Show simple item record

dc.contributor.authorPodnieks, Karlis
dc.date.accessioned2017-04-18T06:06:23Z
dc.date.available2017-04-18T06:06:23Z
dc.date.issued1972
dc.identifier.citationKarlis Podnieks. On the reducibility of function classes. In: Equations of Mathematical Physics and Theory of Algorithms, Riga, Latvia State University, 1972, pp. 120–139 (in Russian, English translation: Automatic Control and Computer Sciences).en_US
dc.identifier.urihttps://dspace.lu.lv/dspace/handle/7/34959
dc.descriptionCopy of a paper published 1972 in Russian.en_US
dc.description.abstractN – the set of all natural numbers, F – the set of all total functions N→N, A, B<=F. We say that A is m-reducible to B (A<=m B), iff there is a recursive operator M such that f in A, iff M(f) in B for all f in F. Similarly, 1-reducibility, tt-, btt-, 1tt- and Turing reducibility can be introduced. Table of contents. 1. Introduction. 2. Definitions of reducibilities and their simplest properties. 3. m-reducibility and the arithmetical hierarchy. 4. m-reducibility on SIGMA_1^fn. 5. Special classes. 6. Comparing various reducibilities on SIGMA_1^fn. 7. Notes on reducibilities of classes of sets.en_US
dc.language.isorusen_US
dc.publisherLatvia State Universityen_US
dc.relation.ispartofEquations of Mathematical Physics and Theory of Algorithms
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectrecursive functionsen_US
dc.subjectreducibility
dc.subjectm-reducibility
dc.subjecttabular reducibility
dc.subjectTuring reducibility
dc.titleOn the reducibility of function classesen_US
dc.typeinfo:eu-repo/semantics/articleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record