• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Raksti konferenču krājumā un tēzes (CFI) / Conference Papers and Abstracts
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Raksti konferenču krājumā un tēzes (CFI) / Conference Papers and Abstracts
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal Oxidation of Tungsten Coatings for Detection by Infrared Spectrometry Method

Thumbnail
View/Open
Article (1.368Mb)
Author
Goldmane, Annija Elizabete
Avotina, Liga
Vanags, Edgars
Trimdale-Deksne, Aija
Zaslavskis, Aleksandrs
Kizane, Gunta
Dekhtyar, Yuri
Date
2023
Metadata
Show full item record
Abstract
Physical vapor deposition (PVD) of metallic thin films is used extensively in the fabrication of semiconductor technology devices - use as of lately for them have grown. Tungsten (W) is a low resistivity, refractory metal, that is often deposited by PVD methods for use as a gate contact to semiconductor devices and due to the low work function and high thermal stability, W can be used for the fabrication of field emitters in microelectronics [1-3]. In order to monitor quality of the synthesized thin films by magnetron sputtering method, it is necessary to develop methodology suitable for the analysis of these thin films. Infrared spectrometry is a sensitive method for the analysis of chemical bonds, but W thin films contain weakly polar and non-polar W-W bonds, that cannot be directly detected by infrared spectrometry, therefore oxidation of W is selected as thermal oxidation method for detecting oxidized products for thin films of thickness 150 nm, for instance, W-O bonds. After oxidation, it was observed, that the oxidation of W thin films takes place already at a 600 °C in the air atmosphere. The Fourier transform infrared spectrometry (FTIR) spectra of modified coatings showed formation of additional new signals in the region of 700-900 cm−1 attributed to W-O, O-W-O, W=O bonds - formation of W-oxygen bonds on Si-SiO2 substrate was achieved. For coating homogeneity and production quality formation, additionally synthesized control samples are recommended for FTIR analysis.
URI
https://iopscience.iop.org/article/10.1088/1742-6596/2423/1/012022
https://dspace.lu.lv/dspace/handle/7/65498
DOI
10.1088/1742-6596/2423/1/012022
Collections
  • Raksti konferenču krājumā un tēzes (CFI) / Conference Papers and Abstracts [31]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV