• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Simulations of Thermodynamic Processes in the Chamber of a Liquid Piston Compressor for Hydrogen Applications

Thumbnail
View/Open
Article (5.419Mb)
Author
Bezrukovs, Valerijs
Bezrukovs, Vladislavs
Konuhova, Marina
Bezrukovs, Deniss
Kaldre, Imants
Popov, Anatoli I.
Date
2024
Metadata
Show full item record
Abstract
This paper presents the results of numerical simulations examining the thermodynamic processes during hydraulic hydrogen compression, using COMSOL Multiphysics® 6.0. These simulations focus on the application of hydrogen compression systems, particularly in hydrogen refueling stations. The computational models employ the CFD and heat transfer modules, along with deforming mesh technology, to simulate gas compression and heat transfer dynamics. The superposition method was applied to simplify the analysis of hydrogen and liquid piston interactions within a stainless-steel chamber, accounting for heat exchange between the hydrogen, the oil (working fluid), and the cylinder walls. The study investigates the effects of varying compression stroke durations and initial hydrogen pressures, providing detailed insights into temperature distributions and energy consumption under different conditions. The results reveal that the upper region of the chamber experiences significant heating, highlighting the need for efficient cooling systems. Additionally, the simulations show that longer compression strokes reduce the power requirement for the liquid pump, offering potential for optimizing system design and reducing equipment costs. This study offers crucial data for enhancing the efficiency of hydraulic hydrogen compression systems, paving the way for improved energy consumption and thermal management in high-pressure applications. © 2024 by the authors. --//-- This is an open-access article Bezrukovs, V.; Bezrukovs, V.; Konuhova, M.; Bezrukovs, D.; Kaldre, I.; Popov, A.I. Numerical Simulations of Thermodynamic Processes in the Chamber of a Liquid Piston Compressor for Hydrogen Applications. Technologies 2024, 12, 266. https://doi.org/10.3390/technologies12120266 published CC BY 4.0 licence.
URI
https://www.mdpi.com/2227-7080/12/12/266
https://dspace.lu.lv/dspace/handle/7/67239
DOI
10.3390/technologies12120266
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV