UNIVERSITY OF LATVIA
Faculty of Biology

Monta Briviba

DOCTORAL THESIS

MOLECULAR SIGNATURES FOR THERAPEUTIC
EFFECTIVENESS AND RISK OF COMPLICATIONS IN TYPE 2
DIABETES MELLITUS

Promotion to the degree of Doctor of Biology

Molecular Biology

Supervisor: Dr. Biol., Prof. Janis Klovins

Riga, 2022



The doctoral thesis was carried out in Latvian Biomedical Research and Study Centre, at
Human Genetics and Molecular Medicine department, and Faculty of Biology, Department of
Molecular Biology, University of Latvia from 2017 to 2021.

The research was supported by ERDF grant 1.1.1.1/16/A/091.

Form of the thesis: a collection of research papers in biology, subfield — molecular biology.

Supervisor: Prof., Dr. biol. Janis Klovin$

Reviewers:

1) PhD. biol. Dace Pjanova, Latvian Biomedical Research and Study Centre
2) PhD. biol., Prof. Una Riekstina, University of Latvia

3) PhD., Assoc. Prof. Elin Org, University of Tartu

The thesis will be defended at the public session of the Doctoral Committee of Biology,
University of Latvia at 13:00 pm (EET), on March 4th, 2022 at Latvian Biomedical Research
and Study Centre, Ratsupites Str. k-1.

The thesis is available at the Library of the University of Latvia, Kalpaka blvd. 4.

This thesis is accepted for the commencement of the degree of Doctor of Biology on December

20th, 2021 by the Doctoral Committee of Biology, University of Latvia.

Chairman of the Doctoral Committee | vards, uzvards/
(paraksts)

Secretary of the Doctoral Committee | vards, uzvards/
(paraksts)

© University of Latvia, 2022
© Monta Briviba, 2022



ABSTRACT

The increasing prevalence of type 2 diabetes mellitus, a chronic disease associated with
risk of disabling complications and premature mortality, requires continuous management and
therefore has long become a serious public health concern causing major health expenditures
globally. Since long-term complications are directly related to poor glycemic control, they may
be prevented or at least delayed to some extent by early intervention. Metformin, a biguanide
agent, is the first-line treatment for type 2 diabetes mellitus with an inter-individually variable
glucose-lowering effect. Currently, there are no reliable biomarkers for either prediction of
metformin response or early risk stratification for diabetic complications in a clinical setting.

The main objective of this thesis was to investigate the underlying mechanisms and
molecular signatures representing the variability in the therapeutic response of metformin and
complications associated with type 2 diabetes mellitus. We chose the longitudinal RNA-Seg-
based comparative transcriptomics approach in peripheral blood cells to evaluate the systemic
effect of metformin in healthy individuals and drug-naive type 2 diabetes patients in vivo.
Genome-wide genotyping was applied to identify genetic determinants for type 2 diabetes
complications in the population of Latvia.

We discovered immediate metformin-induced transcriptional alterations in blood cell
gene expression profiles of healthy individuals with notable subject-specific differences, and a
strong association between metformin and immune pathways emphasizing the secretory
immunoglobulin A-related intestinal immune responses. Our study highlighted potential
predictive biomarkers of metformin response and pinpointed the expression of genes coding for
NADH: ubiquinone oxidoreductase core subunits as key contributors in metformin
effectiveness. Finally, ten novel genetic associations with type 2 diabetes complications were
discovered in the population of Latvia. Furthermore, for five of the allelic variants, the nearby
genes (GYPA, PDE4DIP, NAT8, F5, RPS6KA2) have been functionally linked to the
pathogenesis of the diseases before. The obtained data provide detailed insight into potential
molecular mechanisms underlying the well-known beneficial effects of metformin and potential
key determinants of type 2 diabetes complications, highlighting the considerable advantage of

the application of omics-based molecular targeting in clinical decision-making.



KOPSAVILKUMS

Picaugos$a 2. tipa cukura diabéta izplatiba, kas ir saistita ar palielinatu hronisku
komplikaciju attistibas un priekslaicigas mirstibas risku, prasa nepartrauktu uzraudzibu, tapec
ir kluvusi par nopietnu sabiedribas veselibas problému, radot ievérojamu finansialu slogu
veselibas apriipes sisttmam visa pasaulé. Ilgtermina komplikaciju attistibas risks ir tiesi saistits
ar nepietiekamu glikémijas kontroli, tapéc agrina iejaukSanas var t0 noveérst vai aizkaveét.
Metformins, biguanidu grupas lidzeklis, ir pirmas izvéles medikaments 2. tipa cukura diabéta
arstéSana, kam ir novérots variabls glikozes Iimeni pazemino$s efekts starp 2. tipa cukura
diabéta pacientiem. Kliniskaja praksé joprojam triikst biomarkieru metformina atbildes
reakcijas prognoz&sanai un agrinai diab&ta pacientu stratifikacijai péc komplikaciju attistibas
riska.

S pétijuma galvenais mérkis bija izp&tit molekularos mehanismus, Kas atspogulo
metformina terapeitiska efekta variabilitati un 2. tipa cukura diab&ta komplikaciju attistibas
risku. Lai novertétu metformina sist€émisko efektu veselos individos un 2. tipa cukura diabé&ta
pacientos, kas ieprick§ nav sanémusi antidiab&tisko terapiju, tika izmantota uz RNS
sekvencésanu balstita in vivo transkriptomikas pieeja periférajas asins $tinds. Ar genoma
méroga genotipéSanu tika identificéti tie genétiskie faktori, kas nosaka 2. tipa cukura diabé&ta
komplikaciju risku Latvijas populacija.

Pétijuma iegitie dati noradija uz talitgjam, metformina ierosinatam izmainam veselu
individu asins §tunu génu ekspresijas profilos ar ievérojamam individ-specifiskam atskiribam,
un cieSu saistibu ar iminsistemas signalceliem, taja skaita ar sekretoro imunoglobulinu A
saistitam zarnu i1munas atbildes reakcijam. P&tijjuma istenoSanas laika tika identificéti
potenciali, uz génu ekspresijas izmainam balstiti biomarkieri metformina efektivitates
prognozgsanai, turklat iegtitie dati noradija uz butisku NADH: ubikvinona oksidoreduktazes
kodola subvienibu kodg&joSo génu ekspresijas lomu metformina efektivitates modulésana.
Visbeidzot, Latvijas populacija tika atklati desmit jauni, ar diab&ta komplikaciju attistibas risku
saistiti lokusi, turklat pieci no al€liskajiem variantiem tuvuma esosajiem géniem (GYPA,
PDE4DIP, NAT8, F5, RPS6KA?2) ir funkcionali saistiti ar slimibu patogenézi. legitie rezultati
sniedz papildu zinasanas par molekularajiem mehanismiem, kas pamato metformina labvéligos
efektus, un diabéta komplikaciju attistibas risku noteicoSajiem faktoriem, vienlaikus izcelot
prieksrocibas, ko sniedz uz omikas datiem balstitas lielapjoma molekularas analizes klinisko

lémumu pienemsana.
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INTRODUCTION

The emergence of type 2 diabetes mellitus (T2DM) as a pandemic is raising the risk of
long-term complications and premature death. T2DM control and management of
complications have long become a serious public health concern generating substantial costs,
and emphasizing the need for reliable biomarkers for early identification of patients at
high risk for diabetic complications and prediction of therapy response. Metformin, an
antihyperglycemic agent of the biguanide class, is still used as the first-line treatment of T2DM,
despite the variable efficacy and tolerance exhibited among diabetic patients, highlighting its
applicability for predictive biomarker studies. The collection of different types of omics data in
well-designed clinical studies has already revealed a number of complex interacting pathways
that are underlying the pathophysiology of T2DM, and these comprehensive approaches may
be further applied in the personalization of diabetes care.

Importance of this work: Deep investigation of the driving and contributory mechanisms
underlying the pathophysiology of diabetic complications and its treatment is important in the
development of personalized diabetes care. Integration of omics-based biomarkers in T2DM
management is needed to promote the early prediction of inter-patient variation in treatment
response and develop reliable risk stratification strategies for diabetes complications, thus
preventing the progression of the disease and increasing the life expectancy of the patients.

Aim of the study: To investigate the underlying mechanisms and molecular signatures
representing the variability in the therapeutic response of metformin and diabetic

complications.
Tasks to reach the aim:

1. To evaluate metformin-induced alterations in peripheral blood cell gene expression profiles
and signaling pathways following metformin intervention of various duration in healthy
individuals and T2DM patients.

2. To identify transcriptional divergence in different metformin response groups before and
after administration of metformin, and determine possible biomarkers for early prediction of

metformin effectiveness.

3. To explore the underlying mechanisms and genetic predisposition to diabetic complications
in the population of Latvia.



1. LITERATURE REVIEW

1.1  Etiology and genetics of diabetes mellitus

Diabetes mellitus is a group of metabolic diseases and long-term conditions. It is
characterized by hyperglycemia due to defective insulin secretion or inefficient use of it
(Borgnakke 2019; Craig et al. 2009). According to the ninth edition of the International
Diabetes Federation Atlas, there were around 463 million people with diabetes worldwide
compiling around 9.3% of the global prevalence in 2019. Moreover, it is projected that by 2030
the global prevalence of diabetes will continue to rise to 10.2% (578.4 million cases), while in
2045 it may reach 10.9% (700.2 million cases) (Borgnakke 2019). Despite the efforts engaged
in diabetes prevention, the disease is still among the top 10 leading causes of death worldwide,
accounting for 4.2 million deaths in 2019 (Borgnakke 2019; Li et al. 2019), meanwhile causing
substantial financial burden on both the patients and healthcare systems resulting from the
complex requirements of diabetes management (Moucheraud et al. 2019). According to
International Diabetes Federation Atlas, the total diabetes-related health expenditure in 2019 in
Europe was approximately 161.4 billion USD, which is accounting for 21.2% of the amount
devoted to diabetes care globally (Borgnakke 2019). Statistics of diabetes patients in Latvia
indicate 91 571 (prevalence 7.4%) diabetes cases and 574 diabetes-related deaths confirmed in
Latvia in 2019 (Latvia 2020), which is similar to the diabetes prevalence reported in Europe
(8.9%) (Borgnakke 2019).

There are several pathogenic processes involved in the development of diabetes
considered when assigning one of the precise types of the disease, nevertheless, all of the
underlying mechanisms of diabetes mellitus are provoking raised plasma glucose
concentrations and disturbances of glucose metabolism (Palicka 2002). The etiologic
classification of diabetes mellitus involves the following types of the disease (Craig et al. 2009;
WHO 2019):

1. Type 1 diabetes (T1DM), characterized by beta-cell destruction, usually leading to
absolute insulin deficiency (immune-mediated and idiopathic);

2. Type 2 diabetes (T2DM) (range from predominantly insulin resistance with relative
insulin deficiency to a predominantly secretory defect with insulin resistance);

3. Hybrid forms of diabetes including slowly evolving, immune-mediated diabetes of
adults (GAD autoantibodies present) and ketosis-prone T2DM (presents with ketosis
and insulin deficiency);

4. Other specific types:



4.1.Monogenic forms of diabetes caused either by mutations affecting beta-cell function
or insulin action (e.g. MODY or maturity-onset diabetes of the young, mitochondrial
DNA);

4.2.A disease of the exocrine pancreas (e.g. trauma, inflammation, and tumor);

4.3.Endocrine disorders (e.g. pancreatitis, trauma/pancreatectomy, neoplasia, cystic
fibrosis, hemochromatosis, fibrocalculous pancreatopathy);

4.4.Drug or chemical induced (e.g. Vacor, pentamidine, nicotinic acid, glucocorticoids,
thyroid hormone);

4.5.Infection-related diabetes (e.g. Congenital rubella, Cytomegalovirus);

4.6.Uncommon specific forms of immune-mediated diabetes (e.g. “Stiff-man”
syndrome, anti-insulin receptor antibodies);

4.7.0ther genetic syndromes sometimes associated with diabetes (e.g. Down syndrome,
Klinefelter syndrome, Turner syndrome, Wolfram syndrome);

Unclassified diabetes (used temporarily in case of unclear diagnostic category);

Hyperglycaemia first detected during pregnancy :

6.1.Diabetes mellitus in pregnancy (T1DM and T2DM first diagnosed during

pregnancy);
6.2.Gestational diabetes (hyperglycemia below diagnostic thresholds for diabetes in

pregnancy.

The diagnosis of diabetes mellitus is set according to the elevated plasma glucose and
HbA1c levels (Table 1).

Table 1. Diagnostic criteria for diabetes mellitus (WHO 2019).

Type of the | Fasting plasma | 2-hour  post- | 1-hour  post- | HbAlc
disease glucose load plasma | load plasma

glucose glucose
Gestational 5.1-6.9 mmol/L | 8.5-11.0 >10.0 mmol/L | -
diabetes mmol/L
Other forms of | > 7.0 mmol/L >11.1 mmol/L | - > 48 mmol/mol
diabetes

Due to the potential application of genetic data in precision medicine by promoting the

prediction of the clinical outcome or adjustment of the most effective therapeutic strategy,

multiple studies aiming to explore the genetic predisposition of diabetes mellitus and reclassify

the different types of the disease based on molecular data have been performed involving

candidate gene approach, genetic linkage studies, and genome-wide association studies
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(GWAS) (Guan et al. 2008; Tabara et al. 2009; Xue et al. 2018). Although the two most
common forms of diabetes mellitus are caused by a combination of genetic and environmental
risk factors, there are also rare forms of the disease that are directly inherited, which at least

partially explains the highly divergent etiology of the disease (Sayed and Nabi 2021).

1.1.1 Type 1 diabetes mellitus

Insulin-dependent diabetes or juvenile-onset diabetes, which is also known as type 1 diabetes
mellitus (T1DM) is caused by cellular-mediated autoimmune destruction of the beta-cells of
the pancreas resulting in insufficient production of insulin or even absolute insulin deficiency
(Palicka 2002). Insulin is an anabolic hormone and a key component in cell growth and the
metabolism of glucose, proteins, and minerals. It promotes the glucose uptake in muscles and
adipose tissue, glycogen storage and fatty acid synthesis in the liver, stimulates the uptake of
amino acids and potassium in cells, and inhibits the breakdown of fat in adipose tissue, which
underlies the relevance of this hormone in multiple vital processes conducted in the human
body (Wong and Sul 2010). T1IDM is more prevalent in children, in 2019 there were 128 900
new cases detected worldwide among children and adults aged 0-19 years (Borgnakke 2019).
Although the exact etiology of TIDM and most of the other forms of diabetes mellitus is still
unknown, it is generally believed that both genetics and environmental factors are implicated
(Lucier and Weinstock 2021). There is strong evidence of genetic predisposition and notable
heritability for T1DM, justified by the higher concordance among monozygotic (23%
probandwise and 13% pairwise) than dizygotic twins (5% probandwise and 3% pairwise)
(Kaprio et al. 1992). So far there are more than 40 risk loci identified for TADM (e.g. INS,
CTLA4, PTPN22, IFIH1, ERBB3 (Steck and Rewers 2011)), many of them are found in GWAS
studies (Pociot 2017), nevertheless, the human leukocyte antigen (HLA) region in chromosome
6p21 is still considered as the main player in providing genetic predisposition to TLDM. There
are two specific HLA class 2 haplotypes (HLA-DR3 and HLA-DR4-DQ@Q8), that are associated
with approximately 50% of disease heritability (Noble 2015). Meanwhile, enteroviral infection,
higher maternal age, and dysbiosis are considered as environmental risk factors for TIDM
(Rewers and Ludvigsson 2016). The main syptoms of T1DM in children are weight loss,
polyuria, polydipsia, and even ketoacidosis, while the symptoms in adults vary more, therefore
5-15% of T1DM patients are misdiagnosed with T2DM (DiMeglio et al. 2018; Tuomi 2005).
The main treatment of TLDM is insulin in various forms together with additional medications
to lower the blood pressure or cholesterol levels (e.g. angiotensin-converting enzyme inhibitors,

angiotensin Il receptor blockers) (de Boer et al. 2008; Pathak et al. 2019).
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1.1.2 Type 2 diabetes mellitus

The most common form of diabetes mellitus accounting for approximately 90% of all
cases is T2DM with 462 million patients worldwide, the prevalence of 8 529 per 100 000 cases
in Europe in 2019, and a tendency to get more prevalent globally (Khan et al. 2020). The
incidence of the disease varies between geographical regions due to different environmental
and lifestyle factors (Zimmet et al. 2001). There were 82 140 T2DM patients (4 171.8 per
100 000 individuals) detected back in 2015 in Latvia, out of them 6 091 were new cases.
Despite the contribution of national-level initiatives for diabetes prevention, the incidence of
T2DM in Latvia has not changed significantly and even got worse with 6 449 new cases in 2019
(LCDC 2020). Although multiple clinical strategies have been developed to improve T2DM
management and disease control, T2DM patients still have almost two times increased mortality
rates compared to healthy individuals (HR=1.93; 95% C1=1.89-1.97) (Mulnier et al. 2006).

Insulin resistance, in which insulin is ineffective and in later stages of the disease may
also be lacking, is the main characteristic feature of T2DM leading to hyperglycemia (Goyal
and Jialal 2021). Due to insulin resistance, the target tissues of insulin are lacking it, meanwhile,
the secretion of insulin reduces along with the gradual destruction of beta-cells (Druet et al.
2006). The main destructive effect of insulin resistance is the decrease in glucose uptake in the
target tissues and elevated glucose production via glycogenolysis, and gluconeogenesis (Basu
et al. 2005). The increased glucose output is further supplemented by increased lipolysis and a
high level of lipid metabolites as well as enhanced free fatty acid release (Roden et al. 2000;
Saltiel and Kahn 2001). In addition, there are increased levels of plasma glucagon detected,
which is released by pancreatic alpha-cells and stimulates excessive hepatic glucose production
(Cherrington et al. 1987). Since insulin is suppressing the food intake and glucose regulation
in the central nervous system, hypothalamic insulin resistance is underlying the impairment of
both of these processes in T2DM (Cersosimo et al. 2000; Ono 2019).

The classic symptoms of T2DM are polyuria, polydipsia, and sudden weight loss, though
the T2DM diagnosis is often also linked to obesity, hypertension, nephropathy, dyslipidemia,
non-alcoholic fatty liver disease, and systemic inflammation (Rosenbloom et al. 2009). In long
term, T2DM patients are dealing with chronic complications affecting multiple organ systems
(Papatheodorou et al. 2018).
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Figure 1. Risk factors of T2DM and characteristic pathological changes. ROS: reactive
oxygen species; ER: endoplasmic reticulum; AGEs: advanced glycation end products; PKC:
protein kinase C; LPS: lipopolysaccharide; miRNA: microRNA. Adapted from Galicia-Garcia
et al.(Galicia-Garcia et al. 2020).

Since T2DM is a multifactorial disease, it is caused by a complex interaction between
environmental and genetic factors (Ali 2013). Multiple risk factors of T2DM are identified so
far, including obesity and sedentary lifestyle, smoking, poor diet, gut dysbiosis, and even certain
medications affecting the sugar metabolism (e.g. statins, beta-blockers) (Figure 1) (Galicia-
Garcia et al. 2020; IQWIiG 2006). During the last decade, massive research has been performed
to demonstrate the role of genetic factors in the development of T2DM using the linkage studies,
candidate gene approach, but mostly the advantage of GWAS (Figure 2) (Ali 2013). The
heritability of T2DM varies between 20%-80% depending on the population, age, and the
particular study design (Almgren et al. 2011; Poulsen et al. 1999). A GWAS involving
participants of European ancestry discovered 143 risk loci (e.g. TCF7L2, PTGFRN, ANKH,
CAMKI1D, TP53INP1, and ATP5G1) for T2DM, out of them 33 genes appeared to be
differentially expressed providing functional evidence, and 3 genes were associated with
regulatory function according to DNA methylation data (Xue et al. 2018). While the gene
coding for transcription factor 7 like 2 (TCF7L2, rs7903146, OR=1.37; 95% CI=1.28-1.47) is
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showing the strongest association with T2DM (Zeggini et al. 2008), there are many other risk
loci identified so far, including hematopoietically expressed homeobox gene (HHEX,
rs8050136, OR=1.13; 95% CI=1.08-1.17) (Diabetes Genetics Initiative of Broad Institute of et
al. 2007), a gene coding for insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2,
rs4402960, OR=1.17; 95% CI=1.10-1.25) (Zeggini et al. 2008), potassium inwardly rectifying
channel subfamily j member 11 gene (KCNJ11, rs5219, OR=1.15; 95% CI=1.09-1.21) and
others (Diabetes Genetics Initiative of Broad Institute of et al. 2007). Finally, combining data
from 32 GWAS and around ~900,000 Europeans provided 243 risk loci for T2DM, including
the low-frequency alleles with large effect sizes, such as DENND2C (rs184660829,
MAF =0.020%, OR = 8.1, p-value =2.5 x 10°8) (Mahajan et al. 2018). Although the previous
studies have provided valuable knowledge of the genetic background and molecular
mechanisms underlying the disease, they explain only a small proportion of heritability,
suggesting the possible contribution of rare variants, gene-environment interactions, and
epigenetics (Ali 2013).
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Figure 2. The history of T2DM GWAS. Plotted are circles representing T2DM GWAS as
well as additional candidate gene or sequencing studies of note. The x-axis shows the year of
publication, whereas the y-axis shows the discovery sample size. Darker circles are scaled in
proportion to the discovery sample size, whereas the outer (lighter) circles are scaled in
proportion to the total (discovery together with replication) sample size. Circles are colored
according to the ethnic composition of the sample set: African American (dark blue), East Asian
(light blue), European (purple), Hispanic or Native American (yellow), or South Asian (green).
PubMed identifiers (or first author name) for each study are shown at the base of the figure and
linked to the corresponding circle with a dotted line. Identifiers are colored according to the
technology used in the study: linkage or candidate gene studies (red), GWAS or Metabochip
(beige), exome array (orange), or sequencing (dark grey). The figure is adapted from Flannick
and Florez, 2016 (Flannick and Florez 2016).
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1.2 Genomics and transcriptomics of metformin treatment
1.2.1 Management of type 2 diabetes mellitus

Since T2DM is a complex disease characterized by high phenotypic variability and
systemic manifestations, an integrated approach is applied for the treatment of this widespread
condition. In T2DM therapy any strategy towards the improvement of blood glucose control
involve patient engagement in self-management and lifestyle change, therefore education about
the diet and physical activity in the context of blood glucose control as well as prophylactic
screening for complications is ensured by a doctor regularly, nevertheless, most of the patients
still need to combine the lifestyle changes with pharmacological therapy. The medications
applied in T2DM treatment are targeting glucose levels and reducing HbAlc, and the global
strategy is based on lifestyle changes, followed by administration of metformin, or using
metformin with second antihyperglycemic agents such as inhibitors of dipeptidyl peptidase,
gliflozins, glucagon-like peptide-1 receptor agonists, pioglitazone and sulphonylurea (Reusch
and Manson 2017).

Sulfonylureas, including glyburide, glimepiride, and glipizide are among the top
prescribed oral agents for T2DM, ensuring a reduction of HbAlc by around 1%. The
mechanism underlying the glucose-lowering effect of sulfonylureas is based on increased
insulin release from the pancreatic beta-cells, which also raises the risk of hypoglycemia.
Moreover, due to characteristic beta-cell failure in T2DM, the effectiveness of these
medications may diminish over time (Wright and Tylee 2016). Multiple studies suggest a
significant association of sulfonylureas and cardiovascular disease and even cardiovascular
death (RR=1.27; 95% CI=1.18-1.34), which is considered in therapeutic strategy decision
making (Azoulay and Suissa 2017; Phung et al. 2013).

Another group of oral antidiabetic agents is dipeptidyl-peptidase 4 inhibitors, including
sitagliptin, saxagliptin, linagliptin, and alogliptin. Agents corresponding to this specific group
are targeting the incretin pathway, and therefore augmenting levels of intestinal hormones that
are released during the meal. Dipeptidyl-peptidase 4 inhibitors limit the inactivation of the
incretin hormone glucagon-like peptide 1 resulting in improved blood sugar control by
promoting the release of insulin in response to food intake, nevertheless, the glucose-lowering
effect of these agents is slightly lower than with other commonly prescribed diabetes
medications (0.5% HbALc reduction), therefore it is typically used as the second-line
medication (Wright and Tylee 2016; Y. Zhang et al. 2014a).
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Thiazolidinediones are targeting nuclear transcription factor peroxisome-proliferator-
activated receptor gamma. Although this type of antidiabetic medication has no risk of
hypoglycemia, the particular therapy has been associated with myocardial infarction (Wallach
et al. 2020), edema (Mudaliar et al. 2003), bladder cancer (R. M. Turner et al. 2014) before,
therefore it is considered as the third-line therapy for diabetes and is prescribed together with
other anti-diabetic agents (Wright and Tylee 2016).

Sodium-glucose cotransporter 2 inhibitors are reducing the glucose reabsorption from
urine which is mediated by sodium-glucose cotransporter 2. This inhibition results in reduced
levels of fasting and postprandial blood glucose as well as weight loss and lower systolic blood
pressure. The risk of hypoglycemia is usually increased only when used in combination with
other anti-diabetic agents (Saisho 2020). As with the thiazolidinediones, the use of sodium-
glucose cotransporter 2 inhibitors is linked to adverse effects, such as genital infections
(Unnikrishnan et al. 2018), risk of diabetic ketoacidosis (Palmer et al. 2016), bone fracture
(Azharuddin et al. 2018), and bladder cancer (Garcia et al. 2021), though the data proving
particular associations ar conflicting. Nevertheless, in contrast to thiazolidinediones sodium-
glucose cotransporter 2 inhibitors exert a protective effect against cardiovascular disease and
death in T2DM patients (Arnott et al. 2020).

There are several types of injectable agents for the treatment of T2DM, such as glucagon-
like peptide 1 receptor agonists, amylin, and different forms of insulin. The management of
T2DM is complex and around 25% of the patient require insulin within 6 years of starting oral
antidiabetic therapy (Ringborg et al. 2010). For patients with symptomatic hyperglycemia or
difficulties lowering the HbAlc levels below 9.5% while using oral agents, insulin therapy is
recommended including basal, prandial, or concentrated insulin depending on the efficacy of
glycemic control and fluctuations. An additional class of injectable medications is glucagon-
like peptide 1 receptor agonists (Wright and Tylee 2016). These agents promote
supraphysiologic levels of glucagon-like peptide 1 activity, resulting in elevated insulin
secretion and weight loss (Baggio and Drucker 2007).

1.2.2 Metformin

Metformin is a biguanide, which is globally used as the first-line oral treatment for T2DM
due to its ability to effectively reduce both basal and postprandial blood glucose levels by
decreasing intestinal absorption, promoting insulin sensitivity, and inhibiting the production of
glucose in the liver, although data on the latter are still controversial (Corcoran and Jacobs
2021; Gormsen et al. 2019). The improved insulin sensitivity results in decreased luteinizing
hormone and androgen levels, and stabilized menstrual cycle, therefore it has been widely used
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in the treatment of polycystic ovary syndrome (Y. W. Wang et al. 2017). Long-term
administration of metformin significantly reduces the risk of neurodegenerative diseases
(adjusted HR=0.19; 95% CI=0.12 - 0.31) (Shi et al. 2019), nevertheless, the reports discussing
the neural therapeutic effects of the drug show conflicting data (Ping et al. 2020; Pusceddu et
al. 2020). In addition, strong evidence supports the anticancer effect of metformin, which is
demonstrated as inhibited cancer cell growth in vitro, delayed development of cancer in mice
models, and even significantly reduced cancer risk in T2DM patients (HR=0.513; 95%
CI=0.318-0.826) (H. J. Kim et al. 2018; Ko et al. 2016; Z. J. Zhang et al. 2014b). One of the
main striking findings regarding the metformin pleiotropic effect is its ability to increase
lifespan and attenuate the deleterious impact of aging in male mice, even more, metformin
mimics calorie restriction phenotype (Martin-Montalvo et al. 2013). Finally, metformin inhibits
the formation of atherosclerosis, normalizes blood pressure, lipid levels, and reduces body
weight (Kyler et al. 2018; Thomopoulos et al. 2017).

Although it significantly reduces the body mass index (BMI) (weighted mass difference
= —1.31; 95%CI=-2.07 to —0.54) the therapeutic efficacy of metformin against hyperglycemia
is highly variable among different patients (Pu et al. 2020). A recent study revealed that only
59.5% of newly diagnosed T2DM patients developed their glycemic goal after the three months
long therapy, while the rest of the patients were considered as non-responders (Rashid et al.
2019). In addition, around 25% of patients experience gastrointestinal side effects, such as
diarrhea (62.1%) and retching (21.1%), and because of that around 5% of the patients
discontinue the therapy (Florez et al. 2010; McCreight et al. 2016; Rashid et al. 2019). These
data show an urgent need for the development of a precision medicine approach in T2DM
care to maximize therapeutic benefit while limiting risks, therefore identification of biomarkers
for early prediction of therapeutic response and significant adverse events is one of the main
strategies in studies of T2DM (Fitipaldi et al. 2018). Genomics, transcriptomics, and other types
of omics data are widely used in biomedical studies for both obtaining deeper knowledge about

the pathogenesis mechanisms of diseases and biomarker discoveries (Z. Z. Hu et al. 2011).

1.2.2.1 Mechanism of action

The liver is the main site of action of metformin, where metformin inhibits gluconeogenic
enzymes and stimulates glycolysis by altering the activity of multiple enzymes, resulting in
around 75% reduction in hepatic glucose output (Pernicova and Korbonits 2014; Stumvoll et
al. 1995). Metformin suppresses gluconeogenesis by upregulating the insulin receptor and
insulin receptor substrate 2 (IRS-2) and suppressing the action of peptide hormone glucagon
(Gunton et al. 2003). Metformin enhances insulin sensitivity and glucose uptake in the skeletal

muscle, by improving the tyrosine kinase activity of insulin receptors and translocation of
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glucose transporters on the plasma membrane (Matthaei et al. 1993). Moreover, metformin
interacts with the incretin axis, by stimulating the expression and enhancing the action of
glucagon-like peptide 1, which is further responsible for the secretion of insulin and reduction
of glucagon levels in response to glucose (Vardarli et al. 2014).

Metformin acts mainly by reducing hepatic gluconeogenesis and increasing glucose
uptake in skeletal muscle, though high interindividual variability is observed in metformin
response and pharmacokinetics (Rashid et al. 2019). The cellular uptake of metformin is

maintained by multiple membrane transporters (Table 2) (Pernicova and Korbonits 2014).

Table 2. Cell membrane transporters involved in metformin pharmacokinetics (Pernicova and
Korbonits 2014).

Transporter Gene Function

Main transporter for metformin uptake. Expressed in liver
and kidney, considered as the main metformin transporter.
SLC22A1 or OCT1 | SLC22A1 Allelic variants within the gene are associated with
impaired metformin uptake, increased elimination, and the
following reduction of therapeutic response.

Mediates metformin secretion in the kidney, mediates

SLC22A2 0r OCT2 | SLC22A2 around 80% of the total metformin clearance.

Expressed in liver, kidney, heart, skeletal muscle, brain,
SLC22A3 or OCT3 | SLC22A3 placenta and may be involved in the metformin uptake in

muscle.
(S)I&C_i_zl\?f 4or SLC22A4 Involved in the gastrointestinal absorption of metformin.
Mediates metformin secretion in the kidney and excretion
MATE1 SLC47A1 into bile in the liver. Allelic variants in the gene alter the
glucose-lowering effect of metformin in diabetic patients.
MATE?2 SLCA47A2 Mediates metformin secretion in the kidney.
PMAT SLC29A4 Mediates renal and intestinal metformin uptake.

The cellular target of metformin is the mitochondrion, where the agent inhibits the
mitochondrial respiratory chain complex 1, resulting in resulting in lower ATP production,
increased cellular AMP:ATP and ADP:ATP ratios, the activation of 5' adenosine
monophosphate-activated protein kinase (AMPK) and the following improvement in insulin
sensitivity, together with reduced cyclic adenosine monophosphate (CAMP) levels and
downregulation of gluconeogenetic enzymes via phosphorylation of the transcription factor
CAMP response element binding protein (CREB). Activation of AMPK switches on the
catabolic pathways that generate ATP and switches off anabolic pathways to restore the energy
balance, leading to AMPK-driven phosphorylation of metabolic enzymes and transcription
factors by altered gene expression, and finally inhibition of glucose, lipid, and protein synthesis
and activation of fatty acid oxidation and glucose uptake in peripheral tissue (Vial et al. 2019;
Y. Wang et al. 2019). The rise in AMP and ATP ratio inhibits fructose-1,6-bisphosphatase or
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FBPase, inducing the acute inhibition of gluconeogenesis in an AMPK independent manner
(Rena et al. 2017). Despite the large number of comprehensive studies aimed to reveal the
complex mechanisms underlying the beneficial effects of the drug, controversy remains since
there is strong evidence for other indirect mechanisms, such as the significant contribution of

the gut microbiome underlying the glucose-lowering effect of the drug (Elbere et al. 2020).

1.2.2.2 Omics data in metformin studies
Genomics

So far multiple types of omics-based approaches have been applied in studies of
metformin action and therapeutic efficacy (Udhane et al. 2017). One of the main approaches
for studying metformin pharmacogenetics is GWAS. A comprehensive meta-analysis of 10
557 participants conducted by the MetGen consortium revealed a significant association of
glucose transporter GLUT2 (SLC2A2) variant rs8192675 with metformin response (p-
value=6.6x10"1*) which promoted the metformin-induced reduction in HbA1c levels by 0.17%
(K. Zhou et al. 2016). Another genetic variant rs11212617 located in a locus of ataxia
telangiectasia mutated gene (ATM) also reached the genome level significance in association
with metformin response (OR=1.35; 95%CI|=1.22-1.49, p-value=2.9x10"°) and was identified
as a result of collaboration between Genetics of Diabetes Audit and Research (GoDARTS) and
the United Kingdom Prospective Diabetes Study (GoDarts et al. 2011). There are multiple other
genetic factors such as organic cation transporter genes OCT1 and OCT2 associated with altered
therapeutic efficacy of metformin (Shikata et al. 2007) and the overall heritability of the
glycemic response of metformin expressed as the absolute reduction in HbAlc is 34% (95%
CI=1-68; p-value=0.022) indicating on other non-genetic factors involved (K. Zhou et al.
2014a).

Metabolomics

A comprehensive metabolomics study on mouse embryonic fibroblast cells revealed both
AMPK-dependent (upregulation of phospho-acetyl-CoA carboxylase) and independent
(inhibition of phospho-mammalian target of rapamycin, phospho-S6 ribosomal protein,
autophagy marker Lc3, adipose triglyceride lipase, and phospho- extracellular signal-related
kinase) mechanisms of metformin action, resulting in metabolic reprogramming and reduction
of energy state (Yan et al. 2019). Another study involving longitudinal metabolomics profiling
of human plasma samples during the administration of metformin in a prospective trial revealed
areduction in levels of valine, tyrosine, and carnitine, that are involved in insulin resistance and
mitochondrial dysfunction. Although the particular study did not reveal predictive biomarkers

of metformin response, the hypothesis of an association between high levels of
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leucine/isoleucine and/or carnitine C10:1 before anti-diabetic therapy and improved glycemic

response to metformin was established (Safai et al. 2018).

Microbiome

The role of the gut microbiome in achieving the therapeutic effects of metformin has been
demonstrated in various reports, therefore metagenomics is among the major data types studied
in the context of metformin action. Metformin treatment has been previously associated with
increased levels of Escherichia, Akkermansia spp., and decreased levels of Intestinibacter (Shin
et al. 2014; Wu et al. 2017). A randomized, double-blind study of treatment-naive T2DM
patients followed by the humanization of germ-free mice by fecal microbiota provided evidence
of metformin-altered microbiota to significantly improve glucose tolerance (Wu et al. 2017).
Moreover, the shotgun metagenomic sequencing data of longitudinal stool samples of
treatment-naive T2DM patients have revealed the potential of the baseline composition of gut
microbiota to influence the therapeutic efficacy of metformin meanwhile serving as a predictive
biomarker for both efficacy and tolerance of the drug (Elbere et al. 2020).

Transcriptomics

Large-scale transcriptome profiling is proved to serve as a valuable source for molecular
target discoveries. Among the various methods for determining the gene expression levels,
RNA sequencing (RNA-Seq) is the state-of-the-art approach that is used to provide insight into
the cellular transcriptome, it is applied in drug response profiling as well as efficacy biomarker
discoveries (Geeleher et al. 2014). The RNA-Seqg-based comparative transcriptomic approach
has been already applied in metformin research by using animal models and cell cultures,
nevertheless, the longitudinal in vivo studies reflecting the systemic effect of the drug in humans
is lacking.

So far the gene expression-based studies have discovered multiple beneficial effects and
molecular targets of metformin. Treating the primary human fibroblasts with metformin
revealed significantly altered gene expression profiles in a concentration-dependent manner
which is mediated by the transcription factor forkhead box protein O3 (FOX03a), moreover,
the treatment induced enrichment in the activator protein 1 (AP-1) transcription factor pathway,
and cytokine-cytokine interaction pathway (Gillespie et al. 2019). In addition, the microarray-
based gene expression analysis of metformin-treated human adrenal H295R cells (an
angiotensin-Il-responsive steroid-producing adrenocortical cell line) revealed the ability of
metformin to modulate energy homeostasis via upregulation of genes coding for enolase 2
(ENO2), enolase 3 (ENO3), and aldolase, fructose-bisphosphate ¢ (ALDOC), that are essential
in glycolysis. This study showed that metformin also targets some of the regulators of sex
steroid production, such as hydroxysteroid 17-beta dehydrogenase 14 (HSD17B14), aldo-keto
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reductase family 1 member ¢3 (AKR1C3), and sulfotransferase family 2a member 1 (SULT2A1),
at least partially explaining the altered androgen production which is observed in such
hyperandrogenic conditions as polycystic ovary syndrome after metformin therapy (Udhane et
al. 2017). Together with various AMPK-dependent and independent molecular targets of
metformin, the combination of RNA-Seq, chromatin immunoprecipitation-based sequencing
(Chip-Seq), and functional validations by small interfering RNA (siRNA) knockdown
demonstrated the potential role of activating transcription factor 3 (ATF3) in gluconeogenesis
repression in primary human hepatocytes (Luizon et al. 2016). Meanwhile, metformin-treated
breast cancer cells showed the implication of gene coding for cell division cycle 42 (CDC42)
in metformin-induced suppression of cell proliferation and migration via AMPK-independent
molecular mechanism (Athreya et al. 2017). Upregulation of kriippel-like factor 4 (KLF4) and
cholesterol-25-hydroxylase (CH25H) coding genes as the opposite effect of high glucose levels
were linked to metformin-induced suppression of endothelial-to-mesenchymal transition in
human umbilical vein endothelial cells, which may serve as a beneficial effect in endothelial
disfunction (Yu et al. 2020). Finally, the study on DMPK or dystrophia myotonica protein
kinase gene-mutated mesodermal precursor cells suggested metformin as a modulator of
alternative splicing of a subset of genes (e.g. INSR and TNNT2) (Laustriat et al. 2015).

In vivo animal models have provided more systemic insight into the molecular action of
metformin. The study involving the rat model of obesity and insulin resistance highlighted a
list of genes ensuring the cardiovascular benefits of metformin and clarified the heterogeneous
effects of the drug across the arterial tree (Padilla et al. 2017). Moreover, a comprehensive
study of mice models with different interventions including the administration of glipizide,
rosiglitazone, and metformin, proved that metformin treatment for eight weeks mimics 75% of
the gene expression effects of long-term calorie restriction and 92% of the 8 weeks long calorie
restriction (Dhahbi et al. 2005). A recent study performed by Meng and colleagues obtained
metformin-induced transcriptome profiles induced in 10 different tissue types (aorta, brown
adipose, brain, eye, heart, liver, kidney, skeletal muscle, stomach, and testis) of healthy mice,
revealing a clear tissue-specific effect of the drug on the gene expression profiles. The authors
proved a significant correlation between the transcriptomic signature of metformin-treated
normal mice tissue and calory restricted anti-aging intervention (Spearman's correlation
coefficient (SCC)=0.258, false discovery rate (FDR)=2.72E-231), and a negative correlation
with the model of dilated cardiomyopathy (prostaglandin E receptor 4, Ptgerd-/-)
(SCC=-0.054, FDR=4.19E-08). Moreover, the study provided evidence of hypertension as a
potential side-effect of long-term metformin treatment in healthy subjects (Y. Meng et al.

2020). Controversially, a study reported by Zhu and colleagues proved that metformin fails to

21



increase the lifespan of aged female mice and the previously reported beneficial effect on
cardiac metabolism is also lacking. The particular study involving RNA-Seq on heart tissue
revealed the metformin-induced upregulation of extracellular matrix-related genes and
downregulation of oxidative phosphorylation-related gene expression (Zhu et al. 2020). The
microarray analysis of liver tissue obtained from obese diabetic db/db mice following a single
metformin dose provided evidence of reduced expression of glucose-6-phosphatase coding
gene and the following decreased activity of the enzyme, suggesting a potential mechanism at

the mRNA level underlying the glucose-lowering effect of the drug (Heishi et al. 2006).

1.3 Genetic risk factors of diabetic complications

The main priority in T2DM management is to reduce the disease-related death rates
(Borgnakke 2019). The relatively high mortality of T2DM patients is referred to the multiple
chronic and acute complications of the disease, which also impairs the quality of life and
imposes a significant financial burden on the healthcare systems globally (Z. Liu et al. 2010).
The complication risk is associated with the diabetes duration and glycemic control, which is
usually evaluated as HbA1c level representing glucose levels during the last 3 to 4 months (Lind
et al. 2009). Hyperglycemia-induced ketoacidosis and diabetic coma are the main acute
complications of diabetes (Fayfman et al. 2017), nevertheless, more than 20% of T2DM
patients are also experiencing the chronic state of vascular issues classified as microvascular
complications with small vessel damage and macrovascular complications caused by impaired
function of arteries (Fowler 2008; Yadav et al. 2021). Microvascular complications include
retinopathy, nephropathy, and neuropathy, while cardiovascular disease resulting in myocardial
infarction and cerebrovascular dysfunction manifesting as stroke are considered macrovascular
complications (Figure 3) (Forbes and Cooper 2013). The global crude prevalence of
microvascular and macrovascular complications is 18.8% and 12.7%, respectively, according
to the data collected during a 3-year, prospective, observational study program (Kosiborod et
al. 2018).
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Figure 3. Mechanisms by which hyperglycemia induces diabetic vascular complications.
ET-1: endothelin-1; NADPH: nicotinamide adenine dinucleotide phosphate; PDGF: platelet-
derived growth factor: TGF-B, transforming growth factor-B; VEGF: vascular endothelial
growth factor. Figure adapted from Khalil, 2016(Khalil 2017).

1.3.1 Diabetic nephropathy

Diabetic nephropathy is characterized as proteinuria, a decline in glomerular filtration
rate, and eventually, it may cause end-stage renal failure (Mogensen et al. 1983). Although
hyperglycemia is the main contributor to the development of nephropathy, only approximately
30-40% of T2DM patients experience this type of complication, suggesting the potential
implication of other factors, including genetic predisposition since diabetic nephropathies tend
to cluster in families (Brennan et al. 2013). Diabetic nephropathy usually begins as renal
cellular hypertrophy and hyperfiltration, followed by progressive albuminuria and decreased
glomerular filtration rate due to persistent hyperglycemia. Microalbuminuria which is defined
as urinary albumin excretion rate 30-300 mg per day develops only 10-15 years after the onset
of diabetes which is followed by macroalbuminuria (albumin excretion rate higher than 300 mg
per day) (Chida et al. 2016). The progression of the disease is promoted by inflammation and
hypertension. At the molecular level, several key modulators contributing to the development
of renal fibrosis and diabetic nephropathy are identified so far including glucose itself,
angiotensin 1, reactive oxygen species, transforming growth factor beta 1 (TGF-B1), vascular
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endothelial growth factor (VEGF ), and connective tissue growth factor (CTGF) (Brennan et
al. 2013). Although many genetic association studies have been conducted for diabetic
nephropathy in both TIDM and T2DM patients, there are only several promising associations
emerged so far, including rs2206136 (PLCB4, phospholipase ¢ beta 4) and chronic kidney
disease (OR=1.20; 95%CI=1.08-1.34), rs9942471 (GABRR1, gamma-aminobutyric acid type a
receptor subunit rhol) and microalbuminuria (OR=1.24; 95%CI=1.15-1.34), rs11864909
(UMOD; uromodulin; p=2.42; 95%CI=1.28-3.56), rs1974990 (SSB; small RNA binding
exonuclease protection factor la; p=4.07; 95%CI1=2.61-5.52), rs10224002 (PRKAGZ2; protein
kinase AMP-activated non-catalytic subunit gamma 2; p=1.75; 95%CI-0.85-2.66) and the
estimated glomerular filtration rate (van Zuydam et al. 2018), rs10888287 (OR2L13; olfactory
receptor family 2 subfamily | member 13) and nephropathy in T2DM (OR=0.04; 95%CI1=0.80-
0.99) (McDonough et al. 2011) and several others (Maeda et al. 2007; Taira et al. 2018). A
GWAS by Pezzolesi et al. has revealed 13 different risk loci for diabetic nephropathy in TLDM
patients some of them corresponding to the gene coding for FERM domain containing 3
(FRMD3; OR=1.45; 95%CI=1.25-1.67) and cysteinyl-tRNA synthetase (CARS; OR=1.36;
95%CI=1.19-1.56) that are expressed in the human kidney (Pezzolesi et al. 2009).

1.3.2 Diabetic neuropathy

Diabetic neuropathy is characterized by peripheral nerve dysfunction in diabetes patients
when other clinical etiologies are excluded. Although there is a complex classification of
diabetic neuropathy established including the categorization in a symmetric and asymmetric
type of the disease, the typical and most common form of diabetic neuropathy is considered as
chronic, symmetrical, distal sensorimotor polyneuropathy (Tesfaye et al. 2010). The distal
symmetric polyneuropathy accounts for approximately 75% of all cases of diabetic neuropathy,
and the sensory symptoms are present from toes to knees and later affect the palms, while
asymmetrical neuropathies may involve cranial nerves, thoracic or limb nerves and are of acute
onset (Bansal et al. 2006). Although the exact cause of diabetic neuropathy is still unknown,
hyperglycemia is considered the key component in the pathogenesis of the disease. Due to
hyperglycemia-induced rheological alterations, endothelial vascular resistance is increased and
nerve blood flow is decreased, hyperglycemia induces oxidative stress, and affects the function
of aldose reductase leading to the accumulation of metabolites (fructose and sorbitol) in the
nerve and inducing non-enzymatic glycosylation of structural proteins. Altogether these
changes induce hypoxia and impair the axonal transport causing the symptoms (Bansal et al.
2006). The duration and severity of hyperglycemia together with dyslipidemia, hypertension,
and obesity are among the main risk factors for diabetic neuropathy, nevertheless few studies
have proved the implication of genetic factors in the disease etiology (Tang et al. 2019; Van
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Acker et al. 2009). Although not reaching the genome-wide significance threshold, an
association between the locus next to the GRAF2 (GTPase regulator associated with the focal
adhesion kinase) gene (rs17428041; OR=0.67; 95%CIl =0.57-0.78) and diabetic neuropathic
pain has been identified (W. Meng et al. 2015). Similarly, a specific region in chromosome
2024 is showing a strong protective effect (rs13417783; OR= 0.64; 95%CI 0.55-0.74) on
peripheral diabetic neuropathy, moreover, the allele is also linked to increased expression of
SCN2A gene coding for the sodium voltage-gated channel alpha subunit 2 in the tibial nerve,

providing functional evidence (Tang et al. 2019).
1.3.3 Ophthalmic complications

Several ocular complications of diabetes have been identified so far such as diabetic
retinopathy, diabetic papillopathy, glaucoma, cataract, and ocular surface diseases (Sayin et al.
2015). The most common type of microvascular complication of diabetes is diabetic
retinopathy, affecting more than 90% of T1DM patients and around 60% of T2DM patients
(Seema Garg 2009; Threatt et al. 2013). The main risk factor for diabetic retinopathy is chronic
hyperglycemia, affecting multiple cell signaling pathways, including the activation of the
polyol pathway, involving reduction of glucose into sorbitol and further osmotic damage
followed by cell death (Gabbay 1975). Other molecular targets involve activation of protein
kinase C pathway and renin-angiotensin system, upregulation of vascular, endothelial growth
factor, inducing oxidative stress, and vascular endothelial dysfunction (Kowluru 2005; Sayin et
al. 2015; Stitt 2003; Tarr et al. 2013). Some of these are serving as underlying mechanisms for
glaucoma and cataract (Pollreisz and Schmidt-Erfurth 2010; Senthil et al. 2021). In addition to
hyperglycemia, also hypertension and hyperlipidemia characterized by poor metabolic control
are considered as the risk factors of diabetic retinopathy (Anonymous 1998). So far multiple
GWAS reports have proven the significant role of genetic factors in the development of diabetic
retinopathy, for instance, a study performed in the Taiwanese population revealed novel
significant associations in five loci: histone H2A deubiquitinase: MYSM1 (rs2811893,
rs12092121, OR =1.50; 95%CI=1.03-2.20), plexin domain containing 2: PLXDC2 (rs1571942,
OR=1.67; 95%CI =1.06-2.65); Rho GTPase activating protein 22: ARHGAP22 (rs4838605,
rs11101355, rs11101357, OR =1.65; 95%CI=1.05-2.60), heparan sulfate 6-O-sulfotransferase
3: HS6ST3 (rs2038823, OR=2.33; 95%CI1=1.13-4.77), and gene with yet unknown function in
the 5q were also associated with the disease (rs13163610, OR=3.63; 95%CI1=1.38-9.58) (Huang
et al. 2011). In the Japanese population the strongest signal was observed in RP1-
90L14.1 (rs9362054, OR=1.64; p-value=1.4x10"") a long intergenic non-coding RNA (Awata
et al. 2015), while in Australians the association with diabetic retinopathy was identified for
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the variant rs9896052 near the growth factor receptor bound protein 2 coding gene (GRB2) in
the T2DM cohort (OR=1.45; 95% CI=1.03-2.18) (Burdon et al. 2015).

1.3.4 Macrovascular complications

Macrovascular complications are considered as damage to large vessels, such as arteries
and veins. These are atherosclerosis-related diseases, including coronary artery disease,
peripheral vascular disease, and stroke (Kitada et al. 2010). Due to endothelial injury and
inflammation, oxidized lipids accumulate in the endothelial wall of arteries, this oxidation is
promoted by angiotensin Il. Infiltration of monocytes stimulates activation of macrophages and
T-lymphocytes, further, the proliferation of smooth muscles in the arterial walls together with
collagen accumulation is induced, which leads to the formation of typical atherosclerotic lesions
and in some cases even acute vascular infarction (Rader 2007). In comparison to microvascular
complications, the major risk factor for macrovascular complications is insulin resistance, not
the hyperglycemia leading to increased fatty acid flux in arterial endothelial cells from
adipocytes, overproduction of reactive oxygen species, activation of protein kinase C pathway,
and overall similar molecular etiology as in microvascular complications.

Cardiovascular disease is the leading cause of death in T2DM patients, accounting for
approximately 70% of deaths in the particular patient group, moreover, T2DM patients have a
four times higher risk of developing cardiovascular disease than individuals with no diabetes
(Cade 2008). The main risk factors for cardiovascular disease are sex, age, smoking, the ratio
of high-density lipoproteins, total cholesterol, hypertension, and HOMA-IR (homeostatic
model assessment for insulin resistance) (Bonora et al. 2002). From all of the cardiovascular
events, stroke is the third leading cause of death among T2DM patients. Although diabetes
affects cerebrovascular circulation by increasing the risk of intracranial and extracranial
atherosclerosis, diabetes mellitus and hyperglycemia are both proven to serve as independent
risk factors for stroke (Davis et al. 1999). Finally, peripheral artery disease is also considered a
macrovascular complication of diabetes, which is significantly associated with the severity and
duration of diabetes, hyperglycemia, hypertension, obesity, and other factors (Wattanakit et al.
2005).

GWAS have provided evidence for multiple genetic loci modulating the risk for different
phenotypes linked to the damage of large vessels. For instance, a GWAS performed in a
population of African Americans with T2DM revealed 15 genetic variants showing significant
association with coronary artery calcified atherosclerotic plaque which is a predictive factor for
cardiovascular disease. The particular study suggested five novel risk loci: low-density
lipoprotein receptor-related protein 1B, LRP1B (rs113533135; p-value=3.3 x 1077); ataxin 1,

26



ATXN1 (rs16879003; p-value=1.1x10""), MAGI2 (rs113805659; p-value=1.4x10" );
desmocollin 1, DSC1 (rs4459623; p-value=5.3 x 107") to be considered for further functional
investigation (Divers et al. 2017). Similarly, a study conducted by Montesonti and colleagues
revealed a protective allele in T2DM patients for ischemic cardiovascular disease and stroke
located in adiponectin, C1Q, and collagen domain containing (ADIPOQ) gene (rs266729;
OR=0.61, 95%CI1=0.39-0.95) (Montesanto et al. 2018), and a variant on chromosome 125 and
proved its association with coronary heart disease in T2DM patients (rs10911021; OR = 1.36;
95% CI =1.22-1.51) with additional evidence of its functional implication via differential gene
expression (Qi et al. 2013). Since cardiovascular diseases are still the leading cause of death,
there are multiple GWAS performed for coronary artery disease and myocardial infarction
irrespective of diabetes (Erdmann et al. 2009; Mc Namara et al. 2019; Reilly et al. 2011).
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2. MATERIALS AND METHODS

2.1 Study design described for each publication separately

The research described in all three publications was conducted in accordance with The
Code of Ethics of the World Medical Association (Declaration of Helsinki amended in
Fortaleza, Brazil, October 2013) and The Convention for the protection of Human Rights and
Dignity of the Human Being with regard to the Application of Biology and Medicine:
Convention on Human Rights and Biomedicine. Management of patient recruitment, collection
of samples, and associated clinical data was ensured by Latvian Biomedical Research and Study
Centre’s core facility Genome Centre and the Genome Database of the Latvian Population

(LGDB) following their standard procedures (Rovite et al. 2018).

2.1.1 Metformin strongly affects transcriptome of peripheral blood cells in healthy
individuals

Twenty-five European descent volunteers with no history of chronic disease were
involved in the study according to the exclusion/inclusion criteria set within the framework of
the clinical trial ‘Pharmacodynamics of antidiabetic drug metformin’ protocol number
MIKROMET16001, registration number of EU Clinical Trials Register: 2016-001092-74
(www.clinicaltrialsregister.eu) (Table S1). Fasting blood tests (measures of alanine
aminotransferase, plasma glucose, creatinine levels) were performed in a certified clinical
laboratory 1-3 days before metformin administration to evaluate general hematological and
biochemical parameters and eligibility of volunteers. The study participants received a twice-
daily oral 850 mg dose of metformin hydrochloride (Metforal 850mg, Berlin-Chemie AG) for
7 days.

RNA for transcriptome analysis was isolated from the peripheral blood samples collected
at three time-points: (1) before administration of metformin (MO, morning, fasting state), 10
hours after the first metformin intake, though before the second dose (M10h, evening) and after
7 days long metformin course (M7d, morning, fasting state). The third blood sample was not
collected from one out of 25 study subjects, due to the discontinuation of metformin treatment,
nevertheless, the rest of the blood samples collected from the particular subject were included
in the data analysis. The longitudinal study design of the open-label trial was chosen as the most
suitable method for global gene expression analysis with high inter-individual variability
expected. The study protocol was approved by the Central Medical Ethics committee of Latvia
(1/16-05-12) and the State Agency of Medicines of the Republic of Latvia (17-1723). Written
informed consent was obtained from every participant after a full explanation of the purpose
and nature of all procedures used before their inclusion in the study.
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2.1.2 Whole-blood transcriptome profiling reveals signatures of metformin and its
therapeutic response

In total 17 T2DM patients of European descent fulfilling the inclusion/exclusion criteria
(Table S2) were enrolled. The study was conducted within the framework of the ongoing
observational, prospective and longitudinal study OPTIMED, which has been implemented
since 2010 in collaboration with endocrinologists and general practitioners from the leading
health care centers in Latvia, ensuring recruitment of newly diagnosed drug-naive patients with
ICD-10 (International classification of diseases diagnosis 10th revision) code E11 and follow-

up data collection.

Metformin monotherapy (medication with metformin hydrochloride as the only active
ingredient) was prescribed for each study participant by an endocrinologist for at least three
months regardless of the research objectives. The drug manufacturer and dosage of metformin
(varied from 850 mg to 2000 mg per day) were chosen by endocrinologists based on clinical
experience, patient’s health status, and manifestations of the disease. Measures of alanine
aminotransferase, creatinine levels, HbAlc, triglycerides were performed in a certified clinical
laboratory before the administration of metformin and after metformin therapy for three months
to evaluate general hematological and biochemical parameters and eligibility of the subjects.
Blood samples for RNA-Seq were collected at the same time points, hereinafter referred to as
MO (before administration of metformin) and M3m (after three months long metformin course).
The study protocol was approved by the Central Medical Ethics Committee of Latvia (No. 01—
29.1/22) and the Committee of Ethics in Pauls Stradins Clinical University Hospital
(N0.3000610 - 18L). Written informed consent was obtained from every participant after a full

explanation of the purpose and nature of all procedures used before their inclusion in the study.

2.1.3 Novel susceptibility loci identified in a genome-wide association study of type 2
diabetes complications in population of Latvia

The study cohort consisted of 601 T2DM patients of European ancestry with and without
a medical history of diabetes complications, selected from the participants of LGDB (recruited
from June 2007 to November 2016) according to previously set inclusion criteria (Table S3).
Associated clinical data, including the diagnosis date of T2DM, date and type of diabetes
complications, HbAlc measures, and medications used, were obtained from the records of
Diabetes registry, Latvian hospital inpatient discharges, outpatient progress notes, and
pharmacy recipe records provided by The Centre for Disease Prevention and Control of Latvia
and National Health Service of Latvia (Approval No. 3, Decision No. 7.1-3/3). The data about

diabetic complications present for T2DM patients involved in LGDB were applied for accurate
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stratification of 601 T2DM patients in four phenotype-based groups according to the type of
complications experienced: diabetic neuropathy, diabetic nephropathy, ophthalmic
complications, and macrovascular complications. The definition of phenotypes and patient

stratification in different complication groups was done as follows:

1. Diabetic neuropathies: clinical diagnosis codes (ICD-10) E11.4 and E11.5, records of
amputation of the leg/toe, gangrene, shunting and angioplasty, and presence of
intermittent claudication or fresh ulcers since the diagnosis of T2DM.

2. Diabetic nephropathies: clinical diagnosis code E11.2 or records of kidney failure,
kidney transplantation, renal replacement therapy, microalbuminuria, hemodialysis,
peritoneal dialysis performed after the diagnosis of T2DM.

3. Ophthalmic complications: clinical diagnosis code E11.3 or records of
photocoagulation, maculopathy, retinopathy, operative therapy, blindness made since
the diagnosis of T2DM.

4. Macrovascular complications: clinical diagnosis codes 195, 120, 121, 124, 125, 150, 160,
161, 163, 164, and records of coronary shunting and angioplasty after the diagnosis of
T2DM.

ICD-10-based phenotype definitions corresponding to the Latvian guidelines of diabetes
management are generally used in clinical practice in Latvia. Subjects with the above-
mentioned diagnosis codes or medical events recorded were considered as cases in their
corresponding complication groups, while T2DM patients with no evidence of complications
of interest during their follow-up period were recognized as controls in the particular group.
Subjects experiencing specific diabetes complications before the set of T2DM diagnoses were
excluded from the analysis of a particular complication group, explaining the variable total
number of individuals among all complication groups tested. The follow-up period which
coincides with diabetes duration was considered as time from the set of T2DM diagnosis until
the date of diabetes complication recorded for cases or the date of the last entry in the National
registry for control subjects. Administration of medications was considered in a group-specific
manner, accounting for angiotensin Il receptor blockers and angiotensin-converting enzyme
inhibitors in the analysis of all complication groups analyzed and additional lipid-modifying
agents in the analysis of macrovascular complications.

The study protocol was approved by the Central Medical Ethics Committee of Latvia
(No. 01-29.1/2223). Written broad consent was obtained from every subject during the

recruitment in LGDB.
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2.2 Laboratory methods

2.2.1 RNA ex_traction, complementary DNA library preparation, and next-generation
sequencing

For RNA isolation, 3 ml of whole blood were collected in Tempus™ Blood RNA Tubes
(Thermo Fisher Scientific, USA) and further processed using either PerfectPure RNA Blood
Kit (5Prime GmbH, Germany) for 74 samples of the cohort of healthy individuals or Tempus™
Spin RNA Isolation Kit (Thermo Fisher Scientific, USA) for 34 samples in T2DM patient
cohort according to manufacturer’s instructions. The quantity and quality of extracted RNA
and prepared libraries were determined by Qubit Fluorometer (Thermo Fisher Scientific, USA)
and Agilent 2100 Bioanalyzer systems (Agilent, USA), respectively. The integrity of RNA was
evaluated by RNA integrity number (RIN) within the Agilent 2100 Bioanalyzer system
(Agilent, USA). For depletion of ribosomal RNA 500 ng of total RNA from each sample were
processed using Low Input RiboMinus™ Eukaryote System v2 (Thermo Fisher Scientific,
USA). Complementary DNA library preparation was performed with lon Total RNA-Seq Kit
v2 (Thermo Fisher Scientific, USA). Ion Proton™ System (Post-Light™ Jon Semiconductor
Sequencing, Thermo Fisher Scientific, USA) and Ion PI™ Chip (Thermo Fisher Scientific,
USA) were used for 200-base-read single-end sequencing, following the manufacturer’s
instructions. Since the shot-gun RNA-Seq is considered to be the most accurate and desirable
method for the quantification of the individual transcript and gene expression, additional
methods for technical validation were not applied in this study (M. Zhang et al. 2019).

2.2.2 Detection of secretory IgA by ELISA in stool samples

Within the framework of the clinical trial two aliquots of stool samples were collected
from each healthy individual at three time points: before administration of metformin (MO0), 24
hours after the first dose (M24h), and 7 days after the first intake of metformin (M7d), except
for two participants for whom the third stool sample was not available (n = 73 in total). From
the T2DM patients, the stool samples were also collected: before administration of metformin
(MO0), 7 days after the first intake of metformin (M7d), and after metformin therapy for three
months (M3m) (data not published). The samples were transferred at —80°C within 24 hours
since the collection. The concentration of secretory immunoglobulin A (sIgA) in 100 mg of
each stool sample was determined by Immu- Chrom ELISA Kit (ImmuChrom GmbH,
Germany), according to the manufacturer’s instructions, the absorbance was read at 450nm and
620nm as the reference wavelength (U- Quant MQX200 Microplate reader, Bio-Tek, USA).
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2.2.3 DNA isolation and genotyping

DNA was isolated from peripheral blood leukocytes using a phenol-chloroform extraction
method according to LGDB standard procedures (Rovite et al. 2018). For genotyping, 601 DNA
samples were collected according to study inclusion/exclusion criteria and the DNA quantity,
which was determined by Qubit Fluorometer (Thermo Fisher Scientific, USA). DNA samples
were genotyped with the Infinium Global Screening Array (Illumina, USA) on the iScan System

microarray scanner (lllumina, USA) at the University of Tartu.

2.3 Bioinformatics and statistical analysis

2.3.1 Transcriptome data analysis

The trimming of sequencing reads was done using Trimmomatic 0.36 by applying
window size 5 and a quality threshold of 10. After trimming reads had to have a minimum
length of 30 bp and an average quality of 10 to be included in subsequent analyses. Sequencing
reads were mapped against human reference genome GRCh38 release 90 and per-gene read
counts were calculated with STAR (v.2.5.3a.). The reads were quantified if they match only
one gene. The obtained read counts were normalized using trimmed mean normalization
implemented in Bioconductor package edgeR in R (v.3.5.3). FilterByExpr function was applied
for gene filtering in edgeR, taking into account the sample library sizes (Law et al. 2016).

2.3.2 Longitudinal comparison of transcriptome profiles in cohorts of healthy
individuals and T2DM patients

To evaluate longitudinal metformin-induced alterations in the transcriptome profile
differentially expressed genes (DEGs) were estimated using the Likelihood ratio test with added
observation weights to reduce the influence of outliers, and sva (Surrogate Variable Analysis)
package in R was used for removing batch effects (X. Zhou et al. 2014b). Each patient was set
as a factor to account for the interrelationship between the samples.

In order to account for subject-specific expression in the cohort of healthy subjects, the
quasi-likelihood F-test without any prior gene filtering was performed. Multiple testing
correction was implemented using the Benjamini-Hochberg procedure, significant DEGs were
determined using FDR < 0.05 cutoff regardless of the log. fold change of expression for each
gene in both of the tests applied (Benjamini 1995).
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2.3.3 Comparison of transcriptome profiles in metformin responders against non-
responders in T2DM cohort

Likelihood ratio test with added observation weights together with batch effect removal
with sva was also used to compare transcriptome profiles between metformin responders and
non-responders in each of the time points (M0 and M3m) separately (X. Zhou et al. 2014b). In
the particular analysis sequencing run and baseline (MO) HbA1c levels were considered as
covariates. Multiple testing correction was implemented using the Benjamini-Hochberg
procedure (Benjamini 1995) and differential expression of the genes was determined using a
FDR < 0.05 cutoff, regardless of the log> fold change of expression for each gene. To identify
key genes determining the metformin response, Partial least squares discriminant analysis
(PLS-DA) was performed implemented in the mixOmics package of R (v.3.5.3). Counts per
million (CPM) values (obtained in edgeR and adjusted for the impact of sequencing run and
baseline HbAlc levels) were used in PLS-DA. Key genes contributing to a separation of
patients in both metformin response groups were identified by using a cutoff of variable
importance of projection (VIP) score >1 obtained from PLS-DA (Boulesteix and Strimmer
2007; Rohart et al. 2017).

Association between HbAlc levels and the log CPM expression values of each
mitochondrial gene was performed with multiple linear regression using Im function in R. Sex

and BMI were included in the model to account for their potential confounding.

2.3.4 Functional analysis of differentially expressed genes

Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were adopted as the functional terms. GO enrichment analysis was performed with R
package Goseq, and KEGG pathway enrichment analysis was done using either the Goseq
package or the online software Database for Annotation, Visualization and Integrated
Discovery (DAVID) 6.8 (Huang da et al. 2009; Young et al. 2010).

Heat maps were constructed with Matplotlib and SciPy. Hierarchical clustering with the
average linkage method implemented in SciPy was used for the clustering of genes according
to their differences in CPM values (Hunter 2007; P 2007).

2.3.5 Analysis of the genotyping data

Illumina Genome Studio v2.0 was used to convert raw data into PLINK format, while for
the quality control the workflow described in Marees et al. was used (Marees et al. 2018).
SHAPEIT v2.r900 (Delaneau et al. 2013) and IMPUTEZ2 (Howie et al. 2012) were used for

genotype phasing and genotype imputing. Imputed data were filtered using the following
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parameters: marker correlation (INFO) > 0.8, hard call threshold 0.1, minor allele frequency >
1%, missingness < 2%.

Association analyses corresponding to four different complication groups (macrovascular
complications, diabetic neuropathy, diabetic nephropathy, ophthalmic complications) were
performed using PLINK v1.9 logistic regression with covariates: median HbAlc, sex, age at
the diagnosis, diabetes duration, BMI, medications used. A genome-wide significance threshold
of P <5 x 1078 was defined.

For the targeted analysis, candidate variants were selected from GWAS Central (Beck et
al. 2020) (http://www.gwascentra l.org/) and GWAS Catalog (Buniello et al. 2019)
(https://www.ebi.ac.uk/gwas/home), based on previously reported association with T2DM
complications: diabetic neuropathy (4 allelic variants selected), macrovascular complications
(43 allelic variants selected), ophthalmic complications (98 allelic variants selected) and
diabetic nephropathy (49 allelic variants selected). A complete list of selected SNPs, their
positions, and associated traits is provided in Table S4. FDR according to the Benjamini—
Hochberg procedure was calculated to account for multiple testing and the threshold was set <
0.05.

For identification of the functional role of allelic variants expression, quantitative trait
locus (eQTL) analysis was conducted by using the open-access Genotype Tissue Expression
(GTEx) database (Consortium 2018). The tissue types for eQTL analysis were carefully
selected considering the etiology of the diseases (artery, nerve, heart, skin, blood) (Forbes and
Cooper 2013). The p-value threshold of 0.05 was used to discriminate significant associations.
Variant Effect Predictor and Linkage Disequilibrium (LD) data from 1000 Genome project
(Utah Residents (CEPH) with Northern and Western European Ancestry) were employed to
explore the functional consequences of each variant and other variants in LD (Yates et al. 2020).
To evaluate the potential single nucleotide polymorphism effects on quantitative phenotypes,
analyses of variant association with HbA1C and BMI were performed using PLINK v1.9—
assoc function for quantitative phenotypes, where the genome-wide significance threshold of P
<5 x 1078 was used to identify the significant hits.

Manhattan plots and Q-Q plots were generated in R using the qgman package, while the

Venn diagram was developed in the online visualization tool Venny 2.1.0.

2.3.6 Comparison of anthropometric measures and sIgA concentrations

Statistical analysis of anthropometric measures and biochemical data was performed in R
by applying the Wilcoxon rank-sum test and Pearson's chi-squared test with a p-value threshold

< 0.05. The four-parameter algorithm in GraphPad Prism 8 was used for the calculation of sIgA
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concentrations in fecal samples and Wilcoxon signed-rank test in R was applied for the
evaluation of fluctuations in fecal sIgA levels among different time points. For the correlation
analysis between sIgA levels and CPM values reflecting the gene expression, Spearman’s rank

correlation test was performed in R, where the significance level was set at 0.05.
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3. RESULTS

3.1  Metformin strongly affects transcriptome of peripheral blood cells in healthy

individuals

Highlights
1. Significant transcriptomic changes in peripheral blood cells were observed already in 10

hours since the first metformin dose with a higher proportion of downregulated genes (364 of
479 DEGs in total).

2. Out of 561 genes showing significantly altered expression levels among all of the analyzed
contrasts, 44 genes including UBE20, PHOSPHO1, and MKRN1 exhibited consistent

metformin-evoked alterations in expression levels for 7 days.

2. Universal metformin-induced alterations of global gene expression profiles are associated
with immune responses as evidenced by the enrichment of such signaling pathways as the
Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction.

3. An inter-individual variation of gene expression profiles was observed indicating subject-
specific effects of the drug, which tends to be more permanent and related to the regulation of
glucose and cholesterol levels due to differential expression of MODY-related genes (INS,
PDX1, PAX4, HNF4A, HNF1A, HNF1B, NEUROD1, GCK), and hypercholesterolemia-related
genes (LDLR, PCSK9, APOB).

4. The observed correlation between fecal slgA concentration and immunity-related gene
(CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4, EPOR, CXCLS8)
expression levels points at transcriptional shift as a potential constitutive component of the

intestinal immunity-related effects of metformin.
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Abstract

Metformin is a commonly used antihyperglycaemic agent for the treatment of type 2 diabe-
tes mellitus. Nevertheless, the exact mechanisms of action, underlying the various thera-
peutic effects of metformin, remain elusive. The goal of this study was to evaluate the
alterations in longitudinal whole-blood transcriptome profiles of healthy individuals after a
one-week metformin intervention in order to identify the novel molecular targets and further
prompt the discovery of predictive biomarkers of metformin response. Next generation
sequencing-based transcriptome analysis revealed metformin-induced differential expres-
sion of genes involved in intestinal immune network for IgA production and cytokine-cyto-
kine receptor interaction pathways. Significantly elevated faecal sIgA levels during
administration of metformin, and its correlation with the expression of genes associated with
immune response (CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4,
EPOR, CXCLS8) supports a novel hypothesis of strong association between metformin and
intestinal immune system, and for the first time provide evidence for altered RNA expression
as a contributing mechanism of metformin’s action. In addition to universal effects, 4 clusters
of functionally related genes with a subject-specific differential expression were distin-
guished, including genes relevant to insulin production (HNF1B, HNF1A, HNF4A, GCK,
INS, NEUROD1, PAX4, PDX1, ABCC8, KCNJ11) and cholesterol homeostasis (APOB,
LDLR, PCSK9). This inter-individual variation of the metformin effect on the transcriptional
regulation goes in line with well-known variability of the therapeutic response to the drug.

Introduction

Metformin is the first-line antidiabetic agent used in pharmacotherapy of type 2 diabetes to
improve glucose homeostasis[1]. Various additional therapeutic benefits beyond its antihyper-
glycaemic action have been highlighted lately, justifying the pleiotropic effect of the drug. In
patients with type 2 diabetes metformin therapy is associated with reduced cardiovascular
morbidity[2]. In addition, metformin exposure has a protective role against tumorigenesis in
various types of cancers and it is proved to be beneficial in the preventive oncology regardless
of the diabetic state[3, 4]. Furthermore, metformin therapy is often recommended for women
with polycystic ovary syndrome to improve insulin sensitivity, facilitate menstrual regularity,
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induce ovulation, reduce circulating androgen levels and body weight[5, 6]. Likewise, metfor-
min application in the treatment of such neurodegenerative disorders as Alzheimer’s and Par-
kinson’s diseases is currently under consideration[7-9].

Several possible molecular mechanisms of metformin action have been proposed, including
inhibition of mitochondrial respiratory-chain complex 1, the reduction of cyclic adenosine
monophosphate (AMP) levels, activation of AMP-activated protein kinase (AMPK) and
recently described interaction with gut microbiota[10-13]. Although they partially explain
major beneficial effects of the drug, exact mechanisms of metformin action remain unclear
even after 60 years since its first clinical use.

Despite the widespread application of metformin, approximately 30% of type 2 diabetes
patients using the drug are failing to achieve the adequate glycemic control[14]. Moreover,
20%-30% of type 2 diabetes patients suffer metformin-associated gastrointestinal adverse
events and about 5% discontinue the therapy because of severe intolerance[15, 16]. Heritability
of the glycaemic response to metformin has been suggested to depend on many allelic variants
with small to moderate effects[17]. Contribution of inheritance to variation in metformin
response has gained great interest in the past years, encouraging numerous targeted studies
investigating genes coding for organic cation transporters OCT1, OCT2, OCT3 and multidrug
and toxin extrusion proteins MATE1 and MATE2-K[18-22]. Moreover, Genome-Wide Asso-
ciation Studies have revealed multiple genetic variations within ATM, PRPF31, CPA6, and
STAT genes associated with metformin response[23-25]. However, genetic alterations explain
only a small proportion of the heterogeneous response to metformin therapy, therefore omics-
based investigation of the pleiotropic mechanism of the drug is needed to promote the devel-
opment of biomarkers for therapeutic efficacy[26].

Previous studies have demonstrated metformin-mediated changes at the transcriptome
level in various animal tissues, nevertheless studies of metformin-related transcriptome pro-
files in humans are lacking. For instance, recent study by Guo et al. discovered metformin-
induced alterations of the coding transcriptome profile and non-coding RNAs in the liver of
high-fat diet induced mouse model of non-alcoholic fatty liver disease[27]. Likewise, microar-
ray analysis of mice liver and muscle tissues revealed the ability of metformin to mimic the cal-
orie restriction-like transcriptome[28]. Furthermore, a distinct gene expression profile related
to cardiovascular benefits of metformin, was observed in a rat model of obesity and insulin
resistance[29]. Meanwhile, cell culture studies of adrenal H295R cell and MCE7 breast cancer
cell transcriptome have revealed the association of metformin with complex cellular processes
related with energy metabolism, steroidogenesis and the immune system as well as glycolysis
and cancer-related pathways([30, 31].

To identify the genes targeted by metformin, we performed the whole-transcriptome analy-
sis with total RNA sequencing on whole-blood samples, obtained from the healthy individuals
undergoing a seven-day course of metformin. To the best of our knowledge, this is the first
study providing information about the immediate effects of metformin administration on
global gene expression in healthy individuals.

Materials and methods
Study design

The study enrolled 25 healthy European descent volunteers with no history of chronic disease,
meeting exclusion/inclusion criteria (5S4 Table) set within the framework of the ongoing clini-
cal trial ‘Pharmacodynamics of antidiabetic drug metformin’ (50 individuals to be included in
total), protocol number MIKROMET16001, registration number of EU Clinical Trials Regis-
ter: 2016-001092-74 (www.clinicaltrialsregister.eu) (Fig 1). Participants received twice-daily
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Fig 1. CONSORT flowchart of the open-label trial.
https://doi.org/10.1371/journal.pone.0224835.q001

oral 850mg dose of metformin hydrochloride (Metforal 850mg, Berlin-Chemie AG) for 7 days.
Medication adherence was reported by each participant at the end of the active period of the
study. Fasting blood tests (e.g. measures of ALT, plasma glucose, creatinine levels) were per-
formed in certified clinical laboratory 1-3 days before metformin administration in order to
evaluate general hematological and biochemical parameters, and eligibility of volunteers
(Table 1). RNA for transcriptome analysis was isolated from the whole blood samples collected
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in Latvian Biomedical Research and Study Centre at three time-points: (1) before administra-
tion of metformin (M0, morning, fasting state), 10 hours after the first metformin intake, but
before the second dose (M10h, evening) and after 7 days long metformin course (M7d, morn-
ing, fasting state). The third blood sample was not collected from one out of 25 study subjects,
due to the discontinuation of metformin treatment, nevertheless the rest of the blood samples
collected from the particular subject were included in the data analysis. Longitudinal study
design of the open-label trial was chosen as the most suitable method for global gene expres-
sion analysis with high inter-individual variability expected.

All individuals were concurrently involved in an ongoing analysis of gut microbiome and
DNA methylation profiles according to the study protocol (S1 Text). The primary endpoint of
the study was significantly shifted composition of the gut microbiome after administration of
metformin. The secondary endpoint of the study was alterations in DNA methylation profiles
and mRNA levels following metformin use.

Written informed consent was obtained from every participant and the study protocol was
approved by the Central Medical Ethics committee of Latvia (1/16-05-12) and the State Agency
of Medicines of the Republic of Latvia (17-1723). The research was conducted in accordance
with the The Code of Ethics of the World Medical Association (Declaration of Helsinki) and
International Conference on Harmonisation E6 (R2) Guidelines for Good Clinical Practice.
All participants were included in the Genome Database of the Latvian Population[32].

RNA sample preparation and next generation sequencing

Venous blood samples (n = 74) were collected in Tempus Blood RNA Tubes, followed by total
RNA isolation with PerfectPure RNA Blood Kit (5Prime GmbH, Germany), according to the
manufacturer’s instructions. The integrity of the extracted RNA was evaluated by RNA integ-
rity number (RIN) within Agilent 2100 Bioanalyzer system (Agilent, USA). Ribosomal RNA
depletion was done with Low Input RiboMinus Eukaryote System v2 (Thermo Fisher Scien-
tific, USA) by processing 500ng of total RNA from each sample. For cDNA library preparation
we used Ton Total RNA-Seq Kit v2 (Thermo Fisher Scientific, USA), sequencing was done on
Ion Proton System and Ion PI Chip (Thermo Fisher Scientific, USA), following the manufac-
turer’s instructions. Since shot-gun RNA sequencing is considered to be the most accurate and
desirable method for quantification of expression of individual transcripts and genes, addi-
tional methods for technical validation were not applied in this study[33].

Stool sample collection and detection of secretory IgA by ELISA

Within the framework of the clinical trial two aliquots of stool samples were collected from
each study participant at three time points: before administration of metformin (M0), 24
hours after the first dose (M24h) and 7 days after the first intake of metformin (M7d), except
for two participants for whom the third stool sample was not available (n = 73 in total). The
samples were transferred at —80°C within 24 hours since the collection. The concentration of
secretory immunoglobulin A (sIgA) in 100mg of each stool sample was determined by Immu-
Chrom ELISA Kit (ImmuChrom GmbH, Germany), according to the manufacturer’s instruc-
tions, the absorbance was read at 450nm and 620nm as the reference wavelength.

Bioinformatic analysis

The sequencing reads were trimmed with Trimmomatic 0.36 using window size 5 and quality
threshold 10. After trimming reads had to have a minimum length of 30bp and average quality
of 10 to be included in subsequent analyzes. Sequencing reads were mapped against human
reference genome GRCh38 release 90 and read counts were calculated with STAR 2.5.3a. The
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obtained read counts were normalized using trimmed mean normalization implemented in
Bioconductor package edgeR in R. Differentially expressed genes (DEGs) were estimated with
two different methods. At first, likelihood ratio test with added observation weights was used
to reduce the influence of outliers and to obtain a list of DEGs, where the counts per million
(CPM) value had to be 1 or more in at least 24 samples for the gene to be included in the analy-
sis (edgeR-robust)[34]. In order to account for subject-specific expression the quasi-likelihood
F-test without any prior gene filtering was performed (edgeR-sensitive). Multiple testing cor-
rection was implemented using Benjamini-Hochberg procedure, significant DEGs were deter-
mined using false discovery rate (FDR) < 0.05 cutoff[35].

Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways were adopted as the functional terms. GO and KEGG pathway enrichment analysis were
performed with R package Goseq (1.30.0)[36]. KEGG pathways and GO terms with
FDR < 0.05 were considered statistically significant.

Heat map was constructed with Matplotlib2 and SciPy3. Hierarchical clustering with aver-
age linkage method implemented in SciPy was used to cluster DEGs for contrasts M 10h vs M0
and M7d vs MO by their differences in read counts per million[37, 38].

Four-parameter algorithm in GraphPad Prism 8 was used for the calculation of sIgA con-
centrations in faecal samples and Wilcoxon signed rank test in R was applied for the evaluation
of fluctuations in faecal sIgA levels among different time points. For the correlation analysis
between sIgA levels and CPM values obtained in edgeR-robust analysis method, Spearman’s
rank correlation test was performed in R, where significance level was set at 0.05.

Results

Differential global gene expression induced by administration of
metformin

In order to reveal the target genes and pathways affected by metformin, we performed a tran-
scriptome analysis in whole-blood samples of 25 healthy volunteers receiving metformin for
one week (Table 1). Venous blood samples were obtained at three consecutive time-points,
hereinafter referred to as MO (before administration of metformin), M10h (10 hours after the
first metformin intake/before the second dose) and M7d (after 7 days long metformin course)
in order to observe both, acute and sustained effects of metformin. RNA-Sequencing produced
an average of 24.6 + 8.9 million reads per sample, 83.5% of the reads were mapped to the refer-
ence genome.

We focused on DEGs at three contrasts comparing the samples collected at previously
defined time-points: M10h vs M0, M7d vs MO and M7d vs M10h. In total 561 unique genes
showed significantly different expression levels among the analyzed contrasts (Fig 2A, 2B, 2C

Table 1. Characteristics of the study group.

Characteristic Value

Female/ male, n (%) 18 (72.0%) / 7 (28.0%)
Mean age (years) + SD 344+10.8

Mean BMI + SD 255+3.1

Mean ALAT £ SD, U/I 248+11.9

Mean creatinine + SD, umol/l 66.2+9.0

Fasting plasma glucose (mmol/l), mean + SD 52104

BMI—body mass index; SD—standard deviation; ALAT—alanine aminotransferase

https://doi.org/10.1371/journal.pone.0224835.t1001
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Fig 2. Metformin-induced alterations in gene expression profiles. Volcano plots showing the distribution of gene expression in the analyzed contrasts: (A)—M10h vs
MO, (B)—M7d vs M0 and (C)—M?7d vs M10h. Significance versus log, fold change is plotted on the y and x axes, respectively. Red dots represent the significant DEGs
(FDR < 0.05), black dots—nonsignificant genes. (D)—Venn diagram representing the number of total and overlapping significant DEGs in the analyzed contrasts
obtained by edgeR-robust method.

https://doi.org/10.1371/journal.pone.0224835.9002

and 2D). The majority, 479 of DEGs appeared in the contrast M10h vs M0 (364 downregulated
and 115 upregulated). Comparison of M7d vs MO resulted in 82 DEGs (61 downregulated, 21
upregulated) and 120 DEGs were identified in the contrast M7d vs M10h with higher propor-
tion of upregulated genes (17 downregulated, 103 upregulated) (Fig 3). The overlap of the two
main contrasts (M10h vs M0 and M7d vs M0) consisted of 44 DEGs, including UBE20, PHOS-
PHOI1, MKRN1, possessing consistent metformin-evoked alterations in expression levels for 7
days. The complete lists of obtained DEGs are provided in S1 Table.
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U i

Fig 3. Heat map and hierarchical clustering of 517 DEGs in the contrasts M10h vs M0 and M7d vs M0. Each row corresponds to one subject in the respective
contrast and each column represents a DEG. Normalized sequence read counts were rescaled to lie in range [0,1] and further used to estimate the difference between the
gene expression levels in two time-points depending on the particular contrast. DEGs with analogous expression values were clustered at the column level, the list of
DEGs were obtained by edgeR-robust method.

https://doi.org/10.1371/journal.pone.0224835.9003

Functional annotation of the identified DEGs

In order to gain insights into the molecular mechanisms underlying the short-term effects of
metformin the KEGG pathway enrichment analysis was performed. Three lists of DEGs corre-
sponding to each contrast were submitted in Goseq package of R. DEGs obtained from the
contrasts M10h vs M0 and M7d vs M10h were assigned to pathways related with immune
responses, while list of DEGs obtained by comparing M7d samples with M0 samples showed
no pathways enriched (Table 2). In order to gain a greater understanding of the biological
implications of the obtained DEGs Gene Ontology (GO) enrichment analysis was performed,
see S2 Table and S3 Table for the complete list of GO terms and KEGG pathways correspond-
ing to DEGs obtained in all of the contrasts analyzed.

Elevated faecal sIgA levels during the administration of metformin

Considering the enrichment of pathways related to intestinal immune responses, sIgA concen-
tration was determined in stool samples collected from the study participants at three consecu-
tive time points, analogous to the course of blood sample collection: before administration of
metformin (M0; median sIgA concentration = 7969.93ug/ml; IQR = 15587.55), within 24

Table 2. Top KEGG pathways enriched by short-term metformin administration, ranked by statistical significance.

Contrast Pathways Count Genes Adjusted-
P
M10hvs | Malaria 11 | GYPC', SELP', CD40LG', TLR2', CXCL8', HBA2', HBA1', CD40', THBS1', TGFBI1', SDC2" 7.88E-05
Mo Intestinal immune network for 10 | CXCR4', CD40LG', TNFSF13', CD40', HLA-DOA', MAP3K14', HLA-DOB', TGFBI1', 7.88E-05
IgA production HLA-DQA1', CD28'
Cytokine-cytokine receptor 21 | TNFRSF21', IL1R2", FLT3', LEPR', CXCL8', TNFSF13', PF4', CD40', PF4V1', CCL4', TGFBI', | 7.88E-05
interaction ACVRIB', PPBP', CXCR4', CD40LG', EPOR', IL5RA', EGF', IL13RA1', IL3RA", CXCL5".
Cell adhesion molecules (CAMs) 13 | ESAM', CLDNS5', HLA-DOB', SELP', HLA-DOA', CD28', PTPRF', CD8B', HLA-DQA1', 6.49E-03
CD40', VCAN', CD40LG', SDC2".
Hematopoietic cell lineage 11 | MS4A1', IL5RA', IL3RA', CD8B', FLT3', FCER2', CD19', GP9", ILIR2', ITGA2B', EPOR". 6.49E-03
Autoimmune thyroid disease 7 | HLA-DOB', HLA-DOA', CD28', GZMB', HLA-DQA1', CD40', CD40LG'. 6.49E-03
Allograft rejection 7 | HLA-DOB', HLA-DOA', CD28', GZMB', HLA-DQA1', CD40', CD40LG'. 6.49E-03
Rheumatoid arthritis 10 | HLA-DOB', HLA-DOA', CD28', TLR2', HLA-DQA1', CXCL5', TNFSF13', TGFBI*, FOS', 1.29E-02
CXCLS.
Graft-versus-host disease 7 | HLA-DOB', HLA-DOA', KLRD1', CD28', GZMB', HLA-DQA1', KIR2DLI". 1.49E-02
Asthma 5| HLA-DOB', HLA-DOA', HLA-DQA1', CD40', CD40LG'. 2.84E-02

Within each pathway one gene showing the highest expression variability, based on log, fold change, is indicated in bold.
T Upregulated genes

' Downregulated genes

https:/doi.org/10.1371/journal.pone.0224835.t002
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Fig 4. sIgA levels in stool samples during administration of metformin. Boxplot showing the difference in faecal sIgA levels at three time points: before
administration of metformin (MO0), 24 hours after the first dose (M24h) and 7 days after the first intake of metformin (M7d), measured by ELISA.

https://doi.org/10.1371/journal.pone.0224835.g004

hours after the first dose (M24h; median sIgA concentration = 6935.29ug/ml; IQR = 28953.46)
and 7 days after the first intake of metformin (M7d; median sIgA concentration = 21207.64pg/
ml; IQR = 36642.19), revealing significantly increased faecal sIgA levels comparing M7d sam-
ples vs M0 samples and M7d samples vs M24h samples (Fig 4).

The possible implication of specific immunity-related genes in intestinal IgA production in
response to metformin administration was evaluated by Spearman’s rank correlation test
between faecal sIgA concentration and expression level of DEGs involved in Intestinal
immune network for IgA production and Cytokine-cytokine receptor interaction pathways,
revealing 9 significant correlations (Table 3).

Subject-specific effects of metformin

In order to clarify subject-specific metformin effects on the transcriptome profile, we per-
formed an additional data analysis (quasi-likelihood F-test without any prior gene filtering
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Table 3. Spearman’s correlation between faecal sIgA levels and expression of immunity-related genes.

Pathway Gene Spearman’s correlation coefficient p-value

Intestinal immune network for IgA production CXCR4' 0.40 5.15E-04
HLA-DQAI 0.30 9.11E-03
MAP3K14 0.25 3.01E-02
HLA-DOA 0.19 1.17E-01
HLA-DOB 0.16 1.64E-01
CD28 -0.15 2.01E-01
TNFSF13* 0.15 2.18E-01
CD40LG" 0.07 5.30E-01
CD40" 0.01 9.53E-01
TGFBI* 0.14 242E-01

Cytokine-cytokine receptor interaction TNFRSF21 0.32 6.54E-03
CCL4 0.30 8.90E-03
ACVRIB 0.26 2.44E-02
PF4 0.25 3.29E-02
EPOR 0.24 3.73E-02
CXCLS8 -0.24 3.92E-02
PF4V1 0.21 7.07E-02
PPBP 0.20 9.80E-02
FLT3 0.12 2.96E-01
LEPR -0.09 449E-01
IL3RA 0.08 4.77E-01
CXCL5 -0.07 5.47E-01
EGF -0.02 8.59E-01
ILI3RA1 -0.01 9.57E-01
ILIR2 0.01 9.63E-01
IL5RA 0.00 9.75E-01

“Genes involved in both Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways.

Genes showing significant correlation with faecal sIgA levels are indicated in bold.

https://doi.org/10.1371/journal.pone.0224835.t003

hereinafter referred to as edgeR-sensitive), which allowed us to identify 437 unique DEGs

among all of the contrasts (S1 Table; S1A, S1B, S1C and S1D Fig). After a careful inspection of
the generated heat map for the contrasts M10h vs M0 and M7d vs M0, we observed striking
inter-individual variation in expression levels of most significant DEGs (52 Fig). It was evident

that the overall differences in expression levels for a number of gene clusters were influenced

by extreme changes in expression observed only in few individuals from the study. Four such
functional clusters of genes with similar expression profiles were distinguished after consider-

ation of subject-specific effects. In each of the recognized clusters, genes sharing a common

function were predominant, including upregulated genes, coding for small nuclear RNAs

(snRNASs): SNORA20, SCARNAS5, SNORASOE, SNORA3B, SCARNA22, SCARNA6, SNORDS,
SNORA7B, SNORDY, SNORDS83A, SNORA23, SNORD67, SNORD46, SNORA71B, SNORD71,
SNORDI11B, SNORD17, SNORD116-15, SNORD67; ribosomal genes and pseudogenes together

with long non-coding RNAs (IncRNAs): Y_RNA, RNY4P10, RNA5-8SN1, RNA5-8SNS5,
FP671120.4, FP236383.2, FP671120.3, FP236383.3, RPL3P4, AC008038.1, AL122020.1,

RPLI3APS5, RPS2P46, RPL6P27, RPL13AP25, AL590867, RPS7P1, AP001324.1, AC034236.1,
RPL37P2, AC004453.1, RPL21P16, AC007969.1, RPS23P8, RPL15P3, RPL10APS; genes rele-
vant to insulin production: HNF1B, HNF1A, HNF4A, GCK, INS, NEUROD1, PAX4, PDX1,
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ABCCS8, KCNJ11 and downregulated genes involved in cholesterol homeostasis: APOB, LDLR,
PCSK9.

Discussion

This longitudinal study of metformin administration in healthy subjects demonstrated that
metformin strongly affects the gene expression profiles in blood cells as estimated by RNA
sequencing. To our knowledge this is the first study accessing the metformin-mediated
changes in RNA expression in vivo in humans. Moreover, the significant transcriptomic
changes were observed even after 10 hours as a result of single metformin dose, indicating the
pronounced and immediate influence on the cell functions. The most striking finding was the
strong evidence for metformin-induced enrichment of immunity-related pathways resulting
in elevated faecal IgA levels.

Multiple DEGs identified in this study represent the main functional groups associated
with previously described therapeutic targets of metformin. For instance, downregulation of
gene coding for ubiquitin conjugating enzyme E2 O (UBE20) impairs the tumorigenesis,
moreover combined treatment of UBE20 inhibitors and AMPK agonists, such as metformin,
has been suggested as promising treatment strategy for cancer already before[39]. Similarly,
suppression of MKRNI (makorin ring finger protein 1) activates AMPK, resulting in increased
glucose consumption and reduced lipid accumulation, therefore MKRNI-mediated regulation
of AMPK activity has been already considered as an attractive therapeutic approach for the
treatment of metabolic disorders[40]. Finally, DNA methylation at the PHOSPHO! (phos-
phoethanolamine/phosphocholine phosphatase 1) locus in blood cells has been previously
linked to decreased type 2 diabetes mellitus risk, which goes in line with the well-known anti-
diabetic activity of metformin and metformin-evoked downregulation of PHOSPHO1
observed in this study[41].

A group of discovered DEGs correspond to the pathways involved in immune response or
regulation of inflammation. The pathway enrichment analysis showed comprehensively
decreased expression levels of genes related to immune responses, which confirms the anti-
inflammatory effect as a universal property of metformin. Here we convincingly support the
previously described ability of metformin to suppress inflammatory cytokines and their recep-
tors irrespective of the diabetes status, specifying the occurrence of this process at the level of
mRNA[42]. The downregulation of CXCL8 and CXCR4, coding for interleukin-8 and chemo-
kine receptor type 4 respectively, has been previously attributed to the anticancer action of
metformin in neoplastic cells, therefore the results of the present study describe the particular
therapeutic effects as universal and characteristic also to the normal blood cells[43, 44].

Furthermore, RNA-Seq data revealed significant enrichment in the pathway of intestinal
immune network for IgA production, which was further confirmed by elevated faecal sIgA in
response to the metformin intervention. The observed correlation between faecal sIgA concen-
tration and immunity-related gene expression levels points at transcriptional shift as a consti-
tutive component of the intestinal immunity-related effects of metformin. IgA is responsible
for bacteria-host interaction and is massively produced by mucosa in case of bacterial coloni-
zation; moreover, selective IgA deficiency is associated with mild intestinal dysbiosis and shifts
in the microbial composition[45, 46]. Since the influence of metformin on gut microbiome is
currently extensively studied[47], the potential implication of the intestinal immune network
for IgA pathway in the metformin-microbiome interactions regarding the intestinal side
effects should be considered.

In addition, we noticed subject-specific differences at gene expression levels, as number of
individuals involved in study displayed overexpression or repression of specific functionally
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related gene sets. Thus for example insulin coding gene (INS) showed an apparent gain of the
mRNA expression levels (from 0.52 CPM before the treatment to 282.97 CPM after one week
of metformin administration) in a single individual. Based on the hierarchical clustering and
functionality of these genes we categorized 4 gene clusters: ribosomal genes and their pseudo-
genes, small nuclear RNAs, genes relevant to insulin production and cholesterol homeostasis.
Interestingly, the changes in RN A expression of those genes are highly subject-specific with
strongly altered expression in only one or two participants of the study.

Metformin-induced overexpression of Maturity onset diabetes of the young (MODY)—
related genes (INS, PDX1, PAX4, HNF4A, HNF1A, HNF1B, NEURODI, GCK) coding for tran-
scription factors and regulators of B-cell function was observed in both main comparisons
(M10h vs M0, M7d vs M0), but not in the contrast M7d vs M10h, suggesting that these alter-
ations are likely to be associated with metformin intervention rather than discrepancies
between fasting and feasting states at the time points of blood collection. Metformin-induced
differential expression of MODY genes has been previously reported in the liver of spontane-
ously hypertensive rats, overlapping several homologues of human genes[48]. Moreover, sub-
ject-specific activation of the MODY genes may be the reason why the metformin ability to
induce insulin secretion has not been observed before in human trials. One may speculate that
metformin exerts insulin secretagogue ability only in subgroup of metabolically compromised
individuals, however, to prove this additional research in patients with metabolic syndrome
and diabetes is needed.

Very similar to our detection of the MODY cluster our study revealed a considerable down-
regulation of the genes coding for apolipoprotein-B (APOB), low-density lipoprotein receptor
(LDLR) and proprotein convertase subtilisin/kexin type 9 (PSCK9) in one person from the
study group. All of these genes are previously associated with cholesterol homeostasis and phe-
notype of familial hypercholesterinaemia[49-51]. To date, several reports have described a
dose-dependent cholesterol lowering effect of metformin[52, 53]. Taken together, it would be
reasonable to argue that the downregulation of LDLR, PCSK9, APOB might serve as potential
mechanism of action, underlying beneficial cardiovascular properties of metformin, yet in a
case-specific manner.

The following are some study limitations. These limitations include small sample size and
only one week of the intervention time due to the fact that study was performed on healthy
individuals. Another limitation is that this is an exploratory study without a placebo control
arm that would be needed to draw definitive conclusions on the causality of observed tran-
scriptional changes. Also a larger study group of diabetic subjects and longer observation time
would provide information on the factors that may explain subject-specific differences in
expression levels and relation of these differences to the treatment response including glucose
control.

These limitations are compensated by the longitudinal design of the study in which the first
sample from an individual was the control for further samples. We believe that this design and
short-term observation should have minimized false associations and conclusions arising from
unaccounted factors playing important role in human studies, meanwhile making reasonable
the interpretation of observed inter-individual variability of gene expression profiles.

In conclusion, we were able to provide, for the first time, direct evidence of the effects of
metformin on the immediate and strong transcriptome changes in whole-blood samples. Our
results have pinpointed some important targets that need further investigation. First, the abil-
ity of metformin to induce extensive immune responses may be executed at the level of tran-
scription and serve as the basis of common therapeutic effect of metformin. Second, the
induction of IgA pathway may explain the widely discussed interaction of metformin with the
gut microbiome. Third, the subject-specific response may explain the large percent of
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unresponsiveness to the metformin therapy. Altogether these results may serve the ground for
development of expression based biomarker sets to predict and/or monitor the treatment
outcomes.
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3.2 Whole-blood transcriptome profiling reveals signatures of metformin and its
therapeutic response

Highlights

1. In T2DM patients only 28 genes showed significantly altered expression levels after
administration of metformin for three months, and enrichment of cell signaling pathways
related to energy metabolism, immune responses, and lipid metabolism was observed.

2. Clear, transcriptome-based discrimination of study subjects into metformin responders and
non-responders was noticed before the use of antidiabetic therapy, which was defined by the
expression levels of 56 genes, including CEACAM1, IRS1, ABCC2, and IGHA1, explaining
13.9% of the variance.

3. The comparison of blood cell transcriptome profiles from responders with transcripts from
non-responders after the metformin therapy for three months revealed significant
downregulation of genes coding for NADH: ubiquinone oxidoreductase core subunits,
suggesting the altered mitochondrial complex | activity as one of the mechanisms linked to the

variability of metformin response.
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Abstract

Metformin, a biguanide agent, is the first-line treatment for type 2 diabetes mellitus due to its
glucose-lowering effect. Despite its wide application in the treatment of multiple health con-
ditions, the glycemic response to metformin is highly variable, emphasizing the need for reli-
able biomarkers. We chose the RNA-Seq-based comparative transcriptomics approach to
evaluate the systemic effect of metformin and highlight potential predictive biomarkers of
metformin response in drug-naive volunteers with type 2 diabetes in vivo. The longitudinal
blood-derived transcriptome analysis revealed metformin-induced differential expression of
novel and previously described genes involved in cholesterol homeostasis (SLC46A1 and
LRP1), cancer development (CYP1B1, STAB1, CCR2, TMEM176B), and immune
responses (CD14, CD163) after administration of metformin for three months. We demon-
strate for the first time a transcriptome-based molecular discrimination between metformin
responders (delta HbA1c > 1% or 12.6 mmol/mol) and non-responders (delta HbA1c < 1%
or 12.6 mmol/mol), that is determined by expression levels of 56 genes, explaining 13.9% of
the variance in the therapeutic efficacy of the drug. Moreover, we found a significant upregu-
lation of /RS2 gene (log>FC 0.89) in responders compared to non-responders before the
use of metformin. Finally, we provide evidence for the mitochondrial respiratory complex |
as one of the factors related to the high variability of the therapeutic response to metformin
in patients with type 2 diabetes mellitus.

Introduction

Diabetes mellitus is a chronic disease affecting approximately 463 million people worldwide,
which is nearly 9.3% of the global population [1]. Type 2 diabetes mellitus (T2DM) is the most
common type of diabetes accounting for approximately 90% of all cases. The persistent hyper-
glycemia and insulin resistance, a characteristic of T2DM patients, is associated with an
increased risk of serious microvascular and macrovascular complications, including
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nephropathy, retinopathy, neuropathy, myocardial infarction, and stroke, which may be
reduced by early initiation of antidiabetic therapy [2-4]. Metformin is the first-line medication
for treating hyperglycemia in T2DM with beneficial effects in the treatment of multiple non-
diabetes related conditions, such as polycystic ovary syndrome, cancer, and neurodegenerative
disorders [5-7]. Despite the pleiotropic effects of the drug, the variable efficacy and gastroin-
testinal side-effects observed cause a significant non-compliance and discontinuation of the
therapy, justifying a need for studies exploring molecular mechanisms of metformin action,
and biomarkers predicting both treatment response and tolerance of the drug [8].

The mechanism of metformin action is generally considered to involve modulation of the
activity of mitochondrial complex I, activation of 5 AMP-activated protein kinase (AMPK)-
dependent mechanisms, and increased AMP concentrations, though some controversy
remains since multiple studies are providing evidence for other indirect mechanisms, such as
the significant contribution of the gut microbiome underlying the glucose-lowering effect of
the drug [9-11].

RNA sequencing (RNA-Seq) is the state-of-the-art approach that may be used to profile drug
response and efficacy biomarkers [12, 13]. So far, transcriptome datasets obtained from cell cul-
tures and tissue samples of animal models are extensively used in studies describing molecular
mechanisms of metformin concerning various conditions, nevertheless, longitudinal data of in
vivo studies in humans are still lacking. RNA-Seq has revealed various novel effects and therapeu-
tic targets of metformin, such as enrichment of the transcriptional regulator forkhead box O3a
(FOXO3a) in primary human fibroblasts [14], upregulation of activating transcription factor 3
(ATF3) in primary human hepatocytes [15], downregulation of cell division control protein 42
homolog (CDC42) in breast cancer cells [16], upregulation of kriippel-like factor 4 (KLF4) result-
ing in suppressed endothelial dysfunction [17], and even modulated alternative splicing in embry-
onic stem cells [18]. Moreover, multiple animal-based studies have reported metformin-specific
signatures in gene expression profiles of rat arteries and mice epididymal fat, liver and muscle tis-
sue, nevertheless, they still do not explain many beneficial effects of the drug [19-21].

Although the relatively high proportion (>30%) of patients failing to achieve glycemic con-
trol during metformin therapy has been partially explained by the contribution of genetic
inheritance (allelic variants of organic cation transporters OCT1, OCT2, etc.) [22-24], recent
studies report that heterogeneity of metformin response may be both patient and cell type-spe-
cific, suggesting the presence of yet unknown, non-genetic and selective manifestations of the
drug [25, 26]. The main objective of the study was to assess the systemic effect of metformin in
T2DM patients and reveal potential biomarkers for accurate prediction of its therapeutic effi-
cacy. We have previously reported direct evidence of the effects of metformin on the immedi-
ate and strong transcriptome changes in whole-blood samples of healthy subjects, though we
considered the diabetic state as a significant confounding factor, therefore the study was con-
tinued in a well-characterized, prospective T2DM patient cohort with prolonged observational
time, providing much wider applicability of the study results [27]. We believe that our strategy
will promote the development of biomarker-based approaches for monitoring treatment out-
comes and early identification of metformin responders, moving towards precision medicine.

Materials and methods
Study design

The study was conducted within the framework of the ongoing observational, prospective and
longitudinal study OPTIMED, which has been implemented since 2010 in collaboration with
endocrinologists and general practitioners from the leading health care centers in Latvia,
ensuring recruitment of newly diagnosed drug-naive patients with ICD-10 diagnosis code E11
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and follow-up data collection. Written informed consent was obtained from every participant
after full explanation of the purpose and nature of all procedures used before their inclusion in the
study, and the study protocol was approved by Central Medical Ethics Committee of Latvia (No.
01-29.1/22) and Committee of Ethics in Pauls Stradins Clinical University Hospital (N0.3000610
- 18L). The research was conducted in accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki amended in Fortaleza, Brazil, October 2013) and The Con-
vention for the protection of Human Rights and Dignity of the Human Being with regard to the
Application of Biology and Medicine: Convention on Human Rights and Biomedicine. Manage-
ment of patient recruitment, collection of samples and associated clinical data was ensured by Lat-
vian Biomedical Research and Study Centre’s core facility Genome Centre and the Genome
Database of the Latvian Population following their standard procedures [28].

In total, 17 patients of European descent fulfilling the following inclusion criteria were
enrolled: (1a) newly diagnosed type 2 diabetes mellitus (ICD-10 code E11) requiring oral anti-
diabetic therapy, or (1b) previously diagnosed type 2 diabetes mellitus but no oral antidiabetic
therapy or insulin has been used for the last three years, or (1c) newly diagnosed type 2 diabe-
tes mellitus and intensive insulin therapy initiated in a hospital for acute glycemic normaliza-
tion; (2) the patient is not currently involved and is not planning to enroll in clinical trials
during the OPTIMED study; (3) the patient has attained 18 years of age; (4) the patient is not
pregnant at the time of application; (5) the patient meets the criteria for the diagnosis of type 2
diabetes mellitus: (a) fasting blood glucose level > 7 mmol/l, (b) a blood glucose level > 11.1
mmol/l for a two-hour glucose tolerance test with 75 g intake. The exclusion criteria of the
study were as follows: (1) the patient is receiving oral antidiabetic therapy on a regular basis or
has received the therapy during the last three years; (2) the patient is receiving insulin therapy
at the time of application; (3) the patient is pregnant. According to the observational study
design, the randomization procedure was not performed and metformin monotherapy (medi-
cation with metformin hydrochloride as the only active ingredient) was prescribed for each
study participant by an endocrinologist for at least three months regardless of the research
objectives. The drug manufacturer and dosage of metformin (varied from 850 mg to 2000 mg
per day) were chosen by endocrinologists based on clinical experience, patient’s health status,
and manifestations of the disease. Enrollment in the study did not affect the choice of treat-
ment strategy made by endocrinologists. Blood tests (e.g. measures of ALT, creatinine levels,
HbA1c) were performed in a certified clinical laboratory before the administration of metfor-
min and after metformin therapy for three months to evaluate general hematological and bio-
chemical parameters and eligibility of the subjects (Table 1). Blood samples for RNA-Seq were
collected at the same time points, hereinafter referred to as M0 (before administration of met-
formin) and M3m (after three months long metformin course). Considering the high inter-

Table 1. Characteristics of the study group.

Characteristic Value

Female/ male, n (%) 11 (64.7%) / 6 (35.3%)
Mean age (years) + SD 61.12+ 9.57

Mean BMI + SD 34.94 +4.70

Mean ALAT + SD, pkat/L 0.74 +0.51

Mean creatinine + SD, umol/l 63.25 +12.60

Mean triglycerides + SD, mmol/I 2.51+1.86

HbAIc level before the therapy + SD, mmol/mol 60 + 14

HbA1c level after 3 months of metformin therapy + SD, mmol/mol 46 + 6

BMI, body mass index; SD, standard deviation; ALAT, alanine aminotransferase; HbAlc, glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0237400.t001
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individual variability expected in RNA-Seq data, longitudinally repeated measurements were
chosen as the most suitable approach for global gene expression analysis.

HbA1lc measurements were made for all participants at two consecutive time points analo-
gous to the blood collection for RNA extraction (M0 and M3m). Study participants were fur-
ther stratified in two subgroups based on metformin response, which was defined according to
metformin-induced alterations in glycated hemoglobin (HbAIc) levels comparing measure-
ments made in the time points M0 and M3m: responders (delta HbAlc > 1% or 12.6 mmol/
mol), non-responders (delta HbAlc < 1% or 12.6 mmol/mol) [29].

Sample processing and RNA sequencing

For RNA isolation, 3 ml of whole blood were collected in Tempus™ Blood RNA Tubes
(Thermo Fisher Scientific, USA) and further processed using Tempus™ Spin RNA Isolation Kit
(Thermo Fisher Scientific, USA) according to manufacturer’s instructions. The quantity and
quality of extracted RNA and prepared libraries were determined by Qubit Fluorometer
(Thermo Fisher Scientific, USA) and Agilent 2100 Bioanalyzer systems (Agilent, USA), respec-
tively. The integrity of RNA was evaluated by RNA integrity number (RIN) within the Agilent
2100 Bioanalyzer system (Agilent, USA). For depletion of ribosomal RNA 500 ng of total RNA
from each sample were processed using Low Input RiboMinus™ Eukaryote System v2 (Thermo
Fisher Scientific, USA). Complementary DNA library preparation was performed with Ion
Total RNA-Seq Kit v2 (Thermo Fisher Scientific, USA). Ion Proton™ System (Post-Light™ Ion
Semiconductor Sequencing, Thermo Fisher Scientific, USA) and Ion PI™ Chip (Thermo Fisher
Scientific, USA) was used for 200-base-read single-end sequencing, following the manufactur-
er’s instructions. Since the shot-gun RNA-Seq is considered to be the most accurate and desir-
able method for the quantification of the individual transcript and gene expression, additional
methods for technical validation were not applied in this study [30].

Data analysis

Trimmomatic 0.36 was used for read trimming applying window size 5 and quality threshold
of 10. After trimming reads had to have a minimum length of 30 bp and an average quality of
10 to be included in subsequent analyses. Sequencing reads were mapped against human refer-
ence genome GRCh38 release 90 and per-gene read counts were calculated with STAR
(v.2.5.3a.). STAR (v.2.5.3a.) outputs read quantification per gene while performing read map-
ping. The reads were quantified if they match only one gene. The obtained read counts were
then normalized using trimmed mean normalization implemented in Bioconductor package
edgeR in R (v.3.5.3). Differentially expressed genes (DEGs) were estimated using the Likeli-
hood ratio test with added observation weights to reduce the influence of outliers, and sva
(Surrogate Variable Analysis) package in R (v.3.5.3) was used for removing batch effects [31].
In order to evaluate metformin-induced alterations in the transcriptome profile (comparison
of samples M3m vs M0), each sample was set as a factor considering longitudinal study design.
When comparing responders against non-responders in each time point separately, sequenc-
ing run and baseline (M0) HbA1c levels were considered as covariates. FilterByExpr function
was applied for gene filtering in edgeR, taking into account the sample library sizes [32]. Multi-
ple testing correction was implemented using the Benjamini-Hochberg procedure and differ-
ential expression of the genes was determined using a false discovery rate (FDR) < 0.05 cutoff,
regardless of the log, fold change of expression for each gene [33]. In order to identify key
genes determining the metformin response, Partial least squares discriminant analysis
(PLS-DA) was performed implemented in the mixOmics package of R (v.3.5.3). CPM values
(obtained in edgeR and adjusted for the impact of sequencing run and baseline HbA1c levels)
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were used in PLS-DA. Key genes contributing to a separation of patients in both metformin
response groups were identified by using a cutoff of variable importance of projection (VIP)
score >1 obtained from PLS-DA [34]. Association between HbA1c levels and the log CPM
expression values of each mitochondrial gene was performed with multiple linear regression
using Im function in R (v.3.5.3). Sex and body mass index were included in the model to
account for their potential confounding.

Genes showing the p-value <0.05 for differential expression were further used in the func-
tional analysis. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were adopted as the functional terms. GO enrichment analysis was per-
formed with R package Goseq (v.1.38.0), and KEGG pathway enrichment analysis was done
using an online software Database for Annotation, Visualization and Integrated Discovery
(DAVID) 6.8., the threshold value of enrichment was selected by a P-value <0.05 [35, 36].

Heat maps were constructed with Matplotlib and SciPy. Hierarchical clustering with aver-
age linkage method implemented in SciPy was used for the clustering of genes according to
their differences in CPM values [37, 38]. Statistical analysis of anthropometric measures and
biochemical data was performed in R (v3.5.3.) by applying the Wilcoxon rank-sum test and
Pearson’s chi-squared test with a p-value threshold < 0.05.

Results

Identification of metformin-induced differential expression of genes in
blood cells

We characterized the transcriptome profiles of whole-blood samples obtained from 17 drug-
naive T2D patients (characteristics of patients provided in Table 1) before any antidiabetic
therapy (MO0) and after three months of metformin monotherapy (M3m) by RNA-Seq tech-
nique to detect sustained transcriptional alterations in blood cells at the diabetic state due to
the administration of the drug. The median of read counts per sample produced by RNA
sequencing was 21.1 (IQR = 6.3) and 87.9% of the reads (median = 18.2; IQR = 5.1) were fur-
ther mapped to the human reference genome.

Differential expression analysis performed by comparing transcriptome profiles of blood
samples collected after metformin administration for three months against samples collected
before the use of any antidiabetic therapy (M3m vs M0) revealed 28 DEGs (FDR < 0.05) from
the pool of 9992 transcripts identified in total. Out of them, 20 genes were significantly down-
regulated and 8 genes showed significant up-regulation after administration of metformin (Fig

1, Table 2, S1 Fig).

Functional enrichment characteristic to metformin therapy

In order to describe the implementation of metformin-modulated transcriptome profiles in
cell signaling pathways and core biologic functions, the KEGG pathway and GO enrichment
analysis was performed. Over-representation of biological pathways (e.g. amino sugar and
nucleotide sugar metabolism, antigen processing and presentation) and GO Terms (e.g. helper
T cell chemotaxis and lipoprotein particle receptor activity) related to energy metabolism,
immune responses and lipid metabolism were observed, see S1 and S2 Tables for the complete
list of GO terms and enriched KEGG pathways.

Determining genes involved in differential metformin responsiveness

Considering the potential contribution of distinct molecular mechanisms mediating variable
metformin response, all participants were stratified in two efficacy groups, according to
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Fig 1. Metformin-induced alterations of gene expression profiles. (A)—Heat map and hierarchical clustering of 28 DEGs identified. Each row
corresponds to one subject in the respective time-point and each column represents a DEG. Normalized sequence read counts were rescaled to lie in
the range [0,1] and further used to estimate the difference between the gene expression levels in two time-points. DEGs with analogous expression
values were clustered at the column level. (B)—Volcano plot showing the distribution of gene expression in the analyzed contrast. Significance versus
log, fold change is plotted on the y and x axes, respectively, calculated using likelihood ratio test and edgeR. Red dots represent the significant DEGs
(FDR < 0.05), black dots-non-significant genes. M0 ~time point of blood collection before administration of metformin; M3m —time point of blood
collection after metformin therapy for three months.

https://doi.org/10.1371/journal.pone.0237400.g001

metformin-induced changes in their HbA1c levels (responders: delta HbAlc >1% or 12.6
mmol/mol; non-responders: delta HbAlc <1% or 12.6 mmol/mol) (Table 3).

Genes associated with variable metformin responsiveness were determined by differential
gene expression analysis comparing the number of RNA-Seq reads from responders against
non-responders in each time point of blood collection (M0 and M3m) separately. In total, 27
significant DEGs were identified contrasting responders against non-responders before the
administration of metformin (M0). We observed a notable portion of downregulated genes
coding for small nucleolar RNAs and upregulated insulin receptor substrate 2 (IRS2) gene in
responders, revealing distinctive features between response groups already before the use of
any antidiabetic therapy (Fig 2C), (Table 4).

PLS-DA was applied to understand whether patients could be clustered based on their gene
expression profiles before the administration of metformin. PLS-DA revealed pronounced dis-
crimination of samples, based on the obtained transcriptome profiles, explaining 13.9% of the
variance in total (11% of variance explained by latent variable 1 and 2.9% of variance explained
by latent variable 2) (Fig 3B). In total, 56 discriminatory genes showing the strongest separa-
tion of different metformin response groups were identified, based on variable importance for
projection (VIP>1) value in two latent variables (components), generated by PLS-DA (Fig
3A). See S5 Table for the full list and VIP values of discriminatory genes.

Comparison of gene expression profiles between metformin responders and non-respond-
ers after the use of metformin for three months (M3m) showed differential expression of 15
genes (12 up-regulated, 3 down-regulated), including 5 mitochondrial genes, which may be

associated with mechanisms underlying variable efficacy of the drug (Table 5) (Fig 2D).
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Table 2. List of differentially expressed genes due to administration of metformin, ranked by log, fold change.

Gene symbol Full name log,FC FDR

ROBO1 Roundabout guidance receptor 1 -2.83 7.54E-04
ADGRB3 Adhesion G protein-coupled receptor B3 -2.2 2.67E-02
CABP4 Calcium binding protein 4 -1.85 6.08E-04
HMGB3P4 High mobility group box 3 pseudogene 4 -1.72 2.45E-02
NEURLI Neuralized E3 Ubiquitin Protein Ligase 1 -0.46 2.26E-02
COX18 Cytochrome C Oxidase Assembly Factor -0.46 1.17E-02
NIBAN2 Niban apoptosis regulator 2 -0.33 1.64E-03
STABI Stabilin 1 -0.3 2.89E-04
CPVL Carboxypeptidase vitellogenic like -0.29 1.03E-03
TMEM176B Transmembrane protein 1768 -0.29 5.72E-03
SLC24A4 Solute Carrier Family 24 Member 4 -0.26 1.64E-03
CYPIBI Cytochrome P450 family 1 subfamily B member 1 -0.25 3.10E-02
LRP1 LDL receptor related protein 1 -0.23 8.23E-03
CCR2 C-C motif chemokine receptor 2 -0.23 1.11E-02
CD14 CD14 molecule -0.22 3.88E-02
VCAN Versican -0.21 2.45E-02
MS4A6A Membrane Spanning 4-Domains A6A -0.21 1.17E-02
CD163 CD163 molecule -0.21 3.15E-02
PLXNB2 Plexin B2 -0.19 2.57E-02
ADA2 Adenosine deaminase 2 -0.19 3.62E-02
CCAR2 Cell cycle and apoptosis regulator 2 0.19 2.95E-02
HBB' Hemoglobin subunit beta 0.28 4.77E-03
PDZK1IPI' PDZKI-interacting protein 1 0.33 2.89E-04
SNORA74B Small nucleolar RNA, H/ACA box 74B 0.37 2.61E-02
RN7SL679P" RNA, 7SL, cytoplasmic 679, pseudogene 0.48 8.77E-03
RN7SL200P RNA, 7SL, cytoplasmic 200, pseudogene 0.52 1.96E-02
AC099811.1 AC099811.2 (novel transcript, sense intronic to STAT5B) 0.74 1.17E-02
SLC46A1 Solute carrier family 46 member 1 1.14 2.57E-02

Log,FC, log, fold change; FDR, false discovery rate.
"Genes showing significant differential expression due to the administration of metformin also in healthy individuals [27].

https://doi.org/10.1371/journal.pone.0237400.t002

Table 3. Characteristics of responders and non-responders.

Characteristic Responders (n = 10) Non-responders (n = 7) P-value

Female/ male, n (%) 6(60.00%)/4(40.00%) 5(71.43%)/2(28.57%) 1.00E+00
Mean age (years) + SD' 61.14+11.35 61.10+8.77 8.84E-01
Mean BMI + SD' 33.70+4.50 35.81+5.12 2.61E-01
Mean ALAT + SD, pkat/L' 0.91+0.70 0.61+0.27 4.91E-01
Mean creatinine + SD, pmol/l" 59.57+13.35 66.11+12.75 2.23E-01
Mean triglycerides + SD, mmol/l" 3.65+2.57 1.75+0.67 8.78E-02
HbA ¢ level before the therapy + SD, mmol/mol’ 76+15 48+4 4.48E-03
HbAIc level after 3 months of metformin therapy + SD, mmol/mol 487 45+4 5.57E-01

BMI—body mass index; SD—standard deviation; ALAT—alanine aminotransferase; HbAlc - glycated hemoglobin.
"Measured before the administration of metformin (M0).

https://doi.org/10.1371/journal.pone.0237400.t003
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Fig 2. Differentially expressed genes and their representation in Gene Ontologies. Bar plots showing the top 5 enriched Gene Ontology terms in the comparison of
responders against non-responders before administration of metformin (A) and three months after metformin therapy (B). Volcano plot represents the distribution of
gene expression comparing responders against non-responders before administration of metformin (C) and three months after metformin therapy (D). Significance
versus log, fold change is plotted on the y and x axes, respectively, calculated using likelihood ratio test and edgeR. Red dots represent the significant DEGs (FDR < 0.05),
black dots-non-significant genes. BP-biological process; CC-cellular component; MF-molecular function.

https://doi.org/10.1371/journal.pone.0237400.9002

Moreover, a multiple linear regression model revealed a significant association between the
expression of two out of five mitochondrial genes and HbA1c levels after metformin therapy
for three months (MT-ND4, p-value = 0.047; MT-ND4L, p-value = 0.032) (S7 Table).

Biological functions contributing to metformin responsiveness

GO analysis was performed for each list of DEGs (responders against non-responders at time
points M0 and M3m separately). RNA processing and negative regulation of fatty acid trans-
port was revealed among the enriched biological processes using DEG list obtained by com-
parison of responders against non-responders before administration of metformin (Fig 2A).
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Table 4. List of differentially expressed genes comparing responders against non-responders before administration of metformin.

Gene symbol Full name log,FC FDR

RNU5A-1 RNA, U5A small nuclear 1 -2.12 1.07E-02
SNORA20 Small nucleolar RNA, H/ACA box 20 -2.06 9.85E-04
SNORDS82 Small nucleolar RNA, C/D box 82 -2.02 1.11E-03
SNORA5C Small nucleolar RNA, H/ACA box 5C -2.01 4.63E-04
SNORA28 Small nucleolar RNA, H/ACA box 28 -1.87 8.00E-06
RNU5B-1 RNA, U5B small nuclear 1 -1.84 8.63E-03
SNORD20 Small nucleolar RNA, C/D box 20 -1.8 4.58E-08
RNY4 RNA, Ro60-associated Y4 -1.73 1.44E-03
SNORDY0 Small nucleolar RNA, C/D box 90 -1.67 8.00E-06
SNORA75 Small nucleolar RNA, H/ACA box 75 -1.57 8.63E-03
SNORA74B Small nucleolar RNA, H/ACA box 74B -1.38 2.80E-02
SNORD9YIA Small nucleolar RNA, C/D box 91A -1.35 1.98E-02
SNORA37 Small nucleolar RNA, H/ACA box 37 -1.24 2.39E-02
SNORA66 Small nucleolar RNA, H/ACA box 66 -1.2 7.00E-03
SNORA14B Small nucleolar RNA, H/ACA box 14B -1.13 9.45E-03
CLC Charcot-Leyden crystal galectin -1.07 1.49E-02
RALGPS2' Ral GEF with PH domain and SH3 binding motif 2 -0.75 4.74E-02
GPX4 Glutathione peroxidase 4 0.61 4.95E-02
PCMTD2 Protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2 0.68 4.23E-02
MARCH2 Membrane associated ring-CH-type finger 2 0.69 4.23E-02
CDYL Chromodomain Y like 0.87 1.19E-02
IRS2 Insulin receptor substrate 2 0.89 7.81E-03
SIRPG Signal regulatory protein gamma 1.16 2.13E-03
SLC6A9 Solute carrier family 6 member 9 1.34 4.83E-02
FMNI1' Formin 1 1.66 4.74E-02
HEBP1" Heme binding protein 1 1.69 3.06E-03
CHI3L1 Chitinase 3 like 1 2.1 8.03E-13

Log2FC, log2 fold change; FDR, false discovery rate.

"Genes showing significant differential expression comparing responders against non-responders also after metformin therapy for 3 months.

https://doi.org/10.1371/journal.pone.0237400.t004

Contrasting responders against non-responders after three months of metformin use identi-
fied enrichment of GO terms strongly related to the mitochondrial activity (e.g. mitochondrial
respiratory chain complex I, ATP metabolic process) (Fig 2B). See S3 and S4 Tables for the full
list of enriched GO terms identified. Although KEGG pathway analysis of DEG list, obtained
from the baseline analysis (M0), did not reveal any significantly enriched cell signaling path-
way, comparison of responders against non-responders after three months of metformin use
showed differential expression of 5 mitochondrial genes (MT-ATP6, MT-ND2, MT-ND4,
MT-ND4L, MT-ND6). All of these genes provided a significant enrichment of the following
pathways: hsa00190: Oxidative phosphorylation (p-value = 4.47E-06), hsa05012: Parkinson’s
disease (p-value = 5.81E-06) and hsa01100: Metabolic pathways (p-value = 2.18E-02).

Discussion

The results of our study showed metformin-specific signatures in blood cell transcriptome
profiles associated with some of its well-known properties: the ability to improve energy
metabolism, influence immune responses, and inhibit cancer progression. This study has dem-
onstrated a gene expression-based molecular discrimination between metformin responders
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Fig 3. The partial least-square discriminant analysis of the RNA-Seq data obtained before the administration of metformin. (A) Heat map and hierarchical
clustering of 56 key genes contributing the most to the patient separation in metformin response groups, selected by VIP score threshold >1 from PLS-DA. Each row
corresponds to one subject (N: non-responder; R: responder) and each column represents a gene. Normalized sequence read counts were rescaled to lie in the range
[0,1], genes with analogous expression values were clustered at the column level. (B) PLS-DA plot of RNA-Seq data showing clear transcriptome-based discrimination of
patients with different metformin responses. Each point represents the transcriptome signature of one patient, the confidence level is set to 95% for ellipses. The
separation of samples in the PLS-DA model is based on latent variables (X-variate 1 on and X-variate 2 on x and y axes, respectively). T2DM patients with different
metformin responses are projected into distinct clusters indicating the difference in their transcriptome profiles.

https://doi.org/10.1371/journal.pone.0237400.g003

and non-responders, and suggested that mitochondrial respiratory complex I may be associated
with metformin efficacy. To the best of our knowledge, this is the first longitudinal study focus-
ing on metformin-induced transcriptional alterations of drug-naive T2DM patients in vivo.

Our study revealed metformin-induced differential expression of genes involved in choles-
terol homeostasis, such as solute carrier family 46 member 1 (SLC46A1), which is involved in
the intestinal folate absorption affecting plasma high-density lipoprotein levels [39], and lipo-
protein receptor-related protein 1 (LRP1I), a crucial protein for cholesterol uptake. Metformin-
induced reduction of hepatic LRP1 expression level has been reported before [40], though here
we report a similar effect in blood cells for the first time. Metformin-induced differential
expression of both genes may serve as a contributing factor for the cholesterol-lowering effect
of the drug. In our data, the same mechanism was supported by the enrichment of lipoprotein
particle receptor activity among identified GO terms.

In addition, we found significant downregulation of multiple cancer-related genes coding
for cytochrome P450 1B1 (CYPIBI), C-C chemokine receptor type 2 (CCR2), stabilin-1
(STABI) and transmembrane protein 176B (TMEM176B). Some of the observed alterations
have been previously identified in different tissue types, such as the downregulation of CCR2,
which has been explained by the ability of metformin to block M2-like polarization of tumor-
associated macrophages providing the anti-metastatic effect of the drug [41], or downregula-
tion of CYPI1BI in breast cancer cells where due to its crucial role in estrogen metabolism,
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Table 5. List of differentially expressed genes comparing responders against non-responders after metformin therapy for three months.

Gene symbol Full name log,FC FDR
S100P $100 calcium binding protein P -2.00 7.54E-03
FP671120.7 Novel transcript, similar to YY1 associated myogenesis RNA 1 YAM1 -1.53 3.77E-02
PAX5 Paired box 5 -1.21 3.45E-02
TNFRSF13C TNF receptor superfamily member 13C -1.20 4.01E-02
IGHM Immunoglobulin heavy constant mu -1.17 1.43E-03
MT-ND6 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 6 -1.10 3.45E-02
MT-ND4L Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 4L -1.07 3.46E-02
MT-ATP6 Mitochondrially encoded ATP synthase membrane subunit 6 -1.02 3.07E-02
MT-ND4 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 4 -1.00 3.07E-02
MT-ND2 Mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 2 -1.00 6.27E-03
CD79A CD79a molecule -0.90 3.45E-02
RALGPS2' Ral GEF with PH domain and SH3 binding motif 2 -0.82 3.45E-02
WARS Tryptophanyl-trna synthetase 0.87 3.45E-02
HEBPI' Heme binding protein 1 1.42 4.23E-03
FMNI' Formin 1 1.83 7.12E-04

Log2FC, log2 fold change; FDR, false discovery rate.
"Genes showing significant differential expression comparing responders against non-responders also before administration of metformin.

https://doi.org/10.1371/journal.pone.0237400.t005

metformin has been suggested as a potential chemopreventive agent against carcinogenesis
[42]. Multiple studies have reported that aberrant expression of STABI is related to the tumor
progression in various types of cancer, serving as a potential molecular target for cancer ther-
apy [43, 44]. Similarly, elevated protein levels of TMEM176B are detected in multiple malig-
nancies, moreover, inhibition of TMEM176B has already been proved to promote CD8* T
cell-mediated tumor growth control, enhancing the therapeutic efficacy of cancers [45, 46].
Therefore, the observed downregulation of both, STABI and TMEM176B may highlight novel
players in the anti-cancer activity of metformin.

Finally, the enrichment of antigen processing and presentation pathway and significantly
reduced expression of genes coding for the cluster of differentiation 14 (CD14), which was
already proved to be differentially expressed in metformin-treated monocyte cells, and the
cluster of differentiation 163 (CD163) [47], a scavenger receptor which has been previously
associated with insulin resistance in patients with T2DM, altogether may explain well-known
participation of metformin in the inflammatory and immune responses [48].

According to our previous study, there are only three genes (HBB, PDZK1IP1, and
RN7SL679P) showing metformin-induced differential expression in blood cells obtained from
both, T2DM patients and healthy volunteers. Although both studies were longitudinal, the
duration of the therapy (7 days for healthy volunteers and 3 months for T2DM patients) and
the dose of metformin (850 mg twice a day for healthy volunteers and variable dose in the
T2DM patient group), differed between both studies, which may explain the observed variabil-
ity of metformin effects on the blood cell transcriptome profiles among both study groups.
Moreover, the general health status including the presence of T2DM may serve as the major
confounding factor to modulate the cell metabolism and effects of metformin in the patient
group compared to healthy individuals [49].

One of the main findings of our study was the clear, transcriptome-based discrimination of
study subjects into metformin responders and non-responders before the administration of
any anti-diabetic therapy. Differential expression analysis before the use of metformin revealed
significant upregulation of IRS2 gene coding for insulin receptor-2 (log,FC 0.89) in responders
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compared to non-responders. So far, multiple studies have demonstrated the ability of metfor-
min to activate the hepatic insulin receptor and the IRS2/PI3K/Akt pathway resulting in
reduced insulin resistance and increased glucose uptake [50, 51]. The results of our study sug-
gest that the activity of IRS2 in blood cells prior to the administration of metformin may be
related to the efficacy of the therapy. Nevertheless, this hypothesis must be tested in a larger
longitudinal cohort.

PLS-DA analysis also provided strong evidence for transcriptome-based patient stratifica-
tion which was mainly explained by a single latent variable (component) and defined by
expression of 56 key genes (VIP>1). We found carcinoembryonic antigen-related cell adhe-
sion molecule 1 (CEACAM1), Insulin receptor substrate 1 (IRS1), ABCC2 gene coding for mul-
tidrug resistance protein 2 and IGHA I gene coding for the constant segment of
immunoglobulin A heavy chain among the marker genes determining the distribution of
patients in metformin response groups. So far, there are no studies reporting the role of multi-
drug resistance protein 2 in metformin efficacy, nevertheless, its homolog mitochondrial mul-
tidrug resistance protein 1 has been already associated with resistance to metformin in human
malignant mesothelioma cells [52]. Interestingly, CEACAM1 is a mediator of insulin clearance
in the liver [53] and IRS1 is playing a key role in glucose homeostasis [54], though no reports
were linking their activity with metformin efficacy so far. In our previous studies, we have
already reported the contribution of IgA, the most abundant intestinal antibody shaping the
gut microbiome composition, in metformin action [27], and here we suggest a potential impli-
cation of IgA in microbiome-mediated metformin response [55]. Together these genes showed
notable patient segregation in metformin response groups also when visualized in CPM-based
heat map, therefore they may be considered as candidates for further studies of biomarkers for
metformin response.

The comparison of blood cell transcriptome profiles from responders with transcripts from
non-responders after the metformin therapy for three months revealed significant downregu-
lation of mitochondrial genes (MT-ATP6, MT-ND2, MT-ND4, MT-ND4L, MT-ND6). Further-
more, MT-ND4 and MT-ND4L also showed a positive association with HbAlc levels
according to the multiple regression model. Metformin directly acts on mitochondria and lim-
its respiration by inhibiting mitochondrial respiratory-chain complex 1 (NADH: ubiquinone
oxidoreductase), which is among the top targets of the drug, and it also catalyzes oxidative
phosphorylation in mammalian mitochondria [56, 57]. Thus, the observed downregulation of
genes coding for NADH: ubiquinone oxidoreductase core subunits in responders and enrich-
ment of oxidative phosphorylation seems rational. These data suggest altered mitochondrial
complex I activity as one of the mechanisms linked to the variability of metformin response.

There are a few limitations in this study that could be addressed by future research. First, a
small sample size due to the essential inclusion criterion of drug-naive T2DM patients. Second,
prolonged observation time (three months) that provides an advantage to evaluate long-term
metformin effects, while causing an issue of possible accumulation of uncontrollable factors
affecting gene expression and masking the true effects of the drug. Third, the lack of control
arm allowing the elimination of these confounding factors. Nevertheless, we believe that
RNA-Seq, a highly sensitive and accurate method for gene expression, together with the
repeated measures within the longitudinal study design and strictly defined inclusion criteria
ensures the absence of potential influence of other anti-diabetic therapies and improves the
validity of our results.

In conclusion, the current study applying RNA-Seq for the discovery of transcriptional
effects of metformin in drug-naive T2DM patients provided detailed insight into potential
molecular mechanisms underlying well-known beneficial effects of metformin. However,
since there are no data confirming the accumulation of metformin in other blood cells than
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erythrocytes [58], it seems reasonable to assume that the observed effects of metformin on
peripheral blood cells most likely are indirect and reflects the systemic consequence of the
therapy. Nevertheless, we suggest that blood-derived transcriptome profiles may be used for
evaluation of therapeutic efficacy and specific genes may be further applied in the development
of biomarkers for metformin response.
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3.3 Novel susceptibility loci identified in a genome-wide association study of type 2

diabetes complications in population of Latvia

Highlights

1. GWAS of 601 T2DM patients revealed ten novel susceptibility loci for T2DM complications
reaching genome-wide significance level. Out of them rs1132787 (GYPA) and rs522521
(LOC105371557) showed an association with diabetic neuropathy, rs2477088 (PDE4DIP),
rs522521 (LOC105371557), rs4852954 (NATS8), rs6032 (F5), rs6935464 (RPS6KA2),
rs7236163 (ZNF519), rs3095447 (CCDC146) were significantly associated with macrovascular
complications, and only variant rs3095447 (CCDC146) was related to a greater risk of

ophthalmic complications.

2. Three risk loci (rs4852954, rs7236163, rs3095447) for macrovascular complications proved
to be significantly associated with the expression levels of multiple nearby genes (e.g. FGL2,
ALMS1) with previously described functional importance in cardiovascular disease-related
traits.

3. The targeted approach confirmed a strong genetic association for diabetic neuropathy
(MAPK14: rs3761980, rs80028505), and diabetic nephropathy (APOLL1: rs136161), proving
the contribution of these risk loci in the pathogenesis of diabetic complications in the population

of Latvia.
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Abstract

Background: Type 2 diabetes complications cause a serious emotional and economical burden to patients and
healthcare systems globally. Management of both acute and chronic complications of diabetes, which dramatically
impair the quality of patients'life, is still an unsolved issue in diabetes care, suggesting a need for early identification of
individuals with high risk for developing diabetes complications.

Methods: We performed a genome-wide association study in 601 type 2 diabetes patients after stratifying them
according to the presence or absence of four types of diabetes complications: diabetic neuropathy, diabetic nephrop-
athy, macrovascular complications, and ophthalmic complications.

Results: The analysis revealed ten novel associations showing genome-wide significance, including rs1132787
(GYPA, OR=2.71; 95% Cl=2.02-3.64) and diabetic neuropathy, rs2477088 (PDE4DIP, OR=2.50; 95% Cl=1.87-3.34),
14852954 (NAT8, OR=12.27;95% Cl=2.71-3.01), rs6032 (F5, OR=2.12; 95% Cl=1.63-2.77), rs6935464 (RPS6KA2,
OR=12.25;95% Cl=6.69-3.01) and macrovascular complications, rs3095447 (CCDC146, OR=2.18; 95% Cl=1.66-2.87)
and ophthalmic complications. By applying the targeted approach of previously reported susceptibility loci we man-
aged to replicate three associations: MAPK14 (rs3761980, rs80028505) and diabetic neuropathy, APOLT (rs136161) and
diabetic nephropathy.

Conclusions: Together these results provide further evidence for the implication of genetic factors in the develop-
ment of type 2 diabetes complications and highlight several potential key loci, able to modify the risk of developing
these conditions. Moreover, the candidate variant approach proves a strong and consistent effect for multiple variants
across different populations.

Keywords: Type 2 diabetes mellitus, Genome-wide genotyping, Diabetic complications

Background

The past few decades have shown a marked increase in
the number of patients with diabetes rising from 151
million (4.6% of the global population) in 2000 to 463
million (9.3%) in 2019 [1]. The risk of type 2 diabetes
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(T2DM), the most common type of diabetes, is modi-
fied by a strong interaction between environmental and
genetic factors [2, 3]. T2DM is a multifactorial disease
with a population-specific heritability (26% in the Euro-
pean population) [4]. A number of common variants
implicated in the pathogenesis and genetic architecture
of T2DM have been identified so far, some of them also
capable of modifying the pharmacologic response to
antidiabetic drugs [5, 6].
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http//creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http-//creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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Uncontrolled T2DM can lead to long-term illnesses
or chronic health conditions divided into microvascular
complications, such as diabetic retinopathy, nephropathy,
neuropathy, and macrovascular complications, includ-
ing stroke, heart disease, and peripheral vascular disease
[7], accounting for 53% of direct health costs of diabetes
with cardiovascular and renal complications contribut-
ing to the greatest financial burden [8, 9]. Moreover, dia-
betic patients show increased all-cause mortality rates,
especially cardiovascular deaths (HR 2.6, 95% CI 1.4—4.7)
[10].

Studies show evidence of considerable genetic compo-
nent predisposing to diabetic complications, explaining
even around 50% of the risk of proliferative retinopathy
[11]. In the last few decades, genetic research including
genome-wide association studies (GWAS), linkage analy-
sis, and candidate gene approach has revealed several
susceptibility loci for diabetic retinopathy and nephropa-
thy (VEGF, CAT, FTO, UCPI, and INSR), and also mac-
rovascular complications (ADIPOQ). Nevertheless, they
explain only a small proportion of the phenotypic vari-
ation observed in T2DM patients [12-17], justifying a
need for identification of novel genetic risk factors for
T2DM complications and improvement of knowledge
about molecular mechanisms underlying these comorbid
conditions.

Since the high impact of population specificity for the
discrimination of genetic variants and their contribution
to the phenotype of interest is evidenced by a number
of SNPs that failed to replicate in different populations,
both discovery and replication studies in populations of
different ancestries are needed [18, 19]. An example of
population-specific allele frequency is rs61736969, the
risk variant of T2DM, which is located in the TBC1D4
(TBC1 Domain Family Member 4) gene. It is highly fre-
quent (minor allele frequency of 17%) in the Greenlan-
dic population, nevertheless, it has not been present so
far in European individuals, most probably due to differ-
ent linkage disequilibrium patterns [20]. Although poor
glycemic control is considered to be the driving factor of
T2DM complications, early genotype-based identifica-
tion of individuals at high risk of diabetic complications
may promote the prevention or, at least, delay of the dis-
ease [21]. In this study, we aimed to discriminate novel
susceptibility loci for T2DM complications and replicate
the findings of other GWAS in the study cohort from
the Genome Database of the Latvian Population (LGDB)
[22].

Methods

Study group and phenotype definitions

In total, the study cohort consisted of 601 T2DM patients
of European ancestry with and without a medical history
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of diabetes complications, selected from the participants
of LGDB (recruited from June 2007 to November 2016)
according to the following inclusion criteria: (1) clinically
confirmed diagnosis of T2DM (E11 diagnosis code, ICD-
10), (2) information on age at diagnosis, sex, weight, and
height available, (3) records of national diabetes registry
and Latvian hospital inpatient discharges available. Writ-
ten broad consent was obtained from every subject dur-
ing the recruitment in LGDB.

The collection of blood samples and relevant anthro-
pometric data was ensured by LGDB according to their
standard procedures [22]. Associated clinical data,
including the diagnosis date of T2DM, date and type of
diabetes complications, HbAlc measures, and medica-
tions used, were obtained from the records of Diabetes
registry, Latvian hospital inpatient discharges, outpatient
progress notes, and pharmacy recipe records, provided
by The Centre for Disease Prevention and Control of Lat-
via and National Health Service of Latvia (Approval No.
3, Decision No. 7.1-3/3). The data about diabetic com-
plications present for T2DM patients involved in LGDB
were applied for accurate stratification of 601 T2DM
patients in four phenotype-based groups according to the
type of complications experienced: diabetic neuropathy,
diabetic nephropathy, ophthalmic complications, and
macrovascular complications. The definition of pheno-
types and patient stratification in different complication
groups was done as follows:

1. Diabetic neuropathies: clinical diagnosis codes (ICD-
10) E11.4 and E11.5, records of amputation of the
leg/toe, gangrene, shunting and angioplasty, and
presence of intermittent claudication or fresh ulcers
since the diagnosis of T2DM.

2. Diabetic nephropathies: clinical diagnosis code E11.2
or records of kidney failure, kidney transplantation,
renal replacement therapy, microalbuminuria, hemo-
dialysis, peritoneal dialysis performed after the diag-
nosis of T2DM.

3. Ophthalmic complications: clinical diagnosis code
E11.3 or records of photocoagulation, maculopathy,
retinopathy, operative therapy, blindness made since
the diagnosis of T2DM.

4. Macrovascular complications: clinical diagnosis
codes 195, 120, 121, 124, 125, 150, 160, 161, 163, 164, and
records of coronary shunting and angioplasty after
the diagnosis of T2DM.

ICD-10-based phenotype definitions corresponding to
the Latvian guidelines of diabetes management are gen-
erally used in clinical practice in Latvia. Subjects with
the above-mentioned diagnosis codes or medical events
recorded were considered as cases in their corresponding
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complication groups, while T2DM patients with no
evidence of complications of interest during their fol-
low-up period were recognized as controls in the par-
ticular group. Subjects experiencing specific diabetes
complications before the set of T2DM diagnosis were
excluded from the analysis of a particular complication
group, explaining the variable total number of individu-
als among all complication groups tested. The follow-up
period which coincides with diabetes duration was con-
sidered as time since the set of T2DM diagnosis until the
date of diabetes complication recorded for cases or the
date of the last entry in the National registry for control
subjects. Administration of medications was considered
in a group-specific manner, accounting for angiotensin
II receptor blockers and angiotensin-converting enzyme
inhibitors in the analysis of all complication groups ana-
lyzed and additional lipid-modifying agents in the analy-
sis of macrovascular complications. In order to adjust
for the inter-individual variability of glycaemic control,
a key factor in the development of T2DM complications,
the median HbAlc level during the observation period
was fitted as a covariate, irrespective of the antidiabetic
therapy used. Sex, age at the diagnosis of T2DM, body
mass index (BMI), diabetes duration, and use of particu-
lar medications were also included among the covariates.

DNA extraction and genotyping

Within the framework of this study DNA samples from
601 T2DM patients were used. DNA was isolated from
peripheral blood leukocytes using a phenol—chloroform
extraction method according to LGDB standard proce-
dures [22]. DNA samples were genotyped with the Infin-
ium Global Screening Array (Illumina, USA) on the iScan
System microarray scanner (Illumina, USA). Illumina
Genome Studio v2.0 was used to convert raw data into
PLINK format and workflow described in Marees et al.
[23]. used for data quality control. SHAPEIT v2.r900 [24]
and IMPUTE2 [25] were used for genotype phasing and
genotype imputing. Imputed data were filtered using the
following parameters: marker correlation (INFO)>0.8,
hard call threshold 0.1, minor allele frequency >1%,
Missingness < 2%.

Statistical analysis

Association analyses corresponding to four different
complication groups (macrovascular complications,
diabetic neuropathy, diabetic nephropathy, ophthalmic
complications) were performed using PLINK v1.9 logis-
tic regression with covariates: median HbAlc, sex, age at
the diagnosis, diabetes duration, BMI, medications used.
A genome-wide significance threshold of P<5 x 10~® was
defined.
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For the targeted analysis candidate variants were
selected from GWAS Central [26] (http://www.gwasc
entral.org/) and GWAS Catalog [27] (https://www.ebi.
ac.uk/gwas/home), based on previously reported asso-
ciation with T2DM complications: diabetic neuropathy
(4 allelic variants selected), macrovascular complications
(43 allelic variants selected), ophthalmic complications
(98 allelic variants selected) and diabetic nephropathy
(49 allelic variants selected). A complete list of selected
SNPs, their positions, and associated traits is provided
in Additional file 1. False discovery rate (FDR) according
to the Benjamini—-Hochberg procedure was calculated to
account for multiple testing and the threshold was set at
0.05.

Manbhattan plots and Q-Q plots were generated in R
v3.5.3 using the qgman package, while the Venn diagram
was developed in the online visualization tool Venny
2.1.0. Statistical analysis of anthropometric measures and
biochemical data was performed in R v3.5.3. by applying
the Wilcoxon rank-sum test and Pearson’s chi-squared
test with a p-value threshold <0.05. For identification of
the functional role of allelic variants expression quantita-
tive trait locus (eQTL) analysis was conducted by using
the open-access Genotype Tissue Expression (GTEx)
database [28]. The tissue types for eQTL analysis were
carefully selected considering the etiology of the dis-
eases (artery, nerve, heart, skin, blood) [29]. The p-value
threshold of 0.05 was used to discriminate significant
associations. Variant Effect Predictor and Linkage Dis-
equilibrium (LD) data from 1000 Genome project (Utah
Residents (CEPH) with Northern and Western European
Ancestry) were employed to explore the functional con-
sequences of each variant and other variants in LD [30].
To evaluate the potential SNP effects on quantitative
phenotypes, analyses of variant association with HbA1C
and BMI were performed using PLINK v1.9—assoc func-
tion for quantitative phenotypes, where the genome-wide
significance threshold of P<5 x 10~% was used to identify
the significant hits.

Results

Genome-wide association analysis

We studied a cohort of 601 T2DM patients of which 241
were men and 360 women aged 22 to 82 years (average
age 56.86 = 10.24 years) stratified as controls or cases in
four complication groups tested (diabetic nephropathy
n=601, diabetic neuropathy n=600, ophthalmic com-
plications n=601 and macrovascular complications
n=559), based on corresponding diagnosis or medi-
cal events experienced after the onset of T2DM. A phe-
notype-based distribution of subjects among different
complication groups is shown in Fig. 1. After inspection
of patient anthropometric data, we observed that T2DM
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Diabetic
nephropathy

156
(27.6%)

Macrovascular
complications

Fig. 1 Venn diagram showing the distribution and overlap of cases among the analyzed T2DM complication groups

Diabetic
neuropathy

Ophthalmic
complications

patients experiencing ophthalmic complications and dia-
betic neuropathy were significantly younger compared to
the group of patients without particular complications
while those with diabetic nephropathy, macrovascular
and ophthalmic complications were characterized by
longer duration of diabetes. As expected, median gly-
cated hemoglobin levels were higher in cases (patients
with specific complications) compared to controls
(patients without the same diabetes complication) except
for the diabetic nephropathy group (Table 1).

After quality control and filtering 5 378 539 SNPs were
used for further testing in each T2DM complication
group. The total genotyping rate was >0.99 in all of the
tested T2DM complication groups. The genomic infla-
tion factor was negligible in all data sets based on median
chi-squared statistics: 1.02 for neuropathies, 1.02 for
macrovascular complications, 1.01 for ophthalmic com-
plications, and 1.00 for nephropathies. After adjustments
for age, sex, BMI, diabetes duration, median HbAlc,
and medications used ten susceptibility loci were iden-
tified for different T2DM complications (Fig. 2), among
them rs1132787 (GYPA) and rs522521 (LOCI105371557)
showed an association with diabetic neuropathy,
rs2477088 (PDE4DIP), rs522521 (LOCI105371557),

154852954 (NATS), rs6032 (F5), rs6935464 (RPS6KA2),
rs7236163 (ZNF519), rs3095447 (CCDCI146) were sig-
nificantly associated with macrovascular complications,
and only variant rs3095447 (CCDC146) was related to a
greater risk of ophthalmic complications, while no signif-
icant hits were found for diabetic nephropathy (Table 2,
Additional file 2).

The functional consequences of the identified variants
were evaluated by the eQTL analysis, which was con-
ducted in GTEx database by focusing only on those tissue
types that may be relevant or even damaged accord-
ing to the etiology of the disease [29]. Three out of eight
novel allelic variants identified in this study appeared to
be significantly associated with the expression of multi-
ple nearby genes: rs4852954 (ALMSI, DUSP11, NATS,
ALMSIPI, TPRKB, ALMSI-ITI, RP11-434P11.2),
rs7236163 (ZNF519, RP11-411B10.2), and rs3095447
(RP11-467H10.1, FGL2, PMS2P9, GSAP SPDYEIS,
FAM1I185BB, CCDC146, UPK3BP1I). See Additional file 3
for the full list of the identified associations.

Targeted analysis
In order to investigate if previously reported associa-
tions in other populations are also true in our study
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(See figure on next page.)

Fig. 2 Manhattan plots for GWAS of T2DM complications. a Diabetic neuropathies, b macrovascular complications, ¢ ophthalmic complications.
X-axis shows chromosomal positions. Y-axis shows —log10 P-values. The red lines indicate a genome-wide significant threshold of P<5 x 10~%, and
the blue lines denote a suggestive significance threshold of P<5 x 10~°. Association signals that reached genome-wide significance are denoted

by reference SNP ID number

cohorts, we performed a targeted analysis in the same
subjects and stratification in complication groups (dia-
betic neuropathy, macrovascular complications, ophthal-
mic complications, and diabetic nephropathy) (Table 1)
by performing an association analysis for 194 candi-
date variants in total. Information on previously known
allele-trait associations reported in both GWAS Catalog
and GWAS Central was used for the selection of risk
variants associated with at least one group of the tested
T2DM complications (see Additional file 1 for a full list
of selected candidate SNPs). The genotyping rate in all of
the complication groups analyzed was >0.99. By applying
the targeted approach we managed to replicate two sig-
nificant associations for diabetic neuropathy rs3761980
and rs80028505, both mapping to MAPKI4 loci and one
significant hit (rs136161, APOLI) for diabetic nephropa-
thy (Table 3) in our study cohort.

Discussion

Here we present the results of the genome-wide asso-
ciation study for T2DM complications performed in
a population of Latvia for the first time, revealing 10
susceptibility loci for T2DM complications, including
diabetic neuropathy, macrovascular and ophthalmic
complications. As in other reports aimed to identify the
risk factors of T2DM complications [15, 32], the control
group of our study consisted of T2DM patients with no
evidence of the complication type of interest instead of
conventional healthy subjects, since the implementation
of healthy controls would rather reveal genetic associa-
tions with the diagnosis of T2DM itself, not the T2DM
complications.

We found two novel variants (rs1132787 and rs522521)
associated with diabetic neuropathy and none of them
have been linked to any disease or specific phenotype
before. Variant rs1132787 is located within the 3" UTR
of a gene coding for glycophorin A coding (GYPA).
Glycophorin A is the major erythrocyte membrane
sialoglycoprotein. Although it has not been directly
associated with susceptibility to any T2DM-related con-
dition before, studies report a significant upregulation
of the GYPA gene in the dorsal root ganglia of a mouse
model of T2DM and the metabolic syndrome, and even
type 1 diabetes with diabetic polyneuropathy [33, 34].
Moreover, copy number variation overlapping GYPA
has been already linked to body mass index, obesity, and

obesity-related traits, such as weight, hip circumference,
and waist circumference, providing more evidence for
the potential contribution of GYPA in the development
of diabetic complications [35]. Because of the multiple
evidence of the implication of GYPA gene in neuropa-
thies and metabolic traits, and the potential functional
consequence of the top variant rs1132787 located within
the 3'UTR of the gene, we consider the GYPA gene as
the first candidate for future functional validation stud-
ies. Nevertheless, credible evidence for this association
should be established first by performing a replication
study with larger sample size. The other identified risk
variant rs522521 is located near the poorly characterized
gene LOCI05371557 with yet unknown function.

In total, seven variants reached genome-wide signifi-
cance for the association with macrovascular complica-
tions of T2DM. The strongest association was exhibited
by an intron variant of the Phosphodiesterase 4D Inter-
acting Protein coding gene (PDE4DIP). Although the
rs2477088 variant has not been previously linked to
any T2DM manifestations, PDE4DIP, also known as
myomegalin or cardiomyopathy-associated protein 2,
is a well-known contributor of the microtubule control
process [36] and some previous evidence exist indi-
cating on the potential role of the gene in macrovas-
cular diseases and T2DM. The exome sequencing has
revealed a rare variant of PDE4DIP, which significantly
increases the risk of ischemic stroke [37], moreover,
CpG island methylation in leukocytes annotated to
PDE4DIP contributes to the epigenetic fingerprint of
myocardial infarction [38], and finally, the gene is also
significantly downregulated in liver of T2DM patients
[39]. Another risk allele (rs4852954) identified in the
analysis of macrovascular complications is located near
the N-Acetyltransferase 8 coding gene (NATS8) and has
been previously associated with systolic blood pres-
sure and renal function in the Estonian population [40]
which is genetically close to the Latvian population
[41]. Although NATS8 gene has not been linked with
T2DM macrovascular complications before, it is con-
sidered to be a susceptibility locus for diabetic kidney
disease [42]. In addition, we found the coagulation fac-
tor 5 coding gene (F5) among the risk loci of macrovas-
cular complications. The variant rs6032 is located only
around 7 kb from the Factor V Leiden (rs6025), which
has been strongly associated with ischemic stroke and
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Table 2 Susceptibility loci associated with type 2 diabetes mellitus complications

CHR Closest gene SNP A1/A2 OR (95% CI) P-value MAF cases/controls MAF European
Diabetic neuropathy

4:145030546 GYPA 151132787 T/C 2.71(2.02-3.64) 3.23E-11 0.37/0.16 0.31
17:15733545 LOC105371557 1522521 A/C 0.49 (0.38-0.64) 5.07E—08 0.37/0.56 0.70
Macrovascular complications

1:144936353 PDE4DIP 152477088 T/C 250(1.87-3.34) 6.11E—-10 0.51/0.32 0.58
17:15733545 LOC105371557 1s522521 A/C 042 (17.32-0.56) 6.95E—10 0.40/0.60 0.70
2:73870010 NAT8 154852954 T/C 2.27(2.71-3.01) 1.26E—-08 0.50/0.31 0.61
1:169511555 F5 156032 T/C 2.12(1.63-2.77) 262E—-08 0.56/0.37 0.73
6:167114208 RPS6KA2 156935464 A/G 2.25 (669-3.01) 3.89E—08 0.44/0.26 0.57
18:14150724 ZNF519 157236163 T/C 2.14(18.63-2.82) 497E—-08 0.46/0.27 0.58
7:76764970 CCDC146 153095447 A/C 2.16 (7.64-2.84) 4.98E—-08 0.55/0.37 0.79
Ophthalmic complications

7:76764970 CCDC146 rs3095447 A/C 2.18(1.66-2.87) 2.55E—08 0.61/0.40 0.79

CHR chromosome and base pair position in Human Genome build hg19, A7 minor allele, A2 major allele, OR odds ratio for the minor allele, C/ confidence interval 95%,
MAF minor allele frequency, MAF European minor allele frequency observed in the European population [31]

Table 3 Candidate variants showing a significant association with type 2 diabetes complications

CHR Closest gene SNP A1/A2 MAF cases/ MAF European OR (95% Cl) P-value FDR References
controls

Neuropathies

6:35993906 MAPKI14,SLC26A8 153761980 G/A 0.13/0.09 0.10 1.58 (1.08-233) 1.94E-02 3.88E-02 Meng et al.[49]

6:35998388 MAPK14 rs80028505 T/C 0.13/0.09 0.11 1.58 (1.08-2.33) 1.94E-02 3.88E-02 Meng et al.[49]

Nephropathies

22:36657432 APOLI1 rs136161 G/C 047/0.29 040 200 (1.40-2.86) 141E-04 6.93E-03 lyengar et al. [50]

CHR chromosome and base pair position in Human Genome build hg19, A1 minor allele, A2 major allele, OR odds ratio for the minor allele, C confidence interval 95%,
FDR false discovery rate by Benjamini & Hochberg method, MAF minor allele frequency, MAF European: minor allele frequency observed in the European population

[31]

incident venous thrombosis before [43, 44], therefore
we may speculate that in rs6032 carriers manifesta-
tion of the trait are amplified by the presence of T2DM.
Although rs6032 is the only missense variant among
the top hits, it is categorized as benign according to
SIFT and PolyPhen. Nevertheless, the variant is in the
LD with rs4524, the risk variant for venous thrombo-
embolism (OR=1.14; CI1=1.11-1.16) [45].

Finally, 4 more loci showed genome-wide significance
for the association with macrovascular complications,
among them rs6935464, located within the RPS6KA2
gene coding for Ribosomal Protein S6 Kinase A2, which
is involved in cardiac myocyte stress responses and even
considered as a therapeutic target for the prevention of
heart failure [46], and rs3095447, an intron variant of
Coiled-Coil Domain Containing 146 gene (CCDC146)
which is also the only significant hit for ophthalmic com-
plications in our data. The last two variants (rs522521
and rs7236163) identified in the analysis of macrovas-
cular complications are located in the intergenic regions

near genes LOC105371557 and ZNF519 respectively, and
both have not been linked to any disease before.

We noticed two of the variants (rs522521, rs3095447)
appearing among the top hits of multiple complication
groups, which seems rational since a number of patients
had experienced more than one type of complication,
resulting in a notable overlap of patients among four
tested phenotype groups (Fig. 1). This finding may be also
explained by similar etiologic characteristics between
microvascular diabetic complications involving small
vessels (neuropathy, nephropathy, ophthalmic complica-
tions) and macrovascular complications related to large
vessel damage, with chronic hyperglycemia as the main
cause of all these comorbidities. Moreover, microvascu-
lar and macrovascular complications tend to be strongly
interconnected, and the damage of small vessels may con-
tribute to the manifestations of heart disease in diabetes
[7], which coincides with our data showing only a small
number of T2DM patients corresponding to one compli-
cation group only, while 18% (n=109) of T2DM patients
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included in this study had experienced multiple manifes-
tations during the observation period, corresponding to
all four analyzed complication types.

According to Ensembl Variant Effect Predictor, most
of the identified variants are intronic, though rs1132787,
which is located in the enhancer site, and rs4852954 lay-
ing within the promoter flanking region may disrupt the
functions of regulatory elements and therefore modulate
the gene expression patterns. Some of the genes affected
by the identified eQTLs (Additional file 3) are previously
associated with the performance of the vascular system,
for instance, expression of Fibrinogen-like protein 2 cod-
ing gene (FGL2) in endothelial cells has been previously
linked to microthrombosis and cardiac impairment in
rats with T2DM [47], and Alstrom Syndrome Protein 1
coding gene (ALMSI) is associated with Alstrom syn-
drome and characteristic dilated cardiomyopathy [48].
According to GTEx data, rs3095447 negatively corre-
lates with FGL2 expression in heart and artery, while
rs4852954 is linked to lower ALMSI levels in whole
blood and skin tissue, suggesting the possible functional
implication of these variants in the pathogenesis of the
disease. In order to explore additional effects of the top
hits, quantitative phenotype analyses were performed,
revealing significant associations between rs6935464,
rs6032, rs3095447, rs4852954, rs7236163, rs522521, and
median HbA1c levels. These data suggest that the identi-
fied genetic loci may serve as markers for both, develop-
ment of T2DM complications and alterations in HbAlc
levels, though the particular analysis should be repeated
in a different cohort where the variable impact of differ-
ent anti-diabetic medications should also be considered.

By performing targeted analysis of candidate variants
we managed to replicate three associations with T2DM
complications in the population of Latvia. Both variants
(rs3761980 and rs80028505) showing an association with
T2DM neuropathy are located near the Mitogen-acti-
vated protein kinase 14 coding gene (MAPKI14) and have
been previously linked to increased risk of diabetic foot
ulcers in the report of The Genetics of Diabetes Audit and
Research in Tayside Scotland (GoDARTS) project [49]. In
addition, we found a significant association of rs136161
located in the Apolipoprotein L1 coding gene (APOLI)
with T2DM nephropathy, which has been already linked
to an advanced diabetic kidney disease across multiple
ethnic groups [50]. Although we have observed smaller
effect sizes for rs3761980 and rs80028505 comparing to
other GWAS and much larger effect for rs136161, the
previously reported odds ratio values for all three vari-
ants fit within the 95% confidence intervals calculated in
our study [49, 50].

This study has several limitations, though the small
sample size is the primary limiting factor in the risk
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variant discovery, which may result in an insufficient
statistical power for the detection of rare variants with
small effect sizes. This may also explain why variants
with large effect sizes (OR up to 2.71) are markedly
represented among the significant results of our study.
Although the retrospective distribution of cases and
controls in the analysis of T2DM neuropathy and oph-
thalmic complications was relatively balanced, the lack
of significant hits in the analysis of diabetic nephropa-
thy may be explained by the high incidence of the spe-
cific type of complication among the study participants
(86%), leaving the size of the control group too small
for the identification of true associations. Additionally,
the suboptimal case-to-control ratio in the analysis of
macrovascular complications may affect the statisti-
cal power of the study and explain the relatively high
number of associations identified in the specific com-
plication group. Due to the limited number of study
subjects, the follow-up period was not fixed or set as
inclusion criteria, though it was fitted as a covariate in
the association analysis. Since the duration of diabe-
tes is one of the strongest risk factors for the develop-
ment of vascular complications [51], the use of an equal
observation period in all cases would reduce the resid-
ual variability and improve the quality of this study.

Successful integration of genotyping data with longi-
tudinal phenotypic information produced from several
national health registries has provided strong support
for 10 loci showing a genome-wide significance for the
association with T2DM complications, some of them
with already known importance to the comorbid condi-
tions analyzed. We believe that these findings provide
deeper insight into the pathogenesis of T2DM com-
plications and suggest novel candidate genes for fur-
ther functional studies, while our targeted approach
highlights several susceptibility loci showing a direc-
tionally consistent impact on phenotype in multiple
populations.

Conclusions

Using the genome-wide genotyping approach this study
identified ten novel associations with T2DM compli-
cations, including GYPA (rs1132787) in diabetic neu-
ropathy, PDE4DIP (rs2477088), NATS8 (rs4852954), F5
(rs6032), RPS6KA2 (rs6935464) in macrovascular com-
plications, and CCDC146 (rs3095447) in ophthalmic
complications. Meanwhile, the candidate gene analysis
demonstrated a strong association for diabetic neuropa-
thy (MAPKI4: rs3761980, rs80028505), and diabetic
nephropathy (APOLI: rs136161), proving the contribu-
tion of these risk loci in the pathogenesis of diabetic com-
plications across various populations.
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4. DISCUSSION

The increasing prevalence of T2DM, a chronic disease associated with risk of long-term
complications and premature mortality, requires continuous management and therefore has long
become a serious public health concern causing major health expenditures globally (van Dieren
et al. 2010). Since the long-term complications, especially microvascular disease, have been
directly related to poor glycemic control, diabetic complications may be prevented or at least
delayed to some extent by early intervention (Stolar 2010). Despite the notable variety of
available glucose-lowering agents, around 37% of patients still do not maintain a glycaemic
control, which may be improved by implying individualized therapeutic strategies (de Pablos-
Velasco et al. 2014), therefore many efforts have been made to discover reliable clinical and
molecular signatures for the early prediction of anti-diabetic therapeutic efficacy and side-
effects (Sattar 2012). The collection of different types of omics data in well-designed clinical
studies has already highlighted the complex interacting pathways that are underlying the
pathophysiology of the disease, and are still providing the necessary information to understand
the factors determining the therapeutic response meanwhile promoting the personalization of
diabetes care (Pearson 2016). Due to the promising evidence of beneficial properties of
metformin in other non-metabolic disorders (Saraei et al. 2019) and high variability in the
therapeutic response (Rashid et al. 2019; Sportelli et al. 2020), intensive research has been done
to gain a clear understanding of its effects resulting in 10 753 research papers published in the
PubMed database (National Library of Medicine, https://pubmed.ncbi.nlm.nih.gov/) during the
last 5 years.

4.1  Immune-modulatory effects of metformin

Although multiple ongoing phase I clinical trials aim to estimate the bioavailability,
bioequivalence of different formulations of metformin hydrochloride and the pharmacokinetics
of various combination therapies (https://www.clinicaltrialsregister.eu/), longitudinal omics-
based studies on healthy individuals with no background of hyperglycemia describing systemic
effects of the drug are still lacking. We were the first ones revealing signatures of metformin in
whole-blood transcriptomics and gut metagenomics data from 25 healthy subjects within the
clinical trial MIKROMET16001. Exploratory RNA-Seq analysis in healthy subjects showed
significant enrichment of immunity-related pathways, including the Cytokine-cytokine receptor
interaction pathway already 10 hours after the first metformin dose, supporting the previously
described ability of metformin to suppress inflammatory cytokines at the mRNA level
(Cameron et al. 2016). Significant metformin-induced enrichment of the same pathway was

recently also found in P. gingivalis lipopolysaccharide-treated cells, serving as a simulation of
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periodontitis (Tan et al. 2020). The ability of metformin to modify immune responses at nRNA
level was also recently confirmed in the in vivo study of 11 healthy individuals by Lachmandas
et al., reporting the anti-inflammatory properties of metformin by downregulation of IFN-a,
IFN-y, and TNF-o particularly following the stimulation of human peripheral blood
mononuclear cells (PBMCs) with M. tuberculosis. Together with in vitro data authors proved
that metformin inhibits the M. tuberculosis—induced type 1 IFN response and inflammation in
PBMCs (Lachmandas et al. 2019). These recent findings of immune-modulatory properties of
metformin in different disease models and also healthy subjects with no infections reported at
the time of sample collection pinpoint the possible non-specificity of these transcriptional
responses, meanwhile complementing the knowledge of pleiotropic effects of metformin
irrespective of diabetes status.

The longitudinal blood transcriptome profiling of the T2DM patient cohort showed
transcriptional regulation as a mechanism exerting the well-known properties of metformin,
including glucose homeostasis, impact on immune responses, and tumor prevention. Our data
shows metformin-induced downregulation of another immunity-related gene coding for C-C
Motif Chemokine Receptor 2 (CCR2) among the top hits. Targeting CCR2 expression may
explain the pleiotropic effect of metformin since CCR2 serves as a receptor of monocyte
chemoattractant proteinsand a key driver of monocyte/macrophage trafficking with a
significant role in tumor pathogenesis (Hao et al. 2020) and inflammation of adipose tissue (J.
Kim et al. 2016). Interestingly, the study of Kim et al. showed no effect of Ccr2 deficiency on
several metabolic traits including insulin sensitivity, while the mouse model of diet-induced
obesity Ccr2+/+ showed higher insulin resistance with significant improvement after treatment
with CCR2 antagonist (Weisberg et al. 2006). The evidence of the ability of CCR2 deficiency
to attenuate the obesity-induced changes in adipose tissue gene expression (e.g. Tnfa) suggests
that the beneficial effect of energy metabolism observed in metformin therapy may be at least

partly achieved by downregulation of CCR2.
4.2  The implication of secretory immunoglobulin A - mediated immunity

Multiple studies show the contrasting impact of metformin on the complex network on
the immune system from protective anti-inflammatory effect in autoimmune (S. Y. Lee et al.
2017) and infectious diseases including COVID-19 (X. Chen et al. 2020) to immune activation
in malignancies (Saito et al. 2020). So far we are the first ones reporting metformin involvement
in immune responses via the ability to enhance sIgA function in humans evidenced by the
enrichment of intestinal immune network for IgA production pathway in gene expression data

and significantly increased fecal sIgA levels in healthy subjects. The relationship between
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metformin administration and sIgA production was later also observed in the cohort of T2DM
patients (data not published) measured before administration of metformin
(median=18270.03pg/ml, 1QR=47353.55ug/ml), after metformin therapy for 7 days
(median=20661.78ug/ml, 1QR=31431.56ug/ml) and after metformin therapy for 3 months
(median=34676.19ug/ml, 1QR=41876.33ug/ml), although it did not reach the statistical
significance, which may be explained by insufficient sample size for such a long observation
period and increased probability of the presence of uncontrolled time-varying confounders. A
strong association between metabolic diseases and IgA functions has been recognized already
before. Oikawa et al. showed that diabetes mellitus reduces sIgA secretion rates in saliva which
may explain the susceptibility to infections in diabetes patients (Oikawa et al. 2015). Moreover,
Brown and colleagues discovered altered relative abundance in the sIgA coated fraction of gut
and oral microbiome between normoglycemic, prediabetic, and diabetic samples distinct from
the overall microbiome samples and an association of
Escherichia_Shigella and Pseudomonas (Proteobacteria) with IgA+ and IgA- fractions
respectively was demonstrated, suggesting a significant and disease-specific role of sIgA in
shaping the composition of the microbiome (Brown et al. 2020). IgA plays a critical role in
modulating the composition of gut microbiota, and IgA dysfunction is linked to an
overrepresentation of Proteobacteria and metabolic syndrome including obesity (Guo et al.
2021). Moreover, the comprehensive animal study published by Luck et al. showed that IgA-
coated immune cells modulate the glucose regulation in a mouse model of diet-induced obesity,
and IgA deficiency not only induces dysbiosis but also worsens insulin resistance via
inflammation of visceral adipose tissue and contribution of gut microbiota. The particular study
also proved the ability of metformin to prevent the high fat diet-induced reduction of IgA
producing cells and increase the levels of fecal sigA (Luck et al. 2019).

To investigate the true metformin effects and underlying mechanisms under controlled
conditions, we implemented a well-designed animal experiment involving the development of
a high-fat diet-induced type 2 diabetes mouse model followed by ten weeks-long metformin
treatment in specific pathogen-free conditions, which was focused on metformin-induced
alterations in mice gut microbiome composition (Silamikele et al. 2021) and transcriptome
profiles in the target tissue (data not published). Similar to Luck and colleagues we observed
significantly reduced baseline levels of fecal sIgA in the high-fat diet-fed animals compared to
control diet-fed animals (p-value=0.036), followed by a notable though not statistically
significant increment of fecal sIgA levels after metformin intervention in both control diet-fed
animals (increase from median=60.45ug/ml, 1QR=29.04ug/ml to median=64.03ug/ml,
IQR=32.75ug/ml) and high-fat diet-fed animals (from median=38.11ug/ml, IQR=69.21 pg/ml
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to median=48.92ug/ml, 1QR=6.20 pug/ml). Nevertheless, we also observed a slgA gain in
control animals not receiving any antidiabetic treatment or diet shift pointing to other
overlooked slgA-modulating factors such as aging itself (Diebel et al. 2011; Senda et al. 1988).
Although Luck and colleagues did not observe any difference in IgA+ cell counts in the small
bowel of high-fat diet-fed mice after metformin treatment in drinking water, our RNA-Seq data
analysis of the distal part of the small intestine exhibited significant differential expression of
46 genes, including the gene coding for immunoglobulin heavy variable V1-7 (Ighv1-7, logFC
=5.76, FDR=0.04) when comparing samples obtained from high-fat diet-fed animals receiving
metformin with the ones from high-fat diet-fed animals not receiving any antidiabetic therapy.
Moreover, we noticed the Intestinal immune network for IgA production among the top
enriched pathways in the same comparison, though it did not reach statistical significance (p-
value = 0.084).

4.3  Subject specificity in MODY and cholesterol homeostasis-related transcriptional

effects of metformin

The transcriptome profiles of blood cells obtained from the healthy cohort indicated the
subject-specific effect of metformin, with metformin-induced overexpression of MODY -
related genes in two individuals among the most surprising findings. Although multiple genetic
studies have identified common risk alleles for the development of MODY, T2DM, and other
glycemic traits (Holmkvist et al. 2008; Winckler et al. 2007), only a few studies have addressed
the modifying effect of MODY-gene variants in anti-diabetic therapy. For instance, a
randomized clinical trial revealed two variants in MODY genes (rs3212185, HNF4A, and
rs6719578, NEUROD1) significantly influencing metformin response in individuals with high
T2DM risk (Billings et al. 2017). Metformin-induced differential expression of MODY genes
has been previously described in hypertensive rats (Malinska et al. 2016), nevertheless, we are
the first ones reporting a selectively altered expression of these genes following metformin
intervention in humans.

Among the subject-specific effects of metformin observed in the cohort of healthy
individuals, we also noticed a strong downregulation of three genes (APOB, LDLR, PCSKO9)
involved in cholesterol homeostasis after 10h and 7 days of metformin intervention in one
individual only. The implication of PCSK9 was recently explored by Hu and colleagues, who
proved that metformin exerts its cholesterol-lowering effect by transcriptional downregulation
of PCSK9 in a dose and time-dependent as well as AMPK-independent manner. Moreover,
these data showed that PCSK9 downregulation, which was also noticed in hepatic mMRNA

levels, is related to the metformin-induced reduction of intracellular glucose levels and
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specifically targeting the ChREBP glucose sensor. In the study of Hu et al., the reduction of
circulating PCSK9 due to metformin therapy was proved in non-diabetic dyslipidemia patients
(D. Huetal. 2021). Although in our study there was no history of dyslipidemia and use of lipid-
lowering medications reported before, and the low-density lipoprotein cholesterol levels were
near-optimal (2.36 mmol/l) at the time of application in the clinical trial for the subject showing
metformin-induced downregulation of cholesterol modulatory genes, the obtained RNA-Seq
data support the hypothesis of metformin-induced PCSK9 downregulation at least in a case-
specific manner. One may speculate that metformin exerts insulin secretagogue and cholesterol-
lowering properties only in a subgroup of metabolically compromised individuals, though
substantiation of such a hypothesis should be done by additional studies.

The whole-blood RNA-Seq analysis in our T2DM patient cohort did not highlight the
subject-specific effects of metformin, though there was a clear universal impact on the mMRNA
levels of other cholesterol-related genes, such as LRP1 and SLC46A1. Reduced surface LRP1
protein levels have been reported in N2a neuroblastoma cells treated with metformin and
downregulation of LRP1 gene has also been shown in liver tissue of mouse model for human-
like lipoprotein metabolism (Y. Chen et al. 2009; Geerling et al. 2014). Nevertheless, Lu and
colleagues reported a negligible influence of metformin on LRP1 expression in brain tissue of
transgenic mouse model of Alzheimer's disease, suggesting a distinct effect of the drug that
may be tissue-specific (Y. Meng et al. 2020), depending on the duration of the therapy or even
backgrounding disease (X. Y. Lu et al. 2020).

4.4  Large-scale gene expression profiling reveals biological markers for early

stratification in different metformin response groups

Although the first attempts to predict the metformin response dates back to the 90ties
(Hermann et al. 1994), there are still no promising biomarkers currently used in a clinical
setting. Multiple studies have applied metabolomics (Park et al. 2018), genomics (K. Zhou et
al. 2016), and metagenomics (Elbere et al. 2020) data to predict metformin response. In our
study, two different approaches, the likelihood ratio test and PLS-DA were used for the
identification of transcriptional differences in metformin responders and non-responders and
finding potential predictive biomarkers. Whole-blood transcriptional profiling of T2DM
patients discriminated in two metformin response-based groups showed differential expression
of genes in both time points analyzed by the likelihood ratio test (27 DEGs before metformin
administration, 15 DEGs after therapy for 3 months), facilitating the idea of early whole-blood
transcriptome-based stratification of T2DM patients in different metformin efficacy groups and

revealing transcriptomic factors affecting the achievement of glycaemic goals. The well-known
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insulin receptor IRS-2 showed significant upregulation between responders vs non-responders
before any antidiabetic therapy. Although the main site of metformin action, involving the PI3K
(phosphoinositide 3-kinase) pathway, promoting the reduction of insulin resistance, is the liver
(Yuan et al. 2003), our data suggest the prior activity of insulin signaling transduction genes in
blood cells that may be associated to metformin response.

Twelve genes representing a subgroup of small non-coding RNAs named small nucleolar
RNAs prevailed in the list of differentially expressed genes acquired in the comparison of
responders against non-responders before antidiabetic therapy. These molecules guide chemical
modifications of structural RNAs, and although the functional significance of small nucleolar
RNAs in the pathogenesis of human diseases is only beginning to emerge, several similar
markers have already been paid more attention in metabolic diseases, for instance, SNORD115
(small nucleolar RNA, C/D box 115-1) and SNORD116 (small nucleolar RNA, C/D box 116
cluster) in respect to obesity and metabolic syndrome-related Prader-Willi syndrome (Galiveti
et al. 2014). Similarly, a study conducted by Rimer et al. shows that inflammation promotes
the vesicle-mediated release of specific Rpl13a (ribosomal protein L13a) snoRNAs (U32a,
U33, U34, and U35a) that are ensuring protein expression and cellular growth by targeting
nascent ribosomal RNAs for 2'-O-methylation. The authors managed to prove that these
molecules can travel through the circulation, may be uptaken by other cells, and function in
distant tissues (J. Lee et al. 2016), making small nucleolar RNAs both promising predictive
biomarkers and future therapeutic agents.

One of the main discoveries was the differential expression of mitochondrial genes (MT-
ATP6, MT-ND2, MT-ND4, MT-NDA4L, MT-ND6) comparing metformin responders against non-
responders after metformin therapy for 3 months, which was also reflected as enrichment of
oxidative phosphorylation pathway. In addition, we managed to prove a clear positive
association between MT-ND4 and MT-NDA4L expression and HbAlc levels. Although the
inhibition of mitochondrial respiratory chain complex 1 is a well-known target of the drug, only
a few studies are addressing this mechanism at the mRNA level. Recently Lord and colleagues
described the ability of metformin to target the oxidative phosphorylation pathway in the whole-
transcriptome RNA-Seq data of breast cancer tissue (Lord et al. 2020). In addition, Yang and
colleagues described the ability of metformin to change the transcriptomic profile of
mitochondrial genes targeting the mitochondrial calcium processes, mitochondrial protein
quality control, and downregulating mitochondrial DNA replication and translation in the
intestinal cultures (Yang et al. 2021). To the best of our knowledge, we are the first ones
suggesting the downregulation of mitochondrial genes including the ones coding for the

subunits of NADH: ubiquinone oxidoreductase core, which results in the enrichment of
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oxidative phosphorylation pathway, as not only one of the key mechanisms of metformin
action, but also the driving force determining better glycemic response to metformin.

The whole-blood RNA-Seq data obtained from a relatively small group of well-
characterized T2DM patients incorporated in the PLS-DA in our study showed clear
transcriptome-based discrimination of metformin responders and nonresponders prior
administration of any antidiabetic therapy, mediated by the differential expression of 56 genes.
Although the model needs additional validation in a larger cohort, we managed to explain
13.9% of the variability in metformin response. Recently in collaboration with colleagues from
Lund University, we implemented a blood-based epigenetic marker analysis revealing 11
differentially methylated sites predicting metformin efficacy and 4 sites ensuring discrimination
for the future tolerance of the drug (Park et al. 2018). Together, after careful validation, these
markers explained even 19% to 73% of the variation in glycemic response depending on the
cohort. Although in the report of Park et al. we managed to confirm the differential methylation
of several blood-based markers also in adipocytes and transcriptional functionality of several
CpG sites on the metformin transporter genes in cultured hepatocytes, the differentially
expressed genes originating from the RNA-Seq data comparison of responders and non-
responders described in the particular thesis were not overlapping with the top CpG site-
associated genes described previously by Park et al., probably due to tissue specificity. In
addition to the recently verified integration of epigenetic modifications, strong evidence
implicates also the gut microbiota as a site of action of metformin. Thus, we have recently
applied the shot-gun metagenomic sequencing-based microbial abundance patterns to predict
the glycemic response to metformin in T2DM patients. With an analogous approach for
highlighting discriminative features as described in the RNA-Seq dataset, we managed to
explain 5.4% of the variance by 43 taxonomic groups (Elbere et al. 2020). Although both, the
RNA-Seq and metagenomic sequencing data-based prediction models must be validated in a
larger cohort involving the omics data integration techniques, so far both of the applications
provide a notable contribution towards the development of personalized antidiabetic therapy.

45  Genetic loci shaping the risk of T2DM complications

The T2DM care and dealing with long-term complications has attracted even more
attention during the COVID-19 pandemic since T2DM patients show poorer clinical outcomes
and higher mortality rates after infection of SARS-CoV-2 (You et al. 2020), therefore early
action is needed to address the clinical consequences of the long-term manifestation of T2DM
especially when the risk of infection is elevated globally. GWAS studies have provided novel

insights on the etiology of diabetic complications, nevertheless a universal set of biomarkers
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allowing early patient stratification is still not developed. We managed to highlight 10 genetic
loci showing a genome-wide significance for the association with one of four T2DM
complication types studied (neuropathy, nephropathy, ophthalmopathy, macrovascular
complications). Although among the reported genetic susceptibility studies of diabetic
complications, GWAS of diabetic retinopathy has appeared to be the most productive in terms
of significant hits (Buniello et al. 2019), the majority of the loci identified in our cohort were
predicting the risk of macrovascular complications. So far, the traditional risk factors for
macrovascular complications are elevated low-density lipoprotein cholesterol levels or blood
pressure, bearing a significant genetic determination themselves (Reilly et al. 2011; R. C.
Turner et al. 1998). We were the first ones reporting the association of allelic variants of the
gene coding for Phosphodiesterase 4D Interacting Protein (PDE4DIP) also known as
cardiomyopathy-associated protein 2 with macrovascular complications. Interestingly,
deletions in this locus have been previously linked to atrial fibrillation phenotype and more
severe and complex manifestations of Alstrom syndrome which is strongly related to
cardiovascular complications including stroke (Abou Ziki et al. 2021; Lombardo et al. 2020).
Similarly, we were the first ones proposing the role of coagulation factor V coding gene F5 in
the risk of macrovascular complications, while the rest of the loci identified in the particular
analysis reside in gene regions that were not previously suspected in the pathogenesis of
macrovascular events.

Diabetic neuropathy is the most common persistent manifestation among T2DM patients.
Nevertheless, the exact cause of the disease, as well as the risk factors, are poorly understood
(X. Liu et al. 2019b). Multiple genetic loci in a close association with the disease have been
reported in the proximity of the genes involved in key molecular pathways such as oxidative
stress (catalase, CAT; glutathione peroxidase 1, GPX1; nitric oxide synthase 3, NOS3; aldose
reductase, ALR2) and neurovascular impairments (vascular endothelial growth factor, VEGF;
angiotensin | converting enzyme, ACE) (Jankovic et al. 2021). While the implication of gene
coding for glycophorin A (GYPA), an intrinsic membrane protein of erythrocytes, in the context
of neurodegenerative complications is so far described only at the level of MRNA (Cheng et al.
2015; Hur et al. 2015; Kobayashi and Zochodne 2018) or via copy number variation (Zhao et
al. 2012), our findings suggest that allelic variations of the gene may also modulate the risk of
neuropathies in T2DM patients. Our data showed one genetic association with ophthalmic
complications (CCDC146: rs3095447), which overlaps with the results of the macrovascular
complication group possibly due to similar etiologic characteristics between both diseases.
Although there were no significant hits at the genome-wide significance level in the analysis of

diabetic nephropathy, we managed to replicate strong associations for diabetic neuropathy
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(MAPK14: rs3761980, rs80028505), and diabetic nephropathy (APOL1: rs136161), which
proved the contribution of these risk loci in the pathogenesis of diabetic complications across
various populations.

By using The Genotype-Tissue Expression data we found genes that are affected by the
expression quantitative trait loci, suggesting the possible functional implication of the variants
in the pathogenesis of the disease also at the mRNA level. We found a negative association
between rs3095447 and FGL2 expression in the heart and artery, while rs4852954 was linked
to lower ALMS1 levels in whole blood and skin tissue. Both of these genes have been

functionally related to cardiovascular phenotypes before (Ding et al. 2010; Hearn 2019).
4.6  Limitations of the study

The main limitation of our study is the relatively small sample size of the cohorts studied,
which is mainly caused by limited attainability of individuals corresponding the strictly defined
inclusion criteria involving metformin monotherapy for at least 3 months in the T2DM cohort
or giving consent for a week-long metformin intervention in the cohort of healthy individuals.
The limitation of sample size is especially pronounced in transcriptomic datasets, where it is
overcome by applying the longitudinal study design. The introduction of repeated measures of
samples obtained from the same individual provides higher statistical power, minimizes the
potential interference of individual-level confounding variables such as age and sex, meanwhile
assuring the possibility to detect subject-specific effects (N. Lu et al. 2013).

Another aspect one may consider as a limitation is the lack of conventional controls. In
the metformin study, incorporation of the blood RNA-Seq data of healthy controls and T2DM
patients with no metformin intervention would reflect the innate transcriptomic fluctuations,
which could be further used to reduce the risk of type I errors and therefore prove the causality
of the observed effects. We believe that the longitudinal approach allows at least partially to
control for the intra-individual variation in transcriptomic data. Moreover, to focus on true
metformin effects, the lists of significant DEGs were carefully inspected for the possible
presence of genes driving the manifestations of circadian rhythms. In the GWAS study, the
incorporation of healthy subjects was not considered. Since the main objective of this study was
to identify genetic risk loci for T2DM complications, the control subjects were carefully
selected as T2DM patients with no evidence of the complication of interest during the follow-
up period. In this case, the control group does not reflect the general healthy population, since
the implementation of such controls would rather reveal genetic associations with the diagnosis
of T2DM itself, not the T2DM complications. A similar approach has been widely used in
GWAS before (C. Liu et al. 2019a; W. Meng et al. 2018).
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It is well-known that metformin exerts different effects for various diseases, which may
be the reason for the difference in metformin-induced blood cell transcriptome profiles between
healthy subjects and T2DM patients. Nevertheless, the difference in the duration of the therapy
and the variable dose of metformin between both cohorts studied may, to a certain degree, also
explain the inconsistency in the observed metformin effects between both cohorts studied. We
believe that rigorous synchronization of the study designs in terms of the duration of metformin
intervention and the regimen of metformin therapy would reveal more overlapping transcripts
showing metformin-induced differential expression. However, since the clinically unreasonable
use of any drug poses a risk to human health, we decided to focus on short-term effects of
metformin in the cohort of healthy subjects, and investigate long-term response in the T2DM
patient cohort, meanwhile leaving the decision on the antidiabetic treatment strategy to the

endocrinologists regardless of the research objectives.
4.7 Future perspectives

There are a number of gaps in our knowledge about the underlying mechanisms of both,
diabetes complications and metformin therapy, that would benefit from further research.
Comprehensive data obtained during this study together with the data obtained from other
ongoing T2DM-related scientific projects raises a number of opportunities for future research.
Validation of the gene expression-based classification and prediction model in a larger cohort
of T2DM patients may be the first rational step towards the identification of relevant biomarkers
for the therapeutic efficacy of metformin. In addition, integration of the available multi-omics
data (e.g. gut microbiome, genomics, epigenomics data) may be beneficial, allowing more
holistic investigation of the underlying mechanisms. In-depth in vivo analysis of metformin-
induced transcriptional alterations of the target tissue of metformin such as muscles and liver
may reveal the general information about the extent to which the whole-blood transcriptomics
data are reflecting the gene expression profiles of the main target tissue. Here, the single-cell
RNA sequencing and even spatial transcriptomics approach may be applied to simultaneously
measure the expression level of either the entire genome or specific marker genes, ensuring the
careful characterization of transcriptome variability in subpopulations of cells. Moreover, to
examine the functionality of specific genes in modifying the metformin response additional
animal experiments may be implemented involving the RNA interference technique.

Meanwhile, for the GWAS of T2DM complications validation of the candidate variants
in a larger, independent cohort is essential. Since the development of a phenotypically similar
cohort involving T2DM patients with different types of complications is challenging, it may be

reasonable to use some of the existing major massive databases such as the UK Biobank
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resource. Moreover, the ongoing '1+ Million Genomes' Initiative has promoted the
establishment of a national genomic reference cohort by using whole-genome sequencing data,
which will address the issue of population specificity by improving imputation quality and
therefore mitigating the bias of linkage disequilibrium differences between different
populations. After careful validation of the significant loci, the genotyping data may be used to
calculate polygenic risk scores and estimate the lifetime risk of T2DM complications at an

individual level.

92



S. CONCLUSIONS

1. In healthy individuals, metformin-induced alterations of global blood cell gene expression
profiles are associated with immune responses, while subject-specific effects are involved in

metabolic pathways.

2. There is a strong association between metformin and the intestinal immune system, which
may be guided by induction of immune network for IgA production pathway resulting in

elevated secretory IgA levels in stool samples.

3. Metformin-specific signatures in blood cell transcriptome profiles of T2DM patients point
out some of its well-known properties: the ability to improve energy metabolism, influence

immune responses, and inhibit cancer progression.

4. Early blood cell gene expression-based T2DM patient stratification into different metformin

response groups may facilitate future biomarker discoveries and clinical applications.

5. Altered expression of genes coding for NADH: ubiquinone oxidoreductase core subunits and
enrichment of oxidative phosphorylation may be associated with metformin efficacy in T2DM

patients.

6. We have identified ten novel allelic variants associated with T2DM complications in the
population of Latvia, including five variants located nearby genes (GYPA, PDE4DIP, NATS,
F5, RPS6KA2) that have been functionally linked to the pathogenesis of the diseases before.

7. Causal genetic effect of allelic variants in MAPK14 (rs3761980, rs80028505) in diabetic
neuropathy and APOL1 (rs136161) in diabetic nephropathy is consistent across different

populations.
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6. THESIS

1. Metformin has a strong and immediate effect on the transcriptome of peripheral blood cells

showing interindividual gene expression variability.

2. Metformin universally induces alterations in the expression of genes regulating immune

responses resulting in elevated fecal sIgA levels.

3. Estimation of the transcriptome-based biomarkers at the time of T2DM diagnosis enables an

early stratification of T2DM patients in different metformin response groups.

4. Ten novel allelic variants are associated with the development of T2DM complications in the

population of Latvia, suggesting new candidate genes for further functional studies.
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List of inclusion and exclusion criteria of the study cohorts in metformin studies

Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals
Monta Ustinova, Ivars Silamikelis, Ineta Kalnina, Laura Ansone, Vita Rovite, llze Elbere, llze
Radovica-Spalvina, Davids Fridmanis, Jekaterina Aladyeva, llze Konrade, Valdis Pirags, Janis
Klovins

S1 Table. Inclusion and exclusion criteria for the cohort of healthy individuals

Principal inclusion criteria

1. Healthy person with no known illnesses at the time of application that could possibly alter the results of the study;
2. Body characteristic parameters (e.g. weight) are within the conventional range;

3. Mental condition allows a person to understand the research process and give a legal consent for the participation
in it;

4. Age: 18 — 64 years;

5. European descent;

6. Both women and men with reproductive potential correspond to the contraceptive requirements stated in the study
protocol;

7. Prior to the study-related procedures, the consent of a person's participation in the clinical trial is received by

submitting a signed and dated informed consent document.

Principal exclusion criteria

. Allergies to any of Metforal 850mg components;
. Usage of any other medication which is not compatible with Metforal 850mg;
. Pregnancy or lactation;

. Type 1 or type 2 diabetes, pancreatogenic diabetes, impaired glucose tolerance;

1
2
3
4
5. Polycystic ovarian syndrome;
6. Chronic diseases of intestinal tract, oncological or autoimmune diseases;
7. Renal failure or renal impairment;
8. Hepatic impairment or alcoholism;
9. Acute conditions with the potential effects on kidney;
10. Acute or chronic disease which may cause tissue hypoxia;
11. Diarrhea during the past week;
12. Long term previous administration of metformin;
13. Use of the following products during the previous two months:
a. antibiotics,
b. probiotics,
c. proton pump inhibitors,
d. immunosuppressive agents,

e. corticosteroids;

14. Intravascular administration of iodinated contrast agents

intendedduring the active period of the clinical trial.

ALAT - alanine aminotransferase; HbAlc - hemoglobin Alc
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Whole-blood transcriptome profiling reveals signatures of metformin and its therapeutic
response

Monta Ustinova, Laura Ansone, Ivars Silamikelis, Vita Rovite, llze Elbere, Laila Silamikele,
Ineta Kalnina, Davids Fridmanis, Jelizaveta Sokolovska, llze Konrade, Valdis Pirags, Janis
Klovins

S2 Table. Inclusion and exclusion criteria for the cohort of type 2 diabetes patients

Principal inclusion criteria

1. (a) Newly diagnosed type 2 diabetes mellitus (ICD-10 code E11) requiring oral antidiabetic therapy, or (b)
previously diagnosed type 2 diabetes mellitus but no oral antidiabetic therapy or insulin has been used for the last
three years, or (c) newly diagnosed type 2 diabetes mellitus and intensive insulin therapy initiated in a hospital for
acute glycemic normalization;

2. The patient is not currently involved and is not planning to enroll in clinical trials during the OPTIMED study;
3. The patient has attained 18 years of age;

4. The patient is not pregnant at the time of application;

5.

The patient meets the criteria for the diagnosis of type 2 diabetes mellitus: (a) fasting blood glucose level > 7
mmol/l, (b) a blood glucose level > 11.1 mmol/l for a two-hour glucose tolerance test with 75 g intake;

6. Prior to the study-related procedures, the consent of a person’s participation in the study is received by
submitting a signed and dated informed consent document.

Principal exclusion criteria

1. The patient is receiving oral antidiabetic therapy on a regular basis or has received the therapy during the last
three years;

2. The patient is receiving insulin therapy at the time of application;
3. The patient is pregnant.

Novel Susceptibility Loci Identified In A Genome-Wide Association Study Of Type 2
Diabetes Complications In Population of Latvia

Monta Ustinova, Raitis Peculis, Raimonds Rescenko, Vita Rovite, Linda Zaharenko, llze
Elbere, Laila Silamikele, llze Konrade, Jelizaveta Sokolovska, Valdis Pirags, Janis Klovins

S3 Table. Inclusion and exclusion criteria of the Genome-wide association study

Principal inclusion criteria

1. Clinically confirmed diagnosis of type 2 diabetes mellitus (E11 diagnosis code, ICD-10);
2. Information on age at diagnosis, sex, weight, and height available;

3. Records of national diabetes registry and Latvian hospital inpatient discharges available;
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List of candidate variants selected for the targeted association analysis

APPENDIX 11

Novel Susceptibility Loci Identified In A Genome-Wide Association Study Of Type 2
Diabetes Complications In Population of Latvia
Monta Ustinova, Raitis Peculis, Vita Rovite, Linda Zaharenko, llze Elbere, Laila Silamikele,
llze Konrade, Jelizaveta Sokolovska, Valdis Pirags, Janis Klovins

S4. Table. List of candidate variants selected for the targeted association analysis

Candidate variants associated with ophthalmic complications

SNP Chromosome  Position Closest gene Reported trait Reference
(Grch 38)
rs12602486 17 44164561 C170rf53, ASB16 diabetic retinopathy Chen P et al. 2013
rs61741249 7 157516897  ACO006372.2 diabetic retinopathy Pollack S et al.
2018
rs74705672 8 132042380 AC100868.1, OC90 proliferative diabetic Pollack S et al.
retinopathy 2018
1s2064196 6 144266047  UTRN, AL024474.1 proliferative diabetic Pollack S et al.
retinopathy 2018
rs61811867 1 154802768  KCNN3 proliferative diabetic Pollack S et al.
retinopathy 2018
rs11488711 1 229105486  LINC02814 proliferative diabetic Pollack S et al.
retinopathy 2018
rs1414474 1 34197810 Clorfo4 proliferative diabetic Pollack S et al.
retinopathy 2018
rs11018670 11 89623460 FOLH1B, AP003400.1 diabetic Meng W et al.
retinopathy, type Il 2018
diabetes mellitus
rs10927101 1 244010570  LINCO02774 diabetic retinopathy Grassi MA et al.
2011
rs10403021 19 29588697 VSTM2B, POP4 diabetic retinopathy Grassi MA et al.
2011
rs7139352 12 60951968 AC090017.1, AC090022.2 diabetic retinopathy Pollack S et al.
2018
rs9882204 3 167848495  LRRC77P, SERPINI1 diabetic retinopathy Pollack S et al.
2018
rs10878791 12 68215266 IFNG-AS1, 1L26 diabetic retinopathy Pollack S et al.
2018
rs11575234 12 56350492 STAT2 proliferative diabetic Pollack S et al.
retinopathy 2018
rs1566115 6 99184447 FAXC, BDH2P1 proliferative diabetic Pollack S et al.
retinopathy 2018
rs2037601 2 195417334  AC010983.1, AC104823.1 proliferative diabetic Pollack S et al.
retinopathy 2018
rs1046896 17 82727657 FN3KRP diabetic retinopathy Chen P et al. 2013
rs4838605 10 48491914 ARHGAP22 diabetic retinopathy Huang YC et al.
2011
rs17376456 5 94221997 KIAA0825 diabetic retinopathy Huang YC et al.
2011
rs2696835 16 86331965 LINCO00917 diabetic retinopathy Grassi MA et al.
2011
rs7772697 6 149113975  AL603766.1, AL031056.1 diabetic retinopathy Grassi MA et al.
2011
rs10199521 2 2515741 MYT1L, AC018685.2 diabetic retinopathy Grassi MA et al.
2011
rs1571942 10 20253705 PLXDC2 diabetic retinopathy Huang YC et al.
2011
rs74152685 1 247647989  AL390860.1 diabetic retinopathy Pollack S et al.
2018
rs7533141 1 217543535  GPATCH2 proliferative diabetic Pollack S et al.
retinopathy 2018
rs1342038 1 173332377  AL645568.3, TNFSF4 diabetic retinopathy Grassi MA et al.
2011
rs6702784 1 36439119 OSCP1 diabetic retinopathy Grassi MA et al.
2011
rs6763376 3 167886331  LRRC77P, AC026353.1 diabetic retinopathy Pollack S et al.
2018
rs1990145 2 75650524 MRPL19 diabetic macular Graham PS et al.
edema, type Il diabetes 2018
mellitus
rs1144964 12 68944857 CPM proliferative diabetic Pollack S et al.
retinopathy 2018
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188138614
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76294675
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137025013
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73376963
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69558119
53727505
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74120197
58297687
158568795
171183705
84279813

HS6ST3

AL591896.1, KLHDC7A
MAN2A1

NAALADL2

SORBS1

GCK
CREB5

AL137782.1, UCHL3
CCNL1, LINCO0881
SLC16A7

ZFP82

AL358787.2, RPS3AP5
AC116362.1
AMD1P1, PLXDC2

ZWINT, MIR3924
ENOX1

IL12RB2

LRRCA4C, LOC100507205
CDH13

JRKL, NONE
LRRCA4C, LOC100507205
BFSP2

DYNC2H1, MIR4693
MLIP, TINAG
LAMA2

DCAF13

TPK1, CNTNAP2
PTPRD

KCNJ3, NR4A2
LOC282980, LOC399708
PDS5B, KL

ODz4, MIR4300
TPRG1, TPRG1
FAM84B, POU5SF1B
ABCC5

SGOL1, VENTXP7
CPS1, ERBB4
CNTNAPS, GYPC
BCL6, LOC339929
DCAF13
SRRM3,HSPB1
ANKRD30A,FZD8
ANKRD30A,FZD8
SNRPB2

CAMK4
ANKRD30A,FZD8
ANKRD30A,FZD8
LOC150622, SOX11
NOD1

ONECUT1, WDR72
MED30, SLC30A8
ERC2

CHRM2, PTN
ZWINT, MIR3924
LOC100505817, FBXO15
SULF1

LOC645949, KLHL29
SULF1

MIR1297, OLFM4
ERBB4, CPS1
CNTN3, PDZRN3
PCDH17, DIAPH3
EBF1, CLINT1
LOC100506122, GALNTL6
EDIL3
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rs10509060 10 56781676 ZWINT, MIR3924 diabetic retinopathy Fu YP et al. 2010

rs10485129 6 78661466 IRAK1BP1, HTR1B diabetic retinopathy Fu YP et al. 2010

rs6427247 1 170411339  GORAB, LOC284688 diabetic retinopathy Fu YP et al. 2010

Candidate variants associated with macrovascular complications
SNP Chromosome  Position Closest gene Reported trait Reference
(Grch 38)

rs113805659 7 78663475 MAGI2 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs16879003 6 16745008 ATXN1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

s6506897 18 31215320 DSG1, DSC1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs9973676 2 230954091  GPR55 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs91 7 24409992 AC003044.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

1s59490629 6 107256268  PDSS2 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs7804216 7 149941248  AC092681.1, AC092681.2 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs74570061 4 56517605 ARL9 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs139034117 3 39656373 NFU1P1, MYRIP coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs162211 3 7781368 ACO077690.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

1s1583674 7 47139764 AC087175.1, AC004870.3 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs7158214 14 96176310 BDKRB2, C140rf132 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs7632954 3 8486196 LMCD1-AS1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

1s7806345 7 145029551  RPL7P59, AC073310.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs11794666 9 31665127 RNA5SP281, HMGB3P23 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

s7906829 10 116588374  PNLIPRP1, PNLIPP1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs9575182 13 82832889 AL445255.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs17865343 4 117351922  LINC02262 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs2546338 5 133866276  WSPAR, AC005178.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs7901181 10 3600363 AL357833.1, AL450322.2 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs10978777 9 107268309 RAD23B, AL445487.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs543554 13 32127501 FRY coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

rs17214144 7 24846128 OSBPL3 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus

s7689240 4 35313869 AC020589.1, SEC63P2 coronary artery Divers J et al.
calcification, type Il 2017

115

diabetes mellitus



rs846178 4 2483888 RNF4 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs277939 5 71560551 BDP1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs6446601 4 4298683 ZBTB49 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs140365914 7 155314860 BLACE, INSIG1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs73307775 5 159299527  AC008691.1, UBLCP1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs6993194 8 71117967 AC015687.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs10793968 9 130754074  ABL1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs111915800 4 56521209 ARL9 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs9715521 4 58958769 LINC02619, AC017091.1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs597539 11 68834506 CPT1A coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs75107833 2 174100883 OLAl coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs17295603 4 174540366  AC096751.2 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs6445525 3 66007429 MAGI1 coronary artery Divers J et al.
calcification, type Il 2017
diabetes mellitus
rs12526453 6 12927312 PHACTR1 myocardial infarction, Kathiresan S et al.
coronary heart disease 2009, Schunkert
H et al. 2011
rs646776 1 109275908  PSRC1, CELSR2 coronary heart disease, Reilly MP et al.
myocardial infarction 2011, Kathiresan
S et al. 2009
rs2259816 12 120997784  HNF1A coronary heart disease, Erdmann J et al.
C-reactive protein 2009
measurement
rs11206510 1 55030366 PCSK9, BSND myocardial infarction, Kathiresan S et al.
coronary heart disease, 2009, Schunkert
coronary artery disease ~ Hetal. 2011
rs10911021 1 182112825  LINCO01344 cardiovascular Qi Letal 2013
disease, type Il diabetes
mellitus
1s266729 3 186841685  ADIPOQ ischemic heart disease Montesanto et al.
and stroke, type Il 2018
diabetes mellitus
Candidate variants associated with diabetic nephropathy
SNP Chromosome  Position Closest gene Reported trait Reference
(Grch 38)
rs11107616 12 77971000 NAV3 diabetic nephropathy lyengar SK et al.
2015
rs4667466 2 162832637  KCNH7 diabetic nephropathy lyengar SK et al.
2015
rs73206603 13 59495931 DIAPH3, RNU7-88P chronic kidney van Zuydam NR
disease, type Il diabetes et al. 2018
mellitus, diabetic
nephropathy
rs7222331 17 40995605 KRTAP3-2, KRTAP3-3 diabetes van Zuydam NR
mellitus, diabetic etal. 2018
nephropathy
rs955333 6 154626274  AL591419.1, AL591499.1 diabetic nephropathy lyengar SK et al.
2015
rs7769051 6 132825657  RPS12, HMGB1P13 diabetic nephropathy McDonough CW
etal. 2010
rs136161 22 36261386 APOL1 diabetic nephropathy lyengar SK et al.
2015
rs590884 6 160957160  AL139393.1 diabetic nephropathy lyengar SK et al.
2015
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155712034

119848245

91213189

4561337
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25424152

123077286

12213890

148383818

53772541

RAPGEFS5, STEAP1B
BTBD11

REPS1, ABRACL

SCGB2B2

C19orf81

CGNL1

AL157944.1

ITGA6

LSAMP

JAK1

AC073176.1, AC073176.2
ORG6J1, ABHD4

PTPRT

SORCS3

CNTNAP2

MTNR1B, RPL26P31

LINCO1191

RAD51B, AL121820.1
MYL3

TTC21B

AC103974.1, IGSF22
AC009387.1, RN7SL865P
TBXAS1

RNU6-41P, LAMC1
AC106799.2

GUCY1A1

AC008574.1, AC008550.1
AUH, AL158071.3
NPM1P48, LINC01249
KERA

GPR158

TBC1D31

SYN2, GSTM5P1

SASH1

FTO
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rs10004231 4 42855556 AC096734.1, RN7SKP82 diabetic nephropathy lyengar SK et al.

2015
rs2243480 7 66134209 CRCP, AC068533.4, AC068533.3  diabetic nephropathy lyengar SK et al.
2015
rs6910061 6 11101685 SMIM13 diabetic nephropathy lyengar SK et al.
2015
rs8020941 14 97067025 AL049833.2, AL049833.4 diabetic nephropathy lyengar SK et al.
2015
rs1677894 12 77944156 NAV3 diabetic nephropathy lyengar SK et al.
2015
rs12251637 10 124549008 LHPP chronic kidney disease van Zuydam NR
in type 2 diabetes et al. 2018
Candidate variants associated with diabetic neuropathy
SNP Chromosome  Position Closest gene Reported trait Reference
(Grch 38)
rs11615866 12 5284163 LOC105369617 neuropathic pain, type Meng W et al.
2 diabetes mellitus 2014
rs28485846 8 35265058 UNC5D type | diabetes Meng W et al.
mellitus, diabetic 2017
foot, type Il diabetes
mellitus, neuropathy
rs80028505 6 36030611 MAPK14 type | diabetes Meng W et al.
mellitus, diabetic 2017
foot, type Il diabetes
mellitus, neuropathy
rs3761980 6 36026129 SLC26A8, MAPK14 type | diabetes Meng W et al.
mellitus, diabetic 2017

foot, type Il diabetes
mellitus, neuropathy
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