• English
    • Latviešu
    • Deutsch
  • Help
  • Latviešu 
    • English
    • Latviešu
    • Deutsch
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface

Thumbnail
View/Open
Teksts/Text (3.158Mb)
Author
Alzhanova, Aliya
Mastrikov, Yuri
Yerezhep, Darkhan
Date
2024
Metadata
Show full item record
Abstract
Recent studies show that zinc oxide (ZnO) nanostructures have promising potential as an absorbing material. In order to improve the optoelectronic properties of the initial system, this paper considers the process of adsorbing multilayer graphene-like ZnO onto a Si (111) surface. The density of electron states for two- and three-layer graphene-like zinc oxide on the Si (111) surface was obtained using the Vienna ab-initio simulation package by the DFT method. A computer model of graphene-like Zinc oxide on a Si (111)-surface was created using the DFT+U approach. One-, two- and three-plane-thick graphene-zinc oxide were deposited on the substrate. An isolated cluster of Zn3O3 was also considered. The compatibility of g-ZnO with the S (100) substrate was tested, and the energetics of deposition were calculated. This study demonstrates that, regardless of the possible configuration of the adsorbing layers, the Si/ZnO structure remains stable at the interface. Calculations indicate that, in combination with lower formation energies, wurtzite-type structures turn out to be more stable and, compared to sphalerite-type structures, wurtzite-type structures form longer interlayers and shorter interplanar distances. It has been shown that during the deposition of the third layer, the growth of a wurtzite-type structure becomes exothermic. Thus, these findings suggest a predictable relationship between the application method and the number of layers, implying that the synthesis process can be modified. Consequently, we believe that such interfaces can be obtained through experimental synthesis. © 2024 by the authors. --//-- This is an open-access article Alzhanova, A.; Mastrikov, Y.; Yerezhep, D. Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface. J. Compos. Sci. 2024, 8, 281. https://doi.org/10.3390/jcs8070281 published under the CC BY 4.0 licence.
URI
https://www.mdpi.com/2504-477X/8/7/281
https://dspace.lu.lv/dspace/handle/7/67159
DOI
10.3390/jcs8070281
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV