Show simple item record

dc.contributor.authorSvirskas, Š.
dc.contributor.authorKudrevičius, T.
dc.contributor.authorBirks, Eriks
dc.contributor.authorDunce, Marija
dc.contributor.authorSternbergs, Andris
dc.contributor.authorHuang, C.-H.
dc.contributor.authorBanys, J.
dc.date.accessioned2023-01-12T17:50:38Z
dc.date.available2023-01-12T17:50:38Z
dc.date.issued2022
dc.identifier.issn1648-8504
dc.identifier.urihttps://www.lmaleidykla.lt/ojs/index.php/physics/article/view/4816
dc.identifier.urihttps://dspace.lu.lv/dspace/handle/7/61720
dc.descriptionThis work was supported by the Research Council of Lithuania (Project S-LLT-20-4). This work has been supported by Mutual Funds Taiwan–Latvia– Lithuania Cooperation Project Application LV-LT-TW/2020/10.en_US
dc.description.abstractIn this paper, we present the dielectric and piezoelectric properties of tetragonal 0.8Na0.5 Bi0.5 TiO3-0.2BaTiO3 modified with NaNbO3 ((1-x)[0.8Na0.5 Bi0.5 TiO3-0.2BaTiO3 ]-xNaNbO3 ). Our experimental study has revealed that the ferroelectric phase in these compositions is suppressed with the increase of sodium niobate concentration. A broad anomaly, resembling relaxor ferroelectrics, appears in the 325–450 K temperature interval. The investigation of the electric field dependence of polarization has indicated that the double hysteresis loop behaviour is character-istic of the modified compositions, which is associated with the 1st order phase transition under the applied electric field. The experiments below room temperature have revealed that the range of stability of the ferroelectric phase is shifted to lower temperatures upon the increase of sodium niobate concentration. The electromechanical displacement in the modified compositions shows a similar maximum displacement in the whole concentration range. The electromechanical response in 0.8Na0.5 B0.5 TiO3-0.2BaTiO3 solid solutions is due to the piezoelectric effect, while, in the mixed compositions, it is related to the jump-like change of the lattice constants in the vicinity of electric field-induced 1st order phase transition. © Lietuvos mokslų akademija, 2022.en_US
dc.description.sponsorshipMutual Funds Taiwan–Latvia– Lithuania Cooperation Project Application LV-LT-TW/2020/10; Lietuvos Mokslo Taryba S-LLT-20-4; Institute of Solid State Physics, University of Latvia has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.en_US
dc.language.isoengen_US
dc.publisherLithuanian Physical Societyen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/739508/EU/Centre of Advanced Material Research and Technology Transfer/CAMART²en_US
dc.relation.ispartofseriesLithuanian Journal of Physics;62 (4)
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectResearch Subject Categories::NATURAL SCIENCESen_US
dc.subjectdielectric spectroscopyen_US
dc.subjectperovskitesen_US
dc.subjectphase transitionsen_US
dc.titleDIELECTRIC AND PIEZOELECTRIC PROPERTIES OF 0.8Na0.5 Bi0.5 TiO3-0.2BaTiO3 MODIFIED WITH SODIUM NIOBATEen_US
dc.title.alternative0,8Na0,5 Bi0,5 TiO3-0,2BaTiO3, MAIŠYTO SU NATRIO NIOBATU, DIELEKTRINIŲ IR PJEZOELEKTRINIŲ SAVYBIŲ TYRIMASen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.3952/physics.v62i4.4816


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record