• English
    • Latviešu
    • Deutsch
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
  • Login
View Item 
  •   DSpace Home
  • A2 – LU disertācijas / Doctoral theses UL
  • Promocijas darbi (2007-) / Theses PhD
  • View Item
  •   DSpace Home
  • A2 – LU disertācijas / Doctoral theses UL
  • Promocijas darbi (2007-) / Theses PhD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aggregation of fuzzy structures based on equivalence relations

Thumbnail
View/Open
298-52084-Orlovs_Pavels_po08007.pdf (760.7Kb)
Author
Orlovs, Pāvels
Co-author
Latvijas Universitāte. Fizikas un matemātikas fakultāte
Advisor
Asmuss, Svetlana
Date
2016
Metadata
Show full item record
Abstract
Promocijas darbs veltīts speciālai agregācijas operatora konstrukcijai, kas darbojās uz nestriktām struktūrām un ir balstīta uz ekvivalences attiecībām. Šāds operators parastās ekvivalences attiecības gadījumā ir pielietots divu līmeņu lineārās programmēšanas uzdevuma risināšanas parametru analīzei. Šī konstrukcija ir vispārināta, izmantojot nestriktu ekvivalences attiecību. Iegūtie augšējais un apakšējais vispārinātie agregācijas operatori nodrošina parastā agregācijas operatora punktveida un t-turpinājuma aproksimācijas. Īpaša uzmanība ir pievērsta šo operatoru īpašībām un nestriktu reālu skaitïu agregācijai. Ir aprakstītas aproksimatīvas sistēmas, kas balstītas uz augšējā un apakšēja agregācijas operatoriem, konstruējot visu vispārināto agregācijas operatoru un nestriktu ekvivalences attiecību reþìus. Atslēgas vārdi: agregācijas operators, vispārinātais agregācijas operators, nestrikta ekvivalences attiecība, ekstensionālās nestriktas kopas, augšējais un apakšējais aproksimatīvie operatori, aproksimatīva sistēma
 
The thesis deals with the special constructions of aggregation operators acting on fuzzy structures based on equivalence relations. In the case of a crisp equivalence relation, such aggregation operator is applied to analysis of bilevel linear programming problems solving parameters. We generalize this construction by involving a fuzzy equivalence relation. We consider upper and lower general aggregation operators, which provide approximations of the pointwise and t-norm extension of an ordinary aggregation operators. We consider different properties of these constructions. We investigate the case, when inputs are in the form of fuzzy real numbers. Finally, we describe approximate systems induced by upper and lower general aggregation ope- rators, considering the lattices of all general aggregation operators and all fuzzy equivalence relations. Key words: Aggregation operator, general aggregation operator, fuzzy equi- valence relation, extensional fuzzy set, upper and lower approximate opera- tors, approximate system
 
URI
https://dspace.lu.lv/dspace/handle/7/31546
Collections
  • Promocijas darbi (2007-) / Theses PhD [1369]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV