Show simple item record

dc.contributor.authorPodnieks, Karlis
dc.date.accessioned2013-08-01T08:45:06Z
dc.date.available2013-08-02T00:00:03Z
dc.date.issued1976
dc.identifier.citationKarlis Podnieks. The double-incompleteness theorem. Proceedings of Fourth All-Union Conference on Mathematical Logic, 1976, Stiinca, Kishinev, p.118 (in Russian)en_US
dc.identifier.urihttps://dspace.lu.lv/dspace/handle/7/1463
dc.description.abstractLet T be a strong enough theory, and M - its metatheory, both are consistent. Then there is a closed arithmetical formula H that is undecidable in T, but one cannot prove in M neither that H is T-unprovable, nor that H is T-unrefutable. For English translation and proof, see K. Podnieks What is mathematics: Godel's theorem and around.en_US
dc.language.isorusen_US
dc.publisherStiinca, Kishineven_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdouble incompletenessen_US
dc.subjectincompletenessen_US
dc.subjectincompleteness theoremen_US
dc.titleThe double-incompleteness theoremen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record