Latvian University
I nstitute of Mathematics and Computer Science

Combinatorial maps

Tutorial

Dainis Zeps

Riga, 2004-2007



Combinatorial maps

Permutations

Let usdenote by C finite set of elements. Let us call elements of this set either simply elements
or points or corners. Let us denote elements with small Greek letters. The cardinality of Cisn.

Let uscall permutation on C one-one map fromC toC . In permutation P let us denote target

of abya® . Thus, we may use for permutation P following denotations:
1 2 .. n a
P=|r _p P P |
1 2 ..n a

We define multiplication of two permutations P and Q denoting it P - Q as permutation on

C by formulaa ™ = (a P )Q . Thus we are multiplicating (or are reading multiplication) from
left to right. Since multiplication of two permutations is always a permutation then all

permutations on C shape a group with respect to multiplication operation that is called

permutation group and denoted by S¢ (or S, ). Asiswell known the permutation group is full

in sense faithful) representation of symmetry group in general. Then esignates symmetry
(i faithful) ion of i al. Then S des

(or permutation) group’sactionon C and S, the symmetry group itself. Permutation group’s
identity element is identity permutation, that is denoted by | orid , which hasidentity map
onC,i.e, it leavesal elements of C onplace. By P! we designate reverse permutation of P :
if P maps a to 3, then reverse permutation P~ maps £ toa .

Simplest forms of permutation’ s coding are two row matrix coding or permutation in cyclical
coding form, e.g.:

(12345678

= (176)(24538).
7 485316 2

Thus, matrix formissimply («, ap) depicted as two row matrix, but cyclical form runs

elements according their cyclical order. How to attain these forms of codings of permutation? It
isshown in the table:



1 2 3 456 7 8
7 4 85 316 2

1" =7
77 =6
6" =
2" =4
4° =5
5°=3
3=8
8" =2

P =(176)(24538)
(176) = (L,1° = 7,7° =6,6" = 1)
(24538) = (2,2° = 4,4° =5,5° =3,3° =8,8" = 2)

Indeed, starting with 1, first we find1” = 7, then after 7° = 6, and with 6° =1 cycleisclosed.

Then we take not yet searched element, say, 2 and find that 2P =4 and o on, until all elements
are searched in their cyclical order in the permutation. Why we get cycles without repetitions
and not something else? Thisis because the fact that permutation is bijection (one-one map).
Cyclical form (of coding) of permutation is more convenient in general use, because we may
give only these elements which are moved, but elements that remain on place may not be
specified in the code. For example, permutations (1)(274)(4)(5)(6)(8) and (274) are identical,

in particular if we do not bother about to indicate that first permutation acts on set of 8 elements.

But permutation (1 27364 173)(4 11) in matrix form we could not have sufficient space on

leaf of paper to depict. [The problem in genera isfaced in computer programs where both ways
of coding have their advantages and disadvantages and are to be used alternately where, of
course, the cost of operations on both forms is the determinant of the way of coding. On
computer, transform from one code to other is linear operation. Similarly, multiplication in
matrix formis linear operation and many other operations are linear or near to that. Thus,
permutational calculus, and combinatorial maps calculus can be performed in very powerful
fashion.]

It iseasy to see that cyclical form of permutation structurally is set of cyclical lists. This means
that by changing cyclesin the form or cyclically changing elementsin a cycle does not change
the permutation in general. For example, the permutation in the previous example can be put
down in theway (53824)(761) too.



Transposition is a permutation which changes two elements in their places but other remains as

they are: transposition t has always cyclical form (« £) . Each permutation can be written in
the form of multiplication of transpositions p = (e, 5, )(a,f,)...(«, B,) - For example the

previous permutation can be given as multiplication of transpositions in the form
(16)(23)(45)(67)(28)(43) . Performing all multiplications, multiplying from left to right, we

should return to the previous (canonical) cyclical form. Try it! It is easy to see that this way of
presenting of permutation in the form of multiplication of transpositions is not unique.
However, either n iseven or odd isinvariant of the permutation.

Combinatorial maps

Let us consider the simplest way of defining of the combinatorial map when it has graph on

surface in the correspondence.

Let ushave set C with 2m elements that are called corners. On set C permutations should act,
and they are the objects we are going to deal with.

Definition 1.Two permutationsP and Q of order naredistinct, if i” #i? for each i € [L...n].

Permutation is said to be involution if al its cycles are of order two.

Definition 2. Oriented pair (P, Q) of two distinct permutations is called combinatorial map if

the multiplication P - Q isinvolution.
Combinatorial map defined in thisway is called geometrical combinatorial map.

Let pair (P,Q) be combinatorial map. Multiplication P~ -Q that is involution is called edge

rotation and is denoted by 7z . Thus, 7 consists of ndistinct transpositions.

Definition 3. Let pair (P,Q) be combinatorial map. P iscalled vertex rotation and Q iscalled

face rotation.



Example 1. Let P = (123)(45)(678) and Q = (164)(28)(357). (P,Q) be combinatorial map
with edge rotation 7 equal to (15)(26)(38)(47) .

Exercise 1. Try to connect combinatorial map (P, Q) from exercise 1 with the picture of graph
in fig. 1. Hint. Numbers are to be considered as labels of ‘corners’ and cyclical orders of
‘corners around vertices and faces are to be considered as permutations. Find vertex, face and

edge rotations in the picture of the corresponding graph.

Figure 1.

The correspondence between combinatorial maps and graphs on surfaces.

Let graph G be embedded on oriented surface S. This means that for each vertex v eV (G) the

edges that are adjacent with this vertex are cyclically ordered around it, and in the same time the
cyclical order of incident faces on £ around vertex V is given too.

Let N(V) be set of neighbors of vertex v. Cyclical order of edges around vinduces cyclical
order inthe set N(V).

Let us denote the cyclically ordered sequence of neighbors of v by Adj(V) = (V;,V,,...,V,) ,
where n is number of neighbors. Induced cyclical sequence ((V,V,),(V,V,),...,(V,V,)), that

consists from oriented edges around vertex Vv in the same way characterizes the embedding of



the neighborhood of v on the surface S. Outgoing (oriented) edges of each vertex form such
cyclical sequence and outgoing (oriented) edges of all vertices form a permutation P (because
each such oriented edge is unique). That means that the embedding of the graph on surface S is

uniquely determined by the permutation (=P') that acts on set of oriented edges E . Let us
denote this permutation by PGS (=P). Thereby, the embedding of G on £ can be given or
fixedas (G,S) = (V,E, PY).
Let us form one more permutation that characterizes the graph’s G embedding on the surface
S. Let us consider arbitrary face f with border (as sequence of vertices) (V,,V,,...,V,), where
the face f is passed round in the direction opposite to clockwise. Thus, f is oriented
anticlockwise and can be characterizes by cyclical oriented sequence of oriented edges i.e.,
f=(vy,vy), (Vy,Vg),, (V,,V,)) .Cyclical oriented sequences of all faces form
induce a permutation that acts on set of oriented edges E . Indeed, if arbitrary oriented edge

goes into border of the face, then only once and only in the border of this face. By the same

reason each oriented edges goes into border at least one face. Let us denote this permutation
with QS. Thus, embedding of G on £ can be given as (G,S)=(V,E, QY). This is
equivalently with the previous way of determining the embedding of G on S. Thus, graph G
may be fixed on £ either by permutation PGS or Qé. More radical discovery tells us that graph
on surface may be determined without specifying sets V' and E at all, but specifying only pair
of permutations (P, Q) that is isomorphic to(P5, QF). Let us cal this mathematical fact

Hefter-Edmonds theorem. It was contrived by Hefter as early as 1898, but in contemporary form
proved by Edmonds in 1960.

Combinatorial maps. Systematic insight.

Let P,Q be two permutations. Combinatorial map (P,Q) is called geometrical if P-Q™* is

involution without fixed points.



Proposition 1. Geometrical map has even number of corners.
Proof. If map has odd number of edges then J P-Q™ is involution with odd number of
elements that has at least one fixed element.
Let us call involution P-Q™ (= 7) inner edge rotation but Q- P™(= p) — edge rotation. We
shall see further the difference between both clearer.
Pair of corners (S,t) iscaled edgeif sP?" =t. Let usdenote this edgeby st.
Proposition 2. If stisedge and belongsto p, then st” belongsto 7.
Let usprovethat p° = 7. From that should follow what is asserted. Indeed:
p- =Pt p-P=P*.Q-P*P=P*.Q=1.
Let us call st” inner edge, st being simply edge. If p© is edge rotation for a map, then ris
inner edge rotation. We have proved that application of vertex rotation to edge rotation gives
inner edge rotation. Symmetric expression holdstoo: p° = 7 . Indeed:
p?=Q"p-:Q=Q"Q-P*Q=P.Q=7x
It is easy to seethat following expressionsholdstoo: p-P=P-7 and p-Q=Q- 7.
It is convenient to observe some terminology. Thus we are speaking that P,Q, 7 are
acting on set C of corners or elements. This set Cof 2m elements is divided by 7 into m
pairs. Let (C,,C,) be such pair that ¢ =C,. Provided (c,,C,) already belongs to inner edge
rotation then there exists a pair (C,C') that belongs to edge rotation, that holds
(c,c')-P=P-(c,c,). It may be very convenient not to consider combinatoria maps

separately with variable inner edge rotations but as classes of maps with one fixed inner edge

rotation . For such fixed 7 map (P,Q) = (P,P- ) has its unique edge rotation p, that
holds p-P=P.x. Thus, 7 is common for a class, but p is depending from a map
(P,Q)(=(P,P-7x)) . Inits turn, it becomes quite clear that map (P, Q) is determined only by

one rotation, namely, vertex rotation P .

We should keep in mind:



Map’smirror reflection and dual map.
What looks like combinatorial map’s (P, Q) mirror reflection?

Proposition 1. Map (P, Q) has symmetric reflection’smap (P™,Q™) in correspondence.

Indeed. Mirror reflected vertex and face rotations change their directions from, say, clockwise to
anticlockwise [for vertex rotation] and vice versa [for face rotation]. Thus, we could write
Prir—gm = P and Quir-gm = Q.

Proposition 2. Maps 7 and p change their places in mirror reflection in the way 7, .. = p
and Pypsm =7 -

Indeed, from (P'Q)mr_sym=(P_1,Q‘1) follow  that ﬂmr—w:P.Q—lzp and

Pop-gm = P™'.Q=r.[We used the fact that multiplication’s reflected map is reverse map,

i.e, (AB) =(AB)™" =B .A™"]. Thus, in mirror reflection rotations 7 and p change

mir—sym
asif in their places.

Trying to definemap’s (P, Q) dual map simply as (Q, P) we useits geometrical

interpretation. Thus we write (P, Q) 4. = (Q, P). What we get for edge rotations? If in rotation
T4.a WechangeP and Q in their places, then rotation itself does not change, thus, 7, =7 .

Paa = P - But maps themselves, namely, dual map and reflected map, they are different.

Let C be universal set of cornersand 7 be fixed. Wearein the class of maps, say, K . Map
(P,Q) may be designated with one letter, namely, P . Thus, we have P and would like to

have P

mir_ym and Py, too. But we may take in our class of maps only those which have the

samerotation 7. Thus P is not member of K and we are going to define what could be

mir —sym

called reverse map, that is now within K . Thusreversemap P~ or P, isdefined as

(P™,P™-7).Ithas, of course, 7, = 7 and



P =P (P?QP)? =P .PT.Q-P =P.Q".

Correspondence between permutations and combinatorial maps' classes

Let class K have all combinatorial maps with inner edge rotation 7 fixed. Then class's
members may be characterized with pairs (P, z) or (Q,x) or, keeping 7 in mind, only with
one permutation, say, that of vertex rotation, P, where Q may be always calculated using
foomuaQ=P- 7.

Thus, living within fixed rotation 7 or saying that we live within K _, every permutation has
its combinatorial map in correspondence. Identical permutation € has map (e z)in
correspondence that in its turn has graph with m isolated edges. Transposition tr = (a,b) has

map (tr,z) =((a,b), 7) and star graph S, in correspondence.

Multiplication of combinatorial maps.

Let us define multiplication of mapsin the class K _. Let us permutation multiplication take as
the base operation. Let us try to define multiplication of maps in the way that class K _ is
closed against this operation. Let (P,,Q,) and (P,,Q,) to class of maps (P, Q) with fixed inner

edge rotation 7, i.e, toclass K .

Definition. We define multiplication of two maps in the way:
(F.Q) x (F.Q,) = (R, Q)

where P, =R, and Q, = R-Q,

It is easy to seethat map (P, Q,) belongstoclass K, : B*-Q,=R*R*-B-Q,=7r.

We may write
(R,Q) x (P, Q) =(R-R,, B-Q,).

We may write in more symmetric way too:

(R,Q) x(P,Q)=(R-PR,Q -7-Q,).



Further, multiplying maps, we may treat maps as permutations remembering that behind

permutations we have maps.
Actualy, we may be free in the interchange between maps and permutations within K _,

because of the one-one correspondence between them. We even have more. Every theorem that
holds for permutations has its meaning in maps' interpretation too. Thus every permutational
theorem has combinatorial map’ s theorem in correspondence.

Further we are not going to use different designators for multiplication of maps and

permutations.

Permutations constitute symmetric group S,,,,, which acts on corner set C. Group S, has

group K,(= K_) in correspondence.

Normalized combinatorial maps

Practically working with combinatorial maps with fixed inner edge rotation 7 it would be
convenient to choose some fixed 7 ‘for al cases of life'. We have chosen 7 equa with
@12)(34)(56)(798)(910)(1112)---(2k -1 2k), id est, k—th inner edge is equa to
(2k —1 K). Let usfurther accept thisform of 7 and usein al cases with excuse in cases when
it is necessary.

If P isgivenitiseasytofind Q:if inP element ac C has b=a" in correspondence, then
for Q corresponding element isequal to a—1, if a iseven, and equal to a+1, if a isodd.
For example, for given P=(17536248) let us caculate Q:1° =7, gives 1° =8;
cyclicaly continuing:;, 87 =1, gives 8° = 2; further 2° =4, gives 2° =3; 3" =6, gives
3R =5; 5° =3, gives 5% =4; 47 =8, gives4° =7, 77 =5, gives 72 =6; a last,
6" =2, gives 6° =1 and cycleis closed. We got: Q=(182354 7 6). Let us show these

operationsin the table:



P=(17536248)
1"=7=1°=8
8" =1=8°=2
2" =4=2°=3
3¥=6=3%°=5
5" =3=5°=4
4P =8=4°=7
7" =5=7°=6
6" =2=>6%=1

Q=(18235476)

It is easy to see in 3-permutation where second row shows P and third row shows Q:

(12345678)
(74683251) .
(83574162)

Exercise 1. Find Q for given P=(18 235 4 7 6) using the method given above.

Exercise 2. Find Q, for givenP=(186 3)(27 5 4).

Hint: if cycle ends start new cycle taking not yet searched element.

1

Let us calculate edge rotation of normalized map using formula p = z°

P=(17536248)
12" = (86)
34" = (52
(56)° = (73
(79" = (14)

p=(14)(25)(37)(69

Let us calculate edge rotation of normalized map, namely, using formula P-Q™" and previous

method of calculating Q inthe way [prove that it is correctly]:



P=(175362498)
1°=78" =4= (14 ep
2P =43 =5= (25 ¢cp
=65 =7= 37 ep
6°=21" =8= (68) cp
p=014)(253B7)(68
Exercise 3. Calculate edge rotaion p for maps B =(18235476) and

P,=(1863)(2754), using the method given above!

Geometrical interpretation of combinatorial maps.

Combinatorial map may be interpreted as graph on orientable surface. The fact corresponds to
Hefter-Edmonds theorem.

In place to try to prove this theorem we suggest following construction which shows what is
behind this theorem and how combinatorial maps may be considered as graphs on surfaces.
Constructive assumption. Using one genera method, to arbitrary combinatorial map a graph
may be mapped that is drawn in the plane with edge crossingsin general.

Note. Any graph may be drawn in the plane with edge crossing in general.

Construction. Let P be vertex rotation of the combinatorial map. Each cycle of length | let us
picture as avertex with | halfedges, between which we put numbers of corners clockwisein the

order corresponding to this cycle. Arbitrary inner edge (a b) of themap (P, P - 7z) we picturein
the plane followingly: let us find halfedges, that is before corner with number amoving
clockwise; likewise let usfind ¢, ; let us connect halfedges ¢, and ¢, with anon crossing curve,
but allowing crossings with other similar connections if necessary. Corresponding edge to this
inner edge should be (a° b”") , where a” follows anticlockwise a and b~ follows

anticlockwise b in P . Iteratively applying this operation, we get map pictured in the plane in the

sense of this construction.



[llustration of connection of inner halfedges (a b) and halfedges (aP_le_l) in the drawing of

the map in plane in case of different vertices.

[llustration of connection of inner halfedges (a b) end hafedges (apflbpfl) in the drawing of

the map in plane in case of the same vertex.



Drawing of the graph corresponding to combinatorial map

From the previous chapter we know that combinatorial maps have nice interpretation as graph’s
embedding in the plane with edge crossing and Hefter-Edmonts theorem in its turn says that
these graph’'s embeddings with crossings in the plane have graph’s embeddings without
crossings on oriented surfaces with sufficiently large genus. We gave a construction how to
picture map in the plane and this same construction may be used as a practical tool whenever we
want to such drawing.

In order to get clear percept what we are doing, let us behave conversely and let us find for a
given graph’'s embedding corresponding eventual combinatorial map. Below we have graph
embedded in the plane [with two edges crossing]. We would say that this graph is given with
fixed rotation [of edges, asistold traditionaly, or of faces, following theory above].

S/

Let us add labels to this drawing to corners between edges.

After doing this a combinatorial map is already fixed, and let us write it down. First let us write

vertex rotation (1 53)(2 7 4)(6 8), running corners around vertices clockwise. Further its



face rotation should be (1 6 73285 4). Yes, we get only one face because of crossing of
two edges in the plane. Further edge rotation should be (1 8)(2 6)(34)(57). Inner edge
rotationis (1 2)(3 4) (5 6) (7 8). What we did to get just thisinner edge rotation in order to get

normalized combinatorial map? Find it out.
Take note how map's edge rotation’s orbits are shaping. For example, for the horizontal edge,

inner edge rotation gives orbit equa to (1 2), but edge rotation gives orbit equal to (34).
Simpler speaking, we say that map has edge (3 4) and inner edge (1 2).

Further, let us assume that we have this combinatorial map given and try to picture as a graph’s
embedding in the plane:

(153)(2 6 4)
(16325 4)

Let usfirst picture vertex rotations as , halfedge rotations’ clockwise in the plane:

L et us go on with connecting halfedges into edges of the graph. First let us embed edge (3 4)
[and inner edge (1 2)]:

Next let come edge (5 6) [inner edge (3 4)]:



R
N ‘A

o

At last let us embed edge (1 2) [and inner edge(5 6)] and what we get?

(o]

N 7N
(>

The drawing is done. It remains to find out that we did the same drawing where we started from
above.

Let us next ,,draw the map”, i.e., find corresponding graph’s embedding in the plane:

(153)(279)(41210)(6118)
(16129)(2854117103)

We start with halfedge’ srotations:



Let us embed edges in the order given: (1 8),(211),(39),(4 6)(510),(7 12).

We embedded (1 8) . Remains edge rotation (2 11),(39),(4 6) (5 10),(7 12).



We embedded (2 11) . Remains to be embedded edges from rotation (3 9), (4 6) (510),(7 12).

We embedded (3 9) . Remains(4 6) (510),(7 12).



We embedded (4 6) . Remains (510),(7 12).

We embedded (5 10) .Remains(7 12).



Last edge is embedded. All halfedges are connected.We get a graph embedded in the plane. It is

easy to see that more nice pictureis possible:

11

Exercise: draw graph embedded in the plane corresponding to combinatorial map:

(189)(2536)(4 710)
(17926)(354810)

Warning: for the first time aloop should appear as an edge in alooped graph.



Exercise: draw graph embedded in the plane corresponding to combinatorial map:

(1911)(4128)(236)(5710)
(1106)(2411)(358)(7912)

Hint: tetrahedron should be got.

Exercise: draw graph embedded in the plane corresponding to combinatorial map:

(113 7)(21011)(3816) (417 9)(51514) (6 12 18)
{ (114 611)(2937)(418516)(81513)(101217) -

Hint: prism graph should be got.



Simple combinatorial mapsand their drawings

Identical permutation is denoted by €. Simplest map possible would be map with two cornerse,

e
which actsonC, . Itis ,
12

with corresponding drawing [one isolated edge]:

N €A B _
Thedua maptoitis with its drawing
e

For identity that actsonC.,_, there corresponds graph with m isolated edges. Involution with m

om>
orbitsaction on C, has graph with m isolated loops. The only essentially empty graph would be
that corresponding toC, , i.e., C,,, withm = 0. However, we better not specify cardinality of the
universal set, but it is more convenient to assume that the cardinality m is some very large
number m= m,that never is exceeded, and particular map may be specified with some chosen
m,m<m, . Then empty graph would be graph without edges but having m, isolated edges,

without specifying number of isolated edges. All graphsin the universal ‘see’ of edges would
have m= m, edges. “Graph traditionally” would be connected component without isolated

edges. The only inconvenience would be that we could not distinguish a component with only one
edge.



Mapson C,

23
ap { (23) with its drawing [and drawing of dual map]:

1243
2 2
1 /3\ 4
3
a2y . . .
Selfdual map with its drawing:
@3) (24
14 6 3
@324 _
Selfdual map with its drawing:
@423

Mapson Cq



with its drawing [and drawing of dual map]:

{aa(zamﬁ)
Map
(145)(263)

[

with its drawing [and drawing of dual map]:

(153)(264)
{a6325®

Y=Y
X

with its drawing [and drawing of dual map]:

(13)(2645)
{a46325



Other interesting maps

(153)(212100(471)(698) . . _
Tetrahedron — self dual map with its drawing:
(1610)(2113)(485)(7129)

6

8|9

4| 7

12
L7

1 3 10

. (153(2711)(4139(61514)(81017)(121816) . . _
Map of prizm graph with its drawing
(161611)(2893)(4145)(71217)(10181513)

[and drawing of dual map]:



15 18 12 16
\
14 - 12 17 6
10 18 1
4 17 10 15
9 8
5 7 13 \
3 5 8 14
9 4
1
11 2 c
3

By the way we get to know that dual graph of prism graph isgraph K, i.e., the full graph with

five vertices with one edge missing.



Vertex split-merge operation

By multiplying permutation by transposition from left side in the permutation two orbits either
merge into one or one becomes divided into two orbits depending on whether elements of

transposition are in two distinct orbits or both in one orhit:

(a b) * Aa; Bb= AaBb
in the first case, when orbits merge or:

(ab)* AaBb= Aa;Bb
in the second case, when orbit is split into two new orbits,
or, using conjugate operator +, ¥ :

(ab)* Aa+Bb= AaFBb.

Applying this operation to combinatorial map, its vertices are either merged or split. In the picture

itisillustrated how it looks like geometrically. Let A=a,a,...a and B=Dbb,..b_.

(@ab)*P=

Theresult we get isequal to AaBb = a,a,...a, abb,..b,_b. Let ustake anote of the fact that in

the formulaindices would arrange more symmetrically if we chose to number corners not
clockwise, but anticlockwise [with (a b) considering asif standing before other corners).

This geometrical interpretation of multiplication of a single transposition gives an interesting
graph-theoretical result.

Let us call the operation corresponding to(a b) - P corner split-merge operation

Theorem: Producing corner split-merge operation with all pairs of corners from edge rotation we
get the dual graph of the graph.

Proof of the fact istrivial from combinatorial point of view. But, graph-theoretically it gives an

impression of some magic. Let uslook in an example what goes on.



Tetrahedron (19 6)(2 312)(4 5 7)(8 10 11) with face rotation
(11012)(2 4 6)(311 7)(5 8 9) and edge rotation (1 8)(511)(2 7)(6 12)(310)(310)(4 9).

12

Let us apply to tetrahedron the operation of multiplying from the left transpositions from edge

rotation.

Let us multiply by first transposition from edge rotation:
(18)*xP=(96110118)(2312)(457). We get:

Let us multiply by second transposition from edge rotation:
51)*xP=(74589611011)(2 312). We get:



Let us multiply by third transposition from edge rotation:
(27)*xP=(312245896110117). We get:

Let us multiply by fourth transposition from edge rotation:
(612)*P=(245896)(110117 312). We get:




Let us multiply by fifth transposition from edge rotation:
(310)*P=(1173)(12110)(24589 6). We get:

Let us multiply by sixth transposition from edge rotation:
(49)«*P=(624)(589)(117 3)(12110). We get:

11

Thismap is dual map to previous map, i.e., its vertex rotation is equal to face rotation of the

previous map.



Joining of new edge.

Theorem 1. New edge with inner edge rotation (a b) to map P isjoined with respect to corner

pair (&, b,) by multiplication(a a,)(b b,)-P.

Proof:

(aa)bh) -P=(aa)bhb)aa,.a,6)bb.0b )P=(as,.a, a)bb.0 b)P
where P'is part of edge rotation which remains unchanged.

Example. Let usillustrate building of a graph by joining new edges.

Let us assume that graph has already two isolated edges. P =id :




Let us add new (inner) edge (3 4) with respect of corner pair (2 7) . We perform operation
B4 7)-id=(32)(47):

Let us add new (inner) edge (5 6) with respect to corner pair [or non-edge] (4 1). We perform
operation (54)(61)-(32)(47)=(16)(23)(457):

Let usadd (inner) edge (9 10) with respect to corner pair [non-edge] (1 8) . We perform
operation (91)(108)-(16)(23)(457)=(196)(23)(45 7)(810) :



10

Let usadd new (inner) edge (1112) with respect to corner pair (10 3) . We perform operation
(1110)(223)-(196)(23)(457)(810)=(196)(2312)(457)(81011):




Classes of combinatorial mapswith fixed edge rotation.
For agiven combinatorial map P its edge rotation is equal to p = PP = 77~
Let us remind that permutations & and /3 are called conjugated with respect to permutation P

ifa=p P . We see that in combinatorial map inner edge rotation and inner edge rotation are

conjugated with respect to vertex rotation.
Are there other maps with the same edge rotation [within the class of maps with fixed inner edge

rotation]? Y es, each permutation with respect which and p  are conjugated fits for vertex

rotation of such map.

Let inner edge rotationz be fixed. All such classes form a class of mapsK :
K={P|z =x}.

Let us define class of combinatorial mapsK , that contain maps with fixed edge rotation p :

Kp:{P| ﬂpzz/\ppzp}.
For different values of edge rotation p class K have subclassesK | . Between these classes one
classis special, namely, K _that which hasz = p, i.e, for the members of this class edge rotation
and inner edge rotation coincided:

K, ={P| Tp =T A Pp =7z}.
Maps of this class are called selfconjugate maps. Thus, K _isthe class of selfconjugate maps.
This classis not empty; it contains map (id, ) . Indeed, p4 ,, =7 = 7. Thus, map with only

isolated edges is example of selfconjugate maps. We shall see further other examples too.

In order to learn to consider maps of K, let usfind what edge rotation has multiplication of two

maps.

Theorem 1. For twomaps S, T € K thereholds: pg; = stfl.

Proof:

Per=ST-x- T8 =8.p 5" =pf".

Let us define class where P isfixed:

P-K,={P-Q|QeK,},



i.e, P-K_containall mapsfrom K_ multiplied from left with afixed map P . From theorem 1

wehavethat P-K, <K, where p = " . Letus prove that equality holds. Let usfirst prove

that K_ isagroup.

Theorem2. K isagroup.

Proof: Group operation is, of course, multiplication of permutations. Let us show that K _ is
closed with respect to multiplication of permutations. If ps = p; =7 then

Per =S T-7-T1.S*=S.7-S"' = 7. Classis closed with respect to reversion operation
too: pg. = S*.7-S=r.Class K_ containsamap that corresponds to identity permutation.
Thus, al group’srequirements K satisfies, and K _isagroup.

Let usnotethat K isclass of mapswith fixed 7 and in the sametimeit isagroup [or

isomorphic to] that is called symmetry group. [Mostly it isdesignated as S, ; in our case we use

designation S, ]. Of course, K issubgroup of group K . Let us prove coincidence of two

classes.

Theorem3. P-K_=K _,.(P- KTP =K;.)
Proof: If o =7 ,then P-K_ isaleft coset of K_ equa to K”P,1 and theorem is proved.

Let o # 7 and Qisamap, that holdsQ-K_=K_,i.e,K_ isleft cosetof K_and Q isone of

elements of class K, : p, = 7% and Qe K, according to theorem 1. If P-Q =R, then holds

P-K,=P-Q-K,=R-K, =K , =K _,.
We used the fact that there holds P- (Q- K ) =(P-Q)- K_. Theoremis proved.

Besides the theorem, we got that class K, iseft coset of the group K in the group K . Let usfix

this as corollary.

Corollary 1. Inthe group K left cosets to the subgroup K are classes with fixed edge rotation.



Thus, arbitrary combinatorial map P with edge rotation equal to p = 77 be ongs to coset
K,=P-K, toK_.

Let us consider some properties of class K _ .

Lemmal. P* =P holdsiff PeK_.
Proof:

pP:ﬂ'Eﬂ:P-ﬂ'-Pil = P:ﬂ'Pﬂ-E P:P”

Let ¢ beorbit of P.Wecall orbit c” selfconjugate with respect to orbit ¢ (with respect tor) if
c=C".Ifinamap P each orbit hasits conjugate orbit (with respect to 7 ) belongingto P or it
is selfconjugate then it is called selfconjugate. From lemma 1 we have that K isthe class of

selfconjugate maps (with respect to 7 ). Let us formulate this fact as theorem.
Theorem 4. The class of selfconjugate mapsisequal toK _.

Let us say that involution z containsinvolution o writing o < 7 if each transposition of o is

also transposition of 7 . Let us clarify something about structure of selfconjugate maps.

Theorem 5. K _ (that isisomorphic to normal subgroup of S, ) isisomorphictogroup S, - S,".
Proof: Let Pe K_,and P as permutation acts on universal set of corners C, and C, U C, is
subdivision of C that isinduced by 7 . In that case there exists an involution o < 7, that
P=Q-o andinthesametime Q orbits belong [as sets of elements] either to C, or C,, i.e, if
orbit ¢ belongsto C,, then c* belongs C,, or reversely. Q can be expressed as Q, - Q,, where
Q, has cornersbelonging to C,, and Q, has corners belonging to C, . But in that case, Q, and
Q, areisomorphic to each other and isomorphic to some permutation from S, and o c 7 is
isomorphic to some permutation from S;", and P isisomorphic to permutation from S, - S,

Theorem is proved.



How many there are selfconjugate maps?

Theorem 6. |K | =mi x 2.

Proof: |S,|=m; ‘%m‘ =2".
How many there are edge rotations, i.e., how many left coset has the group K _?

Theorem 7. Group K has (itself including) (2m—1)!! left cosets.
Proof: K_ (including itself) has as many left cosets as many edge rotationsit is possible to
generate, namely, (2m—21)!! . Indeed, there holds:

@m-Dlx m2™ = (2m)!.



Combinatorial knot.

Let combinatorial map P be given as permutation P that acts on set of corners C and edge
rotation isequal to p = 7" . Let partition C,uC, on C isgiven such that it induces both 7
and p, i.e, for each edge and inner edge their ends belong both to C, and C,. In that case we

aresaying that C is partitioned well or is colored in two colors well, or we say that C, UC, is

well coloring of the universal set Cthat isinduced by P.
Does such well colorings exist always and how many they are?

Theorem 1. Arbitrary map P always induces some well coloring of C.

Proof: Let CC,...C,, becyclical sequence of corners such that starting with arbitrary ¢, ¢, =¢/,
and ¢, =C) and sooninaternating way, i.e., C,;, =Cj;_;, and C,, =Cj;, forindices i =1...,k,
inaway that, sequenceclosing Cj, = C,,., = C,. Such cyclical sequence has even number of
elements and always exists. Let for amoment assume number of elements being odd. In that case
Cy,=C =C,,and Cjy_,=C,,and C,_,=C;) =C; andsoonuntil C,., =C,, butitisnot

possible.

In case not all corners are exhausted we go on starting from new non searched element. Let all

corners would be exhausted by such cyclical sequence. Let us put odd elementsin set C, and

even elementsinset C,. We have got well coloring of set C that isinduced by P.

Let us define permutation z with orbits that was described in the previous casg, i.e., if C, UC,

iswell coloring of set C then ¢ =c”,if ce C,and ¢ =c”, if ce C,. Permutation 1 we

are going to call combinatorial knot of the map P . Further we shall see the mativation for this
name. Frequently we would say simply knot in place of combinatorial knot. In graphical corner
interpretation of combinatorial map combinatorial knot is really something similar to knot. P.

Bonnington and Ch. Little are calling this combinatorial object zigzag walk.
How many combinatorial maps there are?

Lemmal. If wisknotof P thenpermutation x', thatisequal to x with someorbitin

opposite direction, is also aknot of thismap P .



Proof follows directly verifying assertion.

But what is difference between knots © and ' ? For the orbit that changed its direction corners
change their coloring with respect to partition of C in C,and C,.
Knot uisdetermined only by 7 and p, i.e., it does not depend on particular map P . Thus y is

common for al theclass K . K containsamap that corresponds to permutation s, because

P, = p - Indeed, we get atheorem:

Theorem2. 7 = p.
Proof:

(cc)exr=(cc”)"=(c" c”)[e p]v(cc") =(c’ c™)[e p].

Let usdenote by u(7z, p) arbitrary knot induced by 7 and p, i.e., that is aknot for each map

from K . We may deduce a theorem:

Theorem 3. K, = u(7z, p)x K, .

The proof follows directly from what was said previously. This result may be formulated in the

following way:

Corollary 1. Each combinatorial map may be expressed as multiplication of its knot with some

selfconjugate map.

This selfconjugate map that is equal to ,u‘1 - P, we are going to call knotting and denote with
letter «, thus corollary saysthat:
P=u-a.

[llustration of the combinatorial knot and knotting.

L et map tetrahedron be given with vertex rotation (19 6)(2 312)(4 5 7)(8 10 11) and face
rotation (110 12)(2 4 6)(311 7)(5 8 9) and edge rotation
18)(511)(2 7)(612)(310)(310)(4 9).



Let us consider agorithm of finding of combinatorial map following its definition. Let us start to
construct g with corner 1:

"= 2

2’ =7

7" =8

8 =1
We have found one orbit of knot: (12 7 8) — u . Let us picture the found orbit of the knot in the

picture of the graph:
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Let us go on with new orbit starting with corner 3:



I =14
4 =9
9" =10
10V =3

We have found one more orbit of the knot. We know that (12 7 8)(34 910) — . Let uspicture
the found orbit of z:

Let usfind further next orbit starting with corner 5:
5 =6
6’ =12
12" =11
11 =5

We have now found last orbit of theknot : (127 8)(34910)(561211) = . Let us picture the

found orbit:






Partial combinatorial maps

Combinatorial maps, that we considered up to now, were called geometrical, which have as their
geometrical interpretation graph embeddings on surfaces.

Let usintroduce a new notion — partial maps, that should have dlightly modified and more general
geometrical interpretation.

Let arbitrary pair of permutation be given (P, Q) . We are calling this pair partial combinatorial
map or shorter partial [sometimes p-map] map. Let us note that we do not specify any additional
condition. Asbefore, P iscalled partial map’s vertex rotation and Q partial map’s face
rotation. As before, let us call multiplication of two permutations Q- P~ partial map’s edge
rotation, denoting it R [or sometimes p ], but now, in general, it should be distinct from
involution. Orbits of R we are calling edges. Multiplication P~*-Q wecall inner edge rotation,
as before, denoting it .

It is convenient to give partial map astriple (P, Q, R) with condition to be holdingR=Q- P ™.
It is easy to see that partial map (P, Q, R) isgeometrical map in case R isinvolution without

fixed elements. Isthe requirement that R should be involution without fixed elements obligatory
for geometrical map? It turns out that this should be decided by ourselves. But about this after we
have learned about geometrical interpretation of partial maps.

Example 1: Partial map ((12 34), (13)(24), (12 3 4)) hasone vertex (12 3 4), two faces
(13) and (2 4), one edge (12 3 4) that hasinner edge (12 3 4) in correspondence.

Example 2: Partial map ((1234)(567),(1537264), (17)(25)(36)) hastwo vertices
(1234) and (567), oneface (1537 264), threeedges (17),(25),(36) of degree two
and one of degree one (4) that have inner edges (1),(2 5),(3 6),(4 7) in correspondence.

The drawing of partial map

Let uslook how to draw partial map and after we are going to prove that this operation should be

performable always. Let apartiad map isgiven and (C,...C,) isone of its vertices of order k. Let

us draw in the plane star graph with 2k halfedges, putting labels for corners clockwise in every



second corner. After all vertices are drawn in thisway, let us connect halfedges, in order to draw

edges of the graph, in the following way: in order to implement on “side” (ab...) of thisedge,

let us find corners with labels a and b, and connect these halfedges that go clockwise after these
corners.

Let us persuade ourselves that drawing of the partial map of example 1 looks like this:

(1234)
(13)(2 4)
(1234)

L et us consider the drawing of the partial map of example 2:

(1234)(567)

(153726 4)
(17)(25)(36)

Theimage of partial map

In the previous chapter, when drawing of partial map was made, we labeled only every second
corner, and half of corners remained without labels. In this chapter we are going to formalize the

object that corresponds to the drawing of the partial map.

Let us assume that permutations P, Q, R are acting in the universal set C of corners, and C is a
new set such that |C|:‘6‘ and C N C =@ ,with bijectionu : C — C given.For c € C, let
us denote u(c) by €, and succession of elements ¢C by ¢ .Foru : C — C reverse bijection

U:C — C isdefined that U(C) = ¢ holds. Let us use the same denotations for orbits of

permutations and for whole permutations too: if we have orbit ¢ = (c,...C, ) , then [induced by u]



c=(c..§),and € =(cg..C,) . Similarly for permutations: if P actsintheset C, then

[induced by u] P actsintheset C .

Further, making practical drawings, we shall use convention to put corner C after corner C in
clockwise direction.

Let us now show that drawing of the partial map has a combinatorial map in correspondence that

we shall call image of the partial map.

Theorem 1. Let (P,Q, R) be arbitrary partial map. Then partial map (IS,Q- R™) isgeometrical
combinatorial map.

Proof: Let us denote p-map (I5,Q- R™) that correspondsto p-map (P,Q,R)by (P, Q).In
order to prove assertion of the theorem, we must prove that in the p-map (P, Q) all edges are of
degree two. Let us take arbitrary element ¢ € C . Applying for thiselement QR ™, we get ¢,
because R~ do not act on elements from set C and leave this element ¢ € C on place.

Applying for element c® permutation (P) ™, weget €9, because u: c® - €2 . Starting from
element ¢ € C, first two elements of the edge are (C ¢ ...) . Further, applying QR ™ once
more, weget C, because QP - R =QP*-(QP ™)™ =id. At last, applying for T
permutation (IS)‘l, we get ¢. From this sequence of judgments results that arbitrary edge that

started in C, has degree 2. The same should be done for an edge that startsin C. Let €< C for
some C € C : similarly as before:
T RO _ PR 5 gPOPT g7, PRI 6P P

This edge that started in the set C has degree 2 too. Theorem is proved.

This theorem gives us effective tool. Geometrical map, that is to be connected with partial map, is
isomorphic to partial map’s drawing. Because of this fact we call this map c-map that corresponds
to given p-map. c-map (P, Q) may be called partial map’simage or combinatoria image, in
order not to confuse it with graphical image.

Let uslook on thisin an example. Let p-map be given:



(12)(3 4)(5 6)
(P,Q,R)=1 (135)(246) .
(145236)

This p-map hasitsc-map (P, Q) in correspondence as follows:

(1122)(3344)(556 6)

(P, Q)={ (135)(246)(632541) .
(14)(23)(36)(45)(52)(61)

Let usdraw combinatorial image of the partial map in the plane:

Let find for example 1 c-map too:

(11223344
(P,Q)=1{ (13)(24)(1432)

(12)(23)(34)(41)

Pasting of edgesin the partial map

Let us consider how to interpret combinatorial image of the partial map. Let us name faces of the
combinatorial image that are not faces of the partial map, cut-out faces or black faces.

Let us say that cut-out face belongs to halfedge type if its degree is one. Let us say that it belongs
to edge typeif its degreeistwo. Let us say that it belongs to essential typeif its degree exceeds

two.



Let we have partial map with its c-map given. Let us cut out these edges from partial map that we
called black or cut-out. We get abject that by right can be called partial map. If we choose reverse
operation to glue cut out edges back in the partial map, we get itsimage.

Here p-map of example 2 with cut-out faces.

More complicate situation is with example 1 p-map. Itsimage should be placed on genus two
surface. In plane we could be comforted with picture [with crossings] below imagining that inner

petals are turned upside down:

)




Shorter image of partial map

Let us drop from image edge type black faces, i.e., these black edges with degree two. Such

picturing of partial map does not loose any information, i.e., from such image it is possible
alwaysto restore correct partial map. That means that fro C should be eliminated corners that

belong to edges of degree two, i.e., orbits of degree two should not appear in C . Such image we
call shorter image of partial map.

Submaps

We may give another interpretation to partial map than we did before. We may consider as

submap of other map.

Let usassumethat p actsonset C, and Sissubset of C. We denote by p|S restriction of
permutation p onsubset S, i.e, leaving only those elements of p that belong to subset S. If
permutation p isgivenin cyclica form then p| ; Wwegetsimply by elimination elements that do

not belongto S.
If we have partia map (P, Q) we may restrict both permutations at the same time, writing

(P, Q)|5- Wesay that partial map (B, Q,) that isequal to (P, Q)| issubmap of the map

(P, Q) i.e,itsrestrictionon S.

Theorem. Each p-map is submap of arbitrary many p-maps [and c-mapstoo].
Proof follows from the fact that each p-map is submap of its image or c-map. Further, image can

be taken as p-map that has its image and so on.

Further follows simple example of submap.



C-map submap
(112 7)(246)(389)(51011) 1739511
(1116)(237)(459)(81012) (1113 7)(59)
(110)(29)(312)(411)(58)(67) | (153)(7911)
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In this case partia map is submap of a c-map that is not itsimage.

Examples of partial maps

K, on torus with one face cut out:

(16)(25)(37)(49)
(18362745)
(14 23)(56)(78)




Theory of cycle covers. Uncolored covers

Searching graph embedding on topological surfaces, useful objects are graph cycles and cuts. For
graph embeddings, graph cycles and dual objects cuts do the same what in traditional topology do
closed lines. Here, speaking in language of combinatorics, we are dealing with graph cycles and

cut, namely, we are going to use graph theoretical terminology for our combinatorial map theory.
The choice operator

Let usdenote by . choice operation, that P .- Q denote nondeterministic choice between P
andQ, namely c¢”"? isequal either to c” orc®?. P Q as permutation denotes such
permutation, that is obtained applying nondeterministically either P or Q. Of coursg, itsis
guestion per se whether such permutation exists. We should see it later. Further, formally
considering:

P--Q= {cl > ¢lc,c,eCAlc,=¢ v, =le)}.
For two given permutations P and Q always exists nonempty set {RI R=P-: Q} that contains

all possible permutations we get using choice operator, i.e., where P and Q are applied by

nondeterministic choice. This set is not empty because it contains at least both these sets P
andQ.

Walks, pathsand cycles

For two arbitrary permutations P and Q sequence a,...,a, (N> 0) isp-map’'s (P, Q) walk, if

a,, =a " foral(0<i<n).Walk containsin general repetitions. If repetitionsin walk are

absent then it is called path. If path is closed then it is called cycle. It is easy to see that walk does
not have in general permutation in correspondence. Does every cycle have permutation in

correspondence? Let7 € P .- Q. Orbits of permutation 7 are clearly cycles. Does there exist
other cyclesthat are not orbitsof 7 € P-.- Q ? It is easy to see that no. But we formulate stronger

assertion in theorem:



Theorem 1. Set U U{a} (= S) contains all cycles of (P, Q) and nothing else.

reP-Qaer

Proof. By induction assertion is correct at|C| =1, and let us assume that it is correct for|C| <2n.
Let c bearbitrary cycle so that |C| < 2n that is built using choice operator-.". By induction
assertion it belongs both to cyclesof (P, Q) andS. Let us consider restriction of permutations
P and Q onsetC —|c| . But other assertion is true also: by induction is true what theorem says
about congtriction of P Q onC — |c| . Remains case when cycle has length n+1 and it isthe

only cycle of (P, Q), and we must persuade ourselves that it belongsto S aways.

Cycle covers

For an arbitrary partial map (P, Q) elementsof set P-.- Q wecall cycle coversof (P, Q). Each
such cover 7 € P+ Q ispermutation, orbits of which are one or more cycles. This fact motivates
thename of 7 —cycle cover, i.e., each instanceof P .- Q cover some cycles of partial map so

that the corresponding permutation covers all corners of partial maps. For some fixed cycle cover
of partial map we write(P, Q, 7) ,i.e., (P, Q, 7) is partial map with fixed cycle cover . From

the previous assertion follows:

Theorem 2. For each partial map’s cycle a there exists some cover of cycles ¢ sothatae r.

Cycle covers of c-maps

Let us consider further cycle covers only for geometrical maps, i.e., for which edge rotation is

involution without fixed elements. If cycle cover for c-map is fixed then it is possible to

distinguish four types of edges. First, let us denote corners for afixed edge by (c,,C,,C;,C,), SO

thatc) =c, ¢ =¢, and ¢/ = c, (see picture below). We may memorize these indicesin the



|
following way: CZ—E—% By this convention (c,,c;) asawaysinner edge orbit and (c,,C,) edge

| >4

orbit for corresponding graphical edge.

Next theorem describes four possible edge typesin c-map if cycle cover isfixed.

Theorem 2. There are four possible cases for edge:

1) ¢, and ¢, belong to one cycle, and C, and C, belong to other cycle;

2) ¢, and ¢, belong to one cycle, and c,and c; belong to other cycle;

3) al corners belong to one cycle, but ¢, follows ¢, inthecycleand c,follows ¢, inthecycle;

4) all corners belong to one cycle, but ¢, followsc, inthe cycleand c;follows c, inthe cycle.

It is easy to see that there are excluded possibilities that corners of edge go into more than two

cycles, and that the cycle crosses edge by diagonal, namely, cycle contains ¢, and ¢, (C, andc;)
without going through c, orc,(c, or C,).

We are going to name edges according their type. Let first say that edge isinner edgeif its
corners belong to one cycle, and edge is outer edge if its corners belong to two cycles.

Further go names for each edge type:
If x €7 and ¢, =C; and C; =C, , then edge calls cross edge [3-rd case].

If x €7 and ¢, =C, and C, =C;, then edge callsrecurrence edge [4-th case].

K

If x;, k, €7 aretwo distinct cycles, sothat ¢, = C;* and C, =C;?, then edge calls cut edge [1-st
case].

If x,, kK, € T aretwo distinct cycles, so that ¢, = C;* and ¢, = C;?, then edge calls cycle edge [ 2-

nd case].

See below in picture:
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recurrence edge

cross edge

Thus, inner edges are cross edge and recurrence edge, but outer edges are cycle edge end cut
edge.

Map with fixed cycle coloring (P, Q, 7) induces edge type partitioning, and this may be
reflected in partitioning of orbitsin inner edge rotation too:

T=T

cycle 7T

ct "7

Cross R4

recurr ’

where 7, containsorbits of type(c,,C,) , where (C,,C,) goesinto cycle edge and so on.

cycle
This same partitioning of 7 may beinduced onset C :
CcC=C_4vC,, wC, vC

cycle cut Cross recurr !

where C_, . has corners of cycle [inner] edges, i.e. Ccyde =C

oydle , and so on.

Tleycle

It may be convenient to use following self-evident designationstoo: 7 =7, ., * 77 @nd

inner outer

C=C

nner

uC

outer *

Let us consider examples of cycle covers. Let us have normal c-map
P=(189)(2536)(4 710) withfacerotation Q=(17926)(354810) . [Verifyit!] Let us

fix cyclecover 7=(18104 7 9)(26)(35) . Infig. 1. we see cycle cover 7, with cycle
(1810479) in blue color, cycle(26) in red color, and cycle (35) in green color. Thiscycle
cover induces following edge types:

Zow = (12)(3 4) -- cut edges|[red color];

Tome = (5 6) -~ cycle edges [green color];



= (7 8) -- cross edge [yellow color];

ﬂ-cr 0ss

7o = (9 10) -- recurrence edge [blue color].

recurr

Inner edges [cycle green and cut red] are marked with thicker lines.

Fig. 1

Infig. 2 graph is shown, which vertices are cycles of cycle cover 7, and which edges appear
between cyclesor loopson cycle, if in (P, Q, 7) isedgethat isincident with these cycles or that

cycle. In this graph, inner edges of map induce edges and outer edges induce loops.

56

9,10

>

Fig. 2

Mapswith only outer edges



Let us consider maps with fixed cycle cover that induces only outer edges. Let us see an example
Prism [normal] map P =(1137)(21011)(3816)(4 17 9)(51514)(6 12 18) with [induced]

facerotation Q=(114611)(2937)(418516)(81513)(101217) and fixed cycle cover
(11451637)(29418611)(81513)(1012 7) isgiven. We see that cycle cover induces only

outer edges.
{4 6
NS 18
16 47
8 = 17
3 9\,
v 1o
LT 2
1 11

Types of edges and duality

14 6
5 18
15 12
16 4
—X 17
3 9
13 10
7 2
1 11

Let us have c-map with fixed cycle cover (P, Q, 7). Itiseasy to see, that exists dual map with

the same cycle cover (Q, P, ), what follows from definition of choice operator *.. Theorem

follows:

Theorem. In the dual map with the same fixed cycle cover, for the cycle edges, there correspond

cut edges and reversely, and for recurrence edges — cross edges and reversely; for inner edges

correspond inner edges, and the same for outer edges.



Cycle cover submap of combinatorial map

Cycles and cuts are essentia graph invariants, so it isinteresting as much as possible to acquire

analogous notions in combinatorial outlook too.

For map (P, Q, 7) and dua map (Q, P 7) let ustake cycle x € 7. Let us denote restriction of

permutation x Come smply as k Similarly let us denote restriction of permutation x c, &

cycle*

Kot -

Let (P, Q, 7) begiven and consider restrictionof P onset C_,,wC

oycle denoting it P

recurr ? cyclical *

Wecadl P

waica CyClical part of vertex rotation, of course, with respect to fixed cycle cover 7 .

Similarly we consider restriction of 7 on C_,, U C

cycle recurr ? denoti ng it by Z-cyclical ! and Ca”mg it
cyclical part of cycle cover. Let us consider partial map (Pcyclical , rcyc,ica,) , caling it maps [with

fixed cycle cover] (P, Q, 7) cycle cover submap. Let us prove theorem:

Theorem. Cycle cover submap is geometrical map.

Proof. Geometrically eliminating cut or cross edge, as we see below, is equivalent with edge

elimination with cycle cover remaining the same except to elements C,, C; being dropped. But

C,,C, are elements of the eliminated inner edge.

4 - >«

cut edge

e

cross edge




Further we may have use of submap that correspond to some cyclical part of cycle cover.

Let 7 becyclecover of (P, Q) and o — 7, where o contains one or more cyclesfrom 7 . Let
C, contain cornersin o, i.e,, C_ = C|g . Let us consider p-map (P‘C , o), what we call cyclic

submap of map. Cyclic submaps of map are not geometrical mapsin general.

Theorem. Let orbit x contains recurrence edge. This edge is either bridge in cycle x submap or

submap is not planar.

L et us consider example of cycle cover submap. Let us have prism graph
P=(1137)(21011)(3816)(417 9)(51514)(6 12 18) with cycle cover equa with face

rotation (114516 37)(29 418 611)(81513)(1012 7). Noncyclical edges have corners
{:L 2,3, 4,5, 6}, other corners go into cyclical edges. We obtain:

Pyaica = (7 13)(816)(14 15)(917)(1011)(1218) ;

Quuica = (7 9)(1114)(16 18)(81513)(101217);

Toaica = (71416)(91811)(81513)(101217) .

What is cycle cover submap equal? We get it restricting P on cyclical edges corners:
14 18

(7 13)(8 16)(14 15)(9 17)(10 11)(12 18)
(7 14 16)(9 18 11)(8 15 13)(10 12 17) 16 9
(7 15)(8 14)(9 12)(10 18)(1117)(13 16)

7 1

What remainsis p-map (P, Q)| what in picture below is shown asinitial c-map’s P

noncyclical

submap:



Calculation of cycle cover and its characteristics

Let us persuade that for given (P, Q, 7) expression holds: P+ 7™ = p e Preurr - The same we
get proving that ey - P =7 . For cyclical edge, 7 we get asif using expression 7 = p- P, but
for cut edge or crossedge —asif using 7 =P ; or, in other words, for cyclical edge we apply
7=Q, but for noncyclical — 7 =P, i.e., that what to choice operator, namely, noncrossing edge

it takes Q, but crossing edgeit takes P .

Symmetric expression holdstoo: P -7 =7 V4

cycle " ““recurr -

Theorem. For map with fixed cycle cover (P, Q, ) we have in correspondence geometrical map

(P-x P-z

cyclical noncyclical ) '

Proof: Direct inference gives:

(P! Q)'ﬂ'cyclical = (P'ﬂcyclical' P'ﬂ-'ﬂcyclicaj) = (P'”cyclical’ P'”noncyclical)'



Mor e about permutations

Let ustry to find out some more operations on permutations, but now assuming that universal set
is partitioned into subsets, namely:

C,uC,u..uC, =C*=C.
If permutation actson C*, we write

p=(C,:p,,C,: Py Cr i PL)s

if forall i from1to k p, isinjectionfrom C, into C*so that imagesof p, induce partitioning
on C that in general is distinct from C*.
Further we are dealing with practical casewhen C* = C, U C,.
It is convenient for usin place of universal set C consider two isomorphic nonintersecting sets
Cand C with bijection ufrom u Cto C .
Thus, let CU C be universal set sothat C\C =&, and uiisbijection from Cto C ; with
€denoting u(e) . If permutation p actson CJi.e, C? = C], then we may wish sometimesto

extend pon CuUC ; sothat thisextension were p_, = (C: p,C : p') . Wewould write for

C:c—c? C:p
pext: ~ .= - ~ . "
C:c—cP C:p

Let us consider trivial extension with identity permutationon C: p=(C: p, C : ¢).

this new extended permutation

Further, for permutation p we define other extension p, sothat for ce C and c® =d and
€ e C, there should hold ¢” = ¢ [i.e, identity permutation] and T = d [i.e., isomorphically

induced from CtoC by u]:

C:c—>c
|C:c P
Itiseasy to seethat holds

. C:e_ C:e _u J
P= C:p |C:u-pu p-u-

For permutation p we define twine permutation P in order that holds



~ | CicmcC
|C:ie P
Thus, P should beequal to (C:u, C: P-u).Itiseasy toseethat P-u=u- p. From herewe

get

~ C:u U D=D.u
P= C:u-p p=p-u.

Let us prove technical lemmathat helpsto deal with permutations in some specific cases.

Lemma. Le CP =C andC?*=C andu:C—>C:c—~C,tha 0:C »>C:CrcC.
The there holds

C:p,-u
p_{é:u'pz_ P U-P,.

Proof follows from direct calculation.

Calculation of image of partial map and its characteristics

L et us use new operations on permutations in order to calculate characteristics of maps.

First we find how to calculate map’simage.
Permutations act on C . Corners that appear in image we attribute to set C , that comes with
bijection u:C — C :C>C.Let U p> P beextension of bijection, so that diagram

commutes

<« Ol

c —
d
_uy

Cp

ol
ol

Then for permutation for which holds C? = C, we write

_JjCip. C:e_uu
P=lc.e’ P7 C:up pu-

Thisway defined bijection u coincide with that what we defined for image of p-map, if only for

twine permutation holds:



~ JCiu C:u I
P= C:pu |C:up P=pu.
Indeed, we defined twine permutation starting from expression
~ | CicmcC
|C:e P

But, just thisform of definition of twine permutation were required in order it would coincide

with that what we defined by entering image of p-map. Indeed, if orbit of pis c=(c,...C,), then

corresponding orbit of pis € = (C,...G,), and corresponding orbit of P is C = (¢C...GC) -
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