Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects

Открыть
Автор
Krautmann, R.
Spalatu, N.
Josepson, R.
Nedzinskas, R.
Kondrotas, R.
Grzibovskis, Raitis
Vembris, Aivars
Krunks, M.
Oja Acik, I.
Дата
2023Metadata
Показать полную информациюАннотации
Antimony trisulfide (Sb2S3) is a promising photovoltaic absorber, which has so far been fabricated mainly by chemical deposition methods. Despite its aptness for congruent sublimation, less research efforts have been made on low-temperature Sb2S3 processing by physical methods. In this regard, recent studies show large variation in the processing temperature of Sb2S3 films, which overall brings into question the need for higher substrate temperatures (>350 °C). Furthermore, in-depth analysis of defect structure of Sb2S3 employing temperature-dependent admittance spectroscopy (TAS) and photoluminescence (PL) remains largely unexplored. In this work, we systematically study the effect of close-spaced sublimation (CSS) substrate temperature on Sb2S3 absorber growth, employing a wide temperature range of 240–400 °C. Temperatures above 320 °C caused cracking phenomena in the Sb2S3 absorber film, proving the unviability of higher processing temperatures. CSS processing temperature of 300 °C was found optimal, producing crack-free Sb2S3 films with increased presence of (hk1) planes, and achieving the best CdS/Sb2S3 device with photoconversion efficiency of 3.8%. TAS study revealed two deep defects with activation energies of 0.32 eV and 0.37 eV. Low-temperature PL measurement revealed a band-to-band emission at 1.72 eV and a broad band peaked at 1.40 eV, which was assigned to a donor-acceptor pair recombination. Temperature-dependent I-V analysis showed that recombination at CdS–Sb2S3 interface remains a large limitation for the device efficiency. --//-- R. Krautmann, N. Spalatu, R. Josepson, R. Nedzinskas, R. Kondrotas, R. Gržibovskis, A. Vembris, M. Krunks, I. Oja Acik, Low processing temperatures explored in Sb2S3 solar cells by close-spaced sublimation and analysis of bulk and interface related defects, Solar Energy Materials and Solar Cells, Volume 251, 2023, 112139, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2022.112139.
(https://www.sciencedirect.com/science/article/pii/S0927024822005566) Published under the CC BY licence.
URI
https://www.sciencedirect.com/science/article/pii/S0927024822005566https://dspace.lu.lv/dspace/handle/7/64856