Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc

Öffnen
Autor
Lin, Yin-Pai
Piskunov, Sergei
Trinkler, Laima
Ming-Chi Chou, Mitch
Chang, Liuwen
Datum
2022Metadata
Zur LanganzeigeZusammenfassung
The structural, electronic and optical properties of rocksalt Mg (Formula presented.) Zn (Formula presented.) O and wurtzite Zn (Formula presented.) Mg (Formula presented.) O with the concentration of Zn and Mg varying from 0.125 to 0.875 were investigated using density functional theory (DFT), DFT+U, linear response theory and the Bethe–Salpeter equation. According to the experimental band gap for varied concentrations of magnesium and zinc, modeling the supercell was utilized for the varied concentrations of Mg/Zn/O compounds in order to not only avoid constructing the complicated interface systems that are observed in the experiments but also take into account the excitonic effects that usually require huge computational resources. From the calculated density of states, the Zn states are highly related to the edge of the conduction band minimum and responsible for the width of bandgap. In addition, the contribution of Zn–d states is below expectations as they are located away from the VBM. As for the optical response, an increase in Zn concentration would cause a red-shifted spectrum, on the whole. In contrast, the higher concentration of Mg also triggers the blue-shift of the optical spectrum. In addition, anisotropic properties could be found in the spectrum with consideration of the excitonic effects, whereas there is no apparent difference in optical response based on linear response theory. In addition, the optical features of this work reflect the characteristic peaks of the literature around the absorption onset. © 2022 by the authors.--//-- This is an open access article in Y.-P., Piskunov S., Trinkler L., Ming-Chi Chou M., Chang L. "Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc" (2022) Materials, 15 (21), art. no. 7689, DOI: 10.3390/ma15217689 published under the CC BY 4.0 licence.