan et al. 2020).

Such processes as gut permeability, inflammation, glucose and lipid metabolism, as well as
energy homeostasis of the host - widely known to be regulated by gut microbiota inhabitants —
have been proposed as the main molecular mechanisms of microbiome effects on T2D (Gurung
et al. 2020). Nevertheless, numerous therapeutic applications based on microbiome modulation

to improve metabolic profile of the host are continuously being created and tested. The simplest

17



of them being the dietary intervention, often adding prebiotics (e.g. dietary fibre) to diet,
therefore, supporting growth of beneficial bacteria, such as species producing SCFAs. Usually,
lifestyle modifications, which include dietary interventions, are the first step for T2D treatment.
However, the response to such dietary interventions usually have variable results due to
interindividual differences of microbiome composition (Marin-Penalver et al. 2016, Houghton
et al. 2018). Another type of microbiome targeted T2D therapy is administration of probiotics
— “live microorganisms that confer health benefits on the host when administered in proper
amounts”. Animal studies show positive effects on improving such parameters as insulin
resistance or glucose-insulin homeostasis, nevertheless, results from human studies does not
offer consensual results yet (Sun and Buys 2016, Tiderencel et al. 2020). As the third approach,
faecal microbiota transplantation (FMT) should be mentioned. Current results show that FMT
could improve insulin sensitivity, however, further conclusions are limited mostly due to small
study sizes. Moreover, similarly to others the efficacy of this approach is affected by baseline
microbiome composition of the recipient (Kootte et al. 2017). In addition to the
abovementioned directly targeted microbiome modulation with aim to improve the health of
the host, various antidiabetic agents have presented direct or secondary impact on the
microbiome composition, which results in both beneficial and adverse effects (Kyriachenko et
al. 2019). Overall, development of microbiome modulation approaches for T2D treatment as
well as for improvement of pharmacodynamic effects for antidiabetic agents currently represent
an emerging field of research and innovation (Brunkwall and Orho-Melander 2017, Gurung et
al. 2020, Quigley and Gajula 2020).

1.4. Type 2 diabetes therapy and metformin pharmacodynamics

1.4.1. T2D therapy

A number of international guidelines have been created for the management of T2D (Aschner
2017, Doyle-Delgado et al. 2020). With the first choice of action being lifestyle-related
modifications (improved diet, physical activities, reducing smoking), drug therapy options and
algorithms have rapidly evolved. The recommended starting pharmacological treatment is
metformin, following combination therapy or other alternatives in cases of metformin
inefficiency, intolerance, or specific patient-related factors. Other commonly used antidiabetic
medications include insulin, sulfonylureas, sodium-glucose co-transporter-2 (SGLT-2)
inhibitors, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase 4 (DPP-4)
inhibitors, and thiazolidinediones, with each of them having specific efficacy levels, effects on
cardiovascular system, weight, and risks for side effects (Quattrocchi et al. 2020).
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1.4.2. Metformin

Metformin (1,1-dimethylbiguanide) is the first choice antidiabetic agent for the treatment of
T2D, characterized by low costs and high safety. It has been widely used in clinical practice for
more than 60 years and has clear benefits to not only glucose metabolism but diabetes
complications as well. However, despite the long history of use and the high research interest,
the mechanisms of metformin’s action are still not fully understood (Rena et al. 2017, Lv and
Guo 2020).

More interestingly, a number of studies have given insight into other therapeutic targets of
metformin outside T2D therapy, such as obesity, polycystic ovary syndrome (PCOS), cancer,
neurodegenerative, liver, cardiovascular, renal diseases, and even aging (Lv and Guo 2020).
The main currently known underlying mechanisms for these diverse targets have been

summarized in Figure 4.
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Figure 4. Summary of the major underlying mechanisms for metformin action in various
diseases. FGF21 - fibroblast growth factor 21; PI3K — phosphatidylinositol-3-kinase; AKT -
protein kinase B; mTOR - mammalian target of rapamycin; ACC - acetyl-CoA carboxylase;
SREBP1c - sterol-regulatory-element-binding protein 1c; LDL - low-density lipoprotein;
AMPK - adenosine 5'- monophosphate - activated protein kinase; SHP - small heterodimer
partner; CBP - CREB binding protein; mTORC1 - mammalian target of rapamycin complex I;
GDP - glycerol-3-phosphate dehydrogenase; FBP1 - fructose-1, 6-bisphosphatase-1; GLP1 -
glucagon-like-peptide-1; GUDCA - glycoursodexoycholic acid; GLUT4 - glucose transporter
4; ROS - reactive oxygen species; NF-kB - nuclear factor-xB; p53 - tumor protein p53. Adapted
from (Lv and Guo 2020).
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The primary antidiabetic action of metformin is through the suppression of hepatic glucose
production by 25-40% (Hundal et al. 2000) and this effect is accompanied by insulin-stimulated
systemic glucose disposal (predominantly in skeletal muscle, mediated through glucose
transporter 4 (GLUT4)). Moreover, metformin increases peripheral glucose utilization by the
intestine, and, interestingly, it has been shown that the concentration of metformin in the
jejunum reaches 30 — 300 times higher values than in the plasma (Bailey et al. 2008). Other
effects of metformin include an increase in insulin signalling, a decrease in fatty acid and
triglyceride synthesis, and an increase in fatty acid pB-oxidation (Gong et al. 2012). It is
important to note that metformin is not metabolized and, therefore, is excreted unchanged in

faeces and urine (Graham et al. 2011).

Metformin’s anti-hyperglycaemic effects are mostly exerted through AMP-activated protein
kinase (AMPK)-dependent or AMPK-independent pathways. Mitochondria is characterized as
one of the main molecular targets for metformin’s action. Specifically, the inhibition of the
mitochondrial respiratory chain Complex I (MRCC1) is widely studied. This results in
suppressed ATP production and increased cellular AMP:ATP and ADP:ATP ratios, which
further activate the cellular energy sensor AMPK (Vial et al. 2019). In addition, recently it has
been shown that metformin could activate AMPK via the lysosomal pathway — the
AXIN/LKB1-v-ATPase-Ragulator pathway (Zhang et al. 2016). AMPK activation further leads
to activation of small heterodimer partner (SHP), inhibition of phosphorylation of CREB (cyclic
AMP response element binding protein) binding protein (CBP), thus suppressing the expression
of gluconeogenic genes (Kim et al. 2008, He et al. 2009). Moreover, AMPK-dependent
inhibition of the mammalian target of rapamycin complex I (mMTORC1) as well results in

suppression of gluconeogenesis (Howell et al. 2017).

As for AMPK-independent metformin effects in T2D therapy, during the previous years, the
inhibition of mitochondrial glycerophosphate dehydrogenase (mMGDP) has been shown to be a
significant contributor to metformin’s glucose-lowering effects (Madiraju et al. 2014).
However, the relative contributions of inhibition of MRCC1 and mGDP in metformin effects
need to be clarified (Rena et al. 2017). Another recent discovery is the metformin’s ability to
directly target fructose-1,6-bisphosphatase-1 (FBP1), thus inhibiting hepatic glucose
production (Hunter et al. 2018).

In addition to a number of effects in the liver and muscles, metformin stimulates GLP-1 release
in the intestine (both fasting and postprandial) by the enteroendocrine L cells, thus enhancing
insulin secretion (Mannucci et al. 2004, Holst 2007, Bahne et al. 2018). Moreover, the gut

microbiota has been characterized and is continuously being studied as one of the central targets
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and mediators for metformin effects in T2D and other diseases, as well as a significant

contributor to both efficacy and tolerance of metformin (McCreight et al. 2016).

1.4.3. Metformin pharmacodynamics using multi-omics

Pharmacodynamics is the study of a drug's molecular, biochemical, and physiologic effects or
actions (Marino and Zito 2020). The advances in technological opportunities have supported
the rapid development of medication pharmacodynamics studies with a recent focus on the
application ~ of  various —omics based  approaches.  Therefore, a new
direction — pharmaco-omics — has been emerged and it offers new promises for the
development of optimized and individualized treatment strategies (Weinshilboum and Wang
2017). In addition, since 2010 a more specific field focusing on interactions between drugs and
the microbiome has been defined as “pharmacomicrobiomics”, which investigates the multiple
levels of variation represented by the microbiome components and its complexity that may have

effects on drug response and disposition (Rizkallah et al. 2010, Doestzada et al. 2018).

A number of in vitro and animal experiments on metformin pharmacodynamics have been
implemented (Luizon et al. 2016, Udhane et al. 2017, Meng et al. 2020), moreover, the data in
human studies have accumulated significantly as well. Metformin effects on the human body
have been widely studied with a focus on such —omics as genomics (Zhou et al. 2016),
metabolomics (Safai et al. 2018), transcriptomics (Ustinova et al. 2019, Ustinova et al. 2020),
epigenomics (Garcia-Calzon et al. 2017, Zhong et al. 2017, Garcia-Calzon et al. 2020),
microbiomics (Forslund et al. 2015, Wu et al. 2017, Vallianou et al. 2019), and with a

combination of these approaches.

Human gut microbiome studies regarding the metformin effects present a wide range of results,
which are often different from animal studies and even present inconsistencies across the human
study populations, however, some common effects have been clarified (Zhang and Hu 2020).
It has been shown that metformin therapy reverses many of the bacterial changes occurring
during T2D. The most common change in microbiota reported is the metformin-induced
increase in abundance of Akkermansia muciniphila and other SCFA-producing bacteria such as
Bifidobacterium, Lactobacillus, Blautia (de la Cuesta-Zuluaga et al. 2017, Wu et al. 2017). The
increased ability of microbiota to produce SCFAs has been stated as one of the central
mechanisms behind metformin’s beneficial effects in the gut as well as at a systemic level.
Moreover, the probiotic effects of Akkermansia muciniphila includes maintaining the integrity

of the intestinal mucosa and regulation of host metabolism and immune responses, therefore,
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the abundance of this species has been negatively correlated with obesity, diabetes,
cardiovascular and immune diseases (Cani and de Vos 2017, Zhang et al. 2019). In addition,
several studies in obese individuals or T2D patients, as well as healthy individuals have shown
significant increase in abundance of Escherichia spp. (Forslund et al. 2015, Wu et al. 2017,
Bryrup et al. 2019, Ejtahed et al. 2019), reduction in abundance of Intestinibacter spp.
(Forslund et al. 2015, Wu et al. 2017, Bryrup et al. 2019), and changes in proportions of various
Bacteroides species during metformin therapy (Paley et al. 2017, Sun et al. 2018).

Regarding the mechanisms behind the interaction between metformin and the habitants of
microbiota, in vitro studies have demonstrated direct metformin effects on promoting the
growth of such bacteria as Akkermansia muciniphila and Bifidobacterium adolescentis, and
other interaction mechanisms have been proposed to be mediated through changes in
bacteria-to-bacteria interactions or physiological/environmental conditions (Wu et al. 2017).
As another significant mechanism of interaction the metformin’s ability to impact the bile acid
pool through changing the microbiome composition has been demonstrated. A recent study in
T2D patients showed that metformin reduces the abundance of Bacteroides fragilis and its bile
salt hydrolase activity, therefore, increasing levels of the bile acid glycoursodeoxycholic acid
(GUDCA). In such way metformin acts through B. fragilis—-GUDCA-intestinal FXR (farnesoid
X receptor) axis which results in AMPK-independent improvement of glucose intolerance and

insulin resistance (Sun et al. 2018).

Studies about metformin interaction with DNA methylation profile have been implemented
only recently. It has been shown that metformin induce both hypomethylation and
hypermethylation at the promoters of different genes. The results suggest that metformin can
modify DNA methylation, possibly via regulation of the H19/SAHH axis (Zhong et al. 2017)
or by AMPK-mediated inhibition of DNMT1 (Marin et al. 2017). Also, AMPK mediated effects
on the global levels of 5-hydroxymethylcytosine (5hmC) has been proven, as metformin has a
significant impact on the glucose-AMPK-TET2-5hmC axis, therefore, increasing the global
5hmC levels and proposing one of the key mechanisms for metformin’s cancer preventing
actions (Wu et al. 2018). Interestingly, reduced DNA methylation levels of transporter genes
SLC22A1, SLC22A3, and SLC47A1 was observed in liver tissue of T2D patients on metformin
therapy compared to subjects without antidiabetic treatment (Garcia-Calzon et al. 2017).
However, the specific mechanisms and functional consequences of metformin’s effects on
DNA methylation and further on gene expression in still not fuly understood (Bridgeman et al.
2018).
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2. MATERIALS AND METHODS

2.1. Study design and sample collection

2.1.1. Summary of all three publications

The study design describing the analysed cohorts of healthy individuals and newly-diagnosed

Metformin 850mg (2x/day) I

T2D patients is summarized in figure 5.
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Figure 5. Visual representation of the study design summarizing cohorts analysed in three
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publications. Samples and visits were coded as follows: MO — before starting metformin
therapy; M10h — 10 hours after first metformin dose (but before the second dose);
M24h — 24 hours after starting metformin therapy; M7d — after 7 days long metformin therapy;
M3m - after three months of metformin therapy; BA - blood sample for

biochemical/haematological analysis.

Study participants were recruited through the Genome Database of Latvian Population (Rovite
et al. 2018). All samples and data from healthy individuals were obtained in the framework of

a clinical trial (registration number: 2016-001092-74 (www.clinicaltrialsregister.eu)). The

newly-diagnosed T2D patients were recruited within the framework or OPTIMED study.
Informed consent was obtained from all participants at the beginning of the study.
Inclusion/exclusion criteria for both cohorts are summarized in Apendix 1. The study was
carried out in accordance with the principles of the Declaration of Helsinki, and approved by
the Central Medical Ethics Committee (1/19-10-22) and State Agency of Medicines of the
Republic of Latvia (17-1723).
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Blood samples for hematological and biochemical analyses were collected in the fasting state
1-3 days before starting metformin administration. Data were used to evaluate significant
health indicators for kidney and liver function, as well as other criteria characterizing the
suitability of individuals for medicament therapy. All hematological and biochemical analyses
were conducted in the same certified clinical laboratory. For the patient cohort, a repeated
biochemical/hematological analysis was performed three months later (follow-up coded as a

time point M3m).

2.1.2. Publication I: Association of metformin administration with gut microbiome
dysbiosis in healthy volunteers

Eighteen healthy volunteers of Caucasian origin were included in this study. Participants took
metformin (850 mg tablets; Berlin-Chemie AG, Germany) twice daily during meals with a glass
of water for a period of 7 days. Diet, physical activities, and side effects were registered daily
in specific questionnaires during the whole study period. Dietary data were registered using a
7-day food record during the week of metformin use, and an additional 2-day food record was
filled before starting the use of metformin.

Stool samples in two aliquots were collected at three time points: before starting metformin
treatment (MO) and 24 hours (M24h) and 7 days (M7d) after the first intake of metformin. After
collection, faecal samples were stored at room temperature until delivery to the laboratory, and
frozen at —80°C as soon as possible but not later than within 24 hours of collection. Sample
collection, storage, and handling were done by following the developed standard operating
procedures with the aim to minimize unnecessary freezing and thawing cycles and to reduce

the possibility of artefacts caused by temporary storage at room temperature.

2.1.3. Publication Il: Significantly altered peripheral blood cell DNA methylation profile
as a result of immediate effect of metformin use in healthy individuals

The study group involved 12 healthy metformin-naive voluntary individuals. The research

subjects received an 850-mg metformin tablet (Berlin-Chemie AG) twice a day for a week.

Whole blood samples for methylation analysis were collected by certified medical personnel at

three time points: (1) before starting metformin therapy (morning, fasting state) — MO, (2) 10h

after first metformin intake, before the second tablet (evening) — M10h, and (3) after 7 days

of metformin administration (morning, fasting state) — M7d.

24



2.1.4. Publication I11: Baseline gut microbiome composition predicts metformin therapy
short term efficacy in newly diagnosed type 2 diabetes patients

The study involved two longitudinal cohorts of participants: OPTIMED cohort of

newly-diagnosed T2D patients (N=50) and a cohort of healthy individuals (N=35). Healthy

individuals received 850mg metformin twice a day for 7 days, while T2D patients were treated

with metformin monotherapy according to therapy prescribed by an endocrinologist (individual

dosage, titration, etc.).

Stool samples were collected in two aliquots at pre-determined time points during the study,
depending on the design for each study cohort. Samples were coded as follows: MO — before
metformin treatment, M24h — 24 hours after the first metformin dose (only in the study group
of healthy individuals), and M7d — 7 days after starting the therapy. All samples were collected
by participants at home, using sterile collection tubes without buffer (collection date and time
were marked). Within 24 hours participants delivered samples to the closest clinical or research

laboratory where samples were frozen at —80°C (delivery time was registered).

The information on  anthropometric  measurements, dietary  habits, and
biochemical/hematological analyses was obtained before starting metformin administration.
Healthy volunteers registered their diet during the metformin administration, as well as any
observed SE in special questionnaires. Patients of OPTIMED cohort were interviewed via
phone by their endocrinologists after the first week of metformin therapy to register possible
metformin-induced SE.

For the analysis of gut microbiome mediated metformin’s therapy efficacy patients were
divided into two subgroups based on the observed reduction of HbA1c during three months long
metformin therapy. Patients were defined as Responders if their HbA1¢ levels had decreased
by >12.6 mmol/mol (1%), or Non-responders if their HbAi. levels had decreased
by <12.6 mmol/mol (1%). This threshold has been previously established within a systematic
review comparing three months long metformin therapy with placebo and used in other studies
as well (Sherifali et al. 2010, Kashi et al. 2016).

2.2. lIsolation of DNA
2.2.1. Microbial DNA

Microbial DNA was extracted from frozen stool samples using FastDNA Spin Kit for Soil
(MP Biomedicals, Santa Ana, CA, USA) and FastPrep Instrument according to the instructions

of the manufacturer.
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2.2.2. Human DNA

DNA isolation from whole blood samples collected from healthy participants was performed
using the phenol-chloroform extraction method by Genome Database of Latvian Population as
described before (Rovite et al. 2018).

2.3.  Gut microbiome analysis

2.3.1. 16S rRNA amplicon library preparation and massive parallel sequencing

For each microbial DNA sample, the V3 region of the 16S rRNA gene was amplified using the
Probio_Uni/Probio_Rev primer set (Milani et al. 2013). The amplified PCR products were
purified using NucleoMag magnetic beads (Macherey-Nagel, Du"ren, Germany), and their
quantity and quality were evaluated with the Agilent 2100 Bioanalyzer DNA High Sensitivity
chip (Agilent Technologies, Santa Clara, CA, USA). Sequencing of the amplicon libraries was
performed with lon Torrent Personal Genome Machine (PGM) System (Thermo Fisher
Scientific; lon 318 Chip Kit v2, lon PGM Hi-Q Sequencing Kit, minimal sequencing depth per
sample — 250 000 reads) according to the instructions of the manufacturer.

2.3.2. Shotgun metagenome library preparation and massive parallel sequencing
Shotgun metagenomic library preparation was done by fragmenting the microbial DNA at
300 bp (Covaris) and following the manual of the lon Plus Fragment Library kit (ThermoFisher
Scientific, USA). That included the following sample processing steps: (1) end repair after the
physical fragmentation and clean-up with NucleoMag magnetic beads (Macherey-Nagel,
Diiren, Germany), (2) adaptor ligation, nick repair, and clean-up, (3) size selection in the range
360 — 440 bp, performed with BluePippin DNA 2% Dye-Free Agarose gel cassette with
V1 Marker, and clean-up, and (4) amplification and clean-up. Samples were sequenced using
lon Proton sequencer with lon PI Chip Kit v3 (>3 000 000 reads/sample).

2.4. DNA methylation analysis and RNA expression validation

The extracted human DNA samples were quantified with Qubit® 2.0 Fluorometer using Qubit
dsDNA HS Assay Kit (TherfmoFisher Scientific, USA). For the bisulfite conversion, the EZ
DNA Methylation-Gold TM kit (Zymo research, USA) was used according to the

manufacturer’s instructions. DNA methylation was determined by the Illumina Infinium
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HumanMethylation450 BeadChip Array (Illumina, USA), using 500 ng of each bisulfite-treated
DNA sample.

Total RNA for validation analysis was isolated from whole blood samples using PerfectPure
RNA Blood Kit (5Prime GmbH, Ham- burg, Germany). Ribosomal RNS depletion was done
with Low Input RiboMinus ™ Eukaryote System v2 (Thermo Fisher Scientific, USA). For
cDNA library preparation, we used lon Total RNA-Seq Kit v2 (Thermo Fisher Scientific,
USA), and sequencing was performed on the Ion Proton ™ System and Ion PI ™ Chip (Thermo
Fisher Scientific, USA).

2.5. Bioinformatical and statistical analyses
2.5.1. Publication I: Association of metformin administration with gut microbiome
dysbiosis in healthy volunteers

Raw sequence data were processed using mothur software v.1.39.1 (Schloss et al. 2009).
Analyses were done using a modified version of the publicly accessible MiSeq SOP. In the
sequence filtering, step reads were removed if they were 75 bp or shorter, or contained
ambiguous bases or homopolymers longer than eight bases. A representative sequence from
each cluster was chosen and used to identify taxonomic groups from the SILVA
database v.123 (Quast et al. 2013); the flip parameter was set as true. Chimeric sequences and
sequences containing potential sequencing errors were removed using UCHIME (Edgar et al.
2011) or pre-clustering (threshold = 2), respectively. Operational taxonomic units were defined
at >99 % sequence identity, using the OptiClust algorithm. Reads were classified using the

naive Bayesian classifier (Wang et al. 2007).

The correlation between gut microbiome taxa and the defined food groups was evaluated with
Spearman’s correlation analysis and the results were adjusted for multiple testing using the

Benjamini—-Hochberg method.

Statistical analyses were performed on taxonomic units found in at least 50% of samples with
R program v.3.2.2 packages edgeR, limma, phyloseq, DESeq, vegan (adjustment for multiple
testing by Benjamini—-Hochberg method), and graphics were created with package ggplot2.
Sample normalization was done as implemented in edgeR (calcNormFactors function) or the
relative abundances were used if necessary. Additional analysis to detect differential abundance
was performed using the Linear discriminant analysis Effect Size (LEfSe) method (Segata et
al. 2011) integrated in the Galaxy framework. In particular, the non-parametric Kruskal-Wallis
sum-rank test was used to detect differentially abundant taxa, and Linear Discriminant Analysis

(LDA) was used to estimate the effect size. The genus level alpha diversity of each sample was
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calculated by the Shannon index (Shannon 1948), beta diversity across samples was evaluated
with non-metric multidimensional scaling (NMDS) using Bray—Curtis distances. Permutational
multivariate analysis of variance (PERMANOVA) was used (permutations = 9999) for
comparing the analyzed groups of ordinations. Statistical significance for changes of Shannon
index and for taxonomic units between specific sample groups was evaluated by Wilcoxon

signed-rank test.

2.5.2. Publication Il: Significantly altered peripheral blood cell DNA methylation profile
as a result of immediate effect of metformin use in healthy individuals

For methylation data analysis, IDAT files were imported using R package minfi (Aryee et al.

2014). Cell counts were estimated from methylation data using Houseman algorithm

(Houseman et al. 2012) implemented in minfi.

Data preprocessing and normalization was done using Enmix (Xu et al. 2016). Briefly, probes
with detection p-value >0.05 and probes with a multimodal distribution were filtered out.
Background correction was performed with the function preprocessENmix using unused color
channels as a background parameter estimate. Probe intensities were normalized using a
guantile normalization method and probe type bias was adjusted using the Regression on
Correlated Probes (RCP) method (Niu et al. 2016). Probes having a SNP or single base
extension annotation in CpG site were excluded. Due to interrupted use of metformin by one of
the study subjects, the sample taken after 1 week of metformin administration for that particular

subject was discarded.

Batch effect was removed from data using slide and subsequently subjects as covariates as they
showed the strongest influence on the probe methylation variability. Batch effect was removed
using ComBat (Johnson et al. 2007) wrapped in the Enmix package. Differentially methylated
probes between time points were identified using limma (Ritchie et al. 2015) on ComBat
preprocessed data, adjusting for the following cell types estimated by minfi: CD8T, CD4T, NK
and Gran. Inflation factor of p-value distribution was estimated using R package GenABEL
(Aulchenko et al. 2007). All analyses were performed using R (3.3.3).

Statistically significant differentially methylated regions (DMRs) were identified with

DMRcate software (Peters et al. 2015), FDR <0.05. Threshold for minimum number of probes

within the region was set to three. DMRSs were estimated from methylation M-values using the

individual CpG site significance threshold at FDR <0.05. The interval between individual

significant CpG sites had to be less than 1000 bp in the regions. The bandwidth scaling factor
28



was set as suggested in the manual (C=2). Regulatory information from Ensembl 91 regulation
resources was added to identified differentially methylated probes (DMPs) and DMRs using
Ensembl Regulation API (Zerbino et al. 2016).

Pathway enrichment analysis was performed with the IPA tool (Kramer et al. 2014).
Information about enriched canonical pathways and networks was obtained performing the core
analysis on all significant DMPs with FDR <0.05.

For RNA-seq data analysis, reads were mapped against human reference genome GRCh38 and
read quantification was performed using STAR (2.5.3a) (Dobin et al. 2013). Obtained per-gene
read counts were normalized using trimmed mean normalization and counts per million (CPM)
values were calculated with edgeR (Robinson et al. 2010). ComBat (Johnson et al. 2007)
implemented in R package sva (Leek et al. 2012) was used to adjust CPM values for subject
specific effects and the Spearman correlation was estimated for the adjusted CPM values and
the beta values for 11 selected CpG sites with SciPy (Olivier et al. 2002).

2.5.3. Publication I11: Baseline gut microbiome composition predicts metformin therapy
Raw data from the sequencer were processed as follows: adapters were removed with
cutadapt 1.16, sequences were trimmed with Trimmomatic v0.38 (5bp window, quality
threshold = 20, average quality = 20, minimal length = 75), mapping was performed with
bowtie2-2.3.5.1 using Homo sapiens genome Ensembl GRCh38 release-90 reference to remove

host DNA sequences.

Composition and functionality from the remaining sequences of gut microbiome samples were
analyzed using the HUMANNZ2 pipeline (Franzosa et al. 2018), and taxonomic data were
obtained with MetaPhlAn2 (Truong et al. 2015), analyses were performed with default
parameters. Species level alpha diversity was calculated as the exponential of the Shannon
index resulting in the effective number of species, and beta diversity was analyzed with NMDS
using Bray-Curtis distances. Results of beta diversity were compared between subgroups with
PERMANOVA. To explain the effects of environmental variables, adonis function (vegan
package) was used to test the significance of individual variables, and complemented with
Canonical Correspondence Analysis and visualized with biplot using R software (version 3.6.0)
(Torondel et al. 2016). Evaluation of variables of interest was performed in two cases: (1) for
all samples — both groups, baseline and follow up — to evaluate the contribution of age, gender
and BMI; (2) only for T2D patient samples — to evaluate possible effect of the different
prescribed metformin doses. Changes during metformin therapy and differences between study
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subgroups within the taxonomic and functional profiles were evaluated by R package limma
using voom transformation with sample-specific quality weights (further referred as
limma+voom). All tests were adjusted by age, gender, and BMI, false discovery rate (FDR)
adjusted values were used. T2D group data were adjusted by baseline HbA1¢ levels. Only taxa
present in >10% of samples were included. To compare metformin therapy response groups,
the corrected data matrix was used for sparse Partial least squares discriminant
analysis (SPLS-DA), a supervised model to reveal microbiota variation between groups. Key
taxonomic groups responsible for the differential microbiota structure were detected using the
“splsda” function in the R package “mix Omics” (Le Cao et al. 2011), tuning of sPLS-DA
parameters was performed to determine the main taxonomic groups that enable discrimination
of the subgroups with the lowest possible error rate. Taxonomic groups with variable
importance in projection (VIP) > 1.5 were considered to be important contributors to the model.
Additional cellular function enrichment analysis and visualization of functional profile data
were performed using the Omics Dashboard integrated into MetaCyc (Paley et al. 2017).
Statistical significance for changes/differences of the Shannon index and other analyzed
parameters was evaluated by the Wilcoxon signed-rank test. Data normalizations were

performed as integrated into the used tools, paired comparisons were used when appropriate.
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3. RESULTS

I Association of metformin administration with gut microbiome dysbiosis in

healthy volunteers

Highlights:

1.

4.

The metformin-induced reduction of inner diversity was observed at the markedly short
time-period of 24 hours.

Individuals with side-effects had higher abundance of the opportunistic pathogen
Escherichia-Shigella spp. before starting the metformin, and the inner diversity in the
M7d sample compared to M24h sample increased only in the groups with side effects
together with the abundance of Escherichia-Shigella spp.

Metformin administration induced reduction in abundance of the family
Peptostreptococcaceae and three genera within it.

We did not observe a significant increase in abundance of Akkermansia spp. after
correction.
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Abstract

Background

Metformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advan-
tages, metformin has variable therapeutic effects, contraindications, and side effects. Here,
for the very first time, we investigate the short-term effect of metformin on the composition of
healthy human gut microbiota.

Methods

We used an exploratory longitudinal study design in which the first sample from an individual
was the control for further samples. Eighteen healthy individuals were treated with metfor-
min (2 x 850 mg) for 7 days. Stool samples were collected at three time points: prior to
administration, 24 hours and 7 days after metformin administration. Taxonomic composition
of the gut microbiome was analyzed by massive parallel sequencing of 165 rRNA gene (V3
region).

Results

There was a significant reduction of inner diversity of gut microbiota observed already 24
hours after metformin administration. We observed an association between the severity of
gastrointestinal side effects and the increase in relative abundance of common gut opportu-
nistic pathogen Escherichia-Shigella spp. One week long treatment with metformin was
associated with a significant decrease in the families Peptostreptococcaceae and Clostridia-
ceae_1 and four genera within thase families.

Conclusions

Our results are in line with previous findings on the capability of metformin to influence gut
microbiota. However, for the first time we provide evidence that metformin has animmediate
effect on the gut microbiome in humans. It is likely that this effect results from the increase in
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abundance of opportunistic pathogens and further triggers the occurrence of side effects
associated with the observed dysbiosis. An additional randomized controlled trial would be
required in order to reach definitive conclusions, as this is an exploratory study without a pla-
cebo control arm. Our findings may be further used to create approaches that improve the
tolerability of metformin.

Introduction

Metformin is a biguanide agent that is widely used as a first-line treatment of type 2 diabetes
(T2D) [1]. Metformin has several advantages, including high safety indicators, high efficacy,
neutral or lowering effect on body mass, and cardioprotective effects [2-4], resulting in broad
indications for use over the 60 years it has been on the market. Nevertheless, metformin also
has variable therapeutic effects, contraindications, and side effects which indicate the urgent
need for a personalized approach when choosing treatment strategies [5].

It has been shown that intravenously administered metformin is less effective than its orally
administered form [6]. Furthermore, metformin reaches a 30-300 times higher concentration
in mucosa of small intestine compared to plasma, and up to 30% of the drug is eliminated
through the feces [7, 8]. In addition, a delayed-release formulation of metformin improves gly-
cemic control to the same extent as the immediate-release form despite lower systemic expo-
sure [9]. These findings have led to the hypothesis that the effects of metformin are partially
explained by its interaction with the gut microbiome. The connection between the effects of
metformin and the gut microbiome has been supported by several recent studies [10-17].
These studies suggest that the gut microbiome is involved in both the therapeutic and side
effects of the drug, yet details of this interaction remain obscure.

Current knowledge regarding the interaction between metformin and the gut microbiome
highlights that metformin reduces inner diversity of the gut microbiome in mice fed a high-fat
diet [13] and its administration increases relative abundance of Akkermansia muciniphila [10-
14]. There is also evidence that metformin increases the abundance of some other mucin
degrading and short-chain fatty acids producing genera [10], as well as opportunistic patho-
gens such as Escherichia spp. [11, 12]. Modulation of the gut microbiome is also hypothesized
to be responsible for the anti-obesity action of metformin, not only in T2D patients but in pre-
diabetic populations as well [18].

However, as pointed out previously, many of the earlier studies of the gut microbiome did
not control for treatment regimens in T2D patients, subsequently leading to divergent conclu-
sions [11]. Ttappears plausible that some of the potential clinical effects, e.g., metabolic control
of longevity [19], anticancer properties [20], and testosterone lowering in patients with poly-
cystic ovary syndrome [21] occur through alterations in the microbiome. Therefore, in this
exploratory longitudinal study we evaluated the short-term effect of oral metformin adminis-
tration on the human gut microbiome composition and diversity in healthy individuals, and
the possible connection between these changes and metformin-related gastrointestinal (GI)
side effects.

Materials and methods
Study design

Eighteen healthy volunteers of Caucasian origin were included in this exploratory study
through the Genome Database of Latvian Population [22] as a part of an ongoing clinical trial
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(50 individuals to be included in total), by assessing the 25 individuals available at the time.
Baseline characteristics and registered clinical parameters are shown in Table 1. Major exclu-
sion criteria were as follows: (1) use (during the past two months) of antibiotics, immunosup-
pressive drugs, corticosteroids, proton pump inhibitors, or pharmaceutical-grade probiotics;
(2) oncological, autoimmune, or chronic gastrointestinal tract diseases, or T2D; (3) diarrhea in
the past week; and (4) use of any other medications that are not compatible with metformin. A
full list of inclusion/exclusion criteria can be found in the S1 Text. All participants, after full
explanation of the purpose and nature of all procedures used, gave signed informed consent
containing detailed information on the project (Fig 1). The study was carried out in accor-
dance with the Declaration of Helsinki, and approved by the Central Medical Fthics Commit-
tee (1/16-05-12) and State Agency of Medicines of the Republic of Latvia (17-1723), clinical
trial registration number: 2016-001092-74 (www clinicaltrialsregister.eu).

Participants took metformin (850 mg tablets; Berlin-Chemie AG, Germany) twice daily
during meals with a glass of water for a period of 7 days. Diet, physical activities, and side
effects were registered daily in special questionnaires during the whole study period. Dietary
data were registered using a 7-day food record during the week of metformin use, and an addi-
tional 2-day food record was filled before starting the use of metformin. We consulted a certi-
fied nutritionist and data from the dietary registry were divided into 11 food groups and
labeled as follows: (1) milk and dairy products, (2) vegetables, (3) fruits, (4) meat and its prod-
ucts, (5) fish, (6) croppers, (7) nuts and seeds, (8) fat, (9) snacks, (10) sweetened drinks, and
(11) alcohol. The cumulative summary characterizing the 7-day food records for each food
group was expressed as a percentage from the combined amount of food consumption during
the metformin treatment (S2 Table).

The primary endpoint of this study was the detection of significant changes in taxonomical
composition of the gut microbiome. The secondary endpoint was the possible correlation
between specific taxonomic units and the development of GI side effects. Compliance with the
study was ensured by thorough explanation and detailed written instructions of the study pro-
tocol. Unused tablets were returned to the principal investigator.

All individuals were concurrently involved in an ongoing methylation profile analysis in
leukocytes from whole blood samples taken at three specific time points during the study
(unpublished data).

Sample collection

Blood samples for hematological and biochemical analyses were collected in the fasting state
1-3 days before starting metformin administration. Data were used to evaluate significant
health indicators for kidney and liver function, as well as other criteria characterizing the

Table 1. Characteristics of the study group.

Characteristic Value
Females/Males, n (%) 11 (61.1%)/ 7 (38.9%)
Age (years), median [IQR] 25.5[7.5]

BMI, median [IQR] 24.2 [3.5]

ALAT (U/1), median [IQR] 20.5[10.8]
Creatinine (umol/l), median [IQR] 71.5[13.5]

Fasting plasma glucose (inmol/l), median [IQR] 5.1 [0.5]

ALAT-alanine aminotransferase, BMI-body mass index, IQR-interquartile range

https://doi.org/10.1371/journal.pone.0204317 1001
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CONSORT 2010 Flow Diagram
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side effects)
L
Analysed (n=18)

+ Excluded from analysis (give reasons) (n=0)

Lost to follow-up (give reasons) (n=0)

Fig 1. CONSORT flowchart of the open-label trial.
https://doi.org/10.1371/journal.pone.0204317.5001

suitability of individuals for medicament therapy. All hematological and biochemical analyses
were conducted in the same certified clinical laboratory.

Stool samples in two aliquots were collected at three time points: before starting metformin
treatment (MO0) and 24 hours (M24h) and 7 days (M7d) after the first intake of metformin.
After collection, fecal samples were stored at room temperature until delivery to the laboratory,
and frozen at —80°C as soon as possible but not later than within 24 hours of collection [23,
24]. Sample collection, storage and handling were done by following our developed standard
operation procedures with the aim to minimize unnecessary freezing and thawing cycles and
to reduce the possibility of artefacts caused by temporary storage at room temperature.

Bacterial DNA preparation and sequencing analysis

Microbial DNA was extracted from frozen stool samples using FastDNA Spin Kit for Soil (MP
Biomedicals, Santa Ana, CA, USA) and FastPrep Instrument according to the instructions of
the manufacturer. DNA concentrations of the extracted samples were evaluated using Qubit
2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), and the integrity of the
extracted microbial DNA was validated by agarose gel electrophoresis.
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For each sample, the V3 region of the 165 rRNA gene was amplified using the Probio_Uni/
Probio_Rev primer set [25]. Each primer contained IonXpress adapter sequence and a unique
barcode sequence. The amplified PCR products were purified using NucleoMag magnetic
beads (Macherey-Nagel, Diiren, Germany), and their quantity and quality were evaluated with
the Agilent 2100 Bioanalyzer DNA High Sensitivity chip (Agilent Technologies, Santa Clara,
CA, USA). Sequencing of the amplicon libraries was performed with Ton Torrent Personal
Genome Machine (PGM) System (Thermo Fisher Scientific; Ion 318 Chip Kit v2, Ton PGM
Hi-Q Sequencing Kit, minimal sequencing depth per sample- 250 000 reads) according to the
instructions of the manufacturer.

Preprocessing and statistical methods

Raw sequence data were processed using mothur software v.1.39.1 [26]. Analyses were done
using a modified version of the publicly accessible MiSeq SOP. In the sequence filtering, step
reads were removed if they were 75 bp or shorter, or contained ambiguous bases or homopoly-
mers longer than eight bases. A representative sequence from each cluster was chosen and
used to identify taxonomic groups from the SILVA database v.123 [27]; the flip parameter was
set as true. Chimeric sequences and sequences containing potential sequencing errors were
removed using UCHIME [28] or pre-clustering (threshold = 2), respectively. Operational taxo-
nomic units were defined at >99% sequence identity, using the OptiClust algorithm. Reads
were classified using the naive Bayesian classifier [29].

The correlation between gut microbiome taxa and the defined food groups was evaluated
with Spearman’s correlation analysis and the results were adjusted for multiple testing using
the Benjamini-Hochberg method.

Statistical analyses were performed on taxonomic units found in at least 50% of samples
with R program v.3.2.2 packages edgeR, limma, phyloseq, DESeq, vegan (adjustment for multi-
ple testing by Benjamini-Hochberg method), and graphics were created with package ggplot2.
Sample normalization was done as implemented in edgeR (calcNormFactors function) or the
relative abundances were used if necessary. Additional analysis to detect differential abun-
dance was performed using the Linear discriminant analysis Effect Size (LEfSe) method [30]
integrated in the Galaxy framework. In particular, the non-parametric Kruskal-Wallis sum-
rank test was used to detect differentially abundant taxa, and Linear Discriminant Analysis
(LDA) was used to estimate the effect size. The genus level alpha diversity of each sample was
calculated by the Shannon index [31], beta diversity across samples was evaluated with non-
metric multidimensional scaling (NMDS) using Bray—Curtis distances. Permutational multi-
variate analysis of variance (PERMANOVA) was used (permutations = 9999) for comparing
the analyzed groups of ordinations. Statistical significance for changes of Shannon index and
for taxonomic units between specific sample groups was evaluated by Wilcoxon signed-rank
test.

Results
Main characteristics of the samples

In total 53 stool samples were obtained from 18 healthy individuals. All characteristics de-
picted in Table 1, except for age and ALAT, corresponded to the Gaussian distribution. One
participant withdrew from the trial at the fifth day of metformin administration due to severe
GI side effects. The stool sample from this individual was collected after five days long metfor-
min administration, and during the analysis it showed high similarity to all other M7d sam-
ples, so it was further analyzed together with this group.
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Fig 2. NMDS plots representing diversity between samples at genus level based on Bray-Curtis distances. (A)
Comparison between all sample groups. (B) Comparison between MO sample and samples during metformin

administration (M24h + M7d). Ellipses represent the 95% confidence interval surrounding each group of samples.
Different symbols represent participants of the study.

https://doi.org/10.1371/journal.pone.0204317.g002

After evaluation of registered side effects, we divided individuals into three groups accord-

ing to the severity of GI side effects observed during the metformin administration: (1) no side

effects (n = 3); (2) mild side effects defined by meteorism, stomach ache, nausea, and loss of

appetite (n = 6); and (3) severe side effects defined by loose stools 1-3 times a day, diarrhea,

and vomiting (n = 9). Only four individuals had loose stools (1-2 times per day) on day 1 of
the study. The average time of occurrence for severe side effects was the day 3 of treatment.
Full description on the registered adverse events can be found in 51 Table.

To evaluate the general differences in gut microbiota between the control sample and the
samples taken after metformin administration we performed ordination analysis (Fig 2A and
2B) based on Bray-Curtis distances. As expected, gut microbiome communities were specific
to each individual (PERMANOVA: R? = 0.74, p = 0.001) (S1 Fig). Thus, for further compari-
son of ordinations we used each individual as a nested factor. The analysis did not show any

significant difference between the three groups of samples as defined by time points (MO,
M24h, and M7d) (PERMANOVA: R* = 0.028, p = 0.078). Merging together both of the sample
groups collected during and after metformin administration (M24h and M7d) and compari-
son with the control sample (M0) revealed a significant difference (PERMANOVA: R* =

0.019, p = 0.036).

Metformin reduces inner diversity of the gut microbiome

Comparing the Shannon index between the groups (Fig 3) we found that metformin therapy
significantly reduces inner diversity of the gut microbiome immediately after the first two or
three doses of metformin. After 7 days of metformin administration the inner diversity of the
gut microbiome in study participants slightly increased, but was still significantly lower than

before the use of metformin.

Changes in abundance of opportunistic pathogens in groups with different

severity of GI side effects

To determine if the reduced inner diversity of the microbiome was associated with further gut
microbiome dysbiosis, we analyzed changes in the abundance of common gut opportunistic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204317  September 27, 2018
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Fig 3. Alpha diversity changes during metformin therapy, evaluated at different time points. Samples marked as
follows: MO—Dbefore starting metformin treatment; M24h - 24 hours after first intake of metformin; M7d - after 7 days
treatment with metformin. Violin plot characterizing Shannon indexes combines boxplots, representing the median
value and interquartile ranges, with kernel density plots.

https://doi.org/10.1371/journal.pone.0204317.g003

pathogen Escherichia-Shigella spp. We used the Wilcoxon-rank test for targeted analysis of possi-
ble changes in the relative abundance of Escherichia-Shigella genus comparing the three time
points. There was no significant changes observed between the M0 (MED = 0.03%; IQR = 0.37%)
and M24h ((MED = 0.05%; IQR = 0.14%) or M7d (MED = 0.46%; IQR = 1.04%). The relative
abundance of these opportunistic pathogens was increased in the M7d sample when compared to
M24h sample.

In order to test the possible relation of these changes with observed side effects we com-
pared the changes in relative abundance of Escherichia-Shigella spp., as well as overall alpha
diversity in different GI side effect categories (Fig 4). The inner diversity in the M7d sample
compared to M24h sample increased only in groups with side effects. Thus in the group with
mild side effects the median Shannon index for M7d sample was 3.03 (IQR = 0.21) compared
to 2.97 (IQR = 0.15) in M24h sample, while in the group with severe side effects median was
2.88 (IQR = 0.66) for M7d sample compared to 2.72 (IQR = 0.42) for the M24h sample. We
also observed increased presence of Escherichia-Shigella spp. in the samples taken before met-
formin administration from the participants later experiencing mild or severe side effects with
the following median values of 0.21% (IQR = 1.57%) and 0.13% (IQR = 0.33%) respectively.
The presence of Escherichia-Shigella spp. in the group with no side effects was beyond detect-
able limits.
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Fig 4. Changes in gut microbi alpha diversity and abundance of opportunistic pathogen Escherichia-Shigella

spp. at different time points within groups defined according to severity of Gl side effects. (A) Changes in the
relative abundance of Escherichia-Shigella spp. (B) Inner diversity changes, characterized by Shannon index. Samples
marked as follows: M0—Defore starting metformin treatment; M24h - 24 hours after first intake of metformin; M7d -
after 7 days treatment with metformin. Groups defined by observed side effects: “~"no side effects (n = 3), “+” mild
side effects (n = 6), “++7 severe side effects (n = 9). Dot plots depict median, 25th percentile and 75th percentile of data
in each group. Dots beyond the bounds of the whiskers represent outliers.

https://doi.org/10.1371/journal. pone.0204317.9004

Differential abundance of taxonomic groups

To observe in-depth changes in the composition of the gut microbiome we used edgeR and
evaluated the statistical significance of differential abundance of taxonomic groups between
time points at every taxonomical level (phylum, class, order, family and genus). In total, 220
taxonomic groups presented in at least 50% of samples were tested. The main results are sum-
marized in Table 2. There were no significant changes in representation of taxonomic groups
at the phylum level at any of the contrasts between the M0, M24h, and M7d samples. One
week treatment with metformin was associated with significant decreases in the families Pep-
tostreptococcaceae and Clostridiaceae_1 and four genera within these families: Peptostreptococ-
caceqe_unclassified (family Peptostreptococcaceae), Clostridiaceae_1_unclassified (family
Clostridiaceae_1), Asaccharospora (family Peptostreptococcaceae), and Romboutsia (family Pep-
tostreptococcaceae). Comparison of the M24h and M7d samples showed significantly increased
abundance of the order Enterebacteriales, including the only family in this order—Enterobacter-
iaceae with the genus, Escherichia-Shigella.

In addition, for graphic representation of differentially abundant taxa as well as their effect
sizes and phylogenetic relationship, the LEfSe method was performed (Fig 5). This method
detected 17 differentially abundant taxonomic clades, which mainly matched with those found
with edgeR analysis.

In order to verify the findings from previous publications reporting that metformin
increased abundance of Akkermansia spp., we performed a targeted Wilcoxon-rank test. Com-
parisons between two pairs were significant: M0 vs. M7d (p = 0.03) and M24 vs. M7d
(p = 0.01) but the significance disappeared after performing the correction for multiple testing.
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Table 2. Main significant changes in taxonomic units at all taxonomic levels.

Taxonomic level

Taxonomic group

Average abundance in sample P-value [FDR"]

groups,%
MO M24h M7d MO vs. M24h M24h vs. M7d MO vs. 7d
Class Proteobacteria unclassified 0.019 0.008 0.02 0.03 [0.62]
Gammaproteobacteria 1.16 0.50 1.71 0.002 [0.05] 0,008 [0.13]
Verrucomicrobiae 0.45 0.30 1.14 0.03 [0.20]
Bacilli 1.02 0.83 1.31 0.03 [0.20] 0.04[0.17]
Epsilonproteobacteria 0.003 0.007 0.01 0.01[0.13]
Negativicutes 2.38 1.90 1.34 0.02 [0.15]
Proteobacteria_unclassified 0.02 0.008 0.02 0.02 [0.68]
Enterobacteriales 0.99 0.41 1.55 0.002 [0.04] 0.005 [0.12]
Order Verrucomicrobiales 0.45 0.30 1.14 0.03 [0.26]
Lactobacillales 1.00 0.81 1.29 0.03 [0.26] 0.04 [0.36]
Selenomonadales 2.38 1.90 1.34 0.02 [0.26]
Peptostreprococcaceae 1.17 0.93 0.23 0.001 [0.02] 4.24E-06 [0.0002]
Clostridiaceae_1 0.70 0.51 0.13 0.008 [0.12] 3.41E-05 [0.0007]
Family Enterobacteriaceae 0.99 0.41 1.55 0.001 [0.02] 0.004 [0.05]
Streptococcaceae 0.58 0.41 0.68 0.01 [0.14]
Verrucomicrobiaceae 0.45 0.30 1.13 0.03 [0.21]
Pepiostreptococcaceae_unclassified 091 0.72 0.18 0.04 [0.97] 0.0006 [0.04] 1.86E-06 [0.0002]
Clostridiaceae_1_unclassified 0.63 0.49 0.10 0.032 [0.08] 8.40E-06 [0.0005]
Asaccharospora 0.17 0.15 0.03 0.003 [0.08] 1.64E-05 [0.0006]
Romboutsia 0.09 0.06 0.02 0.002 [0.07] 2.92E-05 [0.0009]
Escherichia-Shigella 0.80 0.27 1.00 0.0006 [0.04] 0.008 [0.14]
Genus Streptococcus 0.45 0.35 0.61 0.007 [0.16] 0.02 [0.31]
Enterobacteriaceae_unclassified 0.19 0.13 0.48 0.01 [0.19] 0.004 [0.11]
Ruminiclostridium_6 0.45 0.35 0.08 0.03 [0.45] 0.006 [0.13]
Akkermansia 0.44 0.30 1.13 0.03 [0.48]
Ruminococcaceae_ UCG-008 0.02 0.03 0.04 0.01 [0.16]
Blautia 1.45 2.04 2.02 0.04 [0.52]

” Tendencies that maintained significance after false discovery rate (FDR) correction are marked in bold.

hitps://doi.org/10.1371/journal.pone.0204317.1002

This genus was present in 37 of 53 samples, but the tendency and direction of changes in abun-
dance were not consistent in all individuals for this taxa.

In conclusion, to evaluate the possible confounding effect of diet, Spearman correlation
analysis was carried out. We did not find any significant association between the changed taxa
and our defined food groups after performing the correction for multiple testing.

Discussion

In order to observe unbiased short-term effects of metformin on the gut microbiome we used
an exploratory longitudinal study design and included healthy individuals. We believe that this
design should have minimized false associations and conclusions arising from unaccounted
treatment status by metformin or other medications in T2D patients, including the unknown
true duration of T2D before diagnosis and the high interindividual variation of the gut micro-
biome. It has been recognized that, in similar time series studies, individuals can be treated as
their own controls before and during treatment [32]. In addition, the strong effect size in pre-
viously described metformin studies [12] allowed us to consider the longitudinal study design
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Fig 5. Comparison of LDA effect size of the significantly differentiating microbial taxa deduced using LefSe analysis. (A) Differences in
abundance of taxonomic groups among all three sample. LDA cutoff = 2. Differentiating feature analysis was carried out with Kruskal-Wallis
test raw p-value cutoff = 0.05. (B) Cladogram illustrating the phylogenetic relationship among the significantly differentiating gut micrebiome
taxonomic groups among the M0, M24h, and M7d samples.

https://doi.org/10.1371/joumal.pone.0204317.005
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as sufficiently powerful to achieve the goal of our study. Taking in account our results, this
study design has as well prevented any confounding effects induced by the known high inter-
individual variety of diet [33], as we did not find any significant association between the
changed taxonomic composition and data from the 7-day food record. Furthermore, there has
been an increase in the use of metformin beyond diabetes, so this research may give additional
insights into general features of the interaction between metformin and the gut microbiome,
which may be further applicable to its use across a broad range of diseases, such as Alzheimer’s
disease [34], polycystic ovary syndrome [21], various types of cancers [20], and prevention of
diabetes in individuals with prediabetic symptoms [35]. We also chose to include the first sam-
pling point 24 hours after metformin administration in order to observe the effects as soon as
possible and to avoid the potentially strong influence of diarrhea and other side effects known
to occur after metformin administration. The generally accepted incidence of metformin-
induced GI side effects is 20 - 30% [36, 37]. However, our data agreed with recent reports [38,
39], as we observed a high rate of side effects in our study (50% of study group experienced
strong and 33% experienced mild side effects). This could be explained by the rather high ini-
tial dose of metformin, or the possibility that the design of the recent studies was more feasible
for patients, which ensured higher treatment adherence and higher rate of reporting side
effects.

Qur findings that show the reduction in inner diversity of the gut microbiome during metfor-
min treatment was in line with the previously observed effects of metformin effects in mice and
rat models [13, 17]. In addition, a recent study using metagenome sequencing showed that met-
formin improves microbial gene richness among T2D patients, while metformin users generally
have lower gene richness than healthy controls have [11]. It should be noted that, in our case, the
reduction of diversity was observed at the markedly short time period of 24 hours, in the absence
of diarrhea (only four participants experienced loose stools on the day 1). The small increase in
inner diversity when comparing the M24h and M7d samples indicates the tendency of the gut
microbiome to regain its ecological equilibrium even in participants experiencing diarrhea, as
seen in the group of participants with severe side effects, in which nine people experienced loose
stools or diarrhea. Likewise, this explains the growth of opportunistic pathogens including mem-
bers from genus Escherichia-Shigella spp., which in previous studies has been associated with met-
formin treatment in T2D patients [11, 12]. Although, we cannot attribute the rapid increase of
this genus between 24-hour and 7-day time points as a direct effect of metformin, this effect could
be ensured by the trait of persistence of this genus [40] and high abilities to adapt [41]. Therefore,
it can occupy the space open due to unfavorable conditions created by yet fully unknown effect of
metformin. In other words, the reduced diversity in the gut presents Escherichia-Shigella spp. the
free niche needed to emerge in larger numbers compared to the concurrent bacterial species. The
connection between reduced alpha diversity and the further increase in the representation of
opportunistic pathogens has been described before in the context of antibiotic treatment, various
diseases and aging [11, 42-45].

The characteristic GI side effects in most cases manifest at the beginning of metformin ther-
apy and usually disappear after several weeks [46, 47]. Several species from Escherichia-Shigella
spp. have been identified as pathogens [48]. Assuming that the reason for adverse effects may
be an increase of such opportunistic pathogens from Escherichia-Shigella spp., later reduction
of adverse reactions could be associated with specific characteristics of these taxonomic
groups. Escherichia and Shigella are two closely related genera that share bioenergetic mecha-
nisms that allow them to fill a specific niche in the gut microbiome ecosystem [49]. Despite a
competitive advantage as a facultative anaerobe, the population of Escherichia coli is known to
be dependent on substrates provided by polysaccharide-degrading anaerobes [50]. Thus, the
rapid initial growth might be terminated by the lack of mono- and disaccharides caused by
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reduced abundance of anaerobic mucus-associated taxonomic groups and increased competi-
tion for the limited amount of energy substrates within the taxa. Also, T2D therapy accompa-
nying a specific diet with reduced amount of simple carbohydrates [51] may play a role in
limiting the amount of substrate. That could lead to further stabilization of the microbial eco-
system and recovery of metformin tolerance. Nevertheless, the initial side effects are the main
reason for metformin discontinuation in 5% of patients [37]. Our results show an increased
initial presence of Escherichia-Shigella spp. in the samples taken before metformin administra-
tion from the participants later experiencing side effects versus those without side effects
(Escherichia-Shigella spp. below detectable limits). Development and implementation of a test
for the presence of pathogens prior to metformin administration may allow stratification of
treatment strategies (e.g. dose reduction or use of slow release forms) in high-risk patients.

A limitation of the present approach is the fact that analysis of 165 yRNA sequencing results
merge together various Escherichia-Shigella spp. species and strains with a wide spectrum of
functions, effects, and ways of interaction [52]. Therefore, further metagenomic analysis in a
longitudinal study providing information on gene richness, composition, and metabolic path-
ways could give deeper taxonomic and functional insight into the specificity of metformin-
induced changes.

In addition, the sample collection procedure that involved temporary storage at room tem-
perature prior to freezing can be seen as a possible limitation of the study. However, it has
been shown in various studies that such approach does not significantly alter the microbiome
composition if the storage is up to 24 hours [23, 24].

Despite the fact that it is still hard to distinguish whether dysbiosis of the gut microbiome is
the cause or consequence of T2D and a specter of various other diseases, many therapeutic effects
of gut microbiome modulation have been proven already [14, 53, 54]. It has been suggested that,
despite induction of Gl associated side effects, metformin may also exert its positive effects
through its capability to modulate the gut microbiome. The strongest observable and specific
effect of metformin in our study was the reduction in abundance of the family Peptostreptococca-
ceae and three genera within it. Members of this family, in principle, have been associated with
compromised health-one of the most convincing examples being Clostridium difficile. Increased
abundance of Peptostreptococcaceae has also been associated with such conditions as non-alco-
holic fatty liver disease [55], ulcerative colitis [56], and colorectal cancer [57], as well as with
reduced lifespan [58]. In addition, reduced abundance of this family has been found in mice fed
with a low-fat diet [59] or with calorie restrictions [58]. Interestingly, both families, significantly
decreased by metformin, have been described to show similar response tendencies in various
studies. Both Peptostreptococcaceae and Clostridiaceae_1 possibly mediate the effect of eugenol
treatment on mucus production in mice [60] and may be associated with dietary protein restric-
tion induced improvement of ileal barrier function in pigs [61].

In the context of T2D or metformin therapy, the family Peptostreptococcaceae in general has
not been described before, but previous studies have found significantly reduced abundance of
one genus within it-Infestinibacter spp.-associated with metformin treatment [11, 12]. The
functional role of this genus is still unclear, as it has been defined only recently [62]. We did
not observe any statistically significant changes in the abundance of this genus that might be
explained by analysis of healthy individuals in our study group.

The possibly controversial role of these taxa could be explained by potential differences in
genera and species composition within these families between human and animal gut micro-
biomes. Overall, these changes in taxonomic units show that metformin may have beneficial
effects through modification of possibly unfavorable human gut microbiome composition.

Unlike previous studies, we did not observe a significant increase in abundance of Akker-
mansia spp. after correction. One of the reasons may be the low prevalence of this genus in our
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study group that can be explained by population, age, or disease status based differences when
comparing to other studies.

Another intriguing question is the mechanism of how metformin modifies the gut micro-
biome. Recently, it has been shown that metformin has a direct effect on some, but not all of
the gut microbiome bacteria, that was demonstrated by decreased growth in the presence of
metformin in vitro [12]. It is not yet clear whether these direct effects of metformin are suffi-
cient to explain the broad range of taxa affected in gut. Alternatively, the microbiome changes
at least in part can be the result of systemic effects of metformin on the host (e.g. altered enter-
ohepatic circulation of bile acids and salts) as suggested in McCreight et al. (2016) [7]. Our
data, however, show rapid metformin-induced effects, and thus are in favor of the direct action
of metformin, although this has to be proven using additional in vitro studies.

In conclusion, we were able to present direct evidence of effects of metformin on the gut
microbiome in humans using prospective study, and associate these changes with metformin
side effects. As this is an exploratory study without a placebo control arm, it would require
additional randomized controlled trial in order to reach definitive conclusions. Nevertheless,
our results indicate the possibility of developing a personalized approach in metformin therapy
by pre-screening gut microbiota for abundance of opportunistic pathogens, followed by
adjusted therapeutic strategies in patients with higher risk of developing side effects.
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Il Significantly altered peripheral blood cell DNA methylation profile as a

result of immediate effect of metformin use in healthy individuals

Highlights:

1.

In total, 125 significantly modified sites were discovered, and 11 differentially
methylated CpGs with the largest and most consistent changes in beta values at different
contrasts were prioritized: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4,
LOC727982, SIX3, ADAMS8, SNORD12B, and VPSS8.

Genes corresponding to the top-ranked DMPs represent the main functional groups
associated with previously described targets of metformin therapy: regulatory processes
of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegeneration.
A significant correlation between the expression levels and methylation changes of the
corresponding CpG sites were found for three genes: UPF1, MUC4, KIAA1614.

The pathway enrichment analysis revealed metformin’s association with various
pathways some of which already has been described in connection with metformin

action but not in the context of epigenetic regulation.
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Abstract

Background: Metformin is a widely prescribed antihyperglycemic agent that has been also associated with
multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence
regarding the contribution of the epigenetic mechanisms in reaching metformin’s therapeutic goals; however, the
effect of metfarmin on human cells in vivo is not comprehensively studied. The aim of our study was to examine
metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a
longitudinal study design.

Results: Twelve healthy metformin-naive individuals where enrolled in the study. Genome-wide DNA methylation
pattern was estimated at baseline, 10 h and 7 days after the start of metformin administration. The whole-genome
DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated
genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKKT, EML3,
KIAATG14, UPFT, MUC4, LOC727982, SIX3, ADAMS, SNORDT 2B, VPS8, and several differentially methylated regions as novel
potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated
loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets:
regulatory processes of energy homeaostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases.

Conclusions: Here we demonstrate for the first time the immediate effect of short-term metformin administration at
therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation
process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions
of the molecular mechanisms underlying the various beneficial effects of metformin.
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Keywords: Metformin, Epigenetics, DNA methylation, White blood cells, Longitudinal study

* Correspondence: klovins@hiomed.lu.lv

Tlize Elbere and Ivars Silamikelis contributed equally to this work.
'Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga
LV-1067, Latvia

Full list of author information is available at the end of the article

© The Authar(s). 2018 Open Access This article is distributed under the terms of the Creative Commans Attribution 4.0
nternational License (httpi//ereativecommons.org/licenses/by/4.07), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http/creativecornmons.org/publicdomain/zero/1.07) applies t the data made available in this article, unless otherwise stated.



Elbere et al. Clinical Epigenetics (2018} 10:156

Background

Metformin is the first-line drug for type 2 diabetes
[T2D) therapy, used since 1950s [1]. Although there are
a great number of various studies on the metformin
pharmacogenomics, pharmacokinetics, and lately its
interaction with the gut microbiome, the details of the
molecular mechanisms of metformin action have not
been fully understood.

So far, there are only a few studies within the context
of metformin action and changes in one of the most
commonly studied epigenetic modifications—DNA
methylation. One of the targeted studies has shown that
metformin treatment of pregnant rats with gestational
diabetes can reduce methylation level of peroxisome
proliferator-activated  receptor y  coactivator-1A
[PPARGCIA), therefore preventing the abnormal glyco-
lipid metabolism in their offspring [2]. In addition, a
genome-wide study of metformin effects on lymphoblas-
toid cell lines has revealed potential biomarkers for met-
formin’s anticancer response [3]. In the context of
possible molecular mechanisms of how metformin in-
duce changes in the methylation profile, a recent study
has proved that, in cancer cells, metformin can exert its
effects via regulation of the HI%/SAHH axis [4]. This
has been supported by data showing that metformin
promotes global methylation by decreasing S-adenosyl-
homocysteine (SAH) intracellular levels in various cell
types, including non-cancerous [5]. One of the latest
studies have specifically shown metformin's effect on
lowering the methylation levels at the metformin trans-
porter genes, resulting in higher expression levels in liver
tissue [6). Studies describing other epigenetic effects of
metformin have shown its impact on various histone
modifications via multiple mechanisms, mostly AMPK
dependent, and effect on expression levels of numerous
mikRNAs through increase in DICER protein levels as
well [7].

Nevertheless, there is a significant lack of information
on how metformin affects global epigenetic regulation in
cells or in cells obtained from
metformin-treated humans. Therefore, our aim was to
investigate the short-term effect of metformin on DNA
methylation profiles in blood cells from healthy volun-
teers. Here we compared the changes in DNA methyla-
tion in the same subjects before and after the metformin
intake.

non-cancerous

Results

Characteristics of the study participants

We used Hlumina Infinium 450k array to evaluate the
effect of metformin on DNA methylation in 12 healthy
volunteers. The characteristics of the study group are
summarized in Table 1. Samples, for analysis of the
methylation levels, from each participant were obtained
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Table 1 Characteristics of the study group

Characteristic Walue

Farmalesmale, n (%) 7 (58 3%)5 (4175

Age, years, mean = 50 3Ax67
BaAl, mean + 50 253+35
ALAT®, LA, mean + 50 25413
Creatining™, pymalfl, mean = 50 i+ 89
Fasting plasma glucose®, mmoll, mean £ 50 S1+03

B body mass index, 5D standard deviation, ALAT alanine aminotransferase
*Samples for hematological, biochemical tests were collected before
metformnin administration

at three time points, further marked as MO (before start-
ing a metformin therapy), M10h (10 h after the first met-
formin intake, before the second tablet), and M7d (time
point after 7 days of metformin administration). M10h
sample was chosen to evaluate effect of one metformin’s
dose; to ensure accuracy of this measurement, all study
participants were strictly instructed to take the second
metformin tablet only after the M10h blood sampling.

Differentially methylated CpGs

During the data preprocessing stage, &4,512 (13.29%)
probes were filtered out, leaving 421,000 probes for
downstream analysis. To detect differentially methylated
CpG sites/probes (DMPs), we applied limma analysis be-
tween contrasts at all three time points, ie., baseline,
after 10h and 7 days of metformin administration. The
model included the methylation values at the contrasted
time points, together with the cell-type estimations as
covariates. Comparing methylation values at M10h and
MO samples, 72 differentially methylated CpG sites with
a false discovery rate (FDR) of <0.05 were identified
after correction for multiple testing using the
Benjamini-Hochberg method. In the same way, 52
DMPs were found applying contrast between methyla-
tion levels at M7d and MO and only one (cg07026010—
NUDCD3) in case of M7d with M10h comparison {full
list of significant CpGs is available in Additional file 1).
OF these, 43 (59.72%), 24 (46.15%), and 1 (100%) CpG
sites were hypermethylated, and 29 (40.28%), 28
(53.85%), and 0 (0%) CpG sites were hypomethylated
when contrast analyses were applied for M10h vs MO,
M7d vs MO, and M7d vs M10h respectively (Fig. 1). The
median absolute difference in beta values, comparing all
contrasts, was 0.013 (interquartile range (IQR), 0.006—
0,029) for statistically significant differentially methylated
probes, The average estimated genomic inflation factor
{4} for all three contrasts before correction was 1.64 =
0.28, and after including covariates, it was reduced to
130+ 015 Additional evaluation of A with gq-plots
depicted the same improvement ensured by including
covariates (data not shown).
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Fig. 1 Dillerentially methylated positions in all analyzed contrasts. Volcano plot showing raw — log10 (p value) versus log-feld change of M values and
the Manhattan plot showing the position of probes with their corresponding unadjusted p values across the genome ina M10h vs MU, b M7d ws MO,
and ¢ M7d vs M10h sample comparisons. The significant CoG sites (after FOR correction) are highlighted in red. MO—hefare starting a metformin
therapy; M10h—10h after the first metformin intake, before the second tablet; M7d—time point after 7 days of metformin administration

Chromosome

Among the identified DMP, a total of 11 CpGs with the
most consistent changes in the DNA methylation profile
were emphasized (Fig. 2) based on two additional criteria.
First, we included all overlapping DMP at both contrasts
MIOh vs MO and M7d vs MO (n=5; «<g03515060,
cglB8394557, ¢gl6013966, cg05638165, cgl8824330). Sec-
ond, we selected probes if their median beta values at time
points M10h and M7h overlapped IQRs of M7h and M10h,
respectively. Also, IQRs of both time points could not over-
lap with IQR of time point MO (r=6; cgl2740863,
g16843994, ¢gl2162450, cgl9176072,  cg01644741,

cg02622542). Of these 11 CpGs, 8 (72.73%) CpG sites dis-
played hvpermethylation, while 3 (27.27%) CpG sites
showed hypomethylation when comparing methyla-
tion levels after the metformin use (at time points
M10h and M7d) with methylation levels before the
use of metformin (Fig. 2).

All identified 11 CpG sites corresponded to 11 genes
according to the 450k annotation file published by Price
[8] (Table 2). One of these CpG sites was located in
high-density ~ CpG  island, 7 CpG  sites—in
intermediate-density CpG islands with 1 bordering
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Fig. 2 Methylation levels of the top 11 most significant CpGs across the investigated three time points, ie, M0 (before starting a metformin
therapy), M10h (10 h after the first metformin intake, before the second tablet), and M7d (time point after 7 days of metformin adrministration),
together with their associated genes. Box plots depict median, maximurm, minimum, 25th percentile, and 75th percentile. Dots beyond the
bounds of the whiskers represent autliers. * and ** denate significance levels 0.05 and .01 respectively

high-density CpG island, and 3—in non-islands accord-
ing to HIL CpG classes.

To analyze the possible influence of circadian
changes on the methylation profile, firstly, we
searched our DMP list for the most common genes
associated with regulation of circadian rhythm, such
as BMALI, PERI, PERZ, PER3, ARNTL, CRYI, and

CRY2. Secondly, we evaluated the main known func-
tional roles of genes associated with the 125 DMPs,
and, thirdly, we used the results from pathway enrich-
ment analysis to find any connections with the circa-
dian regulation. In result of these steps, we did not
find any significant associations between the DMPs
and circadian rhythm.
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Table 2 Characterization of the top 11 most significant CpG sites
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Filter CpG site Chr logFC  logFC FDR  FDR  Gene Distance  Gene context’ Spearman’s
M10h  M/d M10h MZd to the correlation between
vs MO s vs MO s closest methylation and

MO MQ TSS Lranscription

Significant in both of the cg03515060 21 0538 0479 4003 0018 PORFUIZ 1984 Body - 0184

followi trasts: d10h v

o cq18304557 17 0406 0286 0003 0047 CAMKKI  —8799  Body —0042

cglad1396en 11 0428 0395 0034 G037 EML3 - 308 TstExom S UTR;TSS1500 - 023
cgs6381es 1 0358 0351 0035 0034 KIAATSI 14,198 Body 0337
cq18824330 19 0363 0419 0043 0022 UPFI —09944  Body —-0382

Significant in ene of the cgl2740863 3 — - o034 0127 MUCH —26,158 037

contrasts and medians for 0359 0260

1 ints M10h or M7d

o POmE MR OTEE qiepa3004 2 0347 0404 Q091 0038 LOC727982 - 706 NA

cgl2162450 2 — - 0040 0059 SIK3 7515 NA
0386 0349

cgl19176072 10 0462 0472 0054 0040 ADAMS 5756 Body -0312

cqd1pdd741 20 — - 0137 0043 SNORD12E 39 Body, 1551500 0.036
0287 0366

cgl2622542 3 0269 0348 0151 004/ VPS8 - 2419 0186

Statistically significant FDR values are marked in italics
S5'UTR 5" untranslated region, 755 transcription starting site
*TS51500: Region 200-1500 base pairs upstream of the transcription start site

The correlation between methylation and RNA expres-
sion level of the corresponding gene was verified using
targeted data form RNA-seq. Out of 11 genes tested,
only the expression of UPFI (p - 0.024), MUC? (p -
0.029), and KiAAI6I4 (p - 0.048) showed significant
correlation with the methylation of corresponding CpG
sites (Table 2).

Differentially methylated regions (DMRs)
During the DMR analysis, we found 13 regions with sig-

nificant differences in methylation levels (summarized in

Table 3 Differentially methylated regions

Table 3). Five of the identified regions overlapped with
some of the significant DMPs but not with the 11 sites
prioritized by us.

Enrichment analysis

To evaluate the potential biological significance of the
impact of differentially methylated CpG sites, we per-
formed a gene set pathway enrichment analysis by using
the Ingenuity Pathway Analysis (IPA). All genes associ-
ated with significant differentially methylated probes
(FDR <0.05) from different contrasts were selected.

Contrast Gene FDR Number of probes Chr Start (bp)® End (bp)® Transcription factors”
MI10R ws MO FPHET 1.60E=11 3 3 134515421 134.576,302 -
COCAL 383E 07 5 7 21,985,276 21985628 MrTh3
Civsz B21E-07 10 i) 123317123 123317875 Mrsf
BACEZ, MiR3197 13806 3 21 42,535,560 42540409 CICE
EXPHS 5.76FE-06 4] 11 108464,101 108464498 Crye; Egrl; FOXAT; MYC, Max; 5PT;
KCNE4 1.50E-05 3 2 223916686 223976861 LUSF1
TTC38 1.50E-05 4 22 46,6854/1 46.685,/28 A
T304 1.51E-05 5 1 51,810,626 51,811,022 -
NA 217E-05 3 4 153,857,215 153,897,453 NA
MNA 2.33E-05 3 10 132,851,318 132,891,371 NA
M7d ws MO SFREZ 1.18E-11 28 4 132,8%1,371 154,711,183 CTCF; Egrl
GPRIG 459010 1 12 12848515 12,849,588 [2F4; ZBTB33;
IMENM216 346E-07 7 " 61,159,601 651,155,837 CICFE Earl; Gabp; Yyl

APhysical position (basepair, hg37)
PData from Ensembl 91 regulation resources 98], hg38
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Thus, 72 genes were selected from the M10h vs MO con-
trast and included in the first pathway analysis, and 52
genes from the M7d vs MO contrast and included in the
second pathway analysis. We did not include the only sig-
nificant result from the M7d vs M10h contrast. The top
enriched canonical pathways are summarized in Table 4.

In addition to the canonical pathways, we identified
nine enriched networks in the M10h vs MO contrast,
and four in the M7d vs MO comparison. The top
enriched networks with IPA score > 20 were as follows
(score/focus molecules): M10h vs MO—hematological
system development and function, cellular movement,
cell-to-cell signaling and interaction (28/13); hereditary
disorder, neurological disease, organismal injury and ab-
normalities (23/11). M7d vs MO—cell-to-cell signaling
and interaction, cellular assembly and organization, cel-
lular function and maintenance (48/19); cell morph-
ology, cell-to-cell signaling and interaction, cellular
assembly and organization (41/17). Two of the most
relevant networks are visualized in Fig. 3.

Discussion

The aim of our study was to examine metformin-induced
alterations in epigenetic regulation processes by perform-
ing genome-wide DNA methylation analysis in human
white blood cells followed by estimation of RNA expres-
sion levels of identified genes. We conducted our study in
order to understand the pathways affected by metformin
at real life physiological conditions in humans. This is ex-
tremely important taking into account the pleiotropic ef-
fects of metformin, and such studies may pinpoint
important novel targets not only for treatment of T2D} but
also for other diseases. Various studies have shown that
the evaluated effects in the methylation profile of periph-
eral blood DNA, that is the only option to access repeated
tissue sampling in humans, are highly representative to
the changes in other organs [9-11]. It is known that the
DNA methylation pattern is highly subject specific and is
influenced by many factors making it very difficult to
identify  the metformin-specific effects in a

Table 4 Top enriched canonical pathways by IPA
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case-control-based type of study. We therefore selected a
longitudinal design for this study, using short response
time in order to exclude the influence of other factors. We
also involved healthy volunteers to avoid a background of
any commonly studied diseases so far related with the
beneficial effects of metformin. One of our goals was to
detect the fastest practically measurable effect of metfor-
min on DNA methylation. Taking into account the known
high variability of metformin pharmacokinetics, the time
point when to evaluate the immediate and at the same
time most profound effect was chosen to be the impact of
one dose, and sampling time was selected at 10 h, before
the recommended administration time of the second dose.
Furthermore, M10h vs MO sample comparison revealed
the highest number or DMPs, representing the significant
effect of one metformin dose.

To our best knowledge, this is the first study showing
the metformin-mediated change of DNA methylation in
healthy individuals already 10h after administration.
From the pool of 125 significantly modified sites, we pri-
oritized 11 differentially methylated CpG with the largest
and most consistent changes in beta values at different
contrasts.

We assumed that some methylation changes measured
at 10h (M10h) could be caused by the circadian rhythm,
which has been well described before and proven to be a
driver of dynamic gene expression [12]. To avoid any
false conclusions about the epigenetic targets of metfor-
min, we paid specific attention to the presence of genes
involved in the circadian rhythm among regions cover-
ing DMPs. We also evaluated this possibility by focusing
on two contrasts that represent the different methylation
profiles of DNA purified from blood samples that were
collected in two distinct time points of the day—M7d vs
MO and M7d vs M10h. We did not observe any overlap-
ping DMPs between the particular contrasts, suggesting
no significant influence of the circadian rhythm on the
DNA methylation in our data. Surprisingly, we observed
only one significant DMP comparing M7d and M10h
time points, providing a strong support for the fact that

Contrast Pathway p value

MT0h vs MO .Un"oldcd protein response .8.82 X107
Salvage Pathways of Pyrimidine Deoxyribonucleotides 0,021
Glycogen Degradation |l 0.031
Glycogen Degradation Il 0.036
Granzyme B Signalling 0.041
Gal2A13 signalling 0.046
lipid Antigen Presentation by CD1 0.048

M7d vs MO SMethyl-5-thio-o-oribose 1-phesphate Degradation 682% 1077
Gustation Pathway 0.025
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observed methylation changes are indeed caused by met-
formin rather than other factors changing during the
trial, such as diet or circadian cycle,

Genes corresponding to the top-ranked DMPs represent
the main functional groups associated with previously de-
scribed targets of metformin therapy: regulatory processes
of energy homeostasis, inflammatory responses, tumori-
genesis, and neurodegeneration. The criteria based on the
comparison of median beta values and IQRs (see the “Re-
sults” section) were chosen to avoid bias in prioritization
and would allow to include potentially important DMPs
in addition to only those being significant at both M10h
vs MO and M7d vs MO contrasts.

Interestingly, we found DMP within CAMKKI gene—
one of two highly homologous genes coding for Ca2
+/calmodulin-dependent  protein  kinase  kinases
(CaMKK) [13]—with CaMKK2 being a known regulator
of AMP-activated protein kinase (AMPK). Despite the
fact that only CaMKK2 has been proven to form a stable
complex with AMPK, both isoforms of the CaMKK are
capable of phosphorylating the AMPKa subunit at
Thr-172 in vitro [14, 15]. From our data, the differen-
tially methylated CpG close to the CAMKKI TSS to-
gether with negatively correlated mRNA expression data
as the result of metformin administration suggests a po-
tential contribution of CaMKK1 in the AMPK-mediated
mechanism of metformin anti-diabetic action.

Furthermore, it is known that metformin exerts its ef-
fects also via AMPK-independent mechanisms [16], as

shown by CaMKKI1 ability to mediate glucose uptake in
muscle cells independently from AMPK and Akt [17], in
that way suggesting that methylation level changes in
CaMKK1 could be a part from an alternative pathway
responsible for the therapeutic effects of metformin.

Additionally, we identified a differentially methylated
CpG site near the transcription factor coding gene SIX3
[18]. Downregulation of SIX3 due to the methylation of
the SIX3 promoter is observed in lung adenocarcinoma
tissues and lung cancer cell lines, where mRNA expres-
sion of the gene is also associated with higher survival
rate [19]. Some research suggest SIX3 linkage to diabetes
from genetic studies [20] and show SIX3 as possible
regulator of insulin production in [-cells in an
age-dependent manner [21]. Lowered methylation level of
CpG near the SIX3 TSS shown in our data suggests the
DNA methylation as another potential epigenetic mech-
anism involved in SIX3 expression regulation. S/X3 is not
expressed in human white blood cells [22], explaining the
absence of reads corresponding to SIX3 in our RNA-seq
data, but gene expression may manifest in other tissues.
So far, normalized insulin production itself has not been
considered as a therapeutic effect of metformin, although
it might be affected along with metformin-induced im-
provements of insulin sensitivity [23].

Our data also show ADAMS as a considerable poten-
tial contributor in the anti-inflammatory action of met-
formin, that is, one of the known beneficial effects of
this medication [24]. ADAMS is a cell surface protease,
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mainly expressed in granulocytes and monocytic cells,
where it conducts the regulation of monocyte adhesion
and migration [25-27]. Its contribution in the inflamma-
tory responses regarding neurodegenerative disorders,
allergy, asthma, and acute lung inflammation has been
widely described before [28-31]. Our data justify the
anti-inflammatory properties of metformin independ-
ently of diabetes status [24] and suggest the potential
contribution of ADAMS in the process. Due to its ex-
pression in human white blood cells, ADAMS might be
considered a promising biomarker for the detection of
metformin-induced anti-inflammatory responses while
reflecting inflammatory processes in adipocytes; how-
ever, further experimental evidence is required.

Many of the genes linked to the top-ranked DMPs are
functionally associated with various malignancies. The
most significant DMP in our study appeared to be situ-
ated in the body of POFUT2. O-Fucosyltransferase 2
encoded by POFUT2 is proved to restrict
epithelial-mesenchymal transition and affect cell motility
in mouse embryos [32], and is considered as a useful
prognostic biomarker in patients with glioblastoma and
adenocarcinoma [33, 34]. To our knowledge, there are
no reports yet describing POFUT2's association with the
beneficial effects of metformin. Qur data also show sev-
eral more DMPs located within or near the TSS of
tumor-related genes, including SNORD12B—previously
associated with colorectal and breast cancer pathogen-
esis [35-37], MUC4—promising prognostic marker and
therapeutic target in the case of pancreatic cancer [38—
40], KIAA1614 with promoter hypermethylation ob-
served in colon tissues from patients with ulcerative col-
litis as well as in colon cancer cell lines [41], and UPF1
with indisputably crucial role in the maintenance of gen-
ome stability, significantly implicated in various malig-
nancies [42-47].

The functions of two genes from the top DMPs’ asso-
ciated list are poorly defined. We identitied increased
DNA methylation level close to the TSS of VPS8 gene.
VPS8 is an accessory subunit of CORVET complex, ne-
cessary for mediating multiple steps in the endocytic
pathway and required for fusion of early endosomes
[48]. Thus far, there is no conclusive data indicating the
possible effects of VPS8 dysregulation on phenotype in
humans [49-52]. Likewise, the function of long inter-
genic non-protein coding RNA 1249 (LINC01249/
LOC727982) is still not clear with only few reports on
genetic association of SNPs within the gene with infec-
tious disease and blood pressure [53, 54].

Overall, the DNA methylation has a repressive etfect
on transcription factor binding; therefore, we used EN-
CODE data on transcription factor binding sites to iden-
tify such possible interactions [55, 56]. We detected
transcription factors CTCF, CTCFL, and Egr1 binding to
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the genomic region overlapping the differentially methyl-
ated CpG within EML3 gene; out of these, CTCF is
proved to mediate glucagon production [57] and Egrl is
responsible for insulin resistance [58]. Although there
are no data available to date, supporting direct metfor-
min impact on EML3 (nuclear microtubule-binding pro-
tein) [59] or describing EML3 contribution in
metformin therapeutic effects, increased expression of
EML3 in cultured human cells as a result of
metformin-1816 small molecule perturbation has been
reported before [60]. Likewise, the genomic region
within LIPFI gene, covering the top-ranked CpG site is
associated with CTCEF, Egrl, and two more transcription
factors: MYC—involved in the pathogenesis of diabetes
[61], and PUl—initiating insulin resistance as well as
regulating lipolysis [62].

The detected DMRs, as well, could essentially be
grouped by connection to the processes currently known
to be affected by metformin. For example, the most sig-
nificant DMR was associated with EPHBI, which together
with other Ephrin receptors forms the largest subgroup of
the Eph receptor tyrosine kinase (RTK) family [63]. Un-
derexpression of the EphB1 protein is significantly associ-
ated with tumor progression in gastric carcinomas and
higher invasiveness of colorectal cancer cells, suggesting a
tumor-suppressive role of the protein and possible impli-
cation in the beneficial effects of metformin (64, 65].

Another noteworthy DMR was associated with
APP-cleaving enzyme 2 coding gene (BACE2) encoded
protein that cleaves amyloid precursor protein into
amyloid beta peptide, and is implicated in the pathogen-
esis of neurodegenerative diseases including Alzheimer’s
disease [66-68]. Interestingly, increased P-cell prolifera-
tion and glucose-stimulated insulin secretion resulting
from reduced Bace2 levels have been previously reported
[69]. In a mouse model of T2D, induced by the overex-
pression of human islet amyloid polypeptide, BACE2 de-
ficlency improved glucose tolerance, suggesting that
BACE2 inhibition might serve as a potential therapeutic
strategy for T2D treatment [70].

Another DMR is associated with SFRP2, Secreted Friz-
zled Related Protein 2. Methylation changes in the pro-
moter region of SFRP2 have been proposed as a potential
noninvasive biomarker for colorectal cancer [71, 72]. Its
mRNA is also expressed in mouse and human adipose tis-
sue, and elevated levels have positive correlation with BMI
and with abnormal glucose tolerance [73].

The pathway enrichment analysis revealed metformin’s
association with various pathways some of which already
has been described in connection with metformin action
but not in the context of epigenetic regulation. The top
enriched pathway after one dose of metformin—Unfolded
Protein Response (UPR)—has been shown to be one of the
main mechanisms of inducing apoptosis by metformin in
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acute lymphoblastic leukemia cells [74], and metformin-in-
duced UPR inhibition in kidney cells can explain metfor-
min’s beneficial effects [75].

One of the products of the top enriched pathway describ-
ing changes after week long metformin administration
(S-methyl-5-thio-a-pD-ribose 1-phosphate Degradation) is
1-methionine, an essential amino acid in human organism.
Moreover, it is known that L-methionine is used for gener-
ation of S-adenosylmethionine (SAM) [76], which has been
depicted to be an essential part of metformin-induced in-
crease in global methylation levels as it accumulates in cells
during metformin therapy [5]. Taking into account the re-
sults from enriched pathways and the fact that we mostly
observe metformin-induced hypermethylation than hypo-
methylation, it is possible that activation of this particular
canonical pathway may contribute to the previously de-
scribed increase in SAM levels.

Although enriched networks (Fig. 3) are not directly
related to known metformin effects, the downstream
molecules of those associated with differential methyla-
tion levels in our study group are known to be involved
in various pathways related with T2D (e.g,, AKT, ERK1/
2, INK, P13K), insulin regulation processes [77], cancer
development mechanisms [78], and other.

The correlation between DNA methylation and gene
expression is complex and nonlinear [79]. The generally
accepted consequence of DNA methylation is transcrip-
tional repression; however, methylation in the tran-
scribed region might also demonstrate positive
correlation with mRNA expression [80]. In our study,
we did not detect a convincing correlation between
DNA methylation of top-ranked loci and transcription
level of corresponding genes; however, the influence of
methylation as well as gene expression itself are
tissue-specific and might be missed by focusing on single
type of cells only. Nevertheless, the significant correl-
ation observed between the expression levels of LIPFI,
MUC4, KIAA1614, and the methylation level of the cor-
responding CpQ@ sites provide evidence for a crucial con-
tribution of epigenetic regulation in the mechanism of
action of metformin, which results in specific alterations
of gene expression profiles.

Currently, it is not fully known whether metformin
has only an indirect effect on the epigenetic regulation
processes in the human organism via the previously de-
scribed H19/SAHH axis or through linking cellular me-
tabolism to the mechanisms needed for DNA
methylation [4, 5]. However, the methylation profile and
concentration of metformin used in cell type specific in
vitro experiments may significantly differ from the
physiological levels and observations in the affected cells
in human body. The large variation of SAH and SAM
levels in various cell types has been described [5]. In
addition, the previous studies evaluating the
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metformin-induced methylation profile changes mostly
have been targeted; thus, it is not surprising that we did
not observe the DMPs at the same genes or pathways.

Major limitation of this study is the low sample size
even though there are number of reports using the same
number of individuals in their studies [81-84]. On the
other hand, we believe that this weakness is compen-
sated by the number of strengths in our design. First, we
used a longitudinal study design and it has been recog-
nized that, in similar time series studies, individuals can
be treated as their own controls before and during treat-
ment and sufficiently increase the power of the study
[85] compared to case-control design especially account-
ing for the inter-individual variability among study par-
ticipants. Secondly, the longitudinal design combined
with observation of methylation changes in the shortest
possible time allows us to minimize the effects of other
factors that can induce changes in methvlation unrelated
to the metformin treatment. Thirdly, inclusion of
healthy subjects should have minimized false associa-
tions and conclusions arising from unaccounted treat-
ment status by metformin or other medications in T2D
patients, including the unknown true duration of T2D
before diagnosis. Finally, the use of genome-wide methy-
lation analysis allows us to observe unbiased effects and
find new metformin targets.

Another limitation in our study is the lack of clinical
and biochemical measures at all time points. In the same
time, it has been previously shown that metformin has
small or no effect of such measures as plasma glucose
level in healthy individuals [86, 87], and we decided not
to include those in study protocol.

Unfortunately, due to the lack of similar studies, we
were not able to support our findings from literature
and replication in other cohorts is needed.

Conclusions

This is the first study showing the immediate effect of
metformin on white blood cell DNA methylation in
humans at therapeutic doses. The gained knowledge
about the metformin-induced methylation profile
changes in healthy individuals can be used as basis for
further in vitro and in vivo studies, which are important
due to the growing number of various metformin thera-
peutic application possibilities in non-diabetic patients.

Methods

Study design

Study group invelved 12 healthy metformin-naive volun-
tary individuals. The involvement and sample collection
was organized in collaboration with the Genome Data-
base of Latvian Population (LGDB) [88]. Exclusion/in-
clusion criteria (Additional file 2) were defined
according to the requirements of concurrently ongoing
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clinical trial (registration number: 2016-001092-74
(www.clinicaltrialsregister.eu)), which also involves gut
microbiome analysis. Participants were included if they
matched the following criteria: have not used antibiotics,
immunosuppressive medicaments, corticosteroids, or
pharmaceutical-grade probiotics during the time period
of the past 2months; have not been diagnosed with
oncological, autoimmune, chronical gastrointestinal tract
diseases, or T2D; have not had diarrhea in the past week;
and are not taking any other medications incompatible
with metformin. The research subjects received an
850-mg metformin tablet (Berlin-Chemie AG) twice a
day for a week. Samples for hematological, biochemical
tests were collected in certified clinical laboratory at fast-
ing state 1-3 days before starting the metformin admin-
istration. Whale blood samples for methylation analysis
were collected at three time points: (1) before starting
metformin therapy (morning, fasting state)—MO0, (2) 10
h after first metformin intake, before the second tablet
(evening)—M10h, and (3) after 7 days of metformin ad-
ministration (morning, fasting state)—M?7d. Throughout
the article, we have defined the measurement of 10-h
sample as the immediate effect of metformin.

Sample analysis

DNA isolation from whole blood samples using the
phenol-chloroform extraction method was performed by
Genome Database of Latvian Population (briefly de-
scribed before [89]). DNA samples were quantified with
Qubit* 2.0 Fluorometer using Qubit dsDNA HS Assay
Kit (TherfmoFisher Scientific, USA). For the bisulfite
conversion, the EZ DNA Methylation-Gold TM kit
(Zymo research, USA) was used according to the manu-
facturer’s instructions. DNA methylation was deter-
mined by the Illumina Infinium HumanMethylation450
BeadChip Array (Illumina, USA), using 500 ng of each
bisulfite-treated DNA sample.

Total RNA was isolated from whole blood samples
using PerfectPure RNA Blood Kit (5Prime GmbH, Ham-
burg, Germany). Ribosomal RNS depletion was done
with Low Input RiboMinus” Eukaryote System v2
(Thermo Fisher Scientific, USA). Far ¢cDNA library prep-
aration, we used Ion Total RNA-Seq Kit v2 (Thermo
Fisher Scientific, USA), and sequencing was performed
on the Ion Proton™ System and Ion PI™ Chip (Thermo
Fisher Scientific, USA).

Data preprocessing and statistical analysis
IDAT files were imported using R package minfi [90].
Cell counts were estimated from methylation data using
Houseman algorithm [91] implemented in minfi.

Data preprocessing and normalization was done using
Enmix [92]. Briefly, probes with detection p value > 0.05
and probes with a multimodal distribution were filtered
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out. Background correction was performed with the
function preprocessENmix using unused color channels
as a background parameter estimate. Probe intensities
were normalized using a quantile normalization method,
and probe type bias was adjusted using the Regression
on Correlated Probes (RCP} method [93]. Probes having
a SNP or single base extension annotation in CpG site
were excluded. Due to interrupted use of metformin by
one of the study subjects, the sample taken after 1 week
of metformin administration for that particular subject
was discarded.

Batch effect was removed from data using slide and subse-
quently subjects as covariates as they showed the strongest
influence on the probe methylation variability. Batch effect
was removed using ComBat [94] wrapped in the Enmix
package. Differentially methylated probes between time
points were identified using limma [95] on ComBat prepro-
cessed data, adjusting for the following cell types estimated
by minfi: CD8T, CD4T, NK, and Gran. Inflation factor of
p-value distribution was estimated using R package GenA-
BEL [96]. All analyses were performed using R (3.3.3).

Statistically significant DMRs were identified with
DMRcate software [97], FDR < 0.05. Threshold for mini-
mum number of probes within the region was set to
three. DMRs were estimated from methylation M values
using the individual CpG site significance threshold at
FDR <0.05. The interval between individual significant
CpG sites had to be less than 1000 bp in the regions.
The bandwidth scaling factor was set as suggested in the
manual (C=2). Regulatory information from Ensembl
91 regulation resources was added to identified DMPs
and DMRs using Ensembl Regulation API [98].

Pathway enrichment analysis was performed with the
IPA tool [99]. Information about enriched canonical
pathways and networks was obtained performing the
core analysis on all significant DMPs with FDR < 0.05.

RNA-seq data analysis

Reads were mapped against human reference genome
GRCh38, and read quantification was performed using
STAR (2.5.3a) [100]. Obtained per-gene read counts
were normalized using trimmed mean normalization
(TMM), and counts per million (CPM) values were cal-
culated with edgeR [101]. ComBat [94] implemented in
R package sva [102] was used to adjust CPM values for
subject-specific effects, and the Spearman correlation
was estimated for the adjusted CPM values and the beta
values for 11 selected CpG sites with SciPy [103].

Additional files

Additional file 1: Full results representing all CpGs within the analyzed
contrasts with significantly changed methyation levels, identified after
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correction for multiple testing using the Benjamini-Hochberg method
LS 21 k)

Additional file 2: List of inclusion/exclusion criteria. (DOCK 14 kb)
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I11 Baseline gut microbiome composition predicts metformin therapy

short-term efficacy in newly diagnosed type 2 diabetes patients

Highlights:

1. Atthe species level, reduction in the abundance of Clostridium bartlettii and Barnesiella
intestinihominis, and an increase in the abundance of Parabacteroides distasonis and
Oscillibacter unclassified overlapped between both T2D patients and healthy
individuals.

2. Non-Respoders group had higher abundance of species Prevotella copri compared to
Responders before starting metformin therapy.

3. The gut microbiome of metformin therapy Responders at baseline was characterized by

enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and Dialister.
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Abstract

Background

The study was conducted to investigate the effects of metformin treatment on the human
gut microbiome’s taxonomic and functional profile in the Latvian population, and to evaluate
the correlation of these changes with therapeutic efficacy and tolerance.

Methods

In this longitudinal observational study, stool samples for shotgun metagenomic sequenc-
ing-based analysis were collected in two cohorts. The first cohort included 35 healthy nondi-
abetic individuals (metformin dose 2x850mg/day) at three time-points during metformin
administration. The second cohort was composed of 50 newly-diagnosed type 2 diabetes
patients (metformin dose—determined by an endocrinologist) at two concordant times.
Patients were defined as Responders if their HbA1c¢ levels during three months of metformin
therapy had decreased by >12.6 mmol/mol (1%), while in Non-responders HbA1c were
decreased by <12.6 mmol/mol (1%).

Results

Metformin reduced the alpha diversity of microbiota in healthy controls (p = 0.02) but not in
T2D patients. At the species level, reduction in the abundance of Clostridium bartlettiiand
Barnesiella intestinihominis, as well as an increase in the abundance of Parabacteroides
distasonis and Oscillibacter unclassified overlapped between both study groups. A large
number of group-specific changes in taxonomic and functional profiles was observed. We
identified an increased abundance of Prevotelia copri (FDR = 0.01) in the Non-Responders
subgroup, and enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and
Dialister at baseline in the Responders group. Various taxonomic units were associated with
the observed incidence of side effects in both cohorts.
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Conclusions

Metformin effects are different in T2D patients and healthy individuals. Therapy induced
changes in the composition of gut microbiome revealed possible mediators of observed
short-term therapedutic effects. The baseline composition of the gut microbiome may influ-
ence metformin therapy efficacy and tolerance in T2D patients and could be used as a pow-
erful prediction tool.

Introduction

Type 2 diabetes (T2D) is a metabolic disease with rapidly increasing prevalence, characterized
by variable etiology, clinical presentation, and consequences. Metformin has been used in clin-
ical practice for more than 60 years [, 2] and is currently considered as a first-choice medica-
tion for T2D treatment worldwide, Regardless of its diverse beneficial impact on health, more
than 20% of patients fail to reach the glycemic target when on metformin monotherapy [3],
and more than 30% experience mostly gastrointestinal (GI) side effects (SE) [4]. These results
suggest that the gut microbiome is an intermediary of metformin therapy, which highlight the
need for the development of precision medicine-based therapeutic approaches [5]. Because of
the complex structure, compositional and functional dynamics, and the host-microbiome
interaction, the microbiome has been postulated as a key component of precision medicine
approaches [6]. Moreover, latest studies have suggested that metagenomics predictive tools for
T2D should be specific for the age and geographical location of the population studied [7]. Sev-
eral studies on the interaction between the human gut microbiome and metformin have been
performed [8-12], but most of these studies used a case-control design involving patients with
different diabetes duration and therapy history.

The aim of this study was to investigate the effects of metformin treatment on the taxonom-
ical and functional profile of the human gut microbiome and to evaluate the correlation of
these changes with the therapeutic efficacy and tolerance in a prospective cohort of T2D
patients. Our research provides novel information on short-term effects induced by metformin
with the advantage of longitudinal data, including treatment naive patients, as well as charac-
terizes the predictive quality of baseline microbiota composition. In addition, the growing evi-
dence on other therapeutic targets of metformin requires more detailed information on
metformin effects in non-diabetic populations, therefore, the data from the healthy cohort
offer complementary value,

Materials and methods
Study design, sample and data collection

The study involved two longitudinal cohorts of participants: OPTIMED cohort of newly-diag-
nosed T2D patients (N = 50) recruited within the framework of Genome Database of Latvian
population [13], and a cohort of healthy individuals (N = 35). A full list of inclusion/exclusion
criteria for both cohorts can be found in the S1 Text. Informed consent was obtained from all
participants at the beginning of the study. Healthy individuals received 850mg metformin
twice a day for 7 days within the framework of the clinical trial (registration number: 2016-
001092-74 (www.clinicaltrialsregister.eu)), while T2D patients were treated with metformin
monotherapy according to therapy prescribed by an endocrinologist (individual dosage, titra-
tion, etc.). The study was carried out in accordance with the principles of the Declaration of
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Helsinki, and approved by the Central Medical Ethics Committee (1/19-10-22) and State
Agency of Medicines of the Republic of Latvia (17-1723). The primary and secondary end-
points together with other methodological details (regarding the clinical trial involving healthy
volunteers and standard operating procedures in place for stool sample collection) have been
described previously [11].

Stool samples were collected in two aliquots at pre-determined time points during the
study, depending on the design for each study cohort (Fig 1). Samples were coded as follows:
MO - before metformin treatment, M24h — 24 hours after the first metformin dose (only in the
study group of healthy individuals), and M7d - 7 days after starting the therapy. All samples
were collected by participants at home, using sterile collection tubes without buffer (collection
date and time were marked). Within 24 hours participants delivered samples to the closest
clinical or research laboratory where samples were frozen at —80°C (delivery time was
registered).

Blood samples for biochemical/hematological analysis (conducted in a certified clinical lab-
oratory) to evaluate inclusion/exclusion criteria and obtain relevant clinical data were collected
from participants within both cohorts. Samples were collected in the fasting state before start-
ing metformin administration. For the patient cohort, a repeated biochemical/hematological
analysis was performed three months later (follow-up coded as a time point M3m).

The information on anthropometric measurements, dietary habits, and biochemical/hema-
tological analyses was obtained before starting metformin administration. Healthy volunteers
registered their diet during the metformin administration, as well as any observed SE in special
questionnaires. Patients of OPTIMED cohort were interviewed via phone by their endocrinol-
ogists after the first week of metformin therapy to register possible metformin-induced SE.

For the analysis of gut microbiome mediated metformin’s therapy efficacy patients were
divided into two subgroups based on the observed reduction of HbA;, during three months
long metformin therapy. Patients were defined as Responders if their HbA,, levels had

Metformin 850mg (2x/day) I

Pre-study period Study period (7 days) Follow-up period
(3 days) (1 day)

Endocrinologist’s determined Metformin therapy

Study period (7 days)

Telephone interview
21845 &]7
—
. Feacal sample MO M7d .
Newly-diagnosed T2D =2 N
patients (N=50) g

Fig 1. Study design depicting sample collection in both cohorts. Samples were coded as follows: M0 -before starting metformin treatment, M24h - 24 hours
after first metformin dose, and M7d - 7 days after the first intake of metformin. T2D —type 2 diabetes.

hitps://doi.org/10.1371/journal pone.0241338.9001

1st visit
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decreased by >12.6 mmol/mol (1%), or Non-responders if their HbA, . levels had decreased
by <12.6 mmol/mol (1%). This threshold has been previously established within a systematic
review comparing three months long metformin therapy with placebo and used in other stud-
ies as well [14, 15].

Sample processing and sequencing

Microbial DNA was extracted using the FastDNA Spin Kit for Soil (MP Biomedicals) in line
with to the manufacturer’s instructions [16]. Further shotgun metagenomic library prepara-
tion was done by fragmenting the DNA at 300 bp (Covaris) and following the manual of the
Ion Plus Fragment Library kit {ThermoFisher Scientific, USA). That included the following
sample processing steps: (1) end repair after the physical fragmentation and clean-up with
NucleoMag magnetic beads (Macherey-Nagel, Diiren, Germany), (2) adaptor ligation, nick-
repair, and clean-up, (3) size selection in the range 360-440 bp, performed with BluePippin
DNA 2% Dye-Free Agarose gel cassette with V1 Marker, and clean-up, and (4) amplification
and clean-up. Samples were sequenced using lon Proton sequencer with lon PI Chip Kit v3
(>>3000000 reads/sample) [17, 18].

Sequence analysis and statistics

Raw data from the sequencer were processed as follows: adapters were removed with cutadapt
1.16, sequences were trimmed with Trimmomatic v0.38 (5bp window, quality threshold = 20,
average quality = 20, minimal length = 75), mapping was performed with bowtie2-2.3.5.1
using Homo sapiens genome Ensembl GRCh38 release-90 reference to remove host DNA
sequences. [nformation on read numbers during sequence preprocessing has been summa-
rized in S3 Table.

Composition and functionality from the remaining sequences of gut microbiome samples
were analyzed using the HUMAnNN2 pipeline [19], and taxonomic data were obtained with
MetaPhlAn2 [20], analyses were performed with default parameters. Species level alpha diver-
sity was calculated as the exponential of the Shannon index resulting in the effective number of
species, and beta diversity was analyzed with non-metric multidimensional scaling (NMDS)
using Bray-Curtis distances. Results of beta diversity were compared between subgroups with
permutational multivariate analysis of variance— PERMANOVA. To explain the effects of
environmental variables, adonis function (vegan package) was used to test the significance of
individual variables, and complemented with Canonical Correspondence Analysis (CCA) and
visualized with biplot using R software (version 3.6.0) [21]. Evaluation of variables of interest
was performed in two cases: (1) for all samples—both groups, baseline and follow up-to evalu-
ate the contribution of age, gender and BMI; (2) only for T2D patient samples—to evaluate pos-
sible effect of the different prescribed metformin doses. Changes during metformin therapy
and differences between study subgroups within the taxonomic and functional profiles were
evaluated by R package limma using voom transformation with sample-specific quality weights
(further referred as limma+voom). All tests were adjusted by age, gender, and BMI, false dis-
covery rate (FDR) adjusted values were used. T2D group data were adjusted by baseline HbA, .
levels. Only taxa present in >10% of samples were included. To compare metformin therapy
response groups, the corrected data matrix was used for sparse Partial least squares discrimi-
nant analysis (sSPLS-DA), a supervised model to reveal microbiota variation between groups.
Key taxonomic groups responsible for the differential microbiota structure were detected
using the “splsda” function in the R package “mix Omics” [22], tuning of sPLS-DA parameters
was performed to determine the main taxonomic groups that enable discrimination of the sub-
groups with the lowest possible error rate. Taxonomic groups with variable importance in
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Table 1. Characteristics of the analyzed cohorts.

Characteristic
Males/females, n (%)

Healthy individuals, N = 35
10 (28.6%) / 25 (71.4%)

projection (VIP) > 1.5 were considered to be important contributors to the model. Additional
cellular function enrichment analysis and visualization of functional profile data were per-
formed using the Omics Dashboard integrated into MetaCyc. The dashboard computes
enrichment p-values using Grossmann’s parent-child-union variation of the Fisher-exact test
(applying the FDR multiple hypothesis correction) and then transforms each p-value to an
enrichment score: -logl0 (p-value). Significance threshold <0.05 [23]. Statistical significance
for changes/differences of the Shannon index and other analyzed parameters was evaluated by
the Wilcoxon signed-rank test. Data normalizations were performed as integrated into the
used tools, paired comparisons were used when appropriate.

Validation cohort

To validate the results of the performed sPLS-DA analysis, we included another independent
cohort of 58 newly diagnosed T2D patients. Inclusion/exclusion criteria, sample collection
guidelines and design were the same as for the OPTIMED cohort, however, data were obtained
from a ditferent sequencing platform. Sequencing data preprocessing and statistical analysis
were performed as described for OPTIMED cohort. Detailed information on methods for
sample and data processing of Validation cohort is provided in 52 Text.

Results
Characterization of study cohorts

In total 100 samples were collected and analyzed from the OPTIMED cohort, and 103 samples
from the healthy individuals. The characterization of the analyzed groups is summarized in
Table 1, The average +SD sequencing depth was 4.6 M + 2.4 M raw reads per sample. During
the clinical trial, two healthy participants withdrew from the study prematurely due to GI-SE,
therefore no data on M7d time point were available for these two participants.

Retrospective analyses of the questionnaire data from the OPTIMED cohort revealed that
few patients had some deviations from the expected study design: one patient was assigned to
diet change in the first week, without any drug treatment; another used sulfonylurea group
medication. These participants were excluded from the study group, leaving 48 T2D patients
for further analysis.

T2D patients, N = 50
22 (44%) / 28 (56%)

Validation cohort (T2D patients), N = 58
30 (51.7%) / 28 (28.3%)

Age (years), mean + SD 31.5+10.2 58.6+12.5 582+10.3
BMI, mean + SD 245432 348+6.7 34059
HbA,. (mmol/mol) mean + 5D 322+1.8 66.1 +0.5 59.6 + 0.5
HDbA, (%), mean + SD 5.1+£0.5 82+2.1 7.6 £2.0
Creatinine (umol/l), mean + SD 67.6+11.6 68.6 + 13.7 67.3+17.0
ALAT (U.l), mean + SD 235+ 10.7 40.3 +21.8 46.0 £ 30.7
TG (mmol/l), mean + SD 1.3+1,0 2.4 +1.8 24+ 1.6
HDL-C (mmol/l}, mean + SD 1.6+0.4 1.2+03 1.3+04
LDL-C (mmol/l), mean + D 28108 3.6+1.0 34+1.3
Metformin dose (mg/day), mean + SD 1700 £ 0 1146 + 702 1006 + 455

T2D - type 2 diabetes; SD-standard deviation; BMI-body mass index; ALAT—alanine transaminase, TG - triglycerides, HDL-C-High-density lipoprotein cholesterol,

LDL-C - Low-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0241338.1001

PLOS ONE | https://doi.org/10.1371/journal.pone.0241338  October 30, 2020

68

5/19



PLOS ONE

Gut microbiome predicts metformin efficacy

When evaluating sample composition between both analyzed cohorts at baseline (MO time
point), it was possible to distinguish these groups based on beta diversity (Fig 2A). Differences
were statistically significant (PERMANOVA: R? = 0.035, p = 0.0015). Moreover, alpha diver-
sity (Fig 2B) was significantly higher in the healthy cohort. To characterize the possible effect
of available covariates and their contribution to the variation in the taxonomical composition,
CCA was performed on all collected samples. We found the corresponding contribution of the
analyzed cofactors: age (1.5%, p = 0.001), BMI (4.1%, p = 0.001), gender (1.4%, p = 0.001).

Metformin-induced changes in the taxonomic profile

Metformin induced a significant decrease in effective species number in healthy individuals
(MO vs M7d -median MO = 12.9, median M7d = 11.8; p = 0.024), supporting the results from
our pilot study in a smaller group [11]. In T2D patients we observed a slight increase in the
effective species number at the same time points (M0 vs M7d -median M0 = 15.6, median
M7d = 12.1; p = 0.35) but this change was not significant (Fig 2B).
After a weeklong metformin treatment, the healthy group showed 115 significantly changed
features at various taxonomic levels, and the OPTIMED cohort showed 26 changed features
(Fig 3, S1 and S2 Figs, S2 Table). At species level, only four alterations overlapped between
both study groups-a decrease in the abundance of Clostridium bartlettii and Barnesiella intesti-
nihominis, and an increase in the abundance of Parabacteroides distasonis and Oscillibacter
unclassified-while other changes in the taxonomic profile were specific to the analyzed

cohorts.

To ensure the accuracy of the results, we additionally tested the possible effects of different
metformin doses. When analyzed by CCA, the dose of metformin was not a significant co-fac-
tor in influencing the microbiome composition (0.9%, p = 0.56) in the patient cohort.
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Fig 2. Diversity characteristics of analyzed samples. (A) Beta diversity characterizing and comparing samples before metformin therapy between healthy individuals
(H) and OPTIMED cohort patients (T2D). Ellipses represent the 95% confidence interval surrounding each group of samples. Different symbols represent the
participants of the study. Red circles correspond to healthy individuals while green triangles represent type 2 diabetes patients. (B) Alpha diversity calculated in all
analyzed time points. Groups marked as follows: H-healthy individuals; T2D - type 2 diabetes patients. Samples: MO—before starting metformin treatment; M24h - 24
hours after the first intake of metformin; M7d -after 7 days treatment with metformin. Violin plot representing the effective number of species combines boxplots,
depicting the median value and interquartile ranges, with Kernel density plots.

https://doi.org/10.1371/journal.pone.0241338.9002
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https://doi.org/10.1371/journal.pone.0241338.9003

Taxonomic differences associated with the treatment side effects and
efficacy

During the study, all observed SE were registered in the study group-specific questionnaires.
Study subjects from each cohort were divided into two groups according to the type of regis-
tered SE during the usage of metformin. The first group included participants with no or mild
SE defined by headache, meteorism (tympanites), stomach ache, nausea, and loss of appetite;
and the second group included individuals with severe SE defined by loose stools 1-3 times a
day, diarrhea, vomiting. In the OPTIMED cohort, nine individuals had severe SE and 39 did
not report any SE while in the group of healthy individuals 21 participants had mild or no SE
and 14 had severe intolerance. For a detailed analysis of possible microbiome mediated mecha-
nisms and predictors of metformin-induced GI-SE, we performed a comparison of taxonomic
profiles between these defined groups at the analyzed study time points (Fig 4).

As a next step, we evaluated the association between the presence of specific taxonomic
groups before therapy start (M0) and the efficacy of metformin therapy (changes in HbA, lev-
els during the first three months of therapy) in the cohort of T2D. Two of the patients had
withdrawn from the OPTIMED study before the three-month time point (M3m), therefore,
they were excluded from this analysis. We divided the remaining OPTIMED cohort (N = 46)
into two groups characterized in Table 2. Metformin’s therapeutic effects induced a statistically
significant reduction in HbA, . levels during the first three months of therapy in both groups
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https://doi.org/10.1371/journal.pone.0241338.9004

(Responders (p = 0.0002), Non-responders (p = 0.001)), but not on BML. For any further anal-
yses, we performed a correction by baseline HbA . value.
Firstly, we tested for differentially abundant taxonomic groups between both OPTIMED
subgroups. When comparing taxonomic profiles we observed an increased abundance of spe-

cies Prevotella copri in Non-Responders group (logFC = -2.8, FDR = 0.01) at M0 time point.
No significant differences in the effective species number were detected when comparing these

subgroups.

Secondly, we performed an additional sSPLS-DA model to explore which taxonomic groups
could discriminate patients belonging to one of the defined subgroups, and the VIP score was
used to assess the contribution of each analyzed taxonomic unit (Fig 5). In total 43 taxonomic
groups were detected with VIP score >1.5 (the full list is summarized in S1 Table).

Table 2. Characteristics of OPTIMED cohort’s subgroups divided by response to metformin therapy during the first three months of therapy.

Characteristic Responders, N = 18 Non-responders, N = 28 p-value
Males/females, n (%) 12 (66.7%) [ 6 (33.3%) 8(28.6%) / 20 (71.4%) -

Age (years), mean + SD 53.6 + 10.5 61.3+12.5 0.02
MO BML, mean + 5D 358178 346+54 0.50
M3m BMI, mean + SD 351+72 340+58 0.77
MO HbA,. (mmol/mol), mean £ SD 836149 5081126 236 E-7
MO HbA,. (%), mean + SD 9.8+ 1.7 6.8+1.0 2.36 E-7
M3m HbA,  (mmol/mol), mean + 5D 53.0%£13.7 48.6 £ 12.6 0.04
M3m HbA,. (%), mean + SD 7.0+09 6.6+1.0 0.04

SD-standard deviation; BMI-body mass index; M0 —before starting metformin treatment; M3m -after three months of metformin treatment.

https://doi.org/10.1371/journal.pone.0241338 t002
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hitps://doi.org/10.1371/journal.pone.0241338.9005

Finally, we performed the same analysis on the independent validation cohort (characteris-

tics summarized in Table 1). In result, for sPLS-DA model six taxonomic units overlapped:

species Bacteroides vulgatus and its strain Bacteroides vuilgatus unclassified, genus Erysipelotri-

chaceae noname and its species Eubacterium biforme, and its strain GCF 000156655, and spe-

cies Ruminococcus obeum.

Functional analysis

Using the advantage of shotgun metagenomics data, we further evaluated the changes in possible
functions of the analyzed gut microbiomes. This task was performed by analyzing the differential
abundance of signaling pathways calculated by HUMAnNN2 (proportional to the number of com-

plete “copies" of the pathway in the community) within both studied cohorts. As a result, we iden-
tified 24 significant features in the OPTIMED cohort and 118 features in the healthy group (the
specific pathways depicted in S3 and S4 Figs) with changed abundance during the metformin
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therapy. To gain a detailed insight of general biological meaning represented by these functional
changes we performed a cellular function enrichment analysis (Fig 6). Enrichment scores were
calculated from logFC and adjusted p-values obtained from differential pathway abundance anal-
ysis comparing M7d versus MO samples both in healthy and in T2D cohorts.

To perform targeted evaluation of some specific metabolic functions previously described
to be associated with metformin, we took a detailed look under some of the enrichment cate-
gories. Firstly, under Cell Structure Biosynthesis category, increased peptidoglycan biosynthe-
sis was observed in both analyzed cohorts, and increment in pathways dedicated to
biosynthesis of LPS precursor Lipid IVa was detected only in the healthy cohort.

Secondly, after detailed analysis of enriched pathways under Cofactor, Carrier, and Vitamin
Biosynthesis (Fig 6), in vitamin biosynthesis subcategory we observed changes only in the
healthy cohort-reduced folate biosynthesis, increased thiamine and vitamin B6 biosynthesis.

Discussion

QOur study has added new data on several most likely universal metformin effects on the
human gut microbiome profile and presents novel data for therapeutic efficacy and tolerance
prediction in newly diagnosed T2D patients. Also, we have characterized the differences repre-
senting metformin effects in T2D patients and healthy individuals, accenting the need for
additional microbiome studies in groups with different responses to metformin therapy, both,
in context of geographical localization and metformin targets outside the T2D,

The main strengths of our study are the longitudinal design examining the short-term met-
formin therapy effects on well-characterized treatment naive patients and the additional study
of healthy individuals receiving metformin. The used methodology of shotgun metagenome
sequencing also improves the quality of study allowing discussing species-level data and
changes in the functional profile. The main limitation is the relatively small sizes of study
groups, however, we are the first to present short-term metformin effects observed after a
weeklong therapy in newly diagnosed patients and it should be noted that the previously pub-
lished longitudinal studies are similarly sized or even smaller [9, 10]. We also did not include a
placebo arm and blinded design that could uncover possible metformin independent effects.
In addition, the higher metformin dose given to the participants of the healthy cohort is a con-
founding limitation for comparison of both analyzed groups. Long-term follow-up for our
study groups would also provide additional opportunity to evaluate the stability of observed
effects, however, specifically, the short-term therapy results are with high clinical significance
as it is known that the highest incidence of SE is observed during the first weeks [24].

In both healthy individuals and newly diagnosed T2D patients, we observed a metformin-
induced reduction in the abundance of Clostridium bartlettii (also called Intestinibacter bartle-
ttii-latest classification [25]). The role of this species is still unclear as its abundance has shown
a negative correlation with markers for insulin resistance [26], but in other studies, it has been
described as a robust biomarker for Crohn’s disease and ulcerative colitis [27]. Importantly, a
reduced abundance of Intestinibacter genus has been observed in previous metformin studies
[8, 9, 11], thus, suggesting it to be one of the universal markers characterizing metformin
effects on the gut microbiome.

One of the most intriguing findings was the increased abundance of Parabacteroides dista-
sonis species. This taxonomic group has been recently associated with improved insulin sensi-
tivity in obese human subjects [28], alleviated obesity and metabolic dysfunctions in mice [29],
and has been proven to negatively correlate with fasting blood glucose levels [30]. In addition,
some recent studies of metformin effects have observed an increase in the abundance of this
species or obtained associations with therapy outcomes [31, 32].
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Fig 6. Cellular function enrichment analysis comparing functional profiles before and after 7 days long
metformin therapy both in the OPTIMED cohort and in healthy individuals. Respectively, H_MO0 (blue) and
T2D_M (yellow) results represent data on pathways and functions reduced during metformin therapy and H_M7d
(red) and T2D_M7d (green) - pathways and functions increased, only significant (p<0.05) enrichment categories are
shown. Enrichment results are depicted in the following set of functional panels: (A) Biosynthesis, (B) Degradation,
(C) Energy, (D) Other pathways, (E) Central dogma, (F) Cell exterior. Groups marked as follows: H-healthy
individuals; T2D - type 2 diabetes patients. Samples: MO—before starting metformin treatment; M7d —after 7 days
treatment with metformin. Pathway abbreviations: {A) AA Syn - amino acid biosynthesis; Nucleo Syn - nucleoside
and nucleotide biosynthesis; FA/Lip Syn-fatty acid and lipid biosynthesis; Amine Syn-amine and polyamine
biosynthesis; Carbo Syn — carbohydrate biosynthesis; Sec Metab Syn—secondary metabolite biosynthesis; Cofactor
Syn-cofactor, carrier, and vitamin biosynthesis; Cell-Struct Syn—cell structure biosynthesis; Metab Reg Syn-metabolic
regulator biosynthesis, (B) AA Deg-amino acid degradation; Nucleo Deg-nucleoside and nucleotide degradation; FA/
Lip Deg-fatty acid and lipid degradation; Amine Deg-amine and polyamine degradation; Carbo Deg —carbohydrates
and carboxylates degradation; Sec Metab Deg-secondary metabolite degradation; Alcochol Deg-alcohol degradation;
Aromatic Deg-aromatic compound degradation. (D) C1 Util-C1 compound utilization and assimilation; Inerganic
Nutr - inorganic nutrient metabolism; Act/Inact/Inter— Activation/Inactivation/Interconversion. (E) Prot Metab—
protein metabolism. (F) Cell Wall Gen-cell wall biogenesis/organization proteins; LPS Metab - Lipopolysaccharide
Metabolism Proteins; Plasma Mem-plasma membrane proteins; Periplasm—periplasmic proteins.

https://doi.org/10.1371/journal.pone.0241338.9006

At genus level, as possibly negative metformin effect, decrement in Bifidobacterium was
observed in both analyzed cohorts. This taxon plays an important role in human health main-
tenance and is widely used as probiotics, as well as its reduction can be used as a biomarker for
certain diseases [33]. Co-administration of Bifidobacterium bifidum G9-1 with metformin
even has shown beneficial effects on reducing GI-SE [34]. However, the observed reduction in
this genus needs more research, as effects on health are most likely species and strain specific,
and our result is in contradiction with results of previous studies, for example, previously it
has been reported that metformin enhances growth of species Bifidobacterium adolescentis in
pure cultures [9].

We confirmed the previously observed increase in the abundance of Escherichia coli [9, 11]
only in the group of healthy individuals. In this study cohort, we observed the highest inci-
dence of SE, therefore, contributing the hypothesis of these changes as a possible basis for met-
formin intolerance. [nterestingly, in previous studies, the highest SE occurrences (up to 50%
and higher) have been observed during metformin administration in non-diabetic cohorts,
such as healthy volunteers [10, 11] or polycystic ovary syndrome patients [35] compared to
T2D. Regarding the possible beneficial effects of metformin specific to the healthy cohort, we
found a metformin-induced reduction in Dialister invisus and Bifidobacterium longum, both
associated with intestinal permeability and compromised gut health [36].

In the search for possible microbiome signatures describing or predicting the therapy toler-
ance, we observed different profiles in both analyzed cohorts. One of the taxa specific to the
subgroup with severe SE in OPTIMED cohort (M0 time point) was Streptococcus parasangui-
nis, previously shown to be increased in individuals who use platelet aggregation inhibitors
and proton pump inhibitors [37], which both are groups of medications frequently prescribed
for the treatment of diabetes comorbidities. This result could indicate the possible effects of
polypharmacy on the metformin’s interaction with gut microbiome and the subsequent ther-
apy tolerance. In contrast, species Ruminococcus lactaris which was enriched in OPTIMED
subgroup with no or mild SE both at M0 and M7d samples, has been enriched in healthy indi-
viduals compared to T2D patients or obese subjects in various populations [38, 39], as well as
negatively associated with statin use [40]. Within the healthy cohort (subgroup with no or
mild SE) both before and after metformin use was characterized by an increased abundance of
Phascolarctobacterium succinatutens, a succinate-consumer and substantial producer of short-
chain fatty acids acetate and propionate. Therefore, this taxon has been associated with the
metabolic state and even the mood of the host [41]. Some of our observed taxa have been
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previously characterized as discriminants for SE development in a healthy cohort, such as Alis-
tipes [10]. Altogether, these results give new insights into possible microbiome signatures for
future prediction of therapy tolerance, but additional studies in larger patient cohorts with a
well-characterized incidence of SE are needed to confirm our data.

Taking into account the widely known variation of metformin’s therapeutic efficacy [42]
we used the advantage of our longitudinal and well described OPTIMED cohort to search for
potential microbiome-based markers as predictors. Firstly, we compared the taxonomic pro-
files in the subgroups crossectionally-at MO time point before starting metformin therapy—
with a fitted linear model for a series of arrays. The main finding in this step was the increment
in abundance of Prevotella copri in the samples from Non-Responders to the therapy. Previous
studies describing the possible functionality of P.copri species present contradictory data.
Research results suggest both P.copri mediated beneficial effects on the host’s metabolic profile
as a succinate producer [43] and its induced increase in insulin resistance, glucose intolerance,
and lipopolysaccharides plasma levels [44, 45]. However, the latest data indicate that strain-
specific effects most likely explain this controversy, and the strain-level composition might be
diet dependent [46]. Thus for the future development of biomarker-based approaches, strain-
level data should be analyzed to account for the population and lifestyle specific microbiome
composition with an aim to precisely predict its dependent functionality.

Secondly, the performed sPLS-DA analysis revealed a broad list of key taxa discriminating
both therapy response subgroups at M0 time point. More precisely, the microbiome of the
Responders group at baseline was enriched with various taxonomic groups characterized as
potentially probiotic. For example (1) Enterococcus faecium significantly decreased body
weight, serum lipid levels, blood glucose level, and insulin resistance in rats fed with a high-fat
diet [47]; (2) several Lactococcus lactis strains have shown the ability to reduce hyperglycemia,
improve glucose tolerance and insulin secretion [48, 49]; (3) bacteria from Odoribacter genus
have been associated with a healthy fasting serum lipid profile [26], and displayed a negative
correlation with insulin resistance [50]. The top result from this analysis-genus Dialister - has
been characterized as a taxon possibly mediating the beneficial effects on the metabolic profile
of whole-grains [51], however more data on underlying species are needed. In contrast, the
various species from the predominant genus Bacteroides, found to be specific to the group of
Non-responders, has been previously described in higher abundance in type 1 and T2D
patients [52, 53], as well as associated with a negative impact on metabolic health [44]. Never-
theless, it is important to accent that the possible biological role of this genus is highly variable
due to numerous species and strains within it, therefore, the interaction with the host can be
both beneficial and harmful [54] and need to be further studied in the context of metformin
response.

Data validation of sPLS-DA model in the independent cohort highlighted six taxonomic
groups from three phylogenetic branches that have been previously associated with T2D, glu-
cose tolerance, insulin resistance, and blood glucose levels, however, the results are highly con-
flicting and mostly population specific [45, 55-57]. These results highlight the urgent need for
further population specific clinical studies to develop highly precise microbiome-based predic-
tion tools for therapy efficacy.

To our best knowledge, we are the first to report the results of such analysis combining met-
formin therapy efficacy and microbiome profile data from newly diagnosed and treatment
naive T2D patients. Most importantly, comparing to studies with a similar design that com-
pare Responders and Non-Responders to the antidiabetic therapy but analyze other targets, we
have performed data correction by baseline HbA, . measurement, to reduce biases created by
frequently observed higher baseline values in the Responders group, as suggested previously
[58]. Nevertheless, it is important to point out that other therapy efficacy influencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0241338  October 30, 2020 13/19

76



PLOS ONE

Gut microbiome predicts metformin efficacy

indicators should be evaluated to more precisely distinguish microbiome-related effects from
e.g. presence of genetic factors previously associated with efficacy.

As for the functional profile, only a portion of the observed results has been previously
characterized. A large number of the significantly changed pathways and subsequently the
results of enrichment analysis during metformin use were representing the increment in path-
ways characterizing synthesis of lipopolysaccharides and peptidoglycans (under Cell-Struct
Syn in Fig 6), which is another signature of metformin effects [9, 59]. These changes were
mainly found in the healthy cohort, most likely accounting for the high number of observed
fluctuations in the taxonomical profiles. For example, a recent study employing genome-scale
metabolic modelling has shown that lipopolysaccharide synthesis, nucleotide sugar metabo-
lism, and amino acid metabolism (under Cell-Struct Syn, Nucleo Syn, Nucleo Deg, AA Syn, AA
deg in Fig 6) are pathways most likely effected by abundance changes in such taxa as Escheri-
chia spp. and A. muciniphila [60]. Compared to other analyses of metformin-induced changes
in the functional profile performed in T2D cohorts, we observed similar changes, such as an
increase in lysine and threonine degradation (in healthy cohort), and sugar nucleotide biosyn-
thesis (in OPTIMED cohort) [9]. Interestingly, the enriched cellular functions appeared to be
cohort-specific and in cases when similar functional changes are observed, the observed
underlying mechanisms differed.

In addition, as metformin is known to be associated with vitamins B level alterations and
even deficiencies [61, 62], we as well observed metformin induced changes in various vitamin
B pathways, however, only in the healthy cohort. The inhibition of folate metabolism have
been characterized as one of the mechanisms behind metformin effects on increased lifespan
in C.elegans [63]. However, the suppression of folate producing bacteria has been proposed as
one of the causes for GI-SE [64], therefore, indicating a possible explanation for the high prev-
alence of SE observed specifically in the healthy cohort.

The large disparity in the observed microbiome profile changes in both cohorts could be
explained by initial differences (as depicted in Fig 2). Moreover, as the T2D cohort is expected
to be more heterogeneous [65], it explains the smaller number of significantly changed features
in OPTIMED patients. In addition, our results have approved some seemingly universal
microbiome signatures for metformin therapy and displayed new data on microbiome
changes, most likely responsible for population-specific effects dependent on health status as
well as geographical localization. Qur results on the prediction of therapy tolerance and effi-
cacy may reveal novel biomarkers, which need to be further studied to fully characterize the
strain-level dynamics and validated in larger cohorts. These results highlight the need to
develop personalized medicine based approaches based on gut microbiome testing before
starting the therapy and will serve as the basis for further studies on microbiome modulation
techniques to improve both metformin therapeutic efficacy and tolerance and, therefore, the
quality of life of patients.
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4. DISCUSSION

Type 2 diabetes is a complex and heterogeneous group of metabolic disorders with increasing
incidence and prevalence worldwide and it has been recognized as a global burden for
healthcare and economics. Therefore, timely identification of individuals at risk, improved
detection and monitoring of T2D patients, effective treatment with reduced incidence of
comorbidities, and improved awareness are the key elements for decreasing the future burden
of this disease (Alzaid et al. 2020). Metformin is a first-line antidiabetic drug used for more
than 60 years, moreover, its pleiotropic effects have shown significant results in the treatment
of many other diseases outside T2D (Lv and Guo 2020). In addition, metformin has been
characterized by a high safety profile, low costs, and even a protective effect on various
diseases. Despite the high number of studies on metformin effects, the pharmacodynamic
actions of this medication are not fully understood and variance of the therapy efficacy and
tolerance exists (Rashid et al. 2019, Gedawy et al. 2020).

The gut microbiome has been proven to be a significant mediator and as well as a place of
action for metformin pharmacodynamics. Many high-quality studies have been performed
worldwide, however, results are often controversial and discovery of new confounding factors
interferes with the certainty of some findings. Such factors as a dose of medication, effects of
other drugs, comorbidities, different experimental designs, variation across individuals and
study populations have been highlighted as some of the most significant reasons for the diverse
results (Zhang and Hu 2020).

The strongest and most consistent observation validated by the results in gut microbiome of
both analysed study populations from this thesis, healthy individuals and newly diagnosed T2D
patients, is the reduction in the abundance of Peptostreptococcaceae family. As expected, the
study employing shotgun metagenomics analysis allowed to identify these changes even at the
species level as a reduction of Clostridium bartlettii (latest classification: Intestinibacter
bartlettii (Gerritsen et al. 2014)). Most of the other human microbiome studies performed have
confirmed these metformin-induced changes as well (Forslund et al. 2015, Wu et al. 2017,
Bryrup et al. 2019), therefore, suggesting it to be a pronounced effect, most likely independent

from the population or disease specific background.

Similarly, our results from the healthy cohort were among the first in series of findings

observing metformin-induced increase in abundance of Escherichia spp. (or

Escherichia/Shigella spp. in studies based on 16S rRNA) (Forslund et al. 2015, Wu et al. 2017,

Bryrup et al. 2019, Ejtahed et al. 2019) while it was not significant in our T2D cohort. This
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increase has been thought to be one of the mechanisms responsible for the metformin-induced
gastrointestinal side effects (Forslund et al. 2015). However, a recent study proposed that this
increase could also be related to metformin’s beneficial effects on weight reduction as in some
cohorts a negative correlation of Escherichia coli abundance with BMI has been observed. The
same study hypothesized that the underlying mechanism could be related to possible
satietogenic protein release from commensal Escherichia coli (Ejtahed et al. 2019). Additional
longitudinal studies in T2D patients or obese individuals are needed to validate this hypothesis.
Moreover, the observed differences between metformin effects in the healthy individuals and
the newly diagnosed T2D patients support the previously reported variation of metformin
effects (Zhang and Hu 2020), thus, emphasising the need for new high quality studies in
diseases other than T2D for which metformin beneficial effects have been proposed.

Interestingly, we observed a significant increase in the abundance of Akkermansia muciniphila,
considered one of the most beneficial gut microbiome species, only with the more sensitive
shotgun metagenomics approach and only in the cohort of healthy individuals. This species has
been widely characterized in the context of metformin therapy and its increase has been
proposed as one of the most significant metformin effects in the gut (Rodriguez et al. 2018), as
A. muciniphila mediates many beneficial effects on the host (Macchione et al. 2019). Our
results indicate this species' relatively low presence in our cohorts, which might be one of the

Latvian population-specific microbiome signatures.

More than 20% of patients fail to reach the glycaemic target when on metformin monotherapy
(Kahn et al. 2006) and more than 30% experience gastrointestinal side effects (Knowler et al.
2002). Therefore, the use of specific microbiome signatures in baseline samples (collected
before starting metformin) to predict therapy efficacy and tolerance is a promising approach
and can significantly improve the treatment algorithms. Such knowledge, combined with the
wide range of possibilities to modify the gut microbiome (Quigley and Gajula 2020, Deehan et
al. 2021), can help to develop microbiome modulation approaches improving the metformin’s
therapeutic efficacy and reducing the incidence of gastrointestinal side effects. This would
significantly improve the quality of life for patients and increase adherence to the prescribed
therapy. For example, a combination of metformin therapy with prebiotic
mannan-oligosaccharides suggested augmentation of metformin’s hypoglycaemic effects in
mice (Zheng et al. 2018). Also, the addition of a prebiotic gastrointestinal microbiome
modulator compared to placebo significantly reduced metformin intolerance in T2D patients
(Burton et al. 2015). However, in obese patients metformin treatment has been shown to

compromise microbiome changes and even the metabolic improvements observed from the
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probiotic intervention (Hiel et al. 2020), highlighting some challenges of possible metformin

therapy combinations with the microbiome modulation approaches.

Our results (Elbere et al. 2020) offer novel knowledge for the creation of such
microbiome-based prediction algorithms as we were the first to report results of analysis
combining metformin therapy efficacy and microbiome profile data from newly diagnosed and
treatment naive T2D patients. Classification of T2D patients as metformin therapy Responders
and Non-responders according to changes HbAlc has been done before only in the context of
other parameters, like genetic polymorphisms, urine metabolites, or DNA methylation
(Mahrooz et al. 2015, Park et al. 2018, Ebid et al. 2019, Garcia-Calzon et al. 2020) largely
ignoring the potential of microbiota composition in this regard. Future studies including a
combination of various markers would be significant for defining the complex mechanisms

behind metformin therapy response.

It is important that the different microbiome analysis methods (16S rRNA amplicon vs. shotgun
metagenome sequencing) applied for the two publications in this thesis present highly similar
results despite the different sample sizes, providing additional integrity of the obtained results.
The level of consistent results across these methods has been tested and demonstrated before
(Rausch et al. 2019). Our most recent study using the shotgun metagenomics approach
highlights the possible species and even strain-specific effects, which is in line with the latest
understanding regarding the significance of strain-level epidemiology in the human
microbiome (Yan et al. 2020). These results emphasize the advantages of this method for
explaining metformin pharmacodynamic effects in the gut microbiome and predictive
biomarker detection that could be further used for the development of precision medicine based

therapy algorithms and approaches.

At the time of publication, our study about metformin effects on DNA methylation in the
healthy individual group was the first to report the immediate effect of metformin on white
blood cell DNA methylation in humans at therapeutic doses. Therefore, the discussion about
similar or controversial findings was limited. New data has been published in this field during
the previous two years, including several studies in human subjects. In a targeted study
metformin therapy during pregnancy prevented DNA methylation changes of offspring
associated with the intrauterine PCOS environment (Echiburu et al. 2020). Two studies
employing genome-wide methylation profile analysis showed interesting results in T2D
patients. Firstly, metformin treated versus newly diagnosed T2D patients showed significantly
different DNA methylation profiles with mostly observed metformin-associated

hypermethylation (Solomon et al. 2020). Secondly, in a pre-print paper metformin anti-aging
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effects have been studied in the context of the epigenetic clock and show enrichment in cellular
pathways related to the aging process in T2D patients (Li et al. 2021). Similar to the first
above-mentioned genome-wide methylation study, our results depicted mostly DNA
hypermethylation associated with metformin therapy, in contrast to results observed by Li and
colleagues (Li et al. 2021). In a previous analysis of genome-scale DNA methylation changes
in vitro, metformin effects on the epigenetic regulation showed a combination of hyper, hypo,
and non-differentially methylated CpG sites, therefore, highlighting the differential effects of
metformin on gene methylation (Zhong et al. 2017). However, the results about specific CpGs
or DMRs observed in our study have not yet been replicated by any of the human studies
performed later. One of the explanations might be the population-specific difference in patient
cohorts. Also, it is important to note that all of the recent human studies have been performed
in case-control design comparing metformin users versus non-users, and any longitudinal data
to which compare our results are missing, hindering many patient-specific changes in

methylation profile.

In addition to metformin's effects on DNA methylation and similarly to the gut microbiome,
some studies have focused on the possible use of DNA methylation profile as a prediction tool
for metformin’s therapy efficacy or tolerance (Garcia-Calzon et al. 2020). As the paper
mentioned above includes data from our OPTIMED cohort, future research could combine gut
microbiome and DNA methylation biomarkers for prediction purposes. Even
other -omics-based data collected from healthy and T2D cohorts could take a step closer to

more precise and personalized prediction tools.

Importantly, when comparing in vitro and animal studies with those involving human subjects
the discussion regarding metformin concentration used in such studies remains inconclusive.
The doses are often not comparable (even 10 - 100 times higher than maximally achievable
therapeutic concentrations), therefore, questioning the possible transfer of results from these
studies to effects in clinical trials and everyday treatment strategies (He and Wondisford 2015).
Thus, the growing number of metformin pharmacodynamic studies involving humans in
combination with the preclinical experiments creates a reliable knowledge base for improving

treatment approaches in clinical practice.

Multi-omics approaches have been widely used for metformin pharmacodynamic studies both
individually and in combination. Nevertheless, the complex interaction among the metformin
pharmacodynamic effects, microbiome, and DNA methylation altogether remains elusive.
Many effector molecules derived from the gut microbiome have a significant impact on host

epigenetics. The most known of them are various methyl donors (folate, choline, vitamin B12,
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etc.), as well as SCFAs (Ye et al. 2017). Interestingly, metformin is known to be associated
with level alterations and even deficiencies of B-group vitamins, especially vitamin B12 (Yang
et al. 2019). Together with other previous studies, our results have shown metformin associated
alterations in microbiome functional pathways related to B-group vitamin synthesis and
metabolism (Olgun 2017, Rosario et al. 2018). Previous research has characterized such gut
microbial communities as Lactobacillus and Bifidobacteria to be important regulators of these
methyl donor nutrients (Rossi et al. 2011), and for some of the species, their effects on DNA
methylation have been proved in vitro (Cortese et al. 2016). Moreover, most of the studies in
animal models or humans analysing metformin effects on the gut microbiome report increase
in at least one of these taxa, and direct metformin effects on bacterial growth have been shown
in the case of Bifidobacterium adolescentis (Wu et al. 2017, Zhang and Hu 2020). Therefore, it
could be hypothesized that both direct and indirect effects of metformin on the gut microbiome
composition and functionality could be another pathway for alterations related to B-group
vitamin metabolism and even a significant mediator for available methyl donors and the

observed changes in the epigenetic profile of the host.

One of the main and beneficial effects observed in the human gut microbiome during metformin
use is an increase in the abundance of Akkermansia muciniphila and other SCFA-producing
bacteria. Despite the described mechanisms of SCFA induced phosphorylation of ERK, which
results in downregulation of DNMT1 and further demethylation of specific genes (Sarkar et al.
2011), metformin therapy has been associated with both global DNA hypermethylation and
hypomethylation (Elbere et al. 2018, Solomon et al. 2020). Moreover, the reduced activity of
DNMT1 that leads to demethylation of specific tumour suppressor genes has been proposed as
one of the mechanisms of action for anticancer and antidiabetic effects of metformin
(Bridgeman et al. 2018). In the case of metformin effects on A. muciniphila abundance, some
population-specific microbiome diversity needs to be taken into account, as in our study groups
we observed that almost a half of participants did not have detectable levels of these species.
Nevertheless, other SCFA producing taxa could fill the niche and employ the microbiome

mediated beneficial effects of metformin treatment.

In addition, although the mechanisms are not clear, a study showed that commensal microbiota
increases DNA methylation level in the Toll-Like Receptor 4 (TLR4) gene, which usually
recognizes lipopolysaccharides (LPS) and further activates the innate immune system. This
increased methylation then leads to decreased responsiveness to LPS to ensure maintenance of
bacterial insensitivity in the colon (Takahashi et al. 2011). In our study employing shotgun

metagenomics, we observed metformin induced increase in abundance of various pathways
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involved in biosynthesis and metabolism of LPS, similarly to results reported previously (Wu
et al. 2017), however, only in healthy individuals. Interestingly, in our methylation study (that
includes a subgroup of the same healthy individuals analysed in the microbiome study) we
found increased methylation level for the most significantly changed probe representing the
TLR4 gene (both contrasts: M10h vs MO and M7d vs MO0). This change was unfortunately not
significant after correction (unpublished results). In intestinal epithelial cells of healthy
individuals, such increase of methylation in TLR4 gene represents a significant example of a
mechanism contributing to the maintenance of intestinal symbiosis (Takahashi et al. 2011).
Nevertheless, the absence of significant results in our study could be explained not only by the
small sample size but also by the different cell types analysed compared to the literature. These
data offer insight into correlations that need to be tested in future studies employing a bigger
cohort as well as additional statistical analysis. Altogether, the possible microbiome mediated
effects on the epigenetic profile of the host highlight the need for more extensive multi-omics
studies as well as gives insight into the complex nature of multi-level interactions between

various sites depicting metformin’s pharmacodynamic mechanisms of action.

The main limitation of our results is the relatively small study groups. Nevertheless, both the
microbiome profile and DNA methylation signatures are dynamic and highly subject-specific,
therefore, the applied longitudinal design represents one of the main advantages of the studies
included in this thesis. The repeated sampling increases the statistical power allowing the
baseline samples from the same individuals to be treated as controls. This as well controls for
a number of possible confounding factors, such as age, gender, diet, etc. (Goodrich et al. 2014).
Moreover, the unique cohort of newly diagnosed and antidiabetic treatment naive patients

ensures a higher homogeneity of the group.

A significant strength of our study is the short period between the collected samples which
allows evaluating immediate effects of the metformin. While additional data from samples
collected during a longer period would definitely benefit the results, it is important to note that
when analysing samples from patients with stable metformin therapy for more than three
months, it would be challenging to distinguish metformin-mediated effects from those
secondary to the metabolic improvements due to therapy.

Moving forward, a new analysis could be performed employing the existing data and the

continuously growing sample size of the OPTIMED cohort to:

(1) Validate findings presented in this theses using bigger sample size;
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(2) Obtain more precise results by performing microbiome analysis with higher sequencing
depth;

(3) Confirm the proposed hypothesis regarding the interaction between the gut microbiome
and the DNA methylation profile.

In addition, functional studies implemented with mice models, in vitro experiments, or the new
state-of-the-art microfluidic systems like gut-on-a-chip should be needed to move from the

observed associations to evidence about causality.
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5. CONCLUSIONS

Metformin-induced reduction in the abundance of Peptostreptococcaceae family (and
Intestinibacter bartlettii species) is the most pronounced effect of metformin on the gut
microbiota.

Changes in gut microbiome diversity, composition, and functional profile during
metformin use are group-specific.

The increase in the abundance of opportunistic pathogens represents a possible trigger
for the occurrence of side effects.

Metformin induces significant effects on peripheral blood cell DNA methylation profile
already after one dose.

Changes in peripheral blood cell DNA methylation profile of healthy individuals
represent the main functional groups associated with previously described targets of
metformin therapy: regulatory processes of energy homeostasis, inflammatory
responses, tumorigenesis, and neurodegeneration.

Gut microbiome composition enriched with various probiotic species is a significant
biomarker for increased therapeutic efficacy of metformin.

The baseline composition of the gut microbiome may influence metformin therapy

efficacy and tolerance in T2D patients and could be used as a powerful prediction tool.
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6. THESIS

Metformin pharmacodynamic effects on the human gut microbiome and DNA
methylation profile are immediate and can be observed already within the first 24 hours
after its administration.

Metformin-affected microbiota contributes significantly to the development of
gastrointestinal side effects.

Gut microbiome composition before the antidiabetic treatment has a high potential to
be used as an effective prediction tool for efficacy and tolerance of metformin therapy.

Changes in DNA methylation profile depict new mechanisms of metformin’s action=
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Appendix 1. List of inclusion/exclusion criteria of the studied cohorts

1. List of inclusion/exclusion criteria for the cohort oh healthy individuals

1.1. Inclusion criteria:

a)

A healthy individual:
(1) With no known illnesses at the time of application to this study that could
affect the result of the study;
(2) Whose body characteristics are within the healthy reference interval (e.g.,
BMI range is 18.5 — 29.9);
(3) Whose mental state allows him to understand the research process, and give
a legal consent for the participation in it;
(4) Whose physical state allows complying with the needs of the study protocol.
Age: 18 — 64 years;
European descent;
Both males and females with reproductive potential match the contraception
requirements of the study protocol.
Prior to the study-related procedures, the consent of a person's participation in the

clinical trial is received by submitting a signed and dated informed consent document.

1.2. Exclusion criteria:

a)
b)

c)
d)

e)
f)
9)

h)
i)

)

Hypersensitivity to any of the components in Metforal 850mg;

Use of any medication that is not compatible with Metforal 850mg therapy (according
to Metforal description);

Pregnancy or lactation;

Diagnosis of type 1 or type 2 diabetes mellitus, pancreatogenic diabetes, impaired
glucose tolerance (evaluated by HbA1c and fasting glucose levels);

Polycystic ovary syndrome;

Chronical gastrointestinal, oncological, or autoimmune diseases;

Renal failure or dysfunction (evaluated by glomerular filtration rate - Cockcroft-Gault
formula);

Liver dysfunction (ALAT results are not in the reference interval) or alcoholism;
Acute conditions with possible effects on kidney functions (dehydration, severe
infection, shock);

Acute or chronical diseases that could cause tissue hypoxia, (e.g., heart or breathing

failure, recent myocardial infarct, shock);
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k) Diarrhea during the week before the study;
1) Previous long term use of metformin;
m) Use of any of the following medications in the past two months:
i. Antibiotics;
ii. Pharmaceutical-grade probiotics;
iii. Proton pump inhibitors (e.g. omeprazole, lansoprazole, pantoprazole,
etc.);
iv. Immunosuppressive drugs (methotrexate, etc.);
v. Corticosteroids (e.g. cortisone, hydrocortisone, prednisolone, etc.);
n) Concurrently to the study, any radiologic procedures involving intravascular
administration of iodinated contrast materials are intended.

2. List of inclusion/exclusion criteria for the OPTIMED cohort

2.1. Inclusion criteria

a) Newly diagnosed type 2 diabetes mellitus and initiation of oral antidiabetic therapy;
b) Previous diagnosis of type 2 diabetes mellitus and no oral antidiabetic or insulin therapy
used in the previous three months;
c) Newly diagnosed patients for glycemic control for an acute on-site intensive insulin
therapy up to five days, continued afterwards;
d) Patients unavailable and not optimized in drug trials;
e) Age of 18;
f) Patients meeting the diagnostic criteria for type 2 diabetes mellitus:
i. Fasting blood glucose >7 mmol / |;
ii. Blood glucose two hours after OGTT with 75 g glucose >11.1 mmol / I.
g) Prior to the study-related procedures, the consent of a person's participation in the

clinical trial is received by submitting a signed and dated informed consent document.
2.2. Exclusion criteria:

a) Use of peroral antidiabetic therapy;
b) Use of Type 2 diabetes mellitus insulin therapy;
c) Pregnancy.

ALAT - alanine aminotransferase; HbA1c - hemoglobin Alc; OGTT — oral glucose tolerance
test.
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